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Abstract

We present the design and implementation of a VOD server that addresses the issues of storage,
retrieval, and scheduling of a large number of video objects as well as the reliability aspects related
to striping (distributing) video objects over several hard disks. The result is a multi-platform,
distributed video server built from off-the-shelf components that is able to cope with various kinds
of heterogeneity (number of disks, storage volume of disks, number of disk servers, variety of
striping techniques, range of redundancy codecs). Further, our video server runs on multiple
platforms (SOLARIS, Windows NT). Reliability is guaranteed through the optional use of parity-
or mirroring-based reliability techniques.

1 Introduction

A video server stores digitized, compressed continuous media information on high-capacity secondary
storage, such as hard disks that provide random data access with short seek times. Due to the large
number of objects stored and the real-time requirements for their retrieval, the design of video servers
differs significantly from that of traditional high-capacity data storage servers. Data base servers, for
example, are designed to optimize the number of requests per second and to allow a fast response to
the clients. In contrast, video servers must meet the requirements resulting from the continuous nature
of the stored multimedia streams and must guarantee the delivery of video data at exactly times given
through the bit rate of stored streams. The main constraints of a video server are the disk bandwidth,
the total storage capacity, and the main memory size. Since our video sever is scalable in the number
of disks, the performance measure of a video server is not the maximum total number of clients, but
the maximum number of clients admitted per server disk. To optimize this number and to allow many
users to access the same video object, video streams are divided into several parts (video segments)
that are stored on different server disks. This process is called striping. Striping has the advantage of
increasing the number of clients per disk, but it has the disadvantage that the video objects are more
susceptible to disk failures, since if any of the server disks storing a segment of the video object fails,
reconstruction of the original video data is no more possible at client-side. Several methods to improve
reliability are supported by our video server. The simplest method is to duplicate the video object
twice (or more times) on the server disks (mirroring), with the disadvantage of at least 100% storage
overhead. The other method, parity-based reliability schemes (exclusive-Or and Reed-Solomon codes)
provide reliability at lower storage overhead, but at an increased decoding overhead for the clients.



2 Design of the VOD Server

2.1 Video Server Architecture

A video-on-demand server (video server) stores huge amounts of video data that can be requested
by clients connected via a data network. Real-world video-on-demand applications require the video
server to store thousands different video streams, and to service a large number of concurrent requests
to the stored streams from clients. This leads to an architecture of a video server that does not consist
of only one server node, but of many server nodes, referred se@®r array. The video server

should also be scalable, allowing to add server nodes if needed [1]. The video server conSists of
server nodes, each containihyg server disks for video stream storage, an arbitrary number of video
clients, and exactly one meta server (figure 1).
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Figure 1: Video server architecture.

The meta server stores the so-called meta information that comprises the knowledge of the location
of video data on the disks. Both video clients and disk servers must inform the meta server of their
existence at start-up time. The location of the meta server is assumed to be well-known in advance.

To cope with the real-time requirements imposed by the stored video streams, the data path from server
to client has to guarantee a certain quality of service (Qo0S):

e The server must ensure to reserve the required storage bandwidth as well as the exact timely
delivery of video data.

e The network itself has to provide the required bandwidth and it has to constrain the transmission
delay (jitter).

e The client itself has to make sure to meet the real-time requirements of the received stream, in
terms of network bandwidth and display adapter output bandwidth.

2.2 Intra-Server and Server-Client Communication

The meta server and the disk servers communicate via TCP. Since meta server and disk servers are
assumed to be on the same local area network (LAN), we do not have to take into account network
latencies in intra-server communication. The clientis not necessarily situated in the same LAN. There-
fore, we assume a higher network and data transmission latency as in intra-server communication.
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The server-client communication is used to transmit the list of available videos along with the video
information to the client, which is not a time-critical process. The only server-client communication
process that is time-critical is the realization of VCR functions (play, pause, stream positioning). A
high server-client network latency may have sensible impact on the video-on-demand service. But
since there is no other possibility than reliably sending the client commands to the video server, the
TCP messaging is also used for this purpose. In contrast, the video data to the client is sent using the
user datagram protocol (UDP), because retransmission-based protocols like TCP are not acceptable
in real-time services like VOD (again regarding high data transmission latency). Figure 2 shows the
different streams of information flow in our video server architecture.

