
Iterative Multiuser Joint Decoding: Optimal Power

Allocation and Low-Complexity Implementation

Giuseppe Caire
�
, Ralf Müller

�
and Toshiyuki Tanaka

�

March 12, 2003
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Abstract

We consider a canonical model for coded CDMA with random spreading, where the

receiver makes use of iterative Belief-Propagation (BP) joint decoding. We provide simple

Density-Evolution analysis in the large-system limit (large number of users) of the perfor-

mance of the exact BP decoder and of some suboptimal approximations based on Interfer-

ence Cancellation (IC). Based on this analysis, we optimize the received user SNR distri-

bution in order to maximize the system spectral efficiency for given user channel codes,

channel load (users per chip) and target user bit-error rate. The optimization of the received

SNR distribution is obtained by solving a simple linear program and can be easily incor-

porated into practical power control algorithms. Remarkably, under the optimized SNR

assignment the suboptimal Minimum Mean-Square Error (MMSE) IC-based decoder per-

forms almost as well as the more complex exact BP decoder. Moreover, for a large class

of commonly used convolutional codes we observe that the optimized SNR distribution

consists of a finite number of discrete SNR levels. Based on this observation, we provide

a low-complexity approximation of the MMSE-IC decoder that suffers from very small

performance degradation while attaining considerable savings in complexity.

As by-products of this work, we obtain a closed-form expression of the multiuser ef-

ficiency of power-mismatched MMSE filters in the large-system limit, and we extend the

analysis of the symbol-by-symbol MAP multiuser detector in the large-system limit to the

case of non-constant user powers and non-uniform symbol prior probabilities.

Keywords: Multiuser Detection, Multiple-Access Channel Capacity, Iterative Decoding,

Statistical Mechanics.
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1 Problem statement and prior work

The canonical real-valued model for the Gaussian multiple-access discrete-time waveform chan-

nel is given by [1] � �������	� ��

������� ��� ����������� (1)

where � ������� ,

� ��������� ��! are the input, output and noise signal vectors at time � , respec-

tively, � �"� !$#%� is a matrix containing by columns the user discrete-time signature wave-

forms (spreading sequences) &�' , of length ( samples, and � � diag )+*-, ��������� * �/. contains

the user amplitudes. The noise is Gaussian i.i.d., with variance per component 0213 (we write����465 )87 � 0913�: . ).
As usual, in multiple-access channels the users send independent and independently en-

coded information [2] (see the block-diagram in Fig. 1). This implies that ;=< �?>A@ �9BC��DB$E is

diagonal. Without loss of generality, we let ;F< � : and normalize the user signature wave-

forms such that G &�'HG 1 ��� , so that IJ'FK� *L1'NM 0913 takes on the meaning of received signal-to-noise

ratio (SNR) of user O . We let PQ' denote the user codebooks, of rate R-' � ,SUTCV%W 1 G PX'HG bit per

symbol. Each O -th user, in order to transmit its information message YZ' �\[ � �������]� G PX'HG ^ , sends

the codeword _Q'%)+Y`' . � )baX']c , ��������� aX']c S . � PX' in � consecutive channel uses as given in (1).

At the receiver, a joint decoder maps the received signal d �e@ � , ��������� � S E into a f -tuple of

information messages )�gYU, �������]� gY �h. . Without loss of generality, we assume that the user infor-

mation messages are represented by vectors of i-' information bits j2' (e.g., j�' can be seen as

the binary representation of the index Y�' ). Hence, we define the per-user bit-error rate (BER)

as kFl '�mn � �iL' o�pq r s ,9tvu w g x ']c
rFy� x ']c r{z (2)

under the usual assumption that the user information messages are uniformly distributed.

From standard arguments [3, Ch. 8]), we have that the transmitted signal bandwidth is ( M}| ,

where | is the (continuous-time) duration of one channel use. Therefore, the system spectral

efficiency is given by [4] ~ � �( �q ' s , RL' ������� M���M���� (3)

We shall also define the system received energy-per-bit > n K�����p��%�]�$�p� �p��%��� p and the system > n M � 3 ,
given by [4, 5] � > n� 3H������� K� > n� 0 13 � ,!�� �' s , IJ'� ~ (4)

The model (1) has been used extensively in order to derive in simple and concise form most

MultiUser Detection (MUD) algorithms (see [1] and references therein). Moreover, several
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recent results on the performance analysis of MUD algorithms in the large-system limit (i.e.,

letting both f and ( go to infinity with fixed ratio f M ( ��� ) under the random spread-

ing assumption (i.e., the entries of � are generated i.i.d. according to some probability dis-

tribution) are derived based on this model for the sake of analytical tractability (see for ex-

ample [4, 6, 7, 8, 9, 10, 11, 12, 13]). We shall not question here the validity of this widely

accepted model. Nevertheless, we would like to stress the fact that both more refined analysis

and practical experience shows that the conclusions drawn from the real canonical model (1)

apply (at least qualitatively) to more complicated and close-to-practice models taking into ac-

count complex-valued baseband equivalent channels [5], asynchronous transmission [14] and

transmission through multipath fading channels [15] with imperfect channel estimation. The

main fact that makes the model (1) “close” to practical CDMA settings is the random spreading

assumption, which prevents the users to pick their waveforms optimally. In this respect, the

random-spreading point of view reflects real-life CDMA practice [16], where physical impair-

ments and practical constraints prevent the system from optimizing the user waveforms.

In this work we are concerned with the practically relevant problem of maximizing the

system spectral efficiency

~
for a given family of user codes [ P�'���O � � �������]� f\^ , given

iterative joint decoders (see [17] and references therein) and subject to the individual maximum

BER constraints

k=l '�mn���� for all O ��� ��������� f , under the random-spreading assumption and in

the large-system limit. We conclude this section by reviewing some known results on spectral

efficiency of random-spreading CDMA and by providing a preview of the reminder of this

paper.

Maximum spectral efficiency with optimal coding/decoding and vanishing BER. The

maximum spectral efficiency of random-spreading CDMA with no restrictions on coding and

decoding and for vanishing BER (i.e., �	��
 ) 2 was found by Verdú and Shamai in [4, 5] for

given finite channel load f M ( ��� , and reads


 � � � TCV%W 1 ) � 
 I�� .�� �� TCV%W 1 � � � � �� TCV%W 1 � ����� M���M���� (5)

where � is the solution to [6] �
�
��� 
 � I� 
 �HI (6)

The optimal ) > n M � 3 . ����� for given � and



is given by� > n� 3H������� � � I� 

2The achievability results referenced in this section hold under the stronger condition of vanishing message

error rate. Well-known converse results ensure that the looser requirement of vanishing BER does not allow any

larger rate [3].
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The spectral efficiency (5) is achieved by Gaussian codebooks and constant user received SNR.3

The supremum of



over ��� 
 is obtained for � � � (an infinite number of users per

dimension, with vanishing user coding rate), and is given by the single-user Gaussian channel

spectral efficiency, � > n� 3 � ����� � � 1�� � �� 
 (7)

It is interesting to notice that, in order to achieve (5), an optimal (ML) joint decoder is not

necessary. In fact, the same optimal spectral efficiency is achieved by a stripping decoder

that considers the users in sequence (say, in the order O � � � � �������]� f ) and, at each stage O ,
decodes the O -th message based on the linear MMSE estimate of the O -th user codeword from

the received signal after subtracting the already decoded users [18]. The price incurred by

stripping is that the user coding rates must be assigned such that the transmitted rate f -tuple

coincides with a successively decodable point of the multiple-access capacity region [2] or,

if equal user rates are desired, the user received SNRs must be assigned such that the equal-

rate point is successively decodable (at the price of some loss in the total achievable rate).

The power/rate assignment with practical families of user codes (notably, LDPC codes) for

successive stripping decoding is studied in [19].

The spectral efficiency with optimum joint decoding in the case of constant received SNR

and binary antipodal (instead of Gaussian) codes was found by Tanaka in [9], and is given by


 � �
�

�
� I 
 �� � � ���� TCV%W 1 � � �� TCV%W 1 � � �	� TCV%W 1�
 V �
� )���� I�� 
 I�� .�� � � ����� M���M���� (8)

where � is the solution to [9]�
�
��� 
 � I � � � � ����� � )���� I�� 
 I�� .�� � � (9)

(we define � � K� ,� 1�� ����� ��� 1! �� ).
It is not hard to show that, for given I , the maximum of



in (8) is also obtained by letting

� �"� and coincides with the single-user Gaussian spectral efficiency (7).

Maximum spectral efficiency with optimal coding, separate detection/decoding and van-

ishing BER. A common suboptimal practice in multiple-access systems considers separated

MUD and single-user decoding. In this case, the decoder is formed by some multiuser detector

front-end, producing an estimate of the O -th user transmit signal for O � � ��������� f , followed by a

3We say that the received power distribution is constant if all users are received at the same SNR level # , i.e.,

the empirical cumulative distribution function of the received SNRs is a unit-step with jump at # .
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bank of f single-user decoders, each processing its own MUD front-end output and producing

the decoded message gY ' independently of the others. The spectral efficiency of such schemes

has been examined in several works for various MUD schemes. In [6], Tse and Hanly investi-

gated the spectral efficiency achieved by linear MUD (single-user matched filter (SUMF), linear

MMSE and decorrelating filters) and arbitrary user codes. It is worth noticing that for Gaussian

user codes and linear MMSE filter this is the optimal spectral efficiency achievable by separated

MUD and decoding, since linear MMSE estimation coincides with the optimal MAP symbol-

by-symbol estimation for Gaussian signals. In [20], M üller and Gerstacker found the spectral

efficiency with binary user codes and the individually optimal (symbol-by-symbol MAP) MUD

front-end. Remarkably, both for Gaussian and for binary codes the spectral efficiency under

separated MUD and decoding can be written in terms of the corresponding spectral efficiency

with joint decoding as [5, 20]


 ����� � 
����	� 
�� 
 �� TCV%W 1 � 
 � � �� TCV%W 1 � (10)

where

 ���	� 
��

is given by either by (5) or (8) and � is the solution to either (6) or (9), respectively.

The term ,1 TCV%W 1 � 
 , ��
1 TCV%W 1 � quantifies the loss in spectral efficiency due to separation.

