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On Maximum Likelihood Detection and the Search
for the Closest Lattice Point

Mohamed Oussama Damen?, Hesham El Gamal†, and Giuseppe Caire‡

Abstract— Maximum likelihood decoding algorithms for Gaussian
MIMO linear channels are considered. Linearity over the field of real num-
bers facilitates the design of maximum likelihood decoders using number
theoretic tools for searching the closest lattice point. These decoders are col-
lectively referred to as sphere decoders in the literature. In this paper, a fresh
look at this class of decoding algorithms is taken. In particular, two novel
algorithms are developed. The first algorithm is inspired by the Pohst enu-
meration strategy and is shown to offer a significant reduction in complex-
ity compared to the Viterbo-Boutros sphere decoder. The connection be-
tween the proposed algorithm and the stack sequential decoding algorithm
is then established. This connection is utilized to construct the second algo-
rithm which can also be viewed as an application of the Schnorr-Euchner
strategy to maximum likelihood decoding. Aided with a detailed study of
pre-processing algorithms, a variant of the second algorithm is developed
and shown to offer significant reductions in the computational complexity
compared to all previously proposed sphere decoders with a near maximum
likelihood detection performance. This claim is supported by intuitive ar-
guments and simulation results in many relevant scenarios.

Index Terms– Decision feedback equalization (DFE), fading channels,
lattices, lattice reduction, maximum-likelihood (ML) detection, minimum
mean-square error (MMSE), multi-input multi-output (MIMO) systems,
Pohst enumeration, sequential decoding, space-time constellations, stack al-
gorithms.

I. INTRODUCTION

In several communication problems, the received signal is
given by a linear combination of the data symbols corrupted
by additive noise, where linearity is defined over the field of
real numbers. The input-output relation describing such chan-
nels can be put in the form of the real multi-input multi-output
(MIMO) linear model

y = Bx + z (1)

where x ∈ R
m , y, z ∈ R

n denote the channel input, out-
put and noise signals, and B ∈ R

n×m is a matrix representing
the channel linear mapping. Typically, the noise components
zj , j = 1, . . . , n, are independent, identically distributed (i.i.d.)
zero-mean Gaussian random variables with a common variance,
and the information signal x is uniformly distributed over a dis-
crete and finite set C ⊂ R

m, representing the transmitter code-
book. Under such conditions and assuming B perfectly known
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at the receiver, the optimal detector g : y 7→ x̂ ∈ C that min-

imizes the average error probability P (e)
∆
= P (x̂ 6= x) is the

maximum-likelihood (ML) detector given by

x̂ = arg min
x∈C

∣∣∣y −Bx

∣∣∣
2

. (2)

For the sake of simplicity, we assume that C = Xm, where X is
a PAM signal set [1] of size Q, i.e.,

X = {u = 2q −Q + 1 : q ∈ ZQ} (3)

with ZQ
∆
= {0, 1, . . . , Q− 1}. More general signal sets will be

briefly considered in Section V.
Under the assumption (3), by applying a suitable translation

and scaling of the received signal vector, (2) takes on the nor-
malized form

x̂ = arg min
x∈Z

m

Q

∣∣∣y −Bx

∣∣∣
2

(4)

where the components of the noise z have a common variance
equal to 1.

In this paper we consider a class of algorithms, generally
known as sphere decoders [2], [3], [4], [5], [6], [8], that com-
pute or approximate (4) with a polynomial expected complexity
within a wide range of system parameters. Throughout the pa-
per, the terms “decoding” and “detection” are used interchange-
ably to refer to the same procedure. Before proceeding further,
we review some applications that provide the main motivation
for the rest of the work.
1. Linear-dispersion Encoded QAM over a Frequency-flat
MIMO Channel:
Consider an M -transmit, N -receive antennas system with
frequency-flat quasi-static fading [9], [10]. The baseband com-
plex received signal after matched filtering and symbol rate sam-
pling is given by

rt =

√
SNR
M

Hst + νt, t = 1, . . . , T (5)

where H is the N ×M channel matrix whose (i, j)-th element
hi,j is the complex fading gain from transmit antenna j to re-
ceive antenna i and νt ∼ NC

(0, I), with I denoting the identity
matrix of appropriate dimension, is a sequence of independent
proper Gaussian noise vectors with i.i.d. components. Assum-
ing E[sts

H
t ] = I and E[|hi,j |2] = 1, the factor SNR in (5)

denotes the signal-to-noise ratio per receiving antenna defined
as the ratio of the total transmit energy per channel use divided
by the per-component noise variance.
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Let U denote a squared QAM signal set with Q2 signal points
[1]. Assume that the transmitter maps blocks u ∈ UL with inde-
pendent and uniformly distributed entries (information symbols)
onto M × T transmit arrays of the form

S(u) =
L∑

`=1

(F`u` + G`u
∗
` ) (6)

where {F`,G` ∈ C
M×T

: ` = 1, . . . , L} are the linear
dispersion code generators [11], [12], [13]. Then, the array
S(u) = [s1(u), . . . , sT (u)] is transmitted column by column
in T channel uses. Due to the linearity of the channel (5) and
of the encoder (6), one can easily see that there exists a matrix
B ∈ R

2NT×2L such that the ML detection can be written in the
form (4). In general, matrix B depends on the physical chan-
nel matrix H and on the code generators {F`,G`} (see [11] for
an explicit expression of the matrix B in terms of H and the
code generators). A particularly simple case corresponds to the
transmission of uncoded QAM symbols. In this case, L = M ,
T = 1, S(u) = u and B is given explicitly by

B =

√
12 SNR

M(Q2 − 1)

[
Re{H} −Im{H}
Im{H} Re{H}

]
. (7)

♦

2. Block Transmission over Time-selective or Frequency-
selective Fading:
In [14], linearly block-coded transmission for time-selective
fading was considered. The complex baseband channel is given
by r = HMu + ν, where now H = diag(h1, . . . , hN ),
{hi} is the sequence of scalar fading coefficients, and M is
a suitable rotation matrix. Similarly, for frequency-selective
slow fading we can work in the frequency domain to obtain
linearly precoded OFDM schemes (see for example [15] and
references therein) in the same form as above, where H =
diag(H1, . . . , HN ) and Hi denotes the fading channel frequency
response at the i-th OFDM subcarrier. ♦

3. Multiple-access Gaussian Waveform Channel (CDMA):
The canonical baseband complex model for a K-user syn-
chronous CDMA system is given by [16]

yt = HWut + νt (8)

where the columns of H ∈ C
N×K represent the (discrete-time)

users’ signature waveforms, W is a diagonal K ×K matrix of
amplitudes and ut is a K × 1 vector containing the modulation
symbols transmitted by the users in the t-th symbol interval. In
most CDMA systems the user symbols take on values in the 4-
QAM signal set. Again, after suitable translation and scaling,
the ML joint detection of the K user symbols can be put in the
form (4) [17], [18]. ♦

It is well-known that the minimization (4) for arbitrary B and
y is NP-hard (see [3], [6], [19], [20]). Nevertheless, it has been
shown recently that in many relevant cases, for a certain range of
system parameters such as SNR, m, n and Q, the average com-
plexity of some algorithms implementing or approximating ML
detection is polynomial in m (roughly, O(m3)). The reason of

this behavior is that, in (1), the received point y is not arbitrary,
but it is obtained by perturbing the transmitted point Bx by the
additive noise z. Therefore, it can be expected that as the SNR
increases the average complexity decreases, for fixed m, n and
Q.