Server Node Server Node  Server Node

Client Client Video Control Flow
= == Meta Information Flow
=== Server Information Flow

Figure 2: Information flow in the proposed video server architecture.

The server-client communication’s paths are represented by the meta information flow (for retrieving
the list of available videos and video information) and the client video control flow (for realizing the
VCR functions). The video data arrow shows the way of video data packets from the disk servers to
the client. The intra-server communication is denoted by server information flow.

The intra-server and server-client communication was realized through a messaging system. Each
entity (disk server, meta server) defines a set of commands that can be invoked by other entities of the
video server.

2.3 A Striped and Reliable Video Server
2.3.1 Striping

We definestriping as the partitioning of a video object into video segments that are stored across a
set of disks in a predefined order. The amount of contiguous logical data belonging to a single video
object and stored on a single disk is referred tstaping unit .

When we have multiple disks, we need to decide over how many disks to distribute (1) the whole video
object(video object stripingland (2) each individual video segmejsegment striping) The choice

of the striping algorithm and the size of striping unit become very decisive to get a cost effective and
reliable video server. We have looked at the possible striping algorithms [2] and realized that:
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1. Videoobjectstriping should be video wide striping.(;) where a video object is distributed over
all disks of the video server:,, achieves a goobbad-balancingndependently from the video
objects requested and offerdigh throughputfor popular video objects that are requested by
many clients.

2. For the videsegmenstriping, three approaches are possible:

e s, distributeseach segment over all disksid achieves therefore perfect load balancing.
However, the buffer requirement grows proportional to the number of disks. It is therefore
not feasible to build large video servers usig.

e s, Stores the whole segment osiagledisk, which can result in aload imbalance between
disks and high start-up latency for new client requests. However, the seek overhead will be
low, since the amount of data (one video segment) read in one disk access is large, while
assuring a low buffer requirement.

e s, distributes a video segment oversab-setof all disks and can be considered as a
compromise betwees,; ands,,.

Our video server implements the following striping policiés,, s..s ), which will be referred to as
FGS or Fine Grained Striping, (v.s, $ss), Which will be referred to a&€GS or Coarse Grained
Striping [3, 4, 5], and(v.s, s.s), Which will be referred to aMGS or Mean Grained Striping [2].

Since MGS covers FGS and CGS as special cases, we will describe in section 2.3.3 the MGS striping
implemented in our video server. MGS consists of grouping a set of disks into a so+edtledal
group. A video segment is stored on a single retrieval group.

2.3.2 Reliability

Striping has the advantage of allowing all clients admitted to access the same video object by equally
distributing the load over all disks. However, it has the disadvantage that the video objects are more
susceptible to disk failures, since if any of the server disks storing parts of the object fails, recon-
struction of the original video data is no more possible at client-side. We present solutions to ensure
against disk failures. All these solutions have in common that they store, in addition to the video
data, redundant information for loss recovery [6, 2]. Reliability can be ensured using a mirroring- or a
parity-based model. Our VOD prototype implements both models.

The most straightforward approach to solve the reliability problem is to replicate the video object
information twice (or more times). The disadvantage is the large storage overhead’af Nade

that our implementation does not mirror whole disks, but duplicates the video segments/striping units
created during striping.

Parity-based schemes mainly use a Reed-Solomon coder to produce redundant data. Unlike RAID-
schemes, which operate on whole disks, our approach works on the striping units generated during
striping. We have the ability to add one or more redundant blocks to the original amount of video
blocks (we can even add more redundant blocks than original blocks, though this seems not to be
useful). The redundant blocks are distributed over all server disks, resulting in a perfect load balancing.
If we only have to add one redundant block, we are using the exclusive-Or (XOR) operation for parity
creation, if we have to add more than one redundant block we use a Reed-Solomon based parity
scheme. In contrast to XOR schemes, the Reed-Solomon scheme allows to recover from multiple
failures. If we additionally create redundant blocks, our codec is able to recover from up to
independent block losses. The striping tool integrated into the meta server directly supports MGS



striping with parity creation. Therefore, if we e.g. stripe a video object using MGSmwigdlundant

blocks andd original blocks, we can tolerate up tofailing server nodes. In addition, since the
scheduler sends all redundant and original blocks to the client, the additional redundancy sent also
protects from network failures during transmission if less thdisk losses appear (proactive mode).