Spectral efficiency for given user codes, iterative detection/decoding and arbitrary tar-

get BER. Driven by the success of iterative decoding schemes in single-user channel coding

(see [21] and references therein), “Turbo” multiuser joint decoding was proposed in several

works (see for example [22, 23, 24] and references in [17]). These algorithms seek a trade-off

between the complexity of optimal joint decoding and the performance loss of separated MUD

and single-user decoding. The performance analysis for a wide class of user codes (not nec-

essarily random ensembles) and a class of iterative joint decoders obtained as approximations

of the Belief Propagation (BP) algorithm (see details in Section 3) was provided by Boutros

and Caire in [17]. This analysis is based on the general technique known as Density Evolution

(DE) [25], commonly used to determine the iterative decoding limits of Turbo Codes and LDPC

codes, and is exact in the limit of large blocklength (notice: to obtain a meaningful large system

limit we let first � �"� and then f �"� with f M ( ��� ).

Preview of this paper. Several issues are left open in [17]. In particular, how the exact BP

decoder compares with respect to its IC-based approximations? What is the optimal received

SNR distribution maximizing spectral efficiency for given user codes, user target BER and given

iterative decoding scheme? How far is the spectral efficiency of an optimized CDMA system

with simple (practical complexity) user codes and iterative joint decoding from the optimal

spectral efficiency with optimal (i.e., capacity-achieving) codes and optimal joint decoding?



G. Caire, R. Müller and T. Tanaka: submitted to IEEE IT Trans., March 2003. 7

Can we find iterative decoding algorithms with complexity comparable to separated MUD and

single-user decoding which still significantly outperform the separated approach?

In this work, we provide answers to the above questions. In Section 2 we recall the exact

BP decoder and some lower-complexity approximations based on IC. In Section 3 we present

the DE analysis of this family of message-passing decoders under random spreading and in the

large-system limit. Based on this analysis, in Section 4 we provide a simple linear program-

ming algorithm for the optimization of the received SNR distribution. Our results show that,

under constant received SNR, the exact BP decoder significantly outperforms its IC-based ap-

proximations in terms of power efficiency (i.e., it requires significantly lower SNR for given

target BER). On the other hand, in terms of spectral efficiency, the advantage of exact BP over

its approximation based on soft IC and MMSE filtering is only marginal. Moreover, for all the

considered decoding algorithms, the spectral efficiency attained under an optimized received

SNR distribution is significantly larger than under constant SNR. Driven by these observations

and by the fact that, for the user codes considered here, the optimized received SNR distribution

consists of a small number of discrete SNR levels, in Section 5 we provide a low-complexity

approximated version of the MMSE-IC iterative decoder that offers a very competitive trade-off

between complexity and performance. Finally, we point out our conclusions in Section 6. The

proofs of the main results are provided in the Appendix.

2 Iterative joint decoding algorithm

In the rest of this work we shall restrict the user codes to be binary antipodal, i.e., P '��[ � � �{
 � ^ S . For a binary variable � with probability mass function (pmf) ) tvu )�� � 
 � . � tvu )�� �
� � .�. we define its log-ratio by

� K� TCV%W tvu )�� � 
 � .tvu )�� � � � . (11)

The BP algorithm [26, 27] approximates iteratively the log-ratios
��� � �']c r corresponding to the

marginals of the a posteriori joint pmf tvu )+j�, ��������� j � G d . of the user information bits. After

a given number of iterations, a symbol-by-symbol decision is made according to the threshold

rule g x ']c r � � � W � ) � � � �']c r . (12)

Standard results [27] show that if the dependency graph describing tvu )+j , �������]� j � G d . is cycle-

free, then BP yields symbol-by-symbol MAP decisions with a finite number of iterations, thus

minimizing the BER

k l '�mn for each user O . Unfortunately, the dependency graph of the coded

multiuser channel (1) has cycles as long as f�� � and the user codes are non-trivial (i.e., have
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rate RL'�� � ). Nevertheless, for sufficiently large blocklength � and under some randomiza-

tion of the user codes (e.g., the P�' ’s may be linear convolutional codes the output of which is

independently and randomly interleaved before transmission, or LDPC codes whose graph is

independently and randomly generated), the probability of finding cycles of any finite girth �
decreases linearly with � [17]. Hence, BP decoding is locally optimal provided that decisions

are made after a finite number � of decoder iterations, while letting � sufficiently large.

The BP iterative joint decoder belongs to the class of message-passing decoding algo-

rithms [25]. It is formed by some computation building blocks that exchange messages in

the form of binary pmfs or, equivalently, of log-ratios. The main building blocks of a BP itera-

tive joint decoder are the Soft-Input Soft-Output (SISO) decoders and the individually optimum

MAP multiuser detector (IO-MUD) (see the block-diagram in Fig. 2).

SISO decoding is formally expressed by

��� ���']c � � TCV%W ��	��
 p
� ��� s�� , ����� � ,1 �r��s � � r ����� �']c r��
��	��
 p
� ��� s � , ����� � ,1 �r��s � � r � ��� �']c r � (13)

for all O � � ��������� f and � � � ����������� , where
����� �']c r is the message (log-ratio) sent by the

IO-MUD for user O relative to coded symbol ��']c r and
� � ���']c � is the so called decoder “extrin-

sic information”. For convolutional codes, (13) is efficiently implemented by the well-known

forward-backward algorithm [28]. The same forward-backward algorithm can compute the

log-ratios [ � � � �']c r �� ��� �������]� iL'�^ for the user information bits while computing (13).

IO-MUD consists of calculating the a posteriori log-ratios

� ��� �']c � � TCV%W tvu )baX']c � � 
 � G � �J� � � ���, c � ��������� � � ���' � , c � � � � ���' � , c � ��������� � � ���� c � .tvu )baX']c � � � � G � ��� � � ���, c � ��������� � � ���' � , c � � � � ���' � , c � ��������� � � ���� c � . (14)

� TCV%W �!"��#%$ ,%& � � < p s�� , �����(')
�
,1+* �,.-----
� � � ��r s , * r & r a r -----

1 
 ,1 �r��s ' a r � � ���r c ��/0
�!"��#%$ ,%& � � < p s � , ����� ')

�
,1+* �, -----
� � � ��r s , * r & r a r -----

1 
 ,1 �r��s ' a r � � ���r c � /0 (15)

for all O ��� �������]� f and � ��� �������]��� . Unfortunately, there is no efficient way to perform this

calculation, in general. 4

4Based on the fact that 13254 , with 47698;:=<?>+@A<�B
C is a constellation of D dimensional points carved from

a lattice with generator matrix EGFH132 , a modification of the Pohst enumeration of lattice points (Sphere
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Various schemes have been proposed to simplify the exact BP decoder by replacing the

IO-MUD block by some simpler soft-in soft-out algorithm. In this work we shall consider the

following options.

Conditional MMSE-IC. The optimal a posteriori estimation (15) can be replaced by the un-

biased MMSE estimation of aQ']c � given the received signal

� � and the SISO decoders extrinsic

information [ � � ���r c � �� y� OX^ , given by

��']c � ��� D ']c � � � � � q r��s ' *
r & r ����� � ) � � ���r c � M � .�� (16)

where the filter � ']c � minimizes the conditional MSE

>��� ----- aX']c � � � D ']c �
� � � � q r��s ' *

r & r ����� � ) ��� ���r c � M � . � -----
1 ------
[ ��� ���r c � �� y� OX^	�


under the unbiasedness constraint *�' � D ']c � &�' � � and is given explicitly by

� ']c � � *h'0 13�� ']c � � : 
 q r��s ' I
r ) � � ����� � 1 ) ��� ���r c � M � .�. & r & Dr � � , &�' (17)

where � ']c � � IJ'�& D ' � : 
 q r��s ' I
r ) � � ����� � 1 ) ��� ���r c � M � .�. & r & Dr � � , &�' (18)

is the output signal to interference plus noise ratio (SINR).

From (16) and (17) we can write �N']c � � aX']c ��
�
 ']c � , where 
 ']c � has mean zero and variance� M � ']c � . Assuming 
 ']c � Gaussian distributed, the log-ratio sent to the SISO decoder is given by

� ��� �']c � � � � ']c � ��']c � (19)

In the large-system limit the output of the linear MMSE detector converges almost surely to a

conditionally Gaussian random variable [8]. Therefore, the Gaussian assumption made in (19)

is exact for random spreading CDMA and large f .

Decoder [29]) has been proposed by some authors in order to generate a list of candidate transmit vectors and

approximate (15) by restricting the sum to a few significant terms in the list [30]. Nevertheless, this approach is

prohibitively complex for large � and/or ����< (i.e., ����D ).
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The estimator (16) consists of two stages: first, the observation

� � is rendered zero-mean

by subtracting the (conditional) mean

�� ']c � � > � � � G [ � � ���r c � �� y� OX^��� q r��s ' *
r & r ����� � ) ��� ���r c � M � . (20)

Then, the linear MMSE estimation of the zero-mean symbol a9']c � is obtained by filtering the

zero-mean observation

� � � �� � . This decomposition of linear MMSE estimators is canoni-

cal [31]. However, it is interesting to notice that, in this setting, the elimination of the condi-

tional mean of the observation takes on the meaning of soft Interference Cancellation (IC). In

fact,
�� � is the (non-linear) MMSE estimate of the multiple-access interference � r��s ' * r a r c � & r

relative to user O , based on the SISO decoder output messages [ � � ���r c � �� y� OX^ .
Since (16) is obtained by solving a MMSE problem conditionally on the SISO decoders

extrinsic information and involves soft IC, we shall refer to this detector as the conditional

MMSE-IC scheme.

Unconditional MMSE-IC. The conditional MMSE-IC detector requires the computation of

the filters (17) for each user, each symbol interval and each decoder iteration. A simplification

consists of applying unconditional linear MMSE estimation to the observation after soft IC. The

resulting estimate of aQ']c � is still given by (16), where the filter � ']c � is replaced by the filter � ' ,
minimizing the unconditional MSE> �� ----- aX']c � � � D '

� � � � q r��s ' *
r & r ����� � ) ��� ���r c � M � . � -----

1 �

under the unbiasedness constraint *�' �9D' &�' � � and is given explicitly by

� ' � *h'0 13	� ' � : 
 q r��s ' I
r ) � � >A@ ����� � 1 ) � � ���r c � M � . E . & r & Dr � � , &�' (21)

where � ' � IJ'�& D ' � : 
 q r��s ' I
r ) � � >A@ ����� � 1 ) ��� ���r c � M � . E . & r & Dr � � , &�' (22)

is the output signal to interference plus noise ratio (SINR). The log-ratio sent to the SISO

decoder is given by (19) with � ']c � replaced by � ' .
In a practical implementation, the mean >A@ ����� � 1 ) � � ���r c � M � . E can be replaced by the empirical

mean �� Sq � s , ����� � 1 ) ��� ���r c � M � . (23)
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that can be computed directly from the output of each  -th SISO decoder.

