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Abstract

Packet-oriented data transmission is gaining more and more importance in wireless com-

munication systems. Typically, data transmission is not strictly delay-sensitive but requires

a virtually error-free link. In order to provide such level of reliability over wireless chan-

nels, affected by propagation impairments such as fading, Automatic Retransmission reQuest

(ARQ) schemes can be combined with channel coding (Hybrid ARQ). In brief, when fading

varies slowly over the duration of a codeword, coding takes care of the channel noise while

retransmissions take care of bad channel conditions (deep fades).

In this work we study the throughput achievable by H-ARQ schemes based on incremen-

tal redundancy over a block-fading channel. We provide an information-theoretic analysis

assuming binary random coding and typical-set decoding. Then, we study the performance

of Low-Density Parity-Check code ensembles with iterative belief-propagation decoding and

show that, assuming infinite block length, LDPC codes yield almost optimal performance.

Unfortunately, practical finite-length LDPC codes incur a considerable performance loss with

respect to their infinite-length counterpart. In order to reduce this performance loss, we pro-

pose two very effective methods: 1) using special LDPC ensembles designed to provide

good frame-error rate (rather than just good iterative decoding threshold); 2) using an outer

selective-repeat protocol acting on smaller packets of information bits. Surprisingly, these two

apparently very different methods yield almost the same performance gain and recover a con-

siderable fraction of the optimal throughput, thus making practical finite-length LDPC codes

very attractive for data wireless communications based on incremental redundancy H-ARQ

schemes.

Keywords: Hybrid ARQ Protocols, Incremental Redundancy, Data Transmission, LDPC codes,

Fading Channels.
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1 Introduction, system model and background

We consider a frequency-flat block-fading Gaussian channel [1] where transmission is slotted. In

each slot of duration T the transmitter sends L � WT dimensions, where W is the two-sided signal

bandwidth and we assume W T
�

1, and the channel gain over each slot is random but constant for

the whole slot. For simplicity, we assume that the channel gains over different slots are statistically

independent. Let xs � ys ��� L denote the input and output signals over slot s. The block-fading

channel is expressed by

ys � cs xs � νs (1)

where νs � N �
	
0 � N0I 
 is an i.i.d. complex circularly-symmetric Gaussian noise vector with per-

component variance N0, and cs is the (scalar) fading coefficient during slot s.

The energy per symbol is constant and given by E and the fading is normalized so that �
��� cs � 2 � �
1. Therefore, the average received SNR is given by γ ∆� E � N0. For later use, we define also the

fading power gain αs
∆� � cs � 2 and the instantaneous received SNR over slot s, βs

∆� αsγ.

Although very idealized, the simple block-fading model (1) captures several aspects of wireless

communications over fading channels (see the thorough discussion in [1], [2]). For example, this

model applies to narrow-band transmission over a multipath fading channel with slow frequency

hopping (e.g., a GSM/GPRS system [3]). As illustrated in [1, 2], when fading is slowly-varying

with respect to the duration of a codeword, each codeword experiences a fixed number of fad-

ing states (M values, in our block-fading model). Under the realistic assumption of large L and

small M,1 the channel is not information stable and outage capacity, rather than standard ergodic

capacity, describes best the limits of reliable communications. If a feedback channel is avail-

able, Automatic Retransmission reQuest (ARQ) schemes can be used in order to trade-off delay

for reliability. Roughly speaking, a codeword is retransmitted until it is correctly decoded. The

1For example, in GSM M � 8 and L � 100, and in 64kbps downlink reference data channel for UMTS data-

transmission modes, codewords are interleaved over M � 2 frames, and each frame may contains up to � 1000 dimen-

sions [4].
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information-theoretic performance of Hybrid ARQ schemes [5] (i.e., schemes combining ARQ

with channel coding) was studied in [6] for random Gaussian codes. In [7], the performance of

H-ARQ schemes with binary convolutional codes is examined. In this work, we shall consider the

very powerful class of irregular Low-Density Parity-Check codes, [8], [9], and show that they are

very good candidates for efficient H-ARQ schemes.

The H-ARQ scheme under analysis sends additional coded symbols (redundancy) until suc-

cessful decoding is achieved. For this reason, it is referred to as Incremental Redundancy (IR)

protocol. The transmitter encodes information messages of b bits by using a channel code with

codebook C ��� n of length n � LM and coding rate R � b � n bit/symbol. The codewords are di-

vided in M subblocks of length L symbols. Each subblock is sent over one slot. Let Cm denote the

punctured code of length Lm obtained from C by deleting the last M � m subblocks. Without loss

of generality, we enumerate the slots as s � 1 � 2 ������� � M. In order to transmit the current codeword,

the transmitter sends the first subblock of L symbols on slot s � 1. The receiver decodes the code

C1, by processing the corresponding received signal y1. If decoding is successful, a positive ac-

knowledgement (ACK) is sent on a delay-free error-free feedback channel, the transmission of the

current codeword is stopped and the transmission of the next codeword will start in the next slot

(say, s � 2). On the contrary, if a decoding error is detected, a negative acknowledgement (NACK)

is sent back and the next subblock of the current codeword is transmitted on slot s � 2. In this

case, the receiver decodes C2 by processing the received signal
�
y1 � y2 � and the same ACK/NACK

procedure is repeated, until either successful decoding occurs, or all M subblocks of the current

codeword are transmitted without successful decoding (see figure 1).