In [2], we have shown that the most suitable solutions for video servers are a CGS striped server with
mirroring or a MGS striped server with parity. We have discussed in [6] the relationship between data
striping and adding redundant data to the server, where we distinguish between bandwidth-limited (the
bandwidth being the bottleneck) and storage-limited (the storage volume being the bottleneck) servers.
Our proposal in [6] was a combination of adding parity data to certain video objects and replicating
other video objects (popular movies) within the same server.

2.3.3 MGS Striping combined with a Parity-Based Reliability Model

Our scheduling algorithms (Round Robin or SCAN) and our striping tool support both, CGS with
mirroring and MGS with parity. We limit our discussion in the rest of this paper on MGS striping
with parity and describe the striping algorithm implemented in our server. Figure 3 shows the process
of MGS striping with creation of redundant video information (parity). The video object is divided
into several video segments, and these segments themselves are divided into equal size striping units.
Redundant striping units are created through use of the Reed-Solomon coder and the striping units are
stored on the appropriate server disks.

Video Stream
/ N\

N,
N
N

I N,
i Vid. Segment  Redundancy
v A/ \

su, SUy RS, RS,

Write striping
units to
server disks
’ :

Figure 3: Striping of original and parity data of a video segment.

The following parameters can be specified for striping a video object:

e Total number of disks in the serveby

This integer value gives the total number of disks in the server. We assume a homogeneous video
server:D =D, -N.



e Number of disk retrieval groups{)

This integer value specifies the number of disk retrieval groups that should be used during strip-

ing.
e Number of disks per group;,)
This integer value defines the amount of disks in each retrieval group.

¢ Redundancy()

This value specifies the number of redundant disks blocks to create in each disk retrieval group.
This is equivalent with the number of disk losses that can be tolerated for the client. The number

of original disks is
d=D, —r.

Note that ifr > 1 andd = 1, we have (multiple) mirroring. For = 1 andh > 1, we use XOR
for parity creation, for- > 1 andh > 1 we use our Reed-Solomon coder.

For each retrieval group, the location of each disk in the group can be specified (server node and disk).
This allows to specify retrieval groups that reside on the same node, but on different disks, or on

different nodes, but on same disk indices, or mixed.

Figure 4 shows an example of a MGS striped video server that comp¥isesver nodes, where each
node containg),, disks. In this example, each retrieval group consists of exdglgisks belonging
to D, different server nodes

Node 1 Node 2 ece Node N

¢ Retrieval
i Group 1

i Retrieval
it Group G

o0 oD
oo oD
(00 oo

Figure 4: A MGS striping example.

The following algorithm describes the MGS striping example of figure 4 using a parity-based reliability

model (the algorithm ensures the distribution of one video objectallawailable disks in the server):

BEGIN

Input to the algorithm:
The video object VO; to be stored on all disks of the server.
The number of groups &, the number of disks per group D,, and the
number of redundant blocks r to create. Implicitly given is h =
Dy —r.

Striping Steps:
Analyze video object VO, to partition it into N, video segments
VSm‘, jE {1,...,]\75}

1This example assigns to different disks of one server node different retrieval gloyps:N andGG = D,,. One can
specify many other MGS alternatives by changing the valuds,cindG.
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for (j=1; j<Ng j++) |
Partition VS;; into  h=D,—r striping units Sijk With ke {l,... h}.
To each striping unit Si ik, add the time stamp tije=J7+ kT,
Create 1 redundant striping units Sijk (Ee{h+1,...,D4})
with the Reed-Solomon coder.
Determine the retrieval group g such that: g=(i+j—1) mod G

for (k=1;, k<D, k+t+) {

Store S;;% on disk d (d € {0,...,D — 1}) of retrieval group g
with:
d=g+(k-1)-D,.
}
}
return;
END