This fact has been shown by theoretical analysis in [21] in
the case of uncoded QAM over a N ×M frequency flat MIMO
channel with N ≥ M , H having i.i.d. entries ∼ N

C
(0, 1), and

the basic sphere decoder, known as Pohst enumeration (see de-
tails later). However, the same fact has been observed in more
general cases by computer simulations in several recent works
(e.g., [22], [23], [24]). While the exact average complexity anal-
ysis of the basic sphere decoder for general linear-dispersion
codes and, a fortiori, for improved sphere decoding algorithms
as those proposed in this work, appear to be intractable, finding
improvements on the existing algorithms and illuminating the
trade-offs and relationships between the different approaches is
relevant on its own.

Developing efficient sphere decoders to solve or approximate
(4) has recently gained renewed attention mainly because of
their applications to multiple-antenna systems [8]. This inter-
est is due to the significant performance gain achieved by sphere
decoders compared to other sub-optimal detection schemes [24],
[25], [26], and to their average polynomial complexity (exper-
imentally demonstrated) at medium to high SNR. Moreover,
the ML detector can be easily augmented to provide symbol-
by-symbol soft output, in the form of approximated posterior
marginal probabilities p(xi|y). The resulting soft-output detec-
tor forms the core of some iterative decoders based on Belief-
Propagation (see for example [27], [28], [29], [30], [31]).

The main contribution of this paper is a fresh look at the class
of sphere decoding algorithms. We start by reviewing the basic
Pohst and Schnorr-Euchner enumeration strategies for infinite
lattices in Section II. In Section III we propose two variants of
the basic algorithms in order to take into account finite PAM
signal sets. We also show that the proposed algorithms can be
interpreted as a chain of sequential decoding stages, where each
stage is based on a special case of the stack algorithm [32]. This
observation makes precise the intuition given in [27] that sphere
decoding and sequential decoding are “similar algorithms”, and
provides a path for cross-fertilization between the rich bodies
of work on sequential and lattice decoding. In Section IV, we
discuss some heuristics for pre-processing aimed at transform-
ing the problem so that the resulting algorithm has lower aver-
age complexity while still being ML (or near ML). In Section
V we discuss some extensions of the proposed algorithms to
handle general lattice codes and non-invertible channel matri-
ces. Finally, the performance of the proposed algorithms and
the impact of various pre-processing methods are investigated
through computer simulations in a number of relevant examples
in Section VI. This simulation study, along with some intuitive
arguments, lead to the conclusion that one of the proposed al-
gorithms uniformly outperforms all known sphere decoders in
terms of receiver complexity, while offering near-ML detection
performance (i.e., the performance is within a very small frac-
tion of a dB from ML in all considered scenarios).
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II. THE POHST AND SCHNORR-EUCHNER ENUMERATIONS

For B ∈ R
n×m and y ∈ R

n, consider the minimization

x̂ = arg min
x∈Z

m
|y −Bx|2. (9)

This is analogous to (4) but ZQ is replaced by Z, the (infinite)
ring of integer numbers. The set Λ = {Bx : x ∈ Z

m} is an m-
dimensional lattice in R

n [33]. The search in (9) for the closest
lattice point to a given point y has been widely investigated in
lattice theory. In general, the optimal search algorithm should
exploit the structure of the lattice. For general lattices, that do
not exhibit any particular structure, the problem was shown to
be NP-hard. In [2], however, Pohst proposed an efficient strat-
egy for enumerating all the lattice points within a sphere with a
certain radius. Although its worst-case complexity is exponen-
tial in m, this strategy has been widely used ever since in closest
lattice point search problems due to its efficiency in many useful
scenarios (see [6] for a comprehensive review of related works).

The Pohst enumeration strategy was first introduced in digi-
tal communications by Viterbo and Biglieri [4]. In [5], Viterbo
and Boutros applied it to the ML detection of multi-dimensional
constellations transmitted over single antenna fading channels,
and gave a flowchart of a specific implementation. More re-
cently, Agrell et al. [6] proposed the use of the Schnorr-Euchner
refinement [7] of the Pohst enumeration in the closest lattice
point search. They further concluded, based on numerical re-
sults, that the Schnorr-Euchner enumeration is more efficient
than the Viterbo-Boutros (VB) implementation.

The Pohst enumeration is briefly outlined as follows. Assume
that n ≥ m and rank(B) = m. Let C0 be the squared radius
of an n-dimensional sphere S(y,

√
C0) centered at y. We wish

to produce a list of all points of Λ ∩ S(y,
√

C0). By perform-
ing the Gram-Schmidt orthonormalization of the columns of B

(equivalently, by applying QR decomposition on B), one writes

B = [Q,Q′]

[
R

0

]
(10)

where R is an m×m upper triangular matrix with positive diag-
onal elements, 0 is an (n−m)×m zero matrix and Q (resp., Q′)
is an n×m (resp., n× (n−m)) unitary matrix. The condition
Bx ∈ S(y,

√
C0) can be written as

|y −Bx|2 ≤ C0∣∣∣∣[Q,Q′]T y −
[

R

0

]
x

∣∣∣∣
2

≤ C0

∣∣QT y −Rx
∣∣2 ≤ C0 −

∣∣(Q′)T y
∣∣2

|y′ −Rx|2 ≤ C ′
0 (11)

where y′ 4

= QT y and C ′
0

4

= C0 −
∣∣(Q′)T y

∣∣2. Due to the up-
per triangular form of R, the last inequality implies the set of
conditions

m∑

j=i

∣∣∣∣∣∣
y′

j −
m∑

`=j

rj,`x`

∣∣∣∣∣∣

2

≤ C ′
0, i = 1, . . . , m. (12)

By considering the above conditions in the order from m to 1
(akin to back-substitution in the solution of a linear upper tri-
angular system), we obtain the set of admissible values of each
symbol xi for given values of symbols xi+1, . . . , xm. More ex-

plicitly, let xm
`

∆
= (x`, x`+1, . . . , xm)T denote the last m−`+1

components of the vector x. For a fixed xm
i+1, the compo-

nent xi can take on values in the range of integers Ii(x
m
i+1) =

[Ai(x
m
i+1), Bi(x

m
i+1)] where

Ai(x
m
i+1) =




1

ri,i


y′

i −
m∑

j=i+1

ri,jxj −

√√√√√C′
0 −

m∑

j=i+1

∣∣∣∣∣∣
y′

j −
m∑

`=j

rj,`x`

∣∣∣∣∣∣

2






,

Bi(x
m
i+1) =

1

ri,i


y′

i −
m∑

j=i+1

ri,jxj +

√√√√√C ′
0 −

m∑

j=i+1

∣∣∣∣∣∣
y′

j −
m∑

`=j

rj,`x`

∣∣∣∣∣∣

2



 .