If successful decoding occurs after m � M subblocks, the effective coding rate for the current

codeword is r
m bit/symbol, where we define the rate of the first block as r

∆� b � L. Therefore, the

IR protocol implements easily an adaptive rate scheme that takes advantage of good instantaneous

channel conditions. The throughput of the IR protocol is defined as the average number of bit/s/Hz

successfully received. As far as the throughput is concerned, it is irrelevant whether codewords not

successfully decoded after M subblocks are retransmitted in some successive slots or if they are just
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discarded [6]. On the contrary, the packet loss rate and the average delay of the system are affected

by the policy for handling decoding-failures. In general, for some information packet arrival model

and some delay constraint we might seek a policy minimizing the delay subject to a packet loss

probability constraint. This topic is out of the scope of the present paper and, for simplicity, we

shall assume that the transmitter has an infinite number of information packets available (no packet

arrival process) and applies the IR procedure to the current packet until decoding is successful.

In the rest of this paper we are concerned with the calculation of the throughput of the IR

protocol for certain random coding ensembles and deterministic LDPC code constructions. For

the sake of completeness, we recall here the general throughput analysis of IR protocols given

in [6]. By definition, the throughput is given by

η � lim
t � ∞

b
	
t 


Lt
bit � s � Hz (2)

where b
	
t 
 is the number of successfully decoded information bits up to slot t. The event E �

�
The user stops transmitting the current codeword � is recognized to be a recurrent event2 [10, 11,

6]. A random reward R is associated to the occurrence of the recurrent event: R � r bit/symbol if

transmission stops because successful decoding and R � 0 bit/symbol if it stops because at step M

successful decoding has not occurred. As an application of the Renewal Theorem [10], we obtain

η � �
�R �
�
� τ � (3)

where τ is the inter-renewal time expressed in slots, i.e., it is the number of slots between two

consecutive occurrences of the recurrent event.
2Definition: The E is a recurrent event if: (a) In order that E occurs at the n-th and at the

�
n � m � -th positions

of the sequence
�
E j1 � E j2 ��������� E jn 	 m � it is necessary and sufficient that E occurs at the last place in each of the two

subsequences
�
E j1 � E j2 ��������� E jn � and

�
E jn 	 1 � E jn 	 2 �
������� E jn 	 m � ; (b) If E occurs at position n-th then

Pr
�
E j1 � E j2 �
������� E jn 	 m � � Pr

�
E j1 � E j2 ��������� E jn ��� Pr

�
E jn 	 1 � E jn 	 2 �
������� E jn 	 m �
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By appropriately defining the recurrent event and the associated random reward, and by com-

puting the expectations �
�R � and �
� τ � , we obtain expressions for the throughput of the IR protocol

under various assumptions.

2 Throughput of binary random coding

We assume perfect channel knowledge at the receiver, i.e., the receiver knows perfectly the fading

coefficients
�
cs : s � 1 ������� � M � . Let the instantaneous mutual information per input symbol on slot

s be given by

J
	
βs 
 ∆� I

	
xs;ys � cs 
 � 1

L
�
�
log2

p
	
ys � xs � cs 


p
	
ys � cs 
�� (4)

where xs is distributed according to some input distribution Q
	
x 
 and where

p
	
y � x � c 
 � 1	

πN0 
 L e � 1
N0 � y � cx � 2

is the channel transition pdf for given fading gain c. Given the sequence of fading gains Fm
∆�

�
cs : s � 1 ������� � m � , we define the conditional probability of decoding error after m received slots

Pr
	
error �Fm � Cm 
 given the code C and the fading sequence Fm. In [6] it is shown that there exist

families of codes C with increasing subblock length L such that

lim
L � ∞

Pr
	
error �Fm � Cm 
 � 0 (5)

if Im
∆� ∑m

s � 1 J
	
βs 
�� r. Moreover, for any L the error probability of any code is bounded away from

zero if Im
∆� ∑m

s � 1 J
	
βs 
	� r. Finally, assuming typical-set decoding [12] the conditional probability

of an undetected decoding error vanishes as L 
 ∞ for any code C and any fading sequence F .