Implementation

3.1 A Hybrid and Heterogeneous Video Server

Our implementation was intended to be used as a test platform for further video server development
as well as an operational video server (e.g. corporate video server). The implementation meets the
following important aspects:

e Hybrid Architecture

Source code compatibility between at least two platforms was assumed during the development
of the video server. For the disk servers, meta server and the clients we have the choice of
the Windows NT or the Solaris platform. Video server configuration data is stored in binary,
platform-independentfiles. Itis possible to move server disks to another platform without losing
stored video objects. Clients can be launched from Solaris or Windows NT, even from Windows
95. Meta servers are as well allowed to run on Solaris, Windows NT or Windows 95. Solely
disk servers can only run on Solaris or Windows NT. Launching on Windows 95 is not possible
due to the unimplemented direct disk access API absolutely needed for the disk servers. Since
it only uses functions from the standard libraries, the video server is compatible to most UNIX
platforms. Merely minor changes in source code (lik e adaption of include paths and files etc.)
may be necessary.

Reliability

It is possible to launch video server without all disk servers connected. The order of launching
disk servers and meta servers is not important for the reliable functionality of the whole video
server. Disk servers can be shutdown and later again launched during normal operation of the
video server.

Scalability
The video server is scalable in terms of

1. the amount of server nodes

Server nodes can be added or removed. The number of server nodes is not limited. Already
stored video objects are not affected by the addition of a new server node.
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2. the amount of disks per server node

Hard disks for video storage can be added to an already existing node without problems.
Already stored video objects are not affected by the addition of a new hard disk.

3. quality of service for the clients
It is possible for a client to only connect the minimum number of disk servers needed for
stream re-assembly (thus requiring an error-free network connection for playback without
quality degradation), or to additionally connect to redundant servers requiring higher net-
work bandwidth and server resources. Note that a client that only connects to the minimum
number of disk servers is not able to recover from a disk loss, or from a missing video data
packet due to a network failure.

e Heterogeneity
The video server is heterogeneous in terms of

1. the number of server disks.

The number of server disks in each server node may vary. Itis e.g. possible to add server
disks successively without the need of adding disks to all server nodes at the same time.

2. the method of striping used for video objects.

The parameters for striping can be chosen for each video object separately. We are able to
store the same video object using different striping mechanisms for performance analysis.
"Hot’ video objects, which means video objects with high client access rate, can be stored
using mirroring several disks, whereas video objects with smaller access rates can be stored
using less redundancy information.

e Concurrent operation of several clients

It is possible to run several instances of the video client on the same host, only limited by main
memory and CPU throughput. This is important for future extensions that show several different
contents (like a movie and an additional documentation) at once.

3.2 Hard- and Software Platforms

This section describes the supported hard- and software platforms. We took care to be as independent
from platforms as possible. Most system specific routines were collected in a single module, so it is
easier to adapt the routines given in there to make the video server compatible to a new platform.

The current version was tested on the following platforms:

e Pentium/ Windows NT 4.0

This is also the platform used during development. We used Microsoft Developer Studio (version
4.2), but the source code is also compilable under Watcom 10.X/11.X. The project files for
both platforms were edited on a shared NFS (network file system) drive, so the changes had
immediate effect on all platforms. The biggest difference between the platforms is the direct
disk access, which is realized through the 'CreateFile/ReadFile’ native Windows APl under
Windows NT. This API is completely incompatible to other platforms. To enable highest disk
access performance, the disk access functions were not collected in the base functions library,
but directly included in the 'disk’ class.



e Sun SparcStation / Solaris

We developed a makefile so our project files are directly compilable with GNU gcc-2.7.2.1.
Other versions of the GNU C++ compiler may work, but have not been tested. Disk access
under Solaris was realized through direct access to the hard disk device '/dev/...".

Note that all three functionalities (disk server, meta server, client) are integrated within one single
application. This had the advantage of efficient development and testing, as well as easier installation
since the functionality can be given as command line parameter. The following list shows how we
implemented important parts of the video server:

e Server Disks

We are using off-the-shelf SCSI disks. During development, we used five disk servers which
were attached to one 1 G-Byte and one 2 G-Byte hard disk each. The disk servers use direct
sector access for highest performance and to reduce operating system latencies due to sector
caching or read-ahead. A file system was developed for managing server disk space and stored
objects.