(13)

If
m∑

j=i+1

∣∣∣∣∣∣
y′

j −
m∑

`=j

rj,`x`

∣∣∣∣∣∣

2

> C ′
0 or if Ai(x

m
i+1) > Bi(x

m
i+1),

then Ii(x
m
i+1) = ∅ (the empty set). In this case, there is no

value of xi satisfying the inequalities (12) and the points cor-
responding to this choice of xm

i+1 do not belong to the sphere
S(y,

√
C0).

The Pohst enumeration consists of spanning at each level i
the admissible interval Ii(x

m
i+1), starting from level i = m

and climbing “up” to level i = m − 1, m − 2, . . . , 1. At each
level, the interval Ii(x

m
i+1) is determined by the current val-

ues of the variables at lower levels (corresponding to higher in-
dices). If I1(xm

2 ) is non-empty, the vectors x = (x1, (x
m
2 )T )T ,

for all x1 ∈ I1(xm
2 ), yield lattice points Bx ∈ S(y,

√
C0).

The squared Euclidean distances between such points and y are

given by d2(y,Bx) =

m∑

j=1

∣∣∣∣∣∣
y′

j −
m∑

`=j

rj,`x`

∣∣∣∣∣∣

2

. The algorithm

outputs the point x̂ for which this distance is minimum. If, after
spanning the interval Im corresponding to xm (ground level),
no point in the sphere is found, the sphere is declared empty and
the search fails. In this case, the search squared radius C0 must
be increased and the search is restarted with the new squared
radius.

The Pohst enumeration is based on the so-called natural span-
ning of the intervals Ii(x

m
i+1) at each level i, i.e., xi takes

on values in the order Ai(x
m
i+1), Ai(x

m
i+1) + 1, . . . , Bi(x

m
i+1).

Schnorr-Euchner enumeration is a variation of the Pohst strat-
egy where the intervals are spanned in a zig-zag order, starting
from the mid-point

Si(x
m
i+1) =

 1

ri,i


y′

i −
m∑

j=i+1

ri,jxj






(14)
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(where b·e denotes rounding to the closest integer). Hence, the
Schnorr-Euchner enumeration will produce at each level i the
(ordered) sequence of values

xi ∈ {Si(x
m
i+1), Si(x

m
i+1) + 1, Si(x

m
i+1)− 1,

Si(x
m
i+1) + 2, Si(x

m
i+1)− 2, . . .} ∩ Ii(x

m
i+1)

if y′
i −

m∑

j=i+1

ri,jxj − ri,iSi(x
m
i+1) ≥ 0, or the (ordered) se-

quence of values

xi ∈ {Si(x
m
i+1), Si(x

m
i+1)− 1, Si(x

m
i+1) + 1,

Si(x
m
i+1)− 2, Si(x

m
i+1) + 2, . . .} ∩ Ii(x

m
i+1)

if y′
i −

m∑

j=i+1

ri,jxj − ri,iSi(x
m
i+1) < 0. Similar to the Pohst

enumeration, when a given value of xi results in a point segment
xm

i outside the sphere, the next value of xi+1 (at level i + 1) is
produced.

Note that with the Schnorr-Euchner enumeration one can set
C0 =∞. Obviously, in this way the event of declaring an empty
sphere never occurs. It is also easy to see that the first point
found with C0 = ∞ corresponds to the Babai point [6]. In the
communication theory parlance this point is referred to as the
nulling and canceling [25], or zero-forcing decision-feedback
equalization (ZF-DFE) point. Explicitly, this is given by the
back-substitution with integer quantization (slicing)

xzf−dfe
i = Si(x

zf−dfe
i+1 , . . . , xzf−dfe

m )

=

 1

ri,i


y′

i −
m∑

j=i+1

ri,jx
zf−dfe
j






(15)

for i = m, m−1, . . . , 1. As we shall see in Section VI, the draw-
back of setting C0 = ∞ is that the distance d2(y,Bxzf−dfe)
might be quite large, therefore the algorithm will eventually
span a large number of points before finding the ML solution.

III. ML DETECTION OF FINITE ALPHABET

CONSTELLATIONS

Probably the most immediate application of the Pohst enu-
meration to solve (4) consists of the following steps:

1. Fix C0 according to some criterion (see the discussion in Sec-
tion VI).
2. Apply the Pohst enumeration with the interval boundaries

modified as

Ai(x
m
i+1) = max {0,




1

ri,i


y′

i −
m∑

j=i+1

ri,jxj −

√√√√√C′
0 −

m∑

j=i+1

∣∣∣∣∣∣
y′

j −
m∑

`=j

rj,`x`

∣∣∣∣∣∣

2










Bi(x
m
i+1) = min {Q− 1,

1

ri,i


y′

i −
m∑

j=i+1

ri,jxj +

√√√√√C′
0 −

m∑

j=i+1

∣∣∣∣∣∣
y′

j −
m∑

`=j

rj,`x`

∣∣∣∣∣∣

2









(16)

and obtain the list of all vectors x ∈ Z
m
Q such that Bx ∈

S(y,
√

C0).
3. If the list is non-empty, output the point achieving minimum
distance (i.e., the ML decision). Otherwise, increase C0 and
search again.
The average complexity of this simple algorithm has been given
in closed form in [21] for the special case where B is a random
matrix with i.i.d. entries ∼ N (0, 1). As anticipated in the intro-
duction, this corresponds to the transmission of uncoded QAM
over a MIMO frequency-flat independent Rayleigh fading chan-
nel.

The above sphere decoder can be improved in several ways.
The VB implementation is essentially the same algorithm given
above, but C0 is changed adaptively along the search: as soon
as a vector x ∈ Z

m
Q is found such that Bx ∈ S(y,

√
C0), then

C0 is updated as
C0 ← d2(y,Bx)

and the search is restarted in the new sphere with the smaller
radius. The drawback of this approach is that the VB algorithm
may re-span values of xi for some levels i, 1 < i ≤ m, that have
already been spanned in the previous sphere.

Next, we give the details of two new sphere decoding algo-
rithms. The first, namely Algorithm I, is similar to the VB algo-
rithm, but avoids re-spanning already spanned point segments.
The second, namely Algorithm II, can be seen as a modifica-
tion of the Schnorr-Euchner enumeration in order to take into
account the finite signal set boundary. Interestingly, both algo-
rithms are functionally equivalent to a chain of stack sequential
decoders [32], where the stack content and path metric of each
decoder depend on the outcome of the previous decoder.
Algorithm I (Input C ′

0, y′, R. Output x̂):
Step 1. (Initialization) Set i := m, Tm := 0, ξm := 0 dc = C ′

0

(current sphere squared radius).
Step 2. (Bounds on xi) If dc < Ti go to 4. Else,

Ai(x
m
i+1) := max

{
0,
⌈

y′

i−ξi−
√

dc−Ti

ri,i

⌉}
, Bi(x

m
i+1) :=

min
{

Q− 1,
⌊

y′

i−ξi+
√

dc−Ti

ri,i

⌋}
, and set xi := Ai(x

m
i+1)− 1.