The unconditional MMSE-IC scheme requires the evaluation of only one filter per user per

iteration.

Single-user matched filter with IC. A further simplfication is obtained by replacing the

MMSE filter by the single-user matched filter (SUMF), and producing an estimate of a ']c � as

��']c � � & D ' @ � � � �� � E
This approach, referred to as the SUMF-IC scheme, was proposed in several early works on

uncoded multiuser detection under the name of soft Parallel IC (PIC) (see for example [32]),

and has the advantage of not requiring the computation of matrix inverses. The expression of

the output SINR is well-known and will be omitted for the sake of brevity.

3 Density evolution analysis

DE consists of propagating through the decoding iterations the probability density of the mes-

sages exchanged by a message-passing decoder under the assumption that the messages re-

ceived at each computation node are statistically independent. Under some mild conditions

(notably, that the probability of cycles of any given girth � vanishes as the blocklength � in-

creases), a general concentration theorem [25] ensures that the empirical distribution of the

messages at any fixed decoder iteration � converges with probability 1 to the limit density ob-

tained by DE, as � � � . In [17] it is shown that the concentration theorem holds for the

coded CDMA channel model and the message-passing decoders presented in the previous sec-

tion under mild conditions of regularity of the user codes P9' ’s. In particular, the theorem holds

for convolutional codes with random independent interleaving.

In the rest of this paper we make the following assumptions: 1) the user codes are all derived

by the same convolutional code P of rate R , and differ only by the interleaver randomly and in-

dependently generated for each user; 2) the user spreading sequences &�' are randomly generated

with i.i.d. components according to a symmetric distribution (zero odd moments), variance � M (
and finite fourth-order moment; 3) the empirical distribution of the received SNRs, defined by

�

l � m� )�� . K� �f �q ' s , � [ IJ' � �J^
converges almost everywhere to a given (non-random) distribution

�
� )�� . , as f � � ; 4) as

anticipated before, we shall study the large-system limit of the iterative decoders by letting first
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(to remove the randomness due to random spreading). Under these assumptions, the following

general result holds:

Proposition 1. For the IO-MUD, conditional MMSE-IC, uncoditional MMSE-IC and SUMF-

IC detectors defined above, at each decoder iteration � the log-ratio
� ��� �']c � sent to the O -th

SISO decoder converges in distribution to a Gaussian random variable with conditional mean� IJ' � l � m aX']c � (given aX']c �=� [ � � �{
 � ^ ) and variance
� I�' � l � m , where the coefficient �

l � m � @ 
 � � E de-

pends on the detector and on the iteration � , but it is independent of the user index O . Moreover,[ ����� �']c � � � ��� ��������� x ^ for given finite � and x (that do not depend on the blocklength � ) are

asymptotically conditionally independent given the O -th user transmitted codeword.

Proof. It follows directly as a corollary of [8, 9, 13]. �
Proposition 1 essentially tells that each O -th SISO decoder input sequence [ � ��� �']c � � � �� �������]��� ^ , at each decoder iteration � , can be thought as the posterior log-ratio of the output of

a virtual binary-input AWGN channel �}']c � � aX']c �-
 
 ']c � where 
 ']c �`4 5 ) 
 � � M )bIJ' � l � m .�. . The

virtual AWGN channel SNR is I�' � l � m . Hence, �

l � m represents the ratio between the effective

SNR for user O at the � -th decoder iteration and the nominal received SNR I$' . Following the

standard definition of [1], we shall refer to �

l � m as the Multiuser Efficiency (ME).

Let us consider the output of the SISO decoder O when its input is driven by the virtual

AWGN defined above. The pdf of the log-ratio
� � ���']c � defined in (13) satisfies the symmetry

condition [33] � ) � � . � � ��� � )�� . (24)

In general,
� � ���']c � is non-Gaussian. However, it can be closely approximated by a Gaussian ran-

dom variable (conditionally on a�']c � ). By imposing the symmetry condition (24) on a Gaussian

distribution, we find that the variance must be equal to twice the mean (in absolute value).

Therefore, we shall use the approximation

��� ���']c � 465 w ��� l � m' aX']c ��� � � l � m' z (25)

This is equivalent to model
� � ���']c � as the posterior log-ratio of the output of a virtual binary-

input AWGN channel  H']c � � aX']c � 
	� ']c � where � ']c � 4 5 ) 
 � � M � l � m' . . The above Gaussian

Approximation has been used extensively to study the performance of Turbo Codes [34] and

LDPC codes [35] under iterative BP decoding.

The output SNR
�
l � m' of the virtual channel defined above depends on the user channel codeP and on the input SNR I�' � l � m . However, since (25) is an approximation, there is some degree
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of freedom in how to map I�' � l � m into the corresponding
�
l � m' , for a given code P . We shall

use the “symbol-error rate matching” approach proposed in [17]. Namely, let � ) SNR . be the

average symbol-error probability at the output of the SISO decoder as a function of the input

SNR, defined by
� ) SNR . K� tvu � ��� ���']c � � 
 -- aX']c � � 
 ��� (26)

Hence, we let �
l � m' � ��� � , � � )bIJ' � l � m . � � 1 (27)

where
� )ba . K�����< � � is the standard Gaussian tail function.

Suppose that, for a given MUD scheme, we are able to compute �

l � m from the values[ � l � � , m' � O � � �������]� f\^ . Then, the new value
�
l � m' can be computed by (27). The sequence

of ME [ � l 3 m � � l , m ��������� � l � m ������� ^ uniquely defines the evolution of message densities along the

decoder iterations (under the Gaussian Approximation). Eventually, the DE with Gaussian

Approximation (referred to as DE-GA in the following) will take on the form of the one-

dimensional dynamical system

�

l � � , m �
	 �
�

l � m � (28)

where the initial condition �

l 3 m and the mapping function 	 depend on the specific MUD algo-

rithm and on the system parameters, as the channel load � and the limiting distribution of the

received SNRs
�

� )�� . . The next propositions give expressions for the mapping function 	 and

for the initial condition �

l 3 m , for all the MUD algorithms considered.

Proposition 2. The mapping function 	 ) � . for the exact BP decoder is given by the stable

solution to the fixed-point equation�
	 ��� 
 �2> � �� I � � � w � � ����� � 1 w��
� � )bI�� . 
 � )bI�� .

z9z � � � ����� � � � � I 	 
 I 	����� � ����� � 1 w�� � � )bI�� . 
 � )bI�� . z ����� � 1 � � � I 	 
 I 	�� � � � � �

(29)
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in the interval @ 
 � � E that minimizes the quantity

� � �
	
�
�2> � @ I E 
 �� � � �� � TCV%W 1 � � �� TCV%W 1 	 �

� �2> � �� � � � �� � � 
������ � w � � � )bI�� . 
 � )bI�� .
z

� TCV%W 1 
 V �
� w � � I 	 
 � � � )bI�� . 
 I 	 
 � )bI�� . z 


 � � ����� � w�� � � )bI�� . 
 � )bI�� . z� TCV%W 1 
 V �
� w � � I 	 � � � � )bI�� . 
 I 	 � � )bI�� . z�� �� � � � � �
 �
�
� � > �

� � � TCV%W 1 w � � ����� � 1 w�� � � )bI�� . 
 � )bI�� . z�z � � � (30)

where > � @	� E denotes expectation with respect to the received SNR distribution
�

� and where,

from (27), we define the function

� )�� . K� � � � , ) � )�� .�. � 1 (31)

Proof. See Appendix A. �
Equation (29) may have either one (see example in Fig. 3, left) or three distinct solutions

(see example in Fig. 3, right) in the interval @ 
 � � E , depending on � , � and
�

� . If (29) has three

solutions 
 � 	 , � 	 1 � 	�
 � � , 	 , and 	�
 are stable fixed-points and 	 1 is unstable. Then,

the desired 	 ) � . is given by 	 , or by 	�
 for which (30) is minimum.

From the proof given in Appendix A) we notice that
�

defined in (30) takes on the oper-

ational meaning of mutual information per dimension (i.e., spectral efficiency in bit/s/Hz) for

the channel (1) where the input symbols � � are binary with non-uniform a priori marginal pmf

given by tvu )baX']c � � 
 � . � � 

� '�
(with � ' � @ � � � � E ), and where the empirical distribution

� l � mD )�� . K� �f �q ' s , � [�� ' � �J^
converges almost everywhere as f � � to the distribution of the random variable | ������ � ) � M � . , with

� 4�5 ) ��� )bI�� . � � � )bI�� .�. and I 4 �
� . It is also interesting to notice that

the valid solution 	 ) 
 . of (29) for constant received SNR coincides with the solution of (9),

and that, consequently,
�

evaluated at � � 
 , 	 � 	 ) 
 . and constant received SNR coincides

with the spectral efficiency with binary i.i.d. uniform inputs



given in (8).

For the IC-based iterative decoders we have the following results.
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Proposition 3. The mapping function 	 ) � . for the conditional MMSE-IC decoder is given by

the unique solution to�
	 � � 
 �2> � ���� � I w � � ����� � 1 ) � � � )bI�� . 
 � )bI�� .�. z� 
 	 I w � � ����� � 1 ) �
� � )bI�� . 
 � )bI�� .�. z � � �
 (32)

in the interval @ 
 � � E , where
� )�� . is defined in (31).

Proof. See [17]. �

Proposition 4. The mapping function 	 ) � . for the unconditional MMSE-IC decoder is given

by the unique solution to�
	 ��� 
 �2> � �� I w � � � � ����� � 1 ) � � � )bI�� . 
 � )bI�� .�.�� � z� 
 	 I w � � � � ����� � 1 ) � � � )bI�� . 
 � )bI�� .�.�� � z �
 (33)

in the interval @ 
 � � E , where
� )�� . is defined in (31).

Proof. See [11]. �
Although not surprising, it is interesting to notice that equations (32) and (33) reduce to (6)

for � � 
 and constant received SNR. More in general, the solution 	 ) 
 . of (32) and (33) for

� � 
 and arbitrary
�

� coincide with the ME of linear MMSE MUD found by Tse and Hanly

in [6].