Eventually, we can say that for large number of dimensions per slot L (i.e., large product WT )

the error probability of the best possible code at each IR step m, for given fading sequence Fm, is

given by Pr
	
error �Fm � Cm 
 � 1

�
Im � r � where 1

�
� � is the indicator function. Hence, the average

error probability (where average is with respect to the fading statistics), is given by

Pr
	
error �Cm 
 � Pr

	
Im � r 
 (6)
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The probability Pr
	
Im � r 
 will be referred to as the information outage probability [2] at step m.

Moreover, for large L, decoding errors are revealed with arbitrarily large probability.

We define the probability q
	
m 
 of successful decoding with m transmitted slots as

q
	
m 
 ∆� Pr

	
I1 � r� I2 � r� ����� � Im � 1 � r� Im � r 


� p
	
m � 1 
 � p

	
m 
 (7)

where p
	
m 
 is defined as

p
	
m 
��� Pr

	
I1 � r� I2 � r� ����� � Im � r 
 � 1 �

m

∑
i � 1

q
	
m 
 (8)

Hence, from (3) it is immediate to obtain the throughput

η � RM
1 � p

	
M 


1 � ∑M � 1
m � 1 p

	
m 
 (9)

As for the average delay (in slots), we obtain3

µ � 1 � ∑M � 1
m � 1 p

	
m 


1 � p
	
M 
 (10)

We apply the above throughput analysis to random binary codes, i.e., when the input distribution

Q
	
x 
 puts uniform probability on the binary antipodal alphabet

� � � E �
�

E � . Since, because of

non-negativity of mutual information,
	
I1 � I2 ������� � Im 
 is a non-decreasing sequence for all fading

sequence realization, we have

p
	
m 
 � Pr

	
I1 � r� ����� � Im � r 
 � Pr

	
Im � r 
 � Pr

�
m

∑
s � 1

J
	
βs 
 � r � (11)

For binary inputs the instantaneous mutual information J
	
βs 
 is given by

J
	
βs 
 � 1 ��� ∞

� ∞
log2 � 1 � e

4
�

βs � z � � βs 	�
 e � z2�
π

dz (12)

3Expression (10) can be obtained either by simple direct calculation, or by noticing that the IR scheme where, in

the presence of a decoding failure after M slot, the protocol is reset and the current codeword is transmitted again,

corresponds to a newly defined renewal-reward process with deterministic reward RM. Therefore, from (3) and (9) it

follows that the average inter-renewal time (i.e., the average delay) of this new process is clearly given by (10).
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Since the βs’s are i.i.d. random variables, the cumulative distribution function (cdf) (11) is obtained

from the m-fold convolution of the probability density function (pdf) of J
	
βs 
 , given by

f
	
x 
 � 1

γ
fα � J � 1 	 x 
 � γ � � dJ � 1 	 x 


dx

 (13)

where fα
	
x 
 is the pdf of the fading power gain α.

In order to reduce the computation complexity of (11) for large m, we propose to use the

Gaussian Approximation (GA)

p
	
m 
�� 1 � Q � r � mµ�

mσ

 (14)

where µ and σ2 are the mean and the variance of J
	
βs 
 .

Conventional Coded ARQ. We take a short detour to compute the throughput of conventional

ARQ schemes; this will be used in section 4 to motivate the effectiveness of IR with respect to

these conventional protocols. We shall consider two variants of conventional coded ARQ. In the

first case, codewords of length L and rate R � b � L, spanning a single fading block, are used for

transmission. In the presence of a decoding error (detected with arbitrarily large probability in

the limit of large L), the codeword is retransmitted in some successive slot. The throughput and

average delay (in slots) of this scheme with random binary code ensembles are clearly given by

ηSR � 1 � R
	
1 � p

	
1 
 


µSR � 1 � 1
1 � p

	
1 
 (15)

where p
	
1 
 � Pr

	
J
	
β1 
 � R 
 (consistently with (11)), and where the subscript “SR-1” indicates

“selective repeat with coding over one block”.

In the second case, codewords of length n � LM and rate R are transmitted over M fading blocks

and decoding is performed only after all M blocks are received. In the presence of a decoding error,

the codeword is retransmitted in some successive group of M slots. The resulting throughput and
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average delay are given by

ηSR � M � R
	
1 � p

	
M 
 


µSR � M � M
1 � p

	
M 
 (16)

where the subscript “SR-M” indicates “selective repeat with coding over M blocks”. In Section 4,

we show by some examples that the IR scheme outperforms the above SR-1 and SR-M schemes.

3 Throughput of infinite-length LDPC ensembles

LDPC codes [13] are a class of very powerful randomlike binary codes suited to low-complexity

iterative decoding via the belief propagation (BP) algorithm [14]. Their bit-error rate (BER) per-

formance under BP, in the limit of large block length, can be obtained via the Density Evolution

(DE) method [8]. These codes exhibit a threshold phenomenon: as the block length tends to in-

finity, an arbitrarily small BER can be achieved if the SNR is larger than a certain threshold [8].