Step 3. (Natural spanning of the interval Ii(x
m
i+1)) xi := xi+1.

If xi ≤ Bi(x
m
i+1) go to 5, else go to 4.

Step 4. (Increase i: move one level down) If i = m terminate,
else set i := i + 1 and go to 3.
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Step 5. (Decrease i: move one level up) If i > 1, then
{

let

ξi−1 :=

m∑

j=i

ri−1,jxj , Ti−1 := Ti+|y′
i − ξi − ri,ixi|2, let i :=

i− 1 and go to 2
}

.

Step 6. (A valid point is found) Compute d̂ := T1 +

|y′
1 − ξ1 − r1,1x1|2. If d̂ < dc

{
let dc := d̂, save

x̂ := x, and update the upper boundaries B`(x
m
`+1) :=

min
{
Q− 1,

⌊
y′

`−ξ`+
√

dc−T`

r`,`

⌋}
, for all ` = 1, . . . , m

}
. Go

to 3.
�

As in the VB implementation, if no valid point is found, C ′
0 is

increased and the algorithm is restarted. Note that the variable
ξi, i = m, . . . , 1, is the decision feedback of a ZF-DFE when
the decisions on the symbols from i + 1 to m are the current
values of (xi+1, . . . , xm).

As it will become clear in the following, it is useful to visual-
ize sphere decoders for finite PAM signals as a bounded search
in a tree. In fact, thanks to the upper triangular form of R, the
symbol vectors x ∈ Z

m
Q can be represented as paths in a tree

of depth m, where the possible values of symbol xi at level i
correspond to branches at depth m− i + 1. For example, Fig. 1
shows the tree for Q = 2 and m = 4, corresponding to the case
of uncoded 4-QAM transmission over a multiple antenna chan-
nel with M = 2 and N ≥ 2. Each branch at depth m− i + 1 is
labeled by the branch metric defined by

wi(x
m
i )

4

=

∣∣∣∣∣∣
y′

i −
m∑

j=i

ri,jxj

∣∣∣∣∣∣

2

(17)

where xm
i

4

= (xi, xi+1, . . . , xm)T are the symbols labeling the
path connecting the branch with the root. The path metric for
path xm

i is defined as

M(xm
i )

4

=
m∑

j=i

wj(x
m
j ) (18)

and coincides with the term Ti−1 in Algorithm I.
Generally speaking, a sphere decoding algorithm explores the

tree of all possible symbol sequences and uses the path metric in
order to discard paths corresponding to points outside the search
sphere.

The main advantage of Algorithm I over the VB algorithm
is that once we find a lattice point, we just update all the upper
bounds of the intervals without restarting. In other words, partial
paths in the tree that have already been examined will not be re-
considered after reducing the sphere radius. We can prove the
following

Proposition 1: For a given R,y′ and C ′
0, the number of tree

nodes visited by Algorithm I is upper bounded by the number of
tree nodes visited by the original Pohst enumeration and by the
VB algorithm.

Proof: We give the proof for the VB implementation; the
proof is clear for the original Pohst algorithm. To this end, it
suffices to show that the lower bounds Ai(x

m
i+1) when updating

dc by d̂ and restarting from Step 1 are smaller than the current
values of the components of x̂ (Step 6 in Algorithm I). But this
is clear since the current point is inside the sphere of squared
radius d̂. 2

Sequential decoders comprise a set of efficient and power-
ful decoding techniques able to perform close to ML decoding,
without suffering the complexity of exact ML decoding, for cod-
ing rates not too close to the channel capacity [32], [34]. Next,
we interpret Algorithm I as a chain of sequential decoders. To
facilitate this interpretation, we make use of the stack sequential
decoding algorithm, briefly summarized as follows. Consider a
tree of depth m, where each branch at level m− i + 1 is labeled
by xi ∈ ZQ and is associated with a weight wi(x

m
i ) which

depends, in general, on both i and the path xm
i connecting the

branch with the root. The path metricM(xm
i ) associated with

the path xm
i is given by (18). The stack algorithm is defined

by a sorting rule used in conjunction with the above path met-
ric. At the beginning, the stack contains only the root of the
tree with an associated metric equal to zero. At each step, the
algorithm sorts the stack according to the sorting rule and ex-
pands the path at the top of the stack, say xm

i , by generating
the Q extensions {xm

i−1 : xi−1 ∈ ZQ}. Then, for each ex-
tension, the algorithm computes the associated path metric as
M(xm

i−1) = M(xm
i ) + wi−1(x

m
i−1), and substitutes the origi-

nal path with all its extensions. The algorithm stops when one
path in the stack is fully extended (i.e., it reaches depth m).

Now, consider the branch metric (17) and the following stack
sorting rule (denoted by the ordering relation �):

Sorting rule I. If Ii−1(x
m
i ) = ∅, the path xm

i cannot be ex-
tended and should be eliminated from the stack. Consider two
paths xm

i and um
j such that both Ii−1(x

m
i ) and Ij−1(u

m
j ) are

non-empty. Then, xm
i � um

j if either i < j or i = j and
xi ≤ uj . �

In words, rule I says that path xm
i has priority higher than path

um
j if it can be extended without violating the sphere (condi-

tion Ii−1(x
m
i ) 6= ∅) and either it has depth larger than um

j or,
if both paths have the same depth, it has a lexicographic prior-
ity (the condition xi ≤ uj for i = j). Lexicographic ordering
corresponds to the natural spanning of the Pohst enumeration.

Suppose that, by applying the stack algorithm for the first time
with the above metric and sorting rule, we obtain one point in the
sphere, say x̂1. Then, we can apply the stack algorithm again,
by letting C0 = d2(y,Bx̂1) and keeping in the stack all the
paths generated in the first round. This will eventually produce
a second point x̂2 or declare an empty stack. If a second point
is found, we repeat the stack algorithm a third time, by letting
C0 = d2(y,Bx̂2) and keeping in the stack all the partial paths
after the second round. We continue in this way until the stack
is empty, i.e., no more paths in the stack can be extended. It
is immediate to see that this sequence of concatenated stack se-
quential decoding steps is functionally equivalent to Algorithm
I, in the sense that both algorithms produce the same set of can-
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didate ML vectors in the same order.
However, we hasten to say that Algorithm I, as given above,

is much more efficient (complexity-wise) than the equivalent se-
quential decoding formulation, since thanks to the lattice struc-
ture of the signal set and the choice of this particular sorting
rule, the path at the top of the stack can be predicted at each step
without explicitly maintaining and sorting a stack.