Proposition 5. The mapping function 	 ) � . for the SUMF-IC decoder is given by�
	 ��� 
 �2> �

� I � � � � � ����� � 1 ) � � � )bI�� . 
 � )bI�� .�.�� � � � (34)

where
� )�� . is defined in (31).

Proof. See [11]. �

Proposition 6. For all the above cases, the DE-GA initial condition is given by �

l 3 m � 	 ) 
 . ,
and coincides with the ME of the corresponding MUD scheme used alone, i.e., without coding

and iterative decoding.
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Proof. It follows directly from the definition. �
With some effort, it is possible to verify that, for all � � @ 
 � � E and all SNRs distributions

�
�

the following inequalities hold


 � 	 � �	��� � � � ) � . � 	 � 
 ��� � � ��� � � � ) � . � 	 � �	
 � � � � ��� � � � ) � . � 	 � � � ��� � ) � . � � (35)

Moreover, for any finite � we have �

l 3 m � 
 and the functions 	 are non-decreasing with

� . Therefore, the smallest solution of the fixed-point equation 	 ) � . � � in @ 
 � � E yields the

stable fixed point which the DE-GA tends to, i.e., by letting �
�

denote this solution, we haveT ��� ��� � � l � m � � � .
Within the limits of the assumptions made in order to obtain the DE-GA, the iterative de-

coder performance is completely characterized by the limiting ME �
�
. In fact, after many iter-

ations, every O -th SISO decoder “sees” a binary-input AWGN channel with SNR I$' � � . There-

fore, for a given user code P , the BER is uniquely determined by �
�

and by the individual

received SNR I�' . For example, if �
�
	 � , every user in the system attains a performance close

to its single-user lower bound, as if it was alone in the system. In this case, the iterative decoder

is able to remove almost entirely the effect of multiple-access interference.

To illustrate the above DE-GA analysis, we computed the BER of a coded CDMA system

where the user code P is the classical 64-state rate 1/2 convolutional code with (octal nota-

tion [36]) generators ) � ��� � ��
J� .�� . Figs. 4 and 5 show BER vs. > n M � 3 for constant received

SNR, � � � � 
 and
� � 
 , respectively, and various iterative decoding schemes. We notice that

the BER shows the typical “waterfall” region (a behavior common to several iterative decoding

schemes) where the error curve decreases rapidly with > n M � 3 and approaches the single-user

BER curve. For sufficiently large load � , the waterfall region becomes a “jump”, i.e., an abrupt

transition from very large to very small BER. As noticed in [17], this transition corresponds to

a fold bifurcation [37] of the dynamical system (28) representing the DE-GA. The value of �
for which the bifurcation appears depends on the decoder algorithm. For example, for �\� � � 

(Fig. 4) the SUMF-IC decoder shows the bifurcation behavior while the other detectors have a

smooth waterfall. For � � � � 
 (Fig. 5) the exact BP, conditional and unconditional MMSE-IC

decoders show bifurcation (at different values of > n M � 3 ) while the SUMF-IC decoder is not

able to eliminate multiple-access interference (equivalently: the bifurcation appears at infinite> n M � 3 ).
4 Received SNR distribution optimization

In this section we aim at optimizing the received SNR distribution
�

� in order to maximize the

spectral efficiency

~ � � R , for a given user convolutional code P , given channel load � , given
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maximum BER constraint � (for all users in the system) and for a given iterative decoder in the

class of algorithms studied in the previous sections.

For simplicity, we quantize the SNRs levels, i.e., we shall assume that the users received

SNRs take on values in a finite discrete set of levels 
 ���8, ��� 1 � ����� ����� , for some finite

integer � . Users received at SNR level �
r

are said to “belong to class  ”. Moreover, we define

the partial channel loads �

r � f r M ( , for  � � ��������� � , where f r is the number of users in class . Clearly, � �
r s , � r � � . Finally, we assume that when f � � all the class sizes f r grow

to infinity, with given ratios f r M f � � r M � . In order to stress the dependency of the DE-GA

mapping function on the system parameters �6K� )��H, ��������� ��� . and �?K� ) � , ��������� � � . , we shall

use the notation 	 ) � .
	 	 )�� � � � � . .
Since the BER is a non-decreasing function of the decoder input SNR, fixing a maximum

target BER � to be achieved by all users in the system is equivalent to requiring that the DE-GA

fixed point �
�

satisfies �
� �H, � SNR ) � . , where the SNR level SNR ) � . is determined by the codeP . Let 
 � � , � � 1 � � and � 
 � 
 . We fix �+, � SNR ) � . M � 1 and obtain the other SNR levels

� 1 ��������� ��� by sampling with a sufficiently small step a desired interval @ � , � � �
��� E . Then, we look

for the class load assignment � solving the optimization program

� � ����� � � � �q r s , �
r
�
r

subject to

��� �� 	 )�� � � � � . � � 
 � 
 ��� � � @ � , � � 1 E� �
r s , � r � � �
�

r � 
 � �  (36)

Suppose that (36) is feasible. Then, the solution � � has the property of minimizing� > n� 3 ������� � � �
r s , � r � r� � R

over all class load assignments � such that the spectral efficiency is equal to

~ � � R , and the

DE-GA has limit �
� � � 1 (implying that all users attain BER not larger than � ). The parameter

� 
 governs the speed of convergence of DE-GA (and eventually of the true iterative decoder) to

the fixed point. If � 
 is very small, 	 )�� � � � � � . is very close to � for some values of � , and the

decoder needs many iterations to find its way out of these “tunnels” (this behavior is completely

analogous to what observed in iterative decoding of Turbo Codes and LDPC codes through the

so-called EXIT diagrams [38]). On the other hand, there is no hope to obtain small ) > n M � 3 . �����
by keeping � 
 large. Therefore, � 
 can be used as a performance vs. complexity tradeoff design

parameter.

If for some � and � the program (36) is infeasible, then some of the parameters must be

changed, for example, by decreasing � and/or increasing the range @ ��, � � �
��� E of permitted re-

ceived SNR levels.
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Fortunately, for all decoding algorithms considered in this paper, the condition 	 )�� � � � � . �
� 
 � 
 can be re-formulated as a linear constraint with respect to � . Therefore, (36) is a linear

program and can be solved by standard numerical methods. Before proving the above statement,

we would like to point out here that the optimization of � via linear programming has striking

analogy with the methods for optimizing the degree sequences of LDPC code ensembles, as for

example in [35, 39].

For the SUMF-IC decoder, from (34) we re-write 	 )�� � � � � . � � 
 � 
 as

�q r s , �
r
�
r � � � � � ����� � 1 ) ��� � )�� r � . 
 � )�� r � .�.�� � � � �

� 
 � 
 � � (37)

which is clearly linear in � .

For the conditional and unconditional MMSE-IC decoder, 	 is given implicitly as the solu-

tion of the fixed-point equations (32) and (33), respectively. These equations have the following

property [6]. Let us write (32) and (33) in the form 	�� � )�� � � � � � 	 . , and denote by 	 )�� � � � � .
the solution. Then, for all a � @ 
 � � Ea � 	 )�� � � � � .�� a � � )�� � � � � � a . (38)

Due to this iff implication, it follows that 	 )�� � � � � . � � 
 � 
 is equivalent to

�q r s , �
r
�
r � � w � � ����� � 1 ) � � � )�� r � . 
 � )�� r � .�. z� 
 ) � 
 � 
 . � r w � � ����� � 1 ) � � � )�� r � . 
 � )�� r � .�. z � � � �

� 
 � 
 � � (39)

for conditional MMSE-IC, and to

�q r s , �
r
�
r w � � � � ����� � 1 ) � � � )�� r � . 
 � )�� r � .�.�� � z� 
 ) � 
 � 
 . � r w � � � � ����� � 1 ) � � � )�� r � . 
 � )�� r � .�.�� � z � �

� 
 � 
 � � (40)

for unconditional MMSE-IC. Again, both (39) and (40) are linear constraints in � . Finally, for

the exact BP decoder we have to be a bit more careful because of the possibility of multiple

solutions to the equation (29) defining the mapping function 	 . Let us re-write (29) in the form

	 � � )�� � � � � � 	 . and denote by 	 ,�)�� � � � � . � 	�
 )�� � � � � . its stable solutions. Clearly, the

inequality 	 )�� � � � � . � 	 ,�)�� � � � � . always holds. Thus, the condition 	 ,�)�� � � � � . � � 
 � 

for � � @ � , � � 1 E implies the first constraint in (36).

Since 	 ,�)�� � � � � . is, by definition, the smallest solution of (29), the function

� )�� � � � � ��� . �� is positive for � � @ 
 � 	 ,�)�� � � � � .�. . Thus, the first constraint in (36) can be replaced by the

more stringent constraint� )�� � � � � ��� .�� � � 
 � ��� � @ 
 � � 
 � 
 . � � � � @ � , � � 1 E (41)
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As desired, (41) is a collection of linear constraints on � , parametrized by � and � .
In practice, the linear constraints corresponding to (41) are obtained by sampling on an

appropriate grid of points the trapezioidal region defined by � � @ 
 � � 
 � 
 . � � � @ � , � � 1 E , in
the ) ��� � . -plane. This may produce a large number of constraints. A simpler approach consists
of requiring that (29) has a single solution. Then, if 	 )�� � � � � . � 	 ,�)�� � � � � . is the unique
solution of (29), then the condition (38) holds and the corresponding linear constraint is given
by������� � ���	��
 ��� 
 < :���������� 
���� ��� �	���� @ ��� �	���� "!�! 
 < :�������� 
$#%� �	� � � @'&�(  @ �	� � � @'&�(  "!�!< :��������%� 
�� � ��� �	���� @ ��� �	���� "! ��������� 
�# � �	� � � @'&�(  @ �	� � � @'&�(  "! ) # ) �+* <� @'&�( :=<

(42)

By replacing the first constraint in (36) by (42), the vector � � found by linear programming

corresponds to a valid receiver SNR distribution if 	�� � )�� � � � � � � 	 . has a unique solution for

all � � @ 
 � � E . This can be checked a posteriori, i.e., by solving the linear program given by (42),

finding a candidate � � and checking the uniqueness of the solution of the fixed-point equation.

Fortunately, for practically relevant choices of the code P and of the target BER � (notably, in

all numerical results presented here) we found that the solution of (29) for the candidate optimal

� � is unique.