¢ Video Playback

Full-screen MPEG playback was achieved under Windows NT through the use of the DirectX
DirectDraw API. The API allows direct access to the display memory, so no additional copying
of output images is necessary, resulting in the highest possible performance enabling MPEG
playback at full playback. Sound playback under Windows NT is realized through the Di-
rectX DirectSound API. For Solaris, we used the MpegTV MPEG player freely available for
non-commercial use. It uses shared video memory for direct display memory access, but unfor-
tunately no full-screen playback is possible.

e Network

Video server messaging runs over TCP/IP, but any other reliable connection can also be used.
The UDP video data transmission was intended for ATM networks, but it is also possible to use
any other network type delivering sufficient bandwidth and performance.

e User Interface

The client user interface could be realized independently from platforms through the use of the
Library of Efficient Data structures and Algorithms (LEDA) [7]. LEDA is available for Solaris

and NT and a variety of other platforms, and it has a simple encapsulation of windowing and
menu functions. Therefore we chose LEDA as our library for window and menu choice output
functions, without the need of native X-Windows and NT adaptions. Note that only the video
client uses window output, disk servers and the meta server are outputting data on console only
to enable use through non-graphical logins (e.g. telnet).

3.3 Video Data Processing

This section describes the steps traversed by video data beginning from the server disk and ending at
the client’s stream decoder [8].



3.3.1 Disk Server

Figure 5 shows the situation on each server node. We can see that the disk server runs two threads. The
Round Scheduleralculates the order of disk read accesses frons#gice Listontaining a service
information entry for each client. After having read the disk blocks containing video datRptimel
Scheduleinserts the video data blocks into tWieleo Data Queuea data structure that lies in memory
shared by both threads. TBata Pumprunning in the second thread permanently pushes blocks from
theVideo Data Queu#o the network in a FIFO (first-in first-out) order.
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Server Disks Client
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Disk Block 4
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Scheduler

Service 4 Disk Block 1

Service List Video Data Queue
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&)
.l Shared Memory Access w
Disk Block 3
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Disk Block 2 Pump
(FIFO)

Network Pumping Thread

Disk Access Thread

Figure 5: Video data processing in the disk server.

3.3.2 Disk Scheduler

The disk scheduler schedules its clients in scheduling rounds of constant timeterfyart from

disk scheduling, which is usually the most time-consuming (and most important) phase in a schedul-
ing round, the disk server has to per form several other tasks. Figure 6 shows the four phases of a
scheduling round:

e Disk Scheduling.

In this phase, the video streams from the service list are scheduled to the appropriate client. To
ensure that only the expected amount of time is spent to read video data blocks from disk, we
developed routines directly accessing hard disk sectors.

e Client Admission.

During this phase, the disk server checks if a new client wants to admit. The client(s) are added
to the service list whose entries will be processed by the scheduler with beginning of the next
scheduling round.

e Server Maintenance.

This phase executes all meta server maintenance commands, like video object deleting, renam-
ing and striping. So it is e.g. possible to store new video objects during normal video server
operation.

e Idle Time.

The time left in each scheduling round is idle. The disk server sets itself in sleep mode to
minimize CPU usage.
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Figure 6: The four phases in a disk server scheduling round.

3.3.3 Client

Figure 7 shows the realization of video data processing in the client. In addition to the threads showed
in the figure, we have one thread executing the user interface and one process (which may include
several threads, but at least one) which decodes and displays the video stream. For video reception and
decoding, two threads are running:

e Data Reception Thread

This thread is in an endless loop and polls all connections to disk servers to receive packets.
Polling is done using non-blocking operations only, because otherwise we could not ensure
proper operation if a connection to a disk server breaks. The received packets are inserted
unsorted into the Video Data Queue. The Video Data Queue is similar to that used in the disk
server.

e Video Packet Decoder Thread

This thread mainly removes available packets from the Video Data Queue and tries to reassem-
ble the original video stream. The user interface is running in a different thread, but the user
interactions are polled from within the Video Packet Decoder Thread. Additionally, this thread
also launches the MPEG decoder, connects it with a data pipe, and pushes decoded video stream
data into that pipe. We have some kind of automatic decoder scheduling:

— If the data pipe to the MPEG decoder is full, the Video Packet Decoder Thread will be
suspended if it tries to write additional data into the pipe until the MPEG decoder has
consumed enough data from the pipe so that the next part of video stream data fits.