Our second sphere decoding algorithm can now be obtained
as a sequence of concatenated stack sequential decoding steps,
with the following enhanced sorting rule:

Sorting rule II. If Ii−1(x
m
i ) = ∅, the path xm

i cannot be ex-
tended and should be eliminated from the stack. Consider two
paths xm

i and um
j such that both Ii−1(x

m
i ) and Ij−1(u

m
j ) are

non-empty. Then, xm
i � um

j if either i < j or i = j and
M(xm

i ) ≤M(um
j ). �

Rule II is identical to rule I, except for the fact that equal length
paths are sorted according to their accumulated path metric in-
stead of lexicographic ordering. If the stack algorithm based on
rule II is applied with C0 = ∞, the resulting x̂ coincides with
the ZF-DFE point given by (14), with the additional constraint
that slicing is forced to give a value in ZQ for each component
(notice the analogy with the Schnorr-Euchner enumeration). Al-
gorithm II can be concisely formulated as follows
Algorithm II (Input C ′

0, y′, R. Output x̂):
Step 1. (Initialization) Put the root of the tree in the stack, with
the associated metric equal to zero, let dc = C ′

0 and k = 1.
Step 2. (k-th Stack sequential decoding stage): if the stack is
empty, terminate, else expand the path at the top of the stack
and order the stack with rule II. If the top path has depth m go
to 3, else repeat step 2.

Step 3. (A valid point is found) Let x denote the depth-m path
found. Then, remove it from the stack, let dc := M(x), save
x̂ := x, let k := k + 1 and go to 2.

�

As for Algorithm I, if no valid point is found, C ′
0 is increased

and the algorithm is restarted.
Again, thanks to the particular structure of the problem and

the appropriate choice of the sorting rule, Algorithm II can be
implemented in a much more efficient way that does not require
maintaining and sorting a stack explicitly. This is given as fol-
lows
Algorithm II, smart implementation (Input C ′

0, y′, R. Out-
put x̂):
Step 1. (Initialization) Set i := m, Tm := 0, ξm := 0, and
dc := C ′

0 (current sphere squared radius).
Step 2. (DFE on xi) Set xi := b(y′

i − ξi)/ri,ie and ∆i :=
sign(y′

i − ξi − ri,ixi).
Step 3. (Main step) If dc < Ti + |y′

i − ξi − ri,ixi|2, then go to
4 (i.e., we are outside the sphere).
Else if xi /∈ [0, Q − 1] go to 6 (i.e., we are inside the sphere
but outside the signal set boundaries).
Else (i.e., we are inside the sphere and signal set boundaries)

if i > 1, then
{

let ξi−1 :=

m∑

j=i

ri−1,jxj , Ti−1 := Ti + |y′
i −

ξi − ri,ixi|2, i := i− 1, and go to 2
}

.

Else (i = 1) go to 5.
Step 4. If i = m, terminate, else set i := i + 1 and go to 6.
Step 5. (A valid point is found) Let dc := T1 + |y′

1 − ξ1 −
r1,1x1|2, save x̂ := x. Then, let i := i + 1 and go to 6.

Step 6. (Schnorr-Euchner enumeration of level i) Let xi :=
xi + ∆i, ∆i := −∆i − sign(∆i), and go to 3.

�

The main difference with Algorithm I is that given the val-
ues of xi+1, . . . , xm, taking the ZF-DFE on xi avoids re-testing
other nodes at level i in case we fall outside the sphere. No-
tice also that in the implementation of the algorithm above, the
branch metric |y′

i−ξi−ri,ixi|2 needs to be computed only once
in steps 3 and 5 (even if it appears twice in step 3 and once in
step 5).

By setting dc = ∞, one ensures that the first point found
by the algorithm is the ZF-DFE (or the Babai) point (15). This
choice, however, may result in some inefficiency if the distance
between the ZF-DFE point and the received signal (referred to
as the Babai distance) is very large. This inefficiency becomes
especially significant at very large dimensions, as the algorithm
zig-zags its way in the tree from the ZF-DFE point to the ML
point. By setting dc to a finite value C ′

0, one informs the algo-
rithm that the ML solution lies in a sphere of a squared radius
C′

0, which allows it to retrace its path in the tree if the squared
Babai distance is larger than C ′

0.

IV. PRE-PROCESSING AND ORDERING

The complexity of sphere decoders depends critically on the
pre-processing stage, the ordering in which the components of
x are considered, and the initial choice of C0. The standard
pre-processing and ordering (implicitly assumed in the formula-
tion of Algorithms I and II) consists of the QR decomposition of
the channel matrix B and the natural back-substitution compo-
nent ordering, given by xm, xm−1, . . . , x1. However, different
pre-processing/ordering approaches may yield a lower expected
complexity.

1. Columns Ordering According to the Euclidean Norm:
In [3], Fincke and Pohst proposed two modifications of the pre-
processing stage to further reduce the complexity of the Pohst
enumeration for infinite lattices.

(a) Apply the LLL reduction algorithm [35] on the upper trian-
gular matrix R. The LLL algorithm finds a unimodular1 matrix
U such that G = RU and G has reduced lattice vectors and
almost orthogonal columns.

(b) Order the columns of G according to their Euclidean
norms in a non-decreasing order. Clearly, GΠ where Π is the
column ordering permutation matrix, is also a generator matrix
for the lattice Λ generated by R.

1A square matrix U is said to be unimodular if it has integer components
and its inverse has also integer components or, equivalently, if it has integer
components and a determinant equal to ±1.
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This approach is useful for the infinite lattice problem. In fact,
(9) can be replaced by

û = arg min
u∈Z

m
|y′ −GΠu|2 (19)

where Π is the column ordering permutation matrix. The Pohst,
or Schnorr-Euchner enumeration strategies can be applied to
solve (19). The point of Λ closets to y′ is given by GΠû.
The utility of this approach for ML detection of finite signal sets
is questionable. The reason is that, while u = U−1x has integer
components, the image of the hypercube Z

m
Q under U−1 is not

necessarily a hypercube any longer. Therefore, controlling the
range of u is, in general, a very complicated problem. Without
the PAM boundary control, there is no guarantee that the out-
put of the algorithm will belong to the transmitted signal set.
Therefore, to ensure ML detection, the search may be repeated
several times, after excluding the undesired lattice points, which
increases the complexity. Overall, our experiments indicate that
this modification does not offer complexity reduction in the ML
detection problem.
Nevertheless, a useful heuristic consists of ordering the columns
of B according to their Euclidean norms, in a non-decreasing or-
der. This can be explained as follows. Consider the ordering of
the components of x given by the permutation π, i.e., we process
the components of x in the order xπ(m), xπ(m−1), . . . , xπ(1).
The recursive upper and lower bounds in the Pohst enumeration
(or, equivalently, in Algorithm I) imply that the span of xπ(i)

depends on the spans of xπ(i+1), . . . , xπ(m) in the same way as
the decision on xπ(i) depends on the decisions on all the previ-
ous components in standard decision-feedback equalization. By
choosing the permutation π such that B′ = BΠ has columns
with increasing Euclidean norms (here Π denotes the column
permutation matrix corresponding to π), the span of xπ(m) is
reduced with a high probability, so that the expected complexity
is reduced. We note that this column ordering is not reported
in previous papers on the subject [5], [8], [36], [22], [6]. We
have found that this column ordering also decreases the average
complexity of Algorithm II.
2. V-BLAST ZF-DFE Pre-processing and Ordering:
As a second pre-processing and ordering approach, we propose
the V-BLAST optimal detection ordering given in [25]. The goal
of this ordering is to find the permutation matrix Π such that the
QR decomposition of B′ = BΠ has the property that min