As an example of the above optimization technique, consider Fig. 6, showing the DE-

GA mapping function 	 )�� � � � � . for the exact BP decoder, load �?� � �-, , maximum free-

distance 64-state rate 1/3 convolutional user codes with generators ) � ��� � � � ,J� ��
 , . � (see [36]),

and ) > n M � 3 . ����� �/. dB. The curve corresponding to constant receiver SNR yields �
� 	 
 � � ,

i.e., the iterative decoder applied to this system yields very poor performance for all users (10

dB degradation with respect to their single-user performance). On the contrary, the system

with optimized SNR distribution yields �
� 	 � � 
 , i.e., each user attains its single-user perfor-

mance after a sufficiently large number of iterations. The SNR-optimized curve in Fig. 6 is

obtained by linear programming by using the constraint (42), enforced over grid of points in@ � , � 
 � � 1 � 
 �-, E , equally spaced by 
 � 
 � , and by letting � 
h� 
 � 
 � .
Fig. 7 shows the achievable spectral effciency

~
at target BER � 
 �10 , for coded CDMA

systems based on the convolutional code with generators ) � ��� � � � ,J� ��
 , . � and different iterative

decoders, with optimized received SNR distribution. For the sake of comparison, we show

also the spectral efficiency achievable by optimal Gaussian (or binary) codebooks with joint

detection (given by (7), with linear MMSE detection (optimal separate detection for Gaussian

inputs) and with (suboptimal) linear SUMF detection (these curves have been presented in [4].

Fig. 8 compares the spectral efficiency

~
at target BER � 
 �10 for the same system described

above with the performance of a system with the same user codes and constant receiver SNR,

with iterative detection and with separate detection (corresponding to the performance of the

iterative decoders after the first iteration).
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Based on these results, the following remarks are in order:

� All spectral efficiencies of the convolutionally-coded systems are zero for ) > n M � 3 . ����� �� � � � dB, that is the value of > n M � 3 needed for a single user to achieve BER ��� 
 �10 . This

limit depends on the user code alone, and can be improved by choosing a more powerful

code.

� As said in Section 1, for both Gaussian and binary inputs spectral efficiency is maximized

by infinite load and vanishing per-user rate. On the contrary, the spectral efficiency curves

for the convolutionally-coded CDMA system with iterative multiuser joint decoding re-

ported in Figs. 7, 8 correspond to per-user rate R ��� M � bit/symbol and finite � users

per chip. In this sense, these curves are much more meaningful from the viewpoint of

practical CDMA design.

� For large ) > n M � 3 . ����� , the iteratively-decoded systems with optimized SNR distribution

are not interference limited, in the sense that their spectral efficiency increases with) > n M � 3 . ����� . Remarkably, for the exact BP and the MMSE-IC decoders the large- ) > n M � 3 . �����
slope of spectral efficiency is (close to) optimal, at least in the considered range of) > n M � 3 . ����� .

� CDMA systems with constant receiver SNR are basically interference limited, and it-

erative joint decoding provides a significant gain with respect to conventional separate

multiuser detection and single-user decoding only for small ) > n M � 3 . ����� .
� The unconditional MMSE-IC yields spectral efficiency very close to exact BP with much

smaller complexity with respect to both exact BP and conditional MMSE-IC. This makes

the unconditional MMSE-IC decoder a good candidate for high-performance low-complexity

iterative multiuser decoding. This point will be elaborated further in the next section.

5 Low-complexity implementation

In the previous section we showed that the unconditional MMSE-IC iterative decoder provides

a good trade-off between spectral efficiency performance (under the optimized received SNR

distribution) and complexity. Nevertheless, complexity is still fairly larger than conventional

CDMA receivers, since it requires the computation of a bank of f MMSE filters (complexity
� )8fU1 . per user per iteration) at each decoder iteration. A solution reported in the literature [40]

consists of using the standard linear MMSE detector for the first few iterations and, assuming
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that the decoder is able to eliminate multiple access interference, switch to the standard SUMF

filter when the residual interference symbol variances, given by

� ' � � � > � ����� � 1 � ��� ���']c � M � � � � O � � ��������� f (43)

are below a certain threshold. This approach achieves complexity
� )8f . per user per iteration,

but it does not take into account the fact that, under optimal SNR distribution, users are received

at different SNR levels and the evolution of their residual symbol variances with the decoder

iterations may be very different. Indeed, we may expect that users received at higher SNR levels

are correctly estimated and canceled much faster than users received at low SNR.

In order to illustrate the above intuition, consider the SNR distribution in Fig. 9, optimized

by linear programming for the unconditional MMSE-IC receiver with � � � �-, , convolutional

code with generators ) � ��� � � � ,J� ��
 , .�� and ) > n M � 3 . ����� � . � � �
dB. The distribution is composed

by � � �
SNR levels, denoted by �J, � � 1 � � 
 . Fig. 10 shows the evolution of the multiuser

efficiency (left) and the residual user symbol variances (right) for the three classes of users vs.

the decoder iterations. We notice that the three user classes are removed in sequence, starting

from the highest-SNR class: after 10 iterations, the power of class 3 users is reduced by 10

dB, after 22 iterations class 2 users are reduced by 10 dB and, eventually, after 40 iterations

all users are removed from the received signal, meaning that each user is decoded as if it was

alone on the channel (the multiuser efficiency converges to
	 � ). Intuitively, we may say that

the iterative decoder (under optimized received SNR distribution) performs implicit stripping of

the different classes of users.

Fortunately, for the class of convolutional codes and iterative decoders considered in this

paper and for a surprisingly large range of system parameters (user coding rates, ) > n M � 3 . �����
and load � ) the optimal SNR distribution consists of a small number � of discrete SNR levels,

as in the example above. Next, we take advantage of this fact to obtain a low-complexity

iterative multiuser decoding algorithm which performs very close to unconditional MMSE-IC

with complexity
� )8f . , comparable to that of conventional CDMA receivers.5

Consider again the CDMA channel model (1) and an IC-based iterative decoder that, at a

certain iteration � , produces the � -th observable for the SISO decoder of user O as

�
l � m']c � � w�� l � m' z D w � � � ��� g� l � m� 
 &�'�*h']ga l � m']c � z (44)

5Our receiver algorithm applies to the so-called periodic random spreading, i.e., where the user spreading

sequences are randomly generated and used for a long sequence of codewords (blocks of D symbols). We hasten

to say that rather different approaches based on matrix polynomials should be considered for low-complexity

algorithms in the case of aperiodic random spreading, where a new set of spreading sequences is used on every

symbol interval (see [10, 41]).
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where ga l � mr c � is the current estimate of the  -th user symbol given the SISO decoders output mes-

sages at the previous iteration, that for the binary antipodal case considered here is given byga r c � � ����� � ) � � ���r c � M � . (see (20)), and
�
l � m' is an appropriately chosen filter.6

The unbiased unconditional MMSE criterion leads to (21), that it is rewritten by using sim-

ple matrix identities as
�
l � m' � � ����� l � m � D 
 I � � , &�'& D ' @ ����� l � m � D 
 I E � , &�' (45)

where we define � K� diag )bI$, ��������� I � . and the residual symbol covariance matrix at iteration �
as � l � m K�6> � � � � � g� l � m� � � � � � g� l � m� � D�� � diag

w
�

l � m, ��������� � l � m� z (46)

Notice that � l � m is exactly diagonal in the limit for large blocklength � because ga l � mr c � are obtained

from the SISO decoders extrinsic information [17].

Under the optimized received SNR distribution, we shall assume that the users are grouped

into ��� f classes of size f , ��������� f � . User O in class  is received at SNR level I�' � � r . As in

Section 4, we let �J, � ����� � ��� and enumerate the users such that users O �\[
	 r � , 
 � �������]��	 r ^
belongs to class  , where 	 3 K� 
 and 	 r K� �

r B s , f B .
The proposed low-complexity approach makes use of � linear detectors. Detector number at iteration � assumes user SNRs given by� l � mr c ' ��
�� l � m IJ' � l ��� m' for O ��� � � �������]��	 r


 for O � 	 r 
 � ��	 r 
 � ��������� f (47)

where � l � m is an iteration-dependent scaling factor common to all users (to be specified later)

and � r is an iteration index that characterizes the  -th detector. In matrix form, we define the

diagonal matrix � r such that its O -th diagonal element is zero if O belongs to a class larger than and one otherwise, and let the diagonal matrix of nominal received SNRs for the  -th detector

be given by � l � mr � � l � m ��� l ��� m � r (48)

Equation (48) is meaningful only for � � � r . As it will be clear in the following, detectors are

used in the order  � � � � � � ��������� � and the indices � r determine the detector switch points,

i.e., the  -th detector is used for � � � r ��������� � r � , � � , where � � � 
 and � 3 is the maximum

number of iterations.

6We use ��� ���� instead of � � as in Section 2 in order to stress the fact that here the filter does not coincide

necessarily with the unconditional MMSE filter (21). Moreover, we specify explicitly the iteration index � since it

is relevant in the definition of the low-complexity algorithm.
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In order to obtain a computationally efficient form for the  -th detector, we decompose the

spreading matrix as �U� � � r 
 � ) : � � r .� ��� �K� � � r (49)

and replace the true SNR diagonal matrix ��� l � m in (45) by

� l � mr
. We introduce the singular

value decomposition � � ��� l ��� m � r � , � 1 � �
r
�
r
� Dr � (50)

such that
�
r

and
�
r

are unitary and
�
r

is diagonal up to some additional columns or rows

which are all zero. We define

	
r K� � Dr � (51)� �

r
� Dr � � , � 1 � � l ��� m � � , � 1 
 � Dr � � r � (52)

Note that, though (52) looks more complicated, it may require fewer computing effort than (51)

due to the diagonal structure of the matrices
�
r � � , and � l ��� m and the zero columns in

� � r . By

using (51) and (48) in (45) and in (44), we can write the  -th detector filter for user O at iteration� � � r ��������� � r � , � � as
� � l � mr c ' � �

r
� � l � m � 1r 
 I � � ,�
 r c '
 Dr c ' � � l � m � 1r 
 I � � ,�
 r c ' (53)

where


r c ' denotes the O -th column of

	
r
, and its � -th output as

� �
l � m']c � � 
 Dr c ' � � l � m � 1r 
 I � � , � Dr
 Dr c ' � � l � m � 1r 
 I � � , 
 r c ' w � � � ��� g� l � m� 
 &�'�*h']ga l � m']c � z� 
 Dr c ' � � l � m � 1r 
 I � � ,
 Dr c ' � � l � m � 1r 
 I � � , 
 r c ' w � Dr � � � 	

r � g � l � m� 
 

r c ']*h']ga l � m']c � z

� 
 Dr c ' � � l � m � 1r 
 I � � ,

 Dr c ' � � l � m � 1r 
 I � � ,�
 r c ' � � Dr � � � 	

r � g � l � m� �� ��� ��s�
�� ������ � 
 *h']ga l � m']c � (54)

Given
	
r

and the singular value decomposition (50), (54) has complexity
� )8f . per user per

iteration: notice that the calculation of �
l � m� c r involves

� )8fU1 . M f operations per user, since it

is common to all users. The other operations are just inner products of vectors with diagonal

kernels. This brings the computational effort per user per iteration from quadratic to linear.