Otherwise, the BER is bounded away from zero for any number of decoder iterations.

In our analysis, we make the optimistic assumption that decoding is successful (the frame is

error-free) with high probability if, after m received slots, the BER under BP decoding vanishes

with the number of decoder iterations. Notice that vanishing BER does not necessarily implies

vanishing frame-error rate (FER) in the limit of infinite block-length. However, arguments based

on concatenation of LDPCs with outer expander codes [15] with very large rate show that, in

principles, vanishing BER implies vanishing FER at least for such concatenated constructions.

Furthermore, we assume that the convergence of the decoder to vanishing BER can be detected by

the decoder, so that decoding failure is always revealed. Under these optimistic assumptions, we

can use the same throughput formula (9) by redefining p
	
m 
 as

p
	
m 
 � Pr � lim

l � ∞
BER � l � 	 1 
 � 0 � ����� � lim

l � ∞
BER � l � 	 m 
 � 0 
 (17)

where BER � l � 	 m 
 is the BER at BP decoder iteration l with m received slots.
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We assume that the reader is familiar with the standard terminology and notation of irregular

LDPC codes, BP decoding and DE analysis (for details, see [8, 9, 16, 17]). The parity-check

matrix of a randomly selected instance C in a given LDPC ensemble is conveniently represented

by a bipartite graph with the nodes on the left (bitnodes) corresponding to the coded symbols

and the nodes on the right (checknodes) corresponding to parity-check equations (see figure 2).

A bitnode v is connected to a checknode c if the corresponding v-th symbol participates in the

c-th parity equation. The LDPC ensemble is defined by its left and right degree distributions

λ
	
x 
 ∆� ∑

�
max

i � 2 λixi � 1 and ρ
	
x 
 ∆� ∑rmax

i � 2 ρixi � 1, where λi (resp., ρi) is the fraction of edges in the

graph connected to bitnodes (resp., checknodes) of degree i. The rate of the ensemble is given by

R � 1 �
� 1

0 ρ
	
x 
 dx� 1

0 λ
	
x 
 dx

We assume that the coded symbols are randomly assigned to the M subblocks so that the fraction

of bitnodes of degree i on each m-th subblock is the same as for the total code. In order words, the

fraction of edges connected to bitnodes of degree i on subblock m is equal to λi � M, for all m �
1 ������� � M. Numerical examples (not shown in this work for the sake of space limitation) supported

our choice of distributing “uniformly” the left degrees on the subblocks.

In order to compute liml � ∞ BER � l � 	 m 
 for given fading coefficients
	
α1 ������� � αm 
 , we resort to

a Gaussian Approximation (GA) of DE, which is accurate and computationally very simple. In

Appendix A we show that the condition of vanishing BER limit for given instantaneous SNRs
	
β1 ������� � βM 
 can be approximated by the condition that the one-dimensional dynamical system

zl � Ψ � zl � 1 � β1 ������� � βM � � l � 1 � 2 ������� (18)

with initial condition z0 � 0 has a unique fixed-point z∞ � 1. The mapping function Ψ
	
� 
 is given

by

Ψ
	
z � β1 ������� � βM 
 ∆� 1

M

M

∑
s � 1

Fλ � 1 � Fρ
	
1 � z � 0 
 � βs � (19)

where, for a given distribution g
	
x 
 � ∑i � 2 gixi � 1, the function Fg

	
z � b 
 is defined in (30).
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At step m of the IR protocol, the decoder treats the not-yet received subblocks s � m � 1 ������� � M
as erasures, i.e., as if the received signal was zero. In the DE-GA (Gaussian Approximation applied

to Density Evolution), this corresponds to letting βs � 0 for s � m � 1 ������� � M. The condition that

(18) has unique fixed-point equal to 1 is equivalent to (see Appendix A)

Ψ
	
z � β1 ������� � βM 
 � z ��� z � � 0 � 1 
 (20)

Moreover, it is immediate to see that Ψ
	
z � β1 ������� � βM 
 is an increasing function of βs � s � 1 ������� � M

for any given z � � 0 � 1 � . Hence, for any fading gain sequence
	
α1 ������� � αM 
 and any z � � 0 � 1 � we

have that, for any m, the condition

�
z � � 0 � 1 
 such that Ψ

��
z � γα1 ������� � γαm � 0 ������� � 0� ��� 	

M � m


� � z

implies that �
z � � 0 � 1 
 such that Ψ

��
z � γα1 ������� � γαm � � 0 ������� � 0� ��� 	

M � m �

� � z

for all 1 � m 
 � m. Due to this inclusion, p
	
m 
 in (17), under the DE-GA approximation, reduces

to

p
	
m 
 � 1 � Pr

��
Ψ

��
z � γα1 ������� � γαm � 0 ������� � 0� ��� 	

M � m


� � z ��� z � � 0 � 1 


�

(21)

The probability in the RHS of (21) can be evaluated by Monte Carlo simulation by generating the

sequence α1 ������� � αM i.i.d., distributed according to the fading pdf fα
	
x 
 .