1≤i≤m
ri,i

is maximized over all column permutations. The column order-
ing algorithm is recursive and yields the optimal permutation π
in m steps. Let Ak denote the set of columns indices for the
not yet chosen columns. Then, for k = m, m − 1, . . . , 1 the
algorithm chooses π(k) such that

π(k) = arg max
j∈Ak

{
bT

j

[
I−Bk,j(B

T
k,jBk,j)

−1BT
k,j

]
bj

}

where Bk,j is the n × (k − 1) matrix formed by the columns
bi with i ∈ Ak − {j}. The column ordering (equivalently,
the ordering of the components of x) is given by π(m), π(m −
1), . . . , π(1). There are two heuristic arguments supporting this
pre-processing and ordering approach: 1) in the expressions of

the boundaries (16), we see that a large ri,i corresponds to a
small interval Ii(x

m
i+1), therefore, by maximizing the minimum

ri,i we attempt to reduce the range of each component in the
Pohst enumeration (Algorithm I); 2) the Schnorr-Euchner enu-
meration with infinite squared radius C0 yields the ZF-DFE so-
lution as the first point, and hence, the complexity of Algorithm
II depends on how close the ZF-DFE point is to the ML point. It
has been shown that the V-BLAST detection ordering improves
the error probability with ZF-DFE [25]. Therefore, one can ar-
gue that the V-BLAST ordering provides a better quality ZF-
DFE point, i.e., closer on the average to the ML point.
3. V-BLAST MMSE-DFE Pre-processing and Ordering:
In order to further enhance the quality of the first point found
by Algorithm II, we consider minimum mean-square error
(MMSE) instead of ZF filtering. In this MMSE-DFE pre-
processing stage, we first translate the observation y by subtract-
ing the mean signal vector β

∑m

i=1 bi, where β = (Q − 1)/2,
and consider the variables xi taking values in the zero-mean
signal set XQ = ZQ − β. Assume that the components
xπ(m), . . . , xπ(k+1) are known, then the unbiased MMSE esti-
mate of the component xπ(k) is given by

x̃π(k) = fT
π(k)

(
y −

m∑

`=k+1

bπ(`)xπ(`)

)

where

fπ(k) =

[
I + α

∑k

`=1 bπ(`)b
T
π(`)

]−1

bπ(k)

bT
π(k)

[
I + α

∑k

`=1 bπ(`)b
T
π(`)

]−1

bπ(k)

is the unbiased MMSE filter, and α = (Q − 1)2/12 is the vari-
ance of the random variables xi, uniformly distributed over XQ.
The signal to interference plus noise ratio (SINR) for the detec-
tion of xπ(k) from the observation x̃π(k) is given by

µk = αbT
π(k)

[
I + α

k−1∑

`=1

bπ(`)b
T
π(`)

]−1

bπ(k). (20)

A very efficient square-root algorithm for computing the per-
mutation π that maximizes min

1≤k≤m
µk and, at the same time,

providing the corresponding MMSE-DFE filter vectors fπ(k) is

given in [37]. Letting F
4

= [fπ(1), fπ(2), . . . , fπ(m)] denote the
MMSE-DFE filter bank for the optimal permutation π and

M
4

= diag(
√

µπ(1), . . . ,
√

µπ(m)),

the proposed pre-processing and ordering approach now con-
sists of

(a) Computing π, F and M by using the method of [37].
(b) Computing the new observation ρ = MFT y.
(c) Applying either Algorithm I or Algorithm II, to the new

upper triangular (non-equivalent) channel model given by

ρ = Gu + ν (21)
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where G is the upper triangular part of the matrix MFT BΠ and
Π is the column ordering permutation matrix corresponding to
the permutation π.
In (21), the noise ν is non-Gaussian and correlated. However,
following the standard approach in equalization, we shall treat
it as Gaussian with i.i.d. components ∼ N (0, 1). Hence, Algo-
rithms I and II can be modified to find

û = arg min
u∈Xm

Q

|ρ−Gu|2 (22)

by simply replacing R by G and y′ by ρ.
It is important to notice that, unlike V-BLAST ZF-DFE pre-
processing, this approach will not yield ML detection, even if
the sphere decoder is initialized by C0 = ∞. However, as
shown in the numerical results, the loss in performance, com-
pared to ML detection, is very marginal and the reduction in
complexity, compared to other sphere decoders, is often sig-
nificant. It is also interesting to notice that Algorithm II with
the MMSE-DFE pre-processing stage is akin to the standard ap-
proach of reduced state sequence estimation by delayed decision
feedback (see [38], [39], [40] and references therein).
A remark on the complexity:
The impact of the above pre-processing approaches on the aver-
age complexity depends very much on how often pre-processing
is performed. In fact, pre-processing depends only on the chan-
nel matrix B. If the channel is used repeatedly and B remains
fixed for a long time (a large number of channel uses), the com-
plexity of pre-processing is negligible with respect to the com-
plexity of the sphere decoder search. On the contrary, if B

changes arbitrarily at each channel use, then the pre-processing
stage may have a considerable impact on the average complex-
ity.

V. GENERALIZATIONS AND EXTENSIONS

A. ML Decoding of More General Codebooks

Although we described Algorithms I and II for symmet-
ric PAM signal sets, they can be easily applied to any hyper-
rectangular codebook C

C=
{
x ∈ Z

m
: x ∈ [µ1,min, µ1,max]× · · · × [µm,min, µm,max]

}

by making the boundaries control dependent on the index i =
1, . . . , m. In order to ensure finding the ML solution in Algo-
rithms I and II, one should incorporate the signal set boundary
control in the search algorithm. Alternatively, one can ignore
the boundaries and run the algorithm to search for the closest
lattice point, which is then projected (or quantized) by impos-
ing the constellation boundaries only at the end of the algorithm.
Such strategy is known in the literature as lattice decoding (as
opposed to ML detection or minimum distance decoding [6],
[33]). Interestingly, beyond being suboptimal, lattice decoding
also results in an increased average complexity when using the
original Pohst enumeration [2], [3], the VB implementation [5],
or Algorithm I. This is because controlling the boundaries of the
intervals inside the search can reduce the range of each variable
xi in the enumeration by excluding many unnecessary points

outside the constellation boundaries. On the other hand, this is
not always the case for Algorithm II.