— If the pipe is empty, the MPEG decoder is suspended, waiting until the Video Packet De-
coder filled up the pipe with new reassembled video data.

@ Strearn Decoder
Shared Memory Access
o= S
Disk Block 5
Data
Reception

Disk Block 4
Data Reception Thread

Disk Block 3 Video
Packet
Decoder

Disk Block 2

Disk Block 1

Video Data Queue
(FIFO)

Packet Decoder Thread

Figure 7: Video data processing in the client.
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4 Performance Results

4.1 Performance of a Four Server-Node Configuration

This section presents some experimental results from our implementation. First we recorded a 60-
second experiment with 10,20,30 and 40 clients. Figure 8(a) shows the performance of our implemen-
tation with D = 8 disks,G = 2 groups and), = 4 disks per group using the SCAN optimization.

Total service time vs. number of clients with SCAN Total service time vs. number of clients with RR
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(a) SCAN Scheduling. (b) Round Robin Scheduling.

Figure 8: Comparison of total service time vs. admitted clients with SCAN and with Round-Robin
(RR) scheduling for) = 8 disks,G' = 2 groups,D, = 4 disks per group, and = 1 redundant block
per retrieval unit.

Our video server stored 18 homogeneously striped video clips, each with a bit rate of 1.4112 MBit/s

2 and striped with- = 1 redundant disk. Additionally, we have to take into account that each video
data block stored on disk has a VideoBlockinfo header with the size of 256 bits, and that the redundant
video data block has another header of 256 bits, since redundant data is created from the video data
plus the video header. The retrieval unit size per scheduling round for each stream is therefore

bry = 4% (1411200/3) + 4 % 256 + 256 bits
= 1881600 + 1024 + 256 = 1882880 bits = 235360 bytes.

The theoretical maximur®y of admitted clients is then (using the disk parameters from table 1) [2]:

T = Qtseek
=[G
Q ( trot + tset + bru/(Dg * rd)—‘
= () =59

If we compare this value with figure 9, we see that our implementation can admit a maximum of
Qexpscan = 46 clients, which is near th e theoretical limit. The lower performance of our implementa-
tion may result from several reasons:

2We used clips from a video CD, which has the same bandwidth as a audio CD: 44,100 * 2 * 2 * 8 bit4/s12 1.
MBit/s
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| Disk parametet Description | Value |

Td Inner track transfer rate 40 MBit/s
toet Settle time 1.50ms
ocek Seek time 15.00ms
trot Rotational latency 15.00ms

Table 1: Disk parameters

e Inaccurate values for disk parameters
The given disk parameters are standard values, and may not be the same for each fabricated disk.
Therefore, anomalies can be expected.

¢ Unknown sector mapping

We do not exactly know how logical sector numbers are mapped onto physical disk sectors.
For SCAN, we assume that contiguous sector numbers represent contiguous physical sectors on
disk. Since the manufacturers do not publish their disk internals, anomalies may also come from
this reason.

e Multi-process operating system

Since our process runs simultaneously with other processes, latencies may occur that are not
measurable by our application.

Figure 8(b) shows the performance with the SCAN optimization deactivated. We expect the following
theoretical maximum value:

T — Qtseek
= |G
Q ( tseek + trot + tset + bru/(Dg * Td)—‘
= Q =45

In our practical experiments we measured a valu€ofrr = 37 (figure 9). Applying the SCAN
algorithm on logical sector numbers seems to have not given the full benefit expected, but at least
increases the maximum number of clients by nearly 3the theoretical approach predicts’683

Figure 9 shows the relation between the scheduling round duration and the number of admitted clients,
both with and without SCAN optimization activated. The two vertical lines slidw,s.., (right

line) and@)...,rr (left vertical line). The horizontal line denotes the maximum scheduling round time

7 = ls for our implementation. For practical use, we propose a maximum number of 40 clients
at a scheduling time of approximately 858, since the disk servers have to process the other tasks
from the remaining three scheduling round phases (see figure 6). This value has been tested and can
securely be used. Higher values up to the maximum are possible, but e.g. striping a new movie during
full server load causes video data latencies in this case.