4 Results: Achievable Throughput

In all our numerical examples we assume Rayleigh fading, i.e., fα
	
x 
 � e � x, and M � 10 fading

blocks. Figures 3 and 4 show the throughput of binary random codes when the IR and SR scheme

are used, as a function of the coding rate R for γ � 3 and 10 dB, respectively. The throughput

of binary random codes with IR is evaluated by computing the p
	
m 
 ’s via convolution. For the
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sake of comparison, the results of GA are also shown: remarkably, GA yields a very accurate

approximation.

The comparison between IR and SR protocols is more evident by plotting the average delay

vs. the throughput (see figure 5). From the analysis of Section 2, η and or µ are given as functions

of the code rate R � � 0 � 1 � (for given number of fading blocks M, fading gain statistics and SNR

γ). Hence, the curve µ � µ
	
η 
 can be obtained in parametric form, by letting R varying in the

interval � 0 � 1 � . Since η is a non-monotone function of R, each value of η corresponds to possibly

multiple values of µ. Clearly, in the presence of multiple values only the minimum is relevant.

Figure 5 shows that SR-M is not convenient. On the contrary, for a certain range of throughputs

SR-1 achieves almost the same average delay of IR. However, there is a range of high throughput

that is not achievable by SR-1 while it can be achieved by the IR protocol at the cost of a very

small average delay (6 or 7 slots).

Figures 3 and 4 show also results for infinite block length LDPC codes. Each mark ( � ) in

figures 3 and 4 is obtained by using an irregular LDPC ensemble with degree distributions λ � ρ
optimized for the corresponding rate R and for the standard unfaded AWGN channel [18, 8]. No

attempt was made to optimize the degree distributions to take into account the block-fading chan-

nel. Nevertheless, these results show that AWGN-optimized ensembles perform close to optimal

and not much can be gained by further ensemble optimization.

5 LDPCs with finite block length

At this point, it is natural to ask how practical finite-length LDPC code perform on the block-

fading channel under the IR protocol, by removing the optimistic assumptions (limit for large

L, vanishing BER � vanishing FER) that led to the outstanding results of the previous section.

Figures 3 and 4 show also the throughput obtained by simulation of the IR protocol by using actual

finite-length LDPC codes of length n � 5000 and n � 10000. The finite-length results are obtained

by averaging over the channel fading, the noise and the ensemble of codes, i.e., a new parity-
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check matrix is randomly generated according to the given left and right degree distributions λ � ρ
defining the ensemble for each transmitted information packet. The throughput formula for finite-

length codes is still given by (9) where p
	
m 
 , for a given LDPC ensemble with degree distributions

λ � ρ, is expressed by

p
	
m 
 � �

C � n � λ � ρ ��� α �Pr
	
A1 � A2 � ����� � Am �α �

	
λ � ρ 
 � (22)

where, α is the sequence of fading gains, As is the event of successful decoding at step s and where

the code parity-check matrix is randomly generated with uniform probability over all bipartite

graphs with degree distributions λ � ρ (see [8]). Successful decoding is defined by the event that,

after a given maximum number of BP decoder iterations, all information bits are correct.

The throughput performance loss of finite-length ensembles with respect to their infinite-length

counterpart can be explained by observing that, typically, irregular finite-length LDPC codes with

bitnodes of degree 2 have very poor FER performance, despite the fact that they perform well in

terms of BER. This is because typical decoding errors involve a very small number of bit-errors

per frame error.

Another remarkable fact evidenced by figures 3 and 4 is that codes with block length n � 5000

slightly outperform codes with n � 10000. This is surprising since in standard AWGN settings

(without ARQ) BER is known to improve with the code block length [8]. Indeed, irregular LDPC

codes are commonly believed to provide good performances only for extremely large block length.

The above results show that in the presence of time-varying channels and retransmission schemes

this is not the case, as FER and not BER determines the throughput performance.

Next, we propose two approaches to improve the performance of IR with finite-length practical

LDPC codes. The first approach acts directly on the code design and leaves the IR protocol un-

changed: it consists of selecting the code parity-check matrix in some appropriate ensemble with

good FER properties. The second approach acts on the IR protocol and leaves the code design

unchanged: it consists of dividing the information packet into subpackets, performing error detec-

tion on each of the subpackets and using an outer selective-repeat protocol only for the subpackets
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in error. Interestingly, although quite different, these approaches yield very similar performance

improvement and recover a considerable fraction (up to 80% at SNR � 10 dB) of the loss due to

finite block length.