Algorithms I and II can be also extended to handle general
lattice codes C (not necessarily hyper-rectangles carved from
the integer cubic lattice). Consider a lattice Λ ⊂ R

m with
generator matrix G, i.e., Λ = {Gx : x ∈ Z

m}. A lattice
code (or constellation) C is the set of lattice points c ∈ Λ ∩ R,
where R is some shaping region [41], [42]. Typically, the
shaping region R is chosen to be the m-dimensional sphere
of given squared radius R2. In order to handle this case, we
first restrict x to belong to the hyper-rectangular region X =
[µ1,min, µ1,max]× · · · × [µm,min, µm,max]. The difference with
respect to the previous case is that now there exist points x ∈ X
such that Gx /∈ C, i.e., |Gx|2 > R2, therefore, the closest lat-
tice point found by the sphere decoder may not be a valid code
word. To overcome this difficulty we modify Algorithms I (or
equivalently Algorithm II) as follows. The algorithm now takes
R2 and G as additional inputs. When a lattice point is found,
one tests whether it is a valid point by testing |Gx|2 ≤ R2: if
yes, then the algorithm saves x̂ := x, updates the boundaries
and goes on to examine the next point. Otherwise, it moves on
to the next point without updating the boundaries and without
saving the point found. At the end of the search, if the algorithm
has found a valid point x̂ (i.e., such that Gx̂ ∈ C), then this is
the ML point, otherwise, one increases the initial squared sphere
radius C0 and restarts the search.

B. More Sources than Sensors

The proposed algorithms can be generalized to handle the
case m > n by following the approach of [36]. The main idea
is to partition x into two vectors x1 with n elements and x2

with p
4

= m − n elements. This partitioning induces a similar
partition on the matrix B, i.e., B = [B1, B2]. Assuming that
rank(B1) = n, the QR decomposition applied to B1 (with pos-
sibly ordered columns) yields the equivalent model

y′ 4

= QT y = R1x
1 + R2x

2 + QT z (23)

=




r
(1)
1,1 r

(1)
1,2 . . . r

(1)
1,n

0 r
(1)
2,2 . . . r

(1)
2,n

...
. . .

. . .
...

0 . . . 0 r
(1)
n,n







x1

x2

...
xn




+




r
(2)
1,1 r

(2)
1,2 . . . r

(2)
1,p

r
(2)
2,1 r

(2)
2,2 . . . r

(2)
2,p

...
. . .

. . .
...

r
(2)
n,1 r

(2)
n,2 . . . r

(2)
n,p







xn+1

xn+2

...
xm


+ QT z

where the diagonal elements {r(1)
i,i } are positive, QT z has the

same statistics of z, and R2 = QT B2. Note that (23) is an
under-determined system (more unknowns than equations) but
it may still admit a unique solution since x is constrained to
belong to a finite and discrete set.

In order to apply Algorithms I and II (in general, any sphere
decoder) to the case of (23), we fix the components of x2 and
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use our algorithms to solve

x̂1 = arg min
x

1∈X

∣∣y′ −R2x
2 −R1x

1
∣∣2 (24)

where X is an appropriate n-dimensional hyper-rectangular re-
gion (e.g., in the case of PAM signals we have X = Z

n
Q). This

can be repeated for every choice of x2, and the ML point is
eventually found.

We observe that this approach has an exponential complexity
in m− n independent of the signal-to-noise ratio (SNR), which
seems to be inherent to the problem itself. Nonetheless, the idea
of generalizing the sphere decoder to m > n has an additional
subtle advantage: once a valid point is found with distance dc,
all values of x2 such that |y′ −R2x

2|2 > dc can be discarded
from the beginning. Their exclusion from the search costs only
the computation of the squared distance |y′−R2x

2|2 instead of
computing the distance of the whole point.

C. Complex and Algebraic Pohst Enumeration

In [28], a complex sphere decoder is proposed for ML de-
tection in MIMO channels without passing to the real repre-
sentation as in [8]. In this approach, the QR decomposition
is performed on the complex channel matrix H and the Pohst
strategy is applied by making successive bounds on the com-
plex components xi, where the search is done over a disc in C

of a given radius. This is made possible because one can still
count the complex integers (Gaussian integers) in C. The com-
plex sphere decoder is especially useful when using PSK signal
sets, which lie on a circle, since the intersection between the
disk and the PSK circle can be easily characterized [28]. This
complex sphere decoder can be considered as a special case of
the generalization of the Pohst strategy for lattices over number
fields [43], [44]. In fact, one can perform the Pohst enumeration
over any set of algebraic integers:

{xi = ui1 + ui2θ + . . . + uiqθ
q−1,

ui,j ∈ Z, i = 1, . . . , m, j = 1, . . . , q}

where θ is algebraic of degree ≥ q over Q [43], [44]. Also in
this case we make successive lower and upper bounds on |xi −
ξi|, i = m, . . . , 1, with the same setup as in the original Pohst
strategy described in Section II [43], [44].

In order to choose a point xi in the allowed “interval” (i.e.,
satisfying the boundaries) the coefficients ui1, . . . , uiq of the
representation of xi in the basis {1, θ, . . . , θq−1} must be de-
termined. These can be found again by applying the same Pohst
strategy [43], [44]. Because of the latter enumeration for each
i = m, . . . , 1, the algorithm complexity depends on the product
mq. We see now that, although the complex (q = 2, θ =

√
−1)

Pohst strategy does not expand the lattice dimension, it has com-
plexity comparable with the real algorithm of double dimension
because the complex enumeration costs twice as much as the
real one, and complex operations cost at least twice as the real
ones [43]. Nevertheless, in some cases it may be useful to keep
the original problem, when the lattice generator matrix H has
some desirable properties (e.g., it is upper triangular or band-
limited as in ISI or multi-path complex channels [18]) or the

signal set where the components of x take on values has some
nice feature (e.g., it is a PSK signal sets). It is easy to see that
Algorithms I and II extend naturally to these scenarios.

VI. SIMULATION RESULTS

In this section we compare the proposed algorithms with the
basic Pohst enumeration [2], [3] (see also the beginning of Sec-
tion III) and the VB sphere decoder [5]. Our experimental setup
corresponds to the transmission of multi-dimensional square
QAM constellations over a multi-antenna flat Rayleigh fading
channel. We consider M transmit and N receive antennas and
assume that the N ×M channel matrix H remains fixed during
T = 100 symbols and then changes randomly. Unless stated
otherwise, we perform ZF or MMSE-DFE V-BLAST optimal
ordering of the columns of matrix B. Following in the footsteps
of [3], [22], we use the number of flops as a measure for com-
plexity and we plot the average complexity exponent defined as
[21], [22]

logm(average number of flops).

We only count the flops of the search algorithm without account-
ing for the cost of the pre-processing stage. In all the simu-
lations, at least 10000 channel realizations are generated. We
implemented all the algorithms in floating point C (for previ-
ously reported algorithms, we followed closely the published
flowcharts), and the programs are invoked inside MATLAB 6
by using mex files.