Costly computations are needed only when a switch from detector  to detector  
 � takes

place. Then, a singular value decomposition (50) and a matrix multiplication (51) or (52) are
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needed. The impact of this computations is not very large in typical situations with optimized

SNR distribution. In the example at the end of this section, we have � � �
swtich points and

total iterations � 3 � , , , therefore the complexity of SVD per user per iteration yields
� )8f 1 . ,

but it is multiplied by a factor
� M , , . In general, our approach is very effective for small � and

a large number of decoder iterations (typical of heavily loaded systems attaining large spectral

efficiency).

Two questions have been left open: how to determine the detector switch points � r and how

to choose the scaling factor � l � m . They will be addressed in the following.

For the time being, let � l � m be a given function of the iteration index and of the other system

parameters (including the received signal block d ) that can be easily computed in real-time

along the decoder iterations. The filter
� �
l � mr c ' can be regarded as a mismatched MMSE filter

that assumes user received SNRs given by the diagonal elements of

� l � mr
rather than the exact

values given by � � l � m . In order to determine an effective switching criterion, we make use

of the following result characterizing the multiuser efficiency of an MMSE filter with power

mismatch:

Proposition 7. Consider the CDMA system with f users and spreading factor ( defined by� �"��� , � 1 � 

� where � 4�5 ) 
 � : . and the usual assumptions on random spreading made in

Section 3 hold. Let � K� diag ) k , ��������� k � . such that � � � ' k ' � k , and let )�� , ��������� � �/. be

an arbitrary sequence of positive numbers such that � � � '��2' � � , where

k
and � are fixed,

finite and positive constants independent of f . Assume that, as f � � , the joint empirical

distribution of the pairs ) k ' � �2' . , defined by

�

l � m )�� � � . K� �f �q ' s , � [ k ' � � � �2' � � ^
converges almost everywhere to a given distribution

��� c 	 )�� � � . . Then, by letting f � � withf M ( � � , the multiuser efficiency of a linear detector obtained as the MMSE filter assuming

received user powers given by [ �v'}^ instead of the true values [ k '�^ converges almost surely for

all user O to the value 
 given by


 � � � 
 �2> 	 � 	l , � 
 	�m � �� 
 �2> � c 	 � �l , � 
 	�m � � (55)

where � is the solution to �
�
� � 
 �2> 	 � �� 
 ��� � (56)

and where > 	 @	� E and > � c 	 @	� E denote expectations with respect to ) k � � . 4 ��� c 	2)�� � � . .
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Proof. The proof of the above proposition follows as a corollary of the proof of the main

result of [8]. A concise and self-contained scketch of proof (skipping technicalities on almost-

sure convergence) is given in Appendix B. �
Proposition 7 is the key for a simple and effective switching criterion. Before illustrating

it, we take a short detour for the following interesting corollary. Notice that � given in (56) is

the multiuser efficiency of a MMSE filter matched to powers [ � '�^ rather than [ k '}^ . Hence, it

can be regarded as the nominal multiuser efficiency of the mimatched detector, while 
 given by

(55) is the true multiuser efficiency of the mismatched detector. We say that the nominal powers[ �2'�^ are adapted to the actual powers [ k '�^ if the two sequences [ k '}^ and [ �2'}^ can be sorted

in non-decreasing order by the same permutation and have the same sum. We say that [ ��'�^ is

a conservative choice of the nominal powers if it is adapted to [ k '}^ and yields 
 � � , i.e., the

actual detector performance is better than what can be expected if the users had powers [ ��'}^
instead of [ k '}^ . The following result gives a sufficient condition for a conservative nominal

power assignment.

Corollary 7.1. Let [ � '�^ be adapted to [ k '�^ . Then, in the limit for large f , [ � '�^ is a conser-

vative choice of the nominal powers if [ k '}^ majorizes [ �2'�^ .7
Proof. See Appendix B. �

Corollary 7.1 generalizes the result of [10] that, rephrased in our terminology, states that[ �2' � ,� � �r s , k r �FO � � ��������� f\^ is a conservative nominal power assignment for any

received power sequence [ k '}^ , since it is well-known that any [ k '}^ majorizes its corresponding

constant mean-value sequence [42].

Going back to the detector switching problem, a sensible criterion to switch from detector to detector  � � at a given iteration � consists of choosing the detector with largest ME. Let be the current detector index. At each iteration � we decide if using detector  or switching

to detector  � � by comparing their MEs 

l � mr

and 

l � mr � , via the large-system formula (55). For

7A sequence 8�� � B is said to majorize [42] a sequence 8�� � B if������� � � � � � ������� � � � � >�����F <?>
	
	
	 > �
with equality for � F � , where 8�� � � � B and 8�� � � � B denote the non-decreasing arrangements of 8�� � B and 8�� � B ,
respectively.
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detector  we have



l � mr � �

l � mr � 
 � � �' s , � � ��� � p�� � � � �pl , � 
 � ���� � � ��� � p�� � � � �p m �� 
 � � �' s , � p�� � ���pl , � 
 � ���� � � ��� � p�� � � � �p m � 
 � �' s � � � , IJ' � l � m'�
�

l � mr � � 
 � �q ' s , � l � m IJ' � l ��� m'� 
 � l � mr � l � m IJ' � l ��� m' (57)

while for detector  � � we have



l � mr � , � �

l � mr � , � 
 � � �����' s , � p�� � ���pl , � 
 � �������� � p�� � ���p m �� 
 � � �����' s , � p�� � ���pl , � 
 � �������� � p�� � ���p m � 
 � �' s � ����� � , IJ' � l � m'�
�

l � mr � , � � 
 � �����q ' s , IJ' � l � m'� 
 � l � mr � , IJ' � l � m' (58)

If 

l � mr � 


l � mr � , , then � r � , is set equal to � and the detector is switched from  to  � � .
In writing (58) we implicitly assumed that � l � m �	� at each switch point (in particular, for� � � r � , ). Optimizing the detector with respect to � l � m appears to be a hard problem. A very

effective heuristic choice enforcing the condition � l ��� m � � for all  � � � � � � �������]� � is given

by � l � m � � �' s , �
l � m'� �' s , � l ��� m' � for � � � r � � r 
 � ��������� � r � , � � (59)

In order to illustrate the behavior of the proposed low-complexity iterative scheme, we consider

again the system and SNR distribution of Fig. 9. Fig. 11 shows the evolution of the multiuser ef-

ficiency (left) and the residual user symbol variances (right) for the three classes of users vs. the

decoder iterations, for the low-complexity algorithm described above. The dash-dotted curves

show the evolution of the nominal user symbol variances assumed by the low-complexity de-

tector. The detector switch points, determined by the above algorithm, occur at � 1 � � 
 and�}, � � . . In this case, the low-complexity algorithm achieves the same performance of the un-

conditional MMSE-IC decoder with 55 instead of 43 iterations. In general, a small degradation

in achievable performance may be expected, due to the suboptimality of the low-complexity

linear detector.
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6 Concluding remarks

In this work we have extended the DE-GA analysis approach of iterative multiuser joint decod-

ing of [17] to the exact BP algorithm. As a byproduct, we have extended the analysis of [9]

of the IO-MUD in the large-system limit to the case of non-uniform symbols prior probabili-

ties. Based on the DE-GA performance characterization of the exact BP iterative decoder and

of its IC-based approximations, we have formulated the problem of optimal user received SNR

distribution in terms of simple linear programming. This allowed us to compute the achiev-

able spectral efficiency of convolutionally-coded CDMA for given user codes and target BER.

We showed that by optimizing the SNR distribution very significant gain in terms of spectral

efficiency can be achieved, especially for large ) > n M � 3 . ����� . Interestingly, the simple uncondi-

tional MMSE-IC algorithm performs very close to the exact BP algorithm in terms of achievable

spectral efficiency. Driven by this observation and by the fact that the optimal SNR distribution

consists of a small number of discrete SNR levels, we provided an approximated version of the

unconditional MMSE-IC algorithm achieving complexity comparable to conventional CDMA

receivers (essentially linear in the number of users or, equivalently, constant per decoded infor-

mation bit) with very small degradation. As a byproduct of the development of the proposed

low-complexity algorithm, we obtained an interesting general expression for the multiuser effi-

ciency of an MMSE filter with mismatched user powers, in the large-system limit.

We wish to conclude this work by pointing out some observations about the practical rele-

vance of our findings in CDMA system design:

� For given user codes, decoding algorithm, target BER and ) > n M � 3 . ����� , the resulting op-

timal received SNR distribution can be regarded as the target distribution of SNR that

some power control algorithm should enforce at the receiver. Notice that standard power

control aims at inducing a constant SNR distribution at the receiver, which we have seen

to be strongly suboptimal with iterative joint detection.

� In a near-far environment, where users are affected by very different propagation channel

gains (due to distance from the base-station and to other propagation factors such as

fading), in order to induce the optimal received SNR distribution it is convenient to assign

the users with largest channel gain to the highest SNR level and so forth, so that each

user can attain its required received SNR level with minimal transmit power. This goes

precisely in the opposite direction of conventional power control, that requires that users

with the smallest channel gain transmit at the largest power level, in order to render the

received SNR of all users constant. Under a reasonable mobility assumption, for which

the channel gain of each user is an ergodic process varying on a time scale much larger
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than the duration of a codeword, the optimal received SNR distribution will also provide

longer battery life to the user terminals with respect to conventional power control.