Special graph construction. Solutions to improve the FER performance of LDPCs consist of

finding special constructions based on expander graphs (see for example [15]), or a deterministic

arrangement of the edges adjacent to degree-2 bitnodes [18]. Due to its simplicity, we follow

this second method. Good FER codes can be obtained constructing the graph such that the edges

emanating from a bitnode of degree 2 are placed semi-deterministically. Let R denote the rate of

the code and λ̃2 � λi
�
i

∑ j λ j
�

j be the fraction of bitnodes of degree 2. If � 1 � R �
2 � λ̃2 � 1 � R we can

arrange the λ̃2n deg-2 bitnodes and λ̃2n checknodes into a cycle of girth 2λ̃2n, as shown in the

example of figure 6.

As an example of this construction, consider a standard unfaded AWGN channel and the en-

semble with λ and ρ given in [18], for rate R � 0 � 3 bit/symbol, maximum left degree dv � 100,

average right degree ar � 6 � 9, and block length n � 10000. Figure 7 shows the BER and the

FER obtained by averaging over all graphs with given degree distributions (Total ensemble) and

by averaging over all graphs with special cyclic arrangement of the edges connected with degree-2

bitnodes (Modified ensemble). It is clear that the modified ensemble yields much better FER.

Outer Selective Repeat System. Our second approach stems from the following observation:

for standard irregular LDPC codes, most frame errors involve a very small number of bit errors.

Therefore, by dividing the information packet into smaller subpackets, only a few of them will

contain errors after decoding. Hence, an Outer Selective-Repeat (OSR) protocol acting on these

smaller subpacket units can recover subpacket errors without having to retransmit the whole code-

word. For the sake of simplicity, we make the optimistic assumption that subpackets errors can

be prefectly detected. The concept of the concatenated selective-repeat scheme is represented in

figure 8.
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Let P denote the subpacket length in bits, and np � b � P be the number of subpackets per LDPC

codeword. At step m of the IR protocol, after a given number of decoder iterations, let em denote

the number of subpackets in error. We shall consider “successful” decoding (i.e., the IR protocol

stops the transmission of the current codeword at step m) if em � δ. Otherwise, if em � δ, a NACK

is sent and the block m � 1 of the current codeword is sent on the next slot. The system throughput

can be optimized with respect to the threshold δ � � 0 � np
� . Notice that setting δ � 0 is equivalent

to the IR alone, without the OSR. Therefore, this method can only improve the throughput with

respect to the basic IR protocol.

The throughput of the concatenated OSR-IR protocol can be evaluated by using again the

Renewal-Reward formula (3), by appropriately defining the random reward R and the inter-renewal

time τ. Let E �
�
The user stops transmitting the current codeword � be again the recurrent event,

and q̂
	
m 
 be the probability that the BP algorithm ends with a number of erroneous subpackets

em � δ. Defining Bs �
�
es � δ � for s � 1 ������� � M, we have

q̂
	
m 
 � Pr � B1 � ����� � Bm � 1 � Bm � (23)

The recurrent event probability is given by���� ��� Pr
	
Em 
 � q̂

	
m 
 if m � M � 1 �

Pr
	
EM 
 � 1 � ∑M � 1

m � 1 q̂
	
m 
 if m � M �

(24)

Defining p̂
	
m 
 � Pr� B1 � ����� � Bm � 1 � Bm � , we have q̂

	
m 
 � p̂

	
m � 1 
 � p̂

	
m 
 and substituting this

in (24) we get Pr
	
EM 
 � p̂

	
M � 1 
 .

The average inter-renewal time (in slots) is given by:

�
� τ � �
M

∑
m � 1

m � Pr
	
Em 
 �

M � 1

∑
m � 1

mq̂
	
m 
 � Mp̂

	
M � 1 
 � 1 �

M � 1

∑
m � 1

p̂
	
m 
 (25)

The reward R is a random variable that takes values in the range
�
0 � P � L ������� � npP � L � . Recalling
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the definition of em as the number of erroneous packets after decoding at IR step m, we can write

�
�R � � P
L

M

∑
m � 1

np

∑
e � 0

	
np � e 
 Pr

	
em � e � Em 
 Pr

	
Em 


� Pnp

L

�
1 �

M � 1

∑
m � 1

rmq̂
	
m 
 � rMP̂

	
M � 1 
 � (26)

where we define

rm � 1
np

np

∑
e � 0

ePr
	
em � e �Em 


to be the average fraction of subpackets in error after decoding at step m, given the recurrent event.

Recalling that Pnp � L � RM, we obtain the desired throughput expression as

η � RM
1 � ∑M � 1

m � 1 rmq̂
	
m 
 � rM p̂

	
M � 1 


1 � ∑M � 1
m � 1 p̂

	
m 
 (27)

The above formula can be evaluated after computing by Monte Carlo simulation the probabilities

p̂
	
m 
 and the quantities rm.