We follow an ad-hoc method to initialize the decoders by
starting with a small C0, generally determined by trial and error
depending on the system parameters [4], [8], [6], and increasing
it gradually by steps of C0 until a point is found. In general,
the proper initial choice of C0 is critical in order to minimize
the complexity of the decoders; a too small C0 may result in an
empty sphere, whereas a too large C0 may result in too many
points to be enumerated. We expect the natural spanning algo-
rithms (i.e., original Pohst, VB implementation, and Algorithm
I) to be more sensitive to a large radius initialization than Algo-
rithm II. This is because the first point found by Algorithm II
is the ZF-DFE (or MMSE-DFE) solution, and the algorithm is
not sensitive to increasing C0 beyond the corresponding squared
Babai distance.

Fig. 2 shows the average complexity of Algorithm I as a func-
tion of C0 when decoding a 4× 4 MIMO system with 64-QAM
symbols (corresponding to a spectral efficiency of 24 bit/s/Hz)
at different SNR’s. It is seen that the “optimal” value of C0 (i.e.,
the value achieving minimum complexity) decreases as a func-
tion of SNR. For medium to large SNR’s (i.e., 12 to 22 dB in this
scenario) the “optimal” values of C0 are small, and the average
complexity of Algorithm I increases considerably by increasing
C0.

Algorithm II is sensitive to the initial squared radius C0 at
larger dimensions, as demonstrated in Fig. 3 where we com-
pare the average complexity of Algorithm II with ZF-DFE and
MMSE-DFE pre-processing over a 16× 16 MIMO system with
a 16-QAM constellation at an SNR of 20 dB. We observe that
MMSE-DFE pre-processing makes Algorithm II more robust to
the initial C0 than ZF-DFE pre-processing. This matches the in-
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tuition that with MMSE-DFE the Babai distance is better, with
high probability, than with ZF-DFE. The optimal choice of C0

for both algorithms is typically larger than that of Algorithm
I. As the dimension increases, even Algorithm II with MMSE-
DFE pre-processing becomes quite sensitive to the initial radius
choice, as shown in Fig. 4 for a 20 × 20 MIMO system with a
16-QAM constellation at different SNR’s.

In the rest of this section, we report the average complexity
of all the algorithms when initialized by the corresponding “op-
timal” ad-hoc values for C0.

Fig. 5 compares the average complexity of the four algo-
rithms for M = N = 4 and a 64-QAM constellation at different
SNR’s, where both ZF-DEF and MMSE-DFE pre-processing
stages are used with Algorithm II. Notice that, under the same
initialization conditions, Algorithm I is the most efficient among
the natural spanning algorithms as predicted by Proposition 1,
and the VB implementation is the least efficient. Interestingly,
the basic Pohst enumeration is more efficient than the VB im-
plementation in certain scenarios, since one does not repeat pre-
viously spanned point-segments when counting all the points in-
side the sphere. This observation is only true for small dimen-
sions and with small C0; for large dimensions and/or large C0,
the VB implementation is more efficient than the basic Pohst
enumeration. Algorithm II, with ZF-DFE or MMSE-DFE, is
more efficient than the natural spanning algorithms, all under
optimized initializations. Algorithm II with MMSE-DFE is the
most efficient algorithm. It is about 70 times faster than Algo-
rithm I at small SNR’s, and about 2 times faster at large SNR’s.
Remarkably, this significant complexity reduction costs only a
very marginal loss in performance as shown in Fig. 6. For the
sake of comparison, in this figure we also show the performance
of the MMSE linear detector, i.e., a linear MMSE filter followed
by symbol-by-symbol hard decisions [16]. The advantage of
ML (or near ML) with respect to linear detection methods is
evident.

The gain in complexity reduction offered by Algorithm II,
with MMSE-DFE, further increases as the lattice dimension in-
creases as reported in Fig. 7, where Algorithms I and II are
compared over an M ×M MIMO system with a 4-QAM con-
stellation at SNR’s of 10 and 20 dB. For example, Algorithm II
with MMSE-DFE is about 40 times faster than Algorithm I for
M = 64 at an SNR of 20 dB. Again this complexity reduction
comes at almost no cost in performance.

In all the previous figures, ZF-DFE or MMSE-DFE V-
BLAST optimal ordering of the generator matrix columns was
adopted. In Fig. 8 we show the effectiveness of V-BLAST or-
dering by comparing it with the natural ordering (the columns
of B are processed in the natural order) and the ordering of the
columns according to increasing Euclidean norm for an M ×M
MIMO system with a 4-QAM constellation at an SNR of 20 dB.
In this figure, we plot the average number of flops instead of the
average complexity exponents in order to better visualize the
complexity reduction factor. We observe that, as m increases,
the advantage of the V-BLAST column ordering becomes more
significant. For example, at m = 128, the V-BLAST ordering
gives a complexity reduction factor of about 13 times over the

column ordering based on the Euclidean norm. This complexity
reduction can be attributed to the improved quality of the first
point found by Algorithm II.

In summary, driven by extensive numerical evidence2 we
conclude that Algorithm II, with V-BLAST MMSE-DFE pre-
processing and ordering, offers a very attractive implementation
of the sphere decoder with finite alphabet constellations. This
algorithm yields almost ML performance at a polynomial (often
between O(m2) and O(m3)) average complexity in the problem
dimension over a wide range of system parameters, and consis-
tently outperforms all previously known sphere decoders.

VII. CONCLUDING REMARKS

In this paper we have investigated reduced complexity meth-
ods for ML detection of multi-dimensional constellations and
lattice codes, based on the Pohst enumeration strategy [2]. Two
efficient algorithms were proposed. Algorithm I is directly in-
spired by the Pohst enumeration strategy and was shown to be
more efficient than the Viterbo-Boutros sphere decoder. Algo-
rithm II is inspired by the Schnorr-Euchner enumeration strategy
and is more robust than the Pohst-based algorithms with respect
to the initial choice of the sphere radius. Both algorithms have
been shown to be functionally equivalent to a concatenated se-
quence of the stack sequential decoding algorithm with appro-
priate path metrics and stack sorting rules.

By combining Algorithm II with an efficient pre-processing
stage, we obtained a near ML decoding algorithm that uni-
formly outperforms all known sphere decoders in terms of re-
ceiver complexity. Furthermore, we have discussed some gen-
eralizations of the proposed algorithms to the under-determined
case (n < m) and to more general codebooks, such as lattice
codes and complex signal sets.

We would like to conclude by pointing out that the connection
between sphere decoding and sequential decoding established in
this paper may have wider implications than those exploited in
our work. One would expect the cross fertilization between the
two areas to yield more efficient decoding algorithms, and to
allow for a better understanding of their fundamental limits.
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Fig. 1. Tree representation of the paths searched by the sphere decoder in the
case m = 4 and Q = 2. A particular path is evidenced as an example.
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Fig. 2. Initialization: the average complexity of Algorithm I as a function
of the initial squared radius in an uncoded 4 × 4 system with a 64-QAM
constellation.
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DFE) as a function of the initial squared radius in an uncoded 16×16 system
with a 16-QAM constellation.
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