� For the same reason, in a multi-cell environment the optimal (single-cell) SNR distribu-

tion is expected to provide a smaller total emitted energy from each cell, thus reducing the

inter-cell interference (not taken into account by the iterative joint decoder at each base-

station). Therefore, the impact of iterative multiuser joint decoding with optimal SNR

distribution on the spectral efficiency of a cellular system might be even more evident

than in the standard multiple-access (single-cell) scenario examined in this work.

Although very interesting, the issue of a power control algorithm inducing the required received

SNR distribution while maximizing the user battery life and/or minimizing the total inter-cell

interference is out of the scope of this work and is left for future investigation.

APPENDIX

A Proof of Proposition 2

The proof of Proposition 2 follows closely the analysis technique of the IO-MUD develped

in [9] for uniform symbol a priori probabilities and constant user power, and extended in [43] to

the case of an arbitrary user power distribution. This technique is based on the Replica Method,

which is a common tool in statistical mechanics [44]. The main difference between [9] and

the case at hand is that here, at any given iteration � � 
 , the IO-MUD (15) for user O treats

the messages [ � � ���r c � �� y� OX^ provided by the SISO decoders at the previous iteration as (log-

ratios) prior probabilities for the interfering user symbols. Therefore, Proposition 2 is proved

by simply extending the result of [9] to the case of arbitrary symbol prior probabilities under the

assumption that, as f � � , the empirical distribution of these prior probabilities converges

almost everywhere to some deterministic distirbution. Due to the similarity of our proof and [9],

we shall give the details of the different steps, while we briefly outline the common parts.

With reference to the channel model (1), the pdf of the channel output

� � conditioned on

the spreading sequences � is proportional to

� ) � ��� � . � q! � ��#%$ ,%& � tvu ) � � . �����
�
�
�� 0 1 G � � � ���	� � G 1 � (60)

if the fictious noise variance 0�1 is set to the true noise variance 0 13 . Moreover (60) is independent

of � since the input is assumed to be stationary. Thus, the time index � is dropped and � is used
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for different purpose in the rest of this section. In statistical mechanics, the quantity� � ) � � � . � �f TCV%W � ) � � � . (61)

is called the free energy. One of the fundamental principles of statistical mechanics is that the

free energy is self-averaging in the large system limit. That is,T ���� � � � � ) � � � . � T ���� � � >A@ � � ) � � � . E K� �
(62)

with probability 1, where averaging is with respect to the random spreading sequences and

the channel noise. A standard trick used in statistical mechanics in order to compute
�

is the

Replica Method. This consists of re-writing the free energy in the following way� � T ���� � � �f T ���� � 3 �� � TCV%W ) >A@ � � ) � � � . E . (63)

with the advantage that the expectation operator has moved into the argument of the logarithm.

Now, the free energy is evaluated for integer � and the results is assumed to generalize to

positive real � . Further discussion about the Replica Method and its justification is provided

in [44, 9].

In passing, we notice that � �
� G * � s * �, 
 ,1 TCV%W ��� 0 13 is the large-system differential entropy

of the output

�
per dimension. The mutual information (in nat) per dimension is given by� � � � � G * � s * �, 
 �� TCV%W ��� 0 13 � �� TCV%W ��� � 0 13 � � � � G * � s * �, � �� (64)

Following [9], by using the Replica Symmetry assumption (see [9, 43]), Cramér Theorem and

Varadhan Lemma [45], we get that the free energy can be expressed as follows. Let � ) � . be

defined by the following saddle-point

� ) � . � ��� �� c � � �	�
� c 
� � �� � )+Y �
� .�� � �Y`Y � � ) � � � .� �����
 >�� c � @ TCV%W�� )�� �Y � � ��J� � . E�� (65)

where � is the replica order. Then, � � T ���� � 3   � � ) � . (66)

In (65), � � � are random variables with joint distribution equal to the limit of the empirical joint

distribution of �$' K� * 1' � � ' K� TCV%W tvu )baX' � 
 � .tvu )baX' � � � .for f �"� , and � ) �Y � ��H� � . is the moment-generating function of the random vector[ a��{a n � �=� � ��������� �2� 
 � x � � ^
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for a B i.i.d., with pmf defined by TCV%W�� � l <�� s�� , m� �
l <�� s � , m � � , and computed in the arguments

� � n � 
 �Y x � 
 � � y� x�� x � 
 � � y� x
This is given by

� ) �Y � ��J� � . � ql < , c < � c � � � c < � m ��#%$ ,%& ��� � � �� B s 3 tvu )ba B . � ����� � q n
	 � a��{a n � � n �� ql < , c < � c � � � c < � m ��#%$ ,%& ��� � � �� B s 3 tvu )ba B . � ����� ') �YAa 3 �q � s , a�� 
 �� � � �q � s , a�� � 1 � � ��� /0� ql < � c � � � c < � m ��#%$ ,%& � � �� B s , tvu )ba B . � ') � 
 |� ����� ') �Y �q � s , a�� 
 �� � � �q � s , a�� � 1 /0 

 � � |� ����� ')
�
�Y �q � s , a�� 
 �� � � �q � s , a�� � 1 /0 /0 � � � 
� � 1 (67)

� ql < � c � � � c < � m ��#%$ ,%& � � �� B s , tvu )ba B . � � � 
 |� � � ����� � )�� � ���
 �Y . �q � s , a�� � � � 


 � � |� � � ����� � � )�� � ���
 �Y . �q � s , a�� � � � � � � � 
� � 1 (68)

where we have used the identity (Hubbard-Stratonovich transform [9])

����
 � � 1 � � � � $ � ��
 � � �
and we have defined | � ����� � ) � M � . so that tvu )ba 3 � 
 � . � ) � 
 | . M � � tvu )ba 3 � � � . �) � � | . M � .

In passing, we notice here that if
� ' is the extrinsic log-ratio provided by the SISO decoder

for user O with input SNR �X' � M 0913 then, under the Gaussian Approximation, we have that for

given �$' ,
� ' 465 ) ��� )��$' � M 0 13 . � � � )��$' � M 0 13 .�.

Hence, the limiting joint distribution of � � � is completely defined by � M 0{13 4 �
� and

� 45 ) ��� )�� � M 0913 . � � � )�� � M 0913 .�. given � .

Also, for later use we notice that, from (67), we have�� �� � ) �Y � ��H� � . � �� � 1� �Y 1 � ) �Y � ��J� � .�� � � � ) �Y � ��J� � . (69)



G. Caire, R. Müller and T. Tanaka: submitted to IEEE IT Trans., March 2003. 31

We can further simplify the expression of the moment-generating function in (68) by notic-

ing that

tvu )ba�� � 
 � . � � � 
� � 
� 
 tvu )ba�� � � � . � � l � � 
� � 
� m � � 
 |� � � � 
� � 
� 
 � � |� � � l � � 
� � 
� m� 
 V �
� )�� � ���
 �Y . w � 
������ � ) � M � . ����� � )�� � ���
 �Y . z� 
 V �
� )�� � ���
 �Y 
 � M � .
 V �
� ) � M � .
and, similarly,

tvu )ba�� � 
 � . � � l � � 
� � 
� m 
 tvu )ba�� � � � . � � � 
� � 
� � 
 V �
� )�� � ���
 �Y � � M � .
 V �
� ) � M � .
Then, by rearranging the terms in the sum with respect to a�, ��������� a � in (68) and summing by

using the two above identities, we obtain

� ) �Y � ��J� � . � � � � ) � 
 | . 
 V �
� � )�� � ���
 �Y 
 � M � . 
 ) � � | . 
 V �
� � )�� � ���
 �Y � � M � . � � �� 
 V �
� � ) � M � . (70)

The function
� )+Y �
� . in (65) does not depend on the symbols prior probabilities and is

directly obtained from [9] as

� )+Y �
� . � �� TCV%W ) � 
��* � ) � � � .�. � � ,� 
��* � ) � � � . 
 � * �,* � ) � 
��* �, ) � � � Y 
 � .�. (71)

Let
� ) �2� Y �
�J� �Y � �� . denote the argument of the extremization (sup-inf) in (65). The saddle-

point condition is obtained by the set of equations�� Y � � 
 � �� � � � 
 � �� �Y � � 
 � �� �� � � 
 (72)

In order to obtain
�

we should: 1) find the solution of the system of equations (72); 2) find� ) � . by substituting this solution into
� ) �2� Y �
�J� �Y � �� . ; 3) evaluate the derivative and the limit

in (66). As a matter of fact, from a continuity argument, it is equivalent (but easier) to solve for

the system of equationsT ���� � 3 �� Y � � 
 � T ���� � 3 �� � � � 
 � T ���� � 3 �� �Y � � 
 � T ���� � 3 �� �� � � 
 (73)

and substitute the solution into T ���� � 3 �� � � ) �2� Y �
� � � �Y � �� .
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After some algebra, using (69), the saddle-point equations (73) can be put in the explicit formY � >�� c � � � � � � � 
 |� ����� � w � � � ���
 � �Y 
 � M � z 
 � � |� ����� � w � � � ��h
 � �Y � � M � z � � � �
� � >�� c � � � � � � � 
 |� ����� � 1 w � � � ���
 � �Y 
 � M � z 
 � � |� ����� � 1 w � � � ���
 � �Y � � M � z � � � �
�Y � �0 1 
 � ) � � Y . � �� � 0 13 
 � ) � � � Y 
 � .)+0 1 
 � ) � � Y .�. 1 (74)

Since we are interested in the IO-MUD, we let 0 1 � 0 13 (see [9]) and find that, at the saddle-

point given by (74), the solution yields Y � � and
�Y � �� . In this case, by following the

gauge-theory argument of [46], it is possible to show that the Replica Symmetry assumption

made before in order to obtain (65) is indeed valid for the stable solutions of the IO-MUD with

arbitrary symbol priors.