5.1 Results

In this section we show the throughput resulting from the modified LDPC ensemble, from the use

of an OSR protocol, or from a combination of both techniques. In all the following examples, we

fixed the subpacket length of the OSR protocol equal to P � 48 bits (6 bytes).

Clearly, the throughput achieved by OSR depends on the threshold δ. Analytical optimization

of δ is difficult if not impossible. Hence, we exhaustively searched for the best threshold value.

Figure 9 shows the throughput as a function of δ � � 0 � 1 � for the same setting as in figure 7 and

γ � 10dB. We notice that the performance of the OSR is quite insensitive to the value of δ (unless

δ is either very close to 0 or very close to 1). We plotted also the throughput achieved by the same

ensemble with infinite length, with finite length without any countermeasure and with finite length

by averaging over the modified ensemble. These results are shown as horizontal lines as they do

not depend on δ.
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Both the OSR and the modified ensemble are able to recover a large fraction of the loss incurred

by finite length LDPCs. It is natural to wonder about the benefit of using jointly the OSR protocol

and a modified LDPC ensemble. Unfortunately, the answer to this question is negative. In figure 9,

the curve labelled by “OSR-Modified Ensemble” refers to this case and we notice that the obtained

throughput is slightly inferior to that obtained by using OSR with the total ensemble. This fact can

be explained by noticing that for a typical code in the modified ensemble a frame-error corresponds

to a large number of bit errors (i.e., a large number of subpackets to retransmit). Hence, using an

outer SR protocol does not improve the throughput.

The almost constant behavior of throughput of OSR over a wide range of values of the threshold

δ is explained by observing the statistics of the number of subpackets in error em after decoding.

For example, figure 10 shows the probability mass function of em conditioned on the event that

the decoder works above its iterative threshold decoding (i.e., subject to the event that DE with

m received blocks converges to vanishing BER), with m � 4 received blocks. We notice that the

number of packets in error is mostly concentrated below 10% and above 90%. This behavior can

be observed for all m. Therefore, the throughput is almost constant for δ �
	
0 � 1 � 0 � 9 
 .

6 Conclusions

This paper extends previous analysis of Hybrid ARQ incremental redundancy schemes based on

infinite-length Gaussian random codes of [6] to infinite-length binary codes (Random Binary and

LDPC codes) and to practical finite block length LDPC codes. We showed that, under the assump-

tion of very large (infinite) block length and that vanishing BER implies vanishing FER, irregular

LDPC ensembles with degree distribution optimized for the standard AWGN channel [8] provide

performance very close to the information-theoretic limit of random binary codes.

Practical finite-length LDPC codes under no optimistic assumption incur a considerable perfor-

mance loss. Therefore, we proposed two methods to overcome this problem and to make practical

LDPC codes effective for the IR protocol: the first method consists of constructing the LDPC
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code with a special arrangement of the edges of left-degree 2, in order to improve the FER perfor-

mance. The second method is based on the concatenation of an outer selective-repeat loop acting

on smaller information packet units. Both methods are able to recover a significant fraction of the

throughput loss due to finite-length and yield approximately equivalent performance. Hence, they

can be regarded as two valuable alternatives for the system designer.

APPENDIX

A Gaussian Approximation of Density Evolution

Consider the LDPC ensemble defined by the left and right degree distributions λ
	
x 
 and ρ

	
x 
 .

Denote by a the messages sent from bitnodes (v, see figure 2) to checknodes (c), and by u the

messages sent from checknodes to bitnodes. Let L denote the channel observation message, in the

form of the log-likelihood ratio for the symbol associated to the given bitnode, given the channel

output. Assuming, without loss of generality, that the all-zero codeword is transmitted, if the

symbol corresponding to the bitnode is transmitted on the s-th slot,4 then L � N
	
4βs � 8βs 
 .

In order to simplify the DE, we use the following Gaussian Approximation: we assume that all

messages generated by the BP decoder at any iteration are Gaussian distributed, and we enforce

the symmetry condition [8, 16] that must be satisfied by the true distribution of messages generated

by BP. The symmetry condition applied to a Gaussian distribution implies that, at each iteration,

the variance of the messages is equal to twice the conditional mean. Therefore, tracking the evo-

lution of the message distribution along the BP iterations is equivalent to tracking the evolution

of a single parameter (e.g., the message mean). Following [19, 20], it is convenient to choose as

state variable of the resulting one-dimensional dynamical system approximating DE the mutual

information between a message and the associated bitnode variable.

4It is easy to see that the initial message is equal to L � 4γRe � yc �s � , where y is the corresponding channel output

and cs is the fading coefficient.
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We define a random variable P that governs the distribution of the variable node belonging

to the s-th block, so that P is uniformly distributed over s � 1 ������� � M. Let X denote the bitnode

variable and Y denote all the information available at the bitnode at a given iteration. Then, the

mutual information between the output of the bitnode and the symbol X is given by

I
	
X � Y � P 
 �

M

∑
s � 1

1
M

I
	
X � Y � P � s 
 (28)

From the Gaussian Approximation, it follows that

I
	
X ;Y �P � s 
 � J

	 	
d � 1 
 µ � βs 


for a bitnode of degree d transmitted on slot s, where µ denotes the mean divided by 4 of the

messages u coming from the checknodes. Hence, the mutual information of a message passed

along a random edge from a bitnode to a checknode at iteration l is given by

Il
out � v �

1
M

M

∑
s � 1

Fλ � Il � 1
out � c � βs � (29)

where, for a general distribution g
	
x 
 � ∑i � 2 gixi � 1 and b � 0 we define the function

Fg
	
z � b 
 �� ∑

i � 2
giJ � 	 i � 1 
 J � 1 	 z 
 � b � (30)

and where I l � 1
out � c is the mutual information of messages passed along a random edge from a chec-

knode to a bitnode at iteration l � 1.

In order to find the mutual information transfer function for the checknodes, we use the so-

called “approximate duality” relation [21]. With this approximation, a checknode can be replaced

by a bitnode provided that its input mutual information Iin is transformed into 1 � Iin and its output

mutual information Iout is transformed into 1 � Iout (see [20, 22] for a more rigorous motivation

of this approximation). Hence, the mutual information transfer of a checknode of degree d is

approximated by

Il
out � c � 1 � J � 	 d � 1 
 J � 1 � 1 � Il

out � v � � (31)
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Therefore, the mutual information of a message passed along a random edge from a checknode to

a bitnode at iteration l is given by

Il
out � c � 1 � Fρ � 1 � Il

out � v � 0 � (32)

By combining equations (29) and (32), we obtain the one-dimensional recursion

Il
out � v �

1
M

M

∑
s � 1

Fλ � 1 � Fρ � 1 � Il � 1
out � v � 0 � � βs � (33)

with initial condition I0
out � v � 0, which is the same as (18). The DE-GA recursion for a given

number of received blocks m with fading gains α1 ������� � αm is obtained by letting

βs �

���� ��� γαs for s � 1 ������� � m,

0 for s � m � 1 ������� � M �

in (33).

It can be shown that the sequence
�
I l
out � v; l � 1 � 2 ������� � is non-decreasing. Hence, the trajectory

of (33) converges to the smallest fixed point in the interval � 0 � 1 � . We say that the (approximation

of the) DE converges to vanishing BER if the mutual information converges to 1, i.e., (33) has a

unique fixed point at 1. Since the function 1
M ∑M

s � 1 Fλ � 1 � Fρ
	
1 � z � 0 
 � βs � is non-decreasing with

z � � 0 � 1 � and positive for z � 0. The fixed point at 1 is unique if and only if (20) holds.
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Figure 1: H-ARQ Incremental Redundancy protocol.
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Figure 2: The bipartite graph representing the parity-check matrix of a
	
3 � 6 
 -regular LDPC code

of length 10.
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Figure 3: Throughput vs. code rate R for γ � 3dB. Incremental Redundancy (IR) protocol with

Random Binary (RB) codes (the result of the Gaussian Approximation (GA) (14) is shown for

comparison), and with infinite length LDPC codes. Selective Repeat protocols (SR-1 and SR-M)

with random binary codes are also shown.
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Figure 4: Throughput vs. code rate R for γ � 10dB. Incremental Redundancy (IR) protocol with

Random Binary (RB) codes (the result of the Gaussian Approximation (GA) (14) is shown for

comparison), and with infinite length LDPC codes with degree distributions taken from [18]. Se-

lective Repeat protocols (SR-1 and SR-M) with random binary codes are also shown.
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codes for γ � 3 and 10 dB.
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Figure 6: Cyclic arrangement of the edges adjacent to bitnodes of degree 2.
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Figure 7: BER and FER of the LDPC ensemble with degree distributions given in [18] for a rate

R � 0 � 3 bit/symbol, maximum left degree dv � 100, average right degree ar � 6 � 9 and length

n � 10000, over the AWGN channel. The curves labeled as “total ensemble” are obtained by

averaging over all code graphs with the given degree distributions. The curves labeled by “modified

ensemble” are obtained by averaging over the graphs with degree-2 edges arranged in a cycle, as

shown in figure 6.
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Figure 8: Outer Selective Repeat scheme.
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Figure 9: Throughput as a function of the threshold δ for γ � 10dB and R � 0 � 3bit/symbol for

the LDPC codes with length n � 10000 with OSR. The throughput without OSR (labeled “no-

OSR”) for finite and infinite length are shown for comparison as horizontal lines (in these cases

the throughput is independent of δ).
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Figure 10: Probability mass function Pr
	
em � e � DEm converges 
 for m � 4, R � 0 � 3bit/symbol,

γ � 10dB and n � 10000.