Notice that, in (15), when computing the output message for user O only the symbol prior

probabilities of interfering users  y� O are used: the a priori pmf for the user O symbol is

uniform tvu )baX' � � . � � M � . Therefore, the IO-MUD error probability for user O is given bytvu ) � l ��� �' � 
 G aX' � 
 � . even for arbitrary prior probabilities on the other users. In a way

completely analogous to [9], we can show that in the large-system limit

tvu ) � ��� �' ��
 G aX' � 
 � . � � � � �Y`* 1' �
Hence, 0913 �Y (independent of the user index O ) is the ME of the IO-MUD in the large-system

limit. By using the first and the third equation in the system (74), and replacing � and
�� by Y

and
�Y , respectively, and by substituting

�Y � 	 M 0 13 we obtain the implicit expression for the

ME of the IO-MUD with arbitrary prior probabilities on the symbols of the interfering users as�
	 � � 
 � � �0 13 � > � c � � I � � � � 
 |� ����� � � � � I 	 
 I 	 
 � � � 
� � |� ����� � � � � I 	 
 I 	 � � � � � � � � �� � 
 �2> � c � � I � � � | 1 � � � � � ����� � � � � I 	 
 I 	 �� � | 1 ����� � 1 � � � I 	 
 I 	�� � � � (75)

Finally, by using the fact that
�

given I is 4 5 ) ��� )bI�� . � � � )bI�� .�. and by substituting | ������ � ) � M � . in (75) we obtain (29). By computing T ��� � � 3 �

� � � ) �2� Y �
� � � �Y � �� . in the saddle-

point solution given by (74), and rewriting the result in terms of 	 , we obtain the corresponding

expression for the free energy
�

. As a matter of fact, we prefer to give the result in terms of

the mutual information
�

that, after some algebra, can be put in the form (30), expressed in

bit/dimension.
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From standard results in statistical mechanics [9], when (74) has multiple stable solutions,

the performance of the IO-MUD corresponds to the solution maximizing the free energy or,

equivalently, minimizing the mutual information. This proves all statements in Proposition 2.

B Proofs of Proposition 7 and of Corollary 7.1

Fix user O as the reference user. The nominal and the actual interference plus noise covariance

matrices are given by ; 	 � : 
 q r��s ' �
r & r & Dr; � � : 
 q r��s '
k r & r & Dr (76)

respectively. The output SINR of the mismatched MMSE filter for user O that assumes ; 	
instead of ; � is given by � ' � k ' )8& D ' ; � ,	 &�' . 1& D ' ; � ,	 ; � ; � ,	 &�' (77)

From the standard result of [6] we have that, under the assumptions of Proposition 7, the nom-

inal ME � � & D ' ; � ,	 &�' converges with probability 1 to the unique fixed point of the Tse-Hanly

equation (56).

We re-write the denominator of (77) in the large-system limit as

& D ' ; � ,	 ; � ; � ,	 &�' � & D ' ; � ,	 � q r��s '
k r & r & Dr � ; � ,	 &�' 
 & D ' ; � 1	 &�'

� � � � ,� T ���� � � �( tr

� ; � ,	 � q r��s '
k r & r & Dr � ; � ,	 � 
 T ���� � � �( tr

� ; � 1	 � (78)

where we used the result proved in [47]T ���� � � & D ' � � &�' � � � � ,� T ���� � � �( tr ) � �/. (79)

for a sequence of (�� ( random matrices
� � statistically independent of &�' with well-defined

limiting eigenvalue distribution and finite maximum eigenvalue. Notice that for all inverse

covariance matrices and powers thereof involved in (78), the maximum eigenvalue is always

upper bounded by 1.
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Next, we evaluate the two limits in (78) separately. For the first we have�( tr

� ; � ,	 � q r��s '
k r & r & Dr � ; � ,	 � � �( q r��s '

k r & Dr ; � 1	 & r
�� �( q r��s ' k

r & Dr � ; � ,	�c r � �
r

� 
 �
r & Dr ; � ,	�c r & r ; � ,	�c r & r & Dr ; � ,	�c r � 1 & r� �( q r��s '

k r �� & Dr ; � 1	�c r & r 
 �
�
r & Dr ; � ,	�c r & r� 
 �
r & Dr ; � ,	�c r & r � 1 & Dr ; � 1	�c r & r �

�

� � � r & Dr ; � ,	�c r & r� 
 �
r & Dr ; � ,	�c r & r � & Dr ; � 1	�c r & r �

� � � � ,� T ���� � � �f q r��s '
k r i) � 
 �
r

� . 1� �2> 	�c � � k i) � 
 � � . 1 � (80)

where (a) follows from the matrix inversion lemma, by writing ; 	 � �
r & r & Dr 
 ; 	�c r , where; 	�c r � : 
 q

�
�s ']c � �s r � � & � & D�

we used repeadetly the lemma (79), and we defined the limits

� � T ���� � � �( tr
� ; � ,	�c r �i � T ���� � � �( tr
� ; � 1	�c r � (81)

Under the assumptions of Proposition 7, the matrix ; 	 � ; 	�c r and ; � have all a well-defined

limiting eigenvalue distribution and are invertible with probability 1, therefore, the limits in (81)

exist and are immediately obtained from the limiting eigenvalue distributions.

For the second limit in (78) we have, again using lemma (79),T ���� � � �( tr
� ; � 1	 ��� i (82)

since the limiting eigenvalue distribution of ; 	 and ; 	�c r coincide (notice that the two matrices

differ by the rank-1 matrix �
r & r & Dr , that has no effect on the limiting eigenvalue distribution).

Let
� ) � . denote the limiting eigenvalue distribution of � r � r & r & Dr . Then, we can write

� � � �� 
 �  � ) � .i � � �) � 
 � . 1  � ) � . (83)
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Eventually, the last line of (78) is given by

� ���2> 	�c � �
k
� ,l , ��� m �  � ) � .� � 
 � � ,, ���  � ) � . � 1 � 
 � �) � 
 � . 1  � ) � . (84)

Now, we use the result by Silverstain and Bai (see [6] and references therein) yielding
� ) � . in

terms of its Stieltjes transform:Y�� )�� . K� � ��
� �  � ) � . ����� [ �J^ � 


We have Y�� )�� . � �
� � 
 �2> 	 � 	, � 	 ��� l � m � (85)

In particular, we have that � defined in (56) is given by

� � � �� 
 �  � ) � . � Y��v) � � . (86)

Furthermore, � �) � 
 � . 1  � ) � . �   �� Y�� )�� . ---- � s � , K� Y
�
� ) � � . (87)

By substituting (86) and (87) in the SINR denominator (84), and using the result in the expres-

sion for the SINR (77) we can write the large-system ME of user O , given by � ' M k ' , as


 � �J1Y � � ) � � . w � 
 �2> 	�c � � �l , � 
 	�m � � z (88)

Since for the matched MMSE receiver (i.e., for �
r � k r �  � � �������]� f ), it must be � � 
 , we

obtain Y � � ) � � . � �� 
 �2> 	 � 	l , � 
 	�m � �
By using the above expression in (88) we obtain (55). This concludes the proof of Proposition

7.

Next, we focus on the proof of Corollary 7.1. Let [ �v'�^ be a nominal power assignment

adapted to the true powers [ k '�^ , in the sense that � �' s , �2' � � �' s , k ' and that the sequences[ k '}^ and [ �2'�^ are sorted in non-decreasing order by the same permutation. Without loss

of generality, we assume that [ k '}^ and [ �2'}^ are non-decreasing (i.e., the common sorting

permutation is the identity). The nominal powers are a conservative choice if 
 � � , where 
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and � are the true and the nominal ME given by Proposition 7, respectively. From (55) we see

that this is verified if and only if> 	 � �) � 
 ��� . 1 � � > � c 	 � k
) � 
 ��� . 1 � (89)

Assume, for the time being, a finite number of users. Then, inequality (89) becomes�f �q ' s , �2') � 
 ���2' . 1 � �f �q ' s ,
k ') � 
 ���2' . 1 (90)

We make use of the following lemma, proved in [48]:

Lemma. Let � , j and � be real vectors of dimension f with non-decreasing components. Ifj majorizes � , then �q ' s , � '�{' � �q ' s , x '�{' (91)

�
We apply the lemma to (90) by letting � ' � �2' , x ' � k ' and �{' � ) � 
 ���2' . 1 and

we conclude that if [ k '�^ majorizes [ �2'�^ , then (90) is verified. Finally, a standard continuity

argument extends the result to f �"� .
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Figure 1: Coded CDMA with AWGN. User encoders may include interleaving.
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Figure 2: Block diagram of a multiuser iterative joint decoder.
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Figure 3: The curves show the reciprocal of the RHS of (29) as a function of 	 � @ 
 � � E for

� � � �-, (left), � � � � 
 (right) constant I � � 
 dB and � � 
 . The intersections of the curves

with the straight line give the solutions of (29).
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Figure 4: BER vs. > n M � 3 for � ��� � 
 , constant receiver SNR, convolutional code with genera-

tors ) � ��� � ��
J� . � and different iterative decoding algorithms.
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Figure 5: BER vs. > n M � 3 for � � � � 
 , constant receiver SNR, convolutional code with genera-

tors ) � ��� � ��
J� . � and different iterative decoding algorithms.
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Figure 6: DE-GA mapping function 	 )�� � � � � . for the exact BP decoder, > n M � 3 � . dB,

constant and optimized SNR distributions, � � � �-, and convolutional code with generators) � ��� � � � ,J� ��
 , . � .
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Figure 7: Spectral efficiency vs. > n M � 3 at BER � � 
 �10 for convolutionally-code CDMA with

user codes with generators ) � ��� � � � ,J� ��
 , .�� , optimized received SNR distribution and different

iterative decoding algorithms. Curves for joint detection and optimal codes (binary and Gaus-

sian input), and separated MMSE and SUMF detection and decoding (Gaussian inputs) are

reported for the sake of comparison.
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Figure 8: Spectral efficiency vs. > n M � 3 at BER � � 
 �10 for convolutionally-code CDMA with

user codes with generators ) � ��� � � � ,J� ��
 , .�� , optimized received SNR distribution and constant

received SNR distribution with iterative and separate detectiona and decoding. Each set of

curves shows the performance of exact BP, conditional MMSE-IC, unconditional MMSE-IC

and SUMF-IC (from top to bottom curve). Obviously, for separate detection conditional and

unconditional MMSE coincide.
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Figure 9: Optimized SNR distribution for the unconditional MMSE-IC receiver with � � � �-, ,
convolutional code with generators ) � ��� � � � ,J� ��
 , . � and > n M � 3 � . � � �

dB.
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Figure 10: Evolution of the multiuser efficiency (left) and of the user residual symbol variances

(right) with the decoder iterations for the system of Fig. 9.
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Figure 11: Evolution of the multiuser efficiency (left) and of the user residual symbol variances

(right) with the decoder iterations for the system of Fig. 9 with the low-complexity detector

algorithm.