4.2 Performance of one Server Node

Figure 10 shows the overall disk server performance of one server node for two striping scenarios.

e One group of video objects was MGS striped on two digks=@) with D, = 2, G = 1. With
MGS striping, each video segment is distributed over two disks.
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Total service time vs. number of clients with SCAN and RR
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Figure 9: Total service time SCAN vs. RR, = 8 disks,' = 2 groups,l), = 4 disks per group.

e The other group of video objects was CGS stored on a single fiskly with D, =1, G = 1.
Each video segment is stored on a single disk.

The video objects were again MPEG-1 system streams coded at 1.411 MBit/s. The experiment runs
60 seconds with 25 clients admitted to random streams from the appropriate group of video objects.
Figure 10(a) shows that for MGS striped video objects, the disk server has a total service time of ap-
proximately 600 ms, whereas for CGS striped video objects, it has a total service time of approximately
950 ms. The throughput achieved by the disk servers was

o 25 . 1AL 99 16 MBit/s for MGS striping, and

2-0.
1

o 25 . 1AL — 37 15 MBit/s for CGS striping (see figure 10(b)).

0.95

_ O

The higher performance of CGS is due to the lower seek operations: The disk server reads for MGS
25 disk blocks of sizé-22 MBit, whereas for CGS it reads 25 disk blocks of siz¢l1 MBit. Since

we admitt 25 clients in both cases, the number of seek operations in case of MGS is twice as high as
for CGS, since CGS video data blocks are twice as large as MGS video data blocks.

Total service time for two striping scenarios Disk server throughput over ATM for two striping scenarios
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(a) Total service time for CGS and MGS. (b) Server node throughput (2 disks) for CGS

and MGS striping.

Figure 10: Overall disk server throughput with 25 clients admitted, MGS stripihg: 2, G = 1,
D,=2,r=0,and CGSstripingD =1,G=1,D,=1,r=0.
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5 Related Work

In the MicrosoftTiger[9], the authors propose to distribute the secondary copy of each primary video
object over adeclusterof ¢ and not all(D — 1) disks to tolerate more than one disk failure. The
implemented video server therefore uses exclusively a mirroring-based technique and stripes all video
objects only using the CGS striping algorithm.

The USC continuous media senMitra [10] addresses striping and retrieval techniques that optimize
the server throughput and a good load-balancing under heavy load. Mitra also gives solutions to
include VCR operations. Mitra, however, stores motion JPEG streams and does not address reliability
problems that the server may have.

The Bell-LabsFellini [11] is a storage system for both continuous media data (e.g., video, audio) and
conventional data (e.g., text, binary, images). Since Fellini unifies both, continuous and conventional
data, it can not have the same optimizing schemes in terms of throughput, load-balancing, latency,
etc. as a video server. Therefore, Fellini can not be directly compared with Mitra, Tiger, or our video
server.

6 Conclusion

Our video-on-demand server addresses both, the issues of storage and management of a large numbe
of stored movies and the striping (distributing) and reliability aspects. The result is a distributed video
server running on multiple platforms. The server uses entirely industry-standard off-the shelf hardware
components. Our video server is able to cope with various typlestefogeneity

e The number of disks that are connected to a disk server and their storage and I/O bandwidth
capacity.

e The number of disk servers in the video server.

e The variety of the striping techniques used. A striping policy determines the way how a movie
is splited across disks within the server.

e The variety of the reliability schemes that can be chosen. The reliable service is guaranteed by
the optional use of either parity- or mirroring-based schemes.

The video server runs on multiple platforms (SOLARIS, Windows NT). With only small changes, it is
compilable under nearly all UNIX platforms since it only uses standard libraries.

The video server is made up of off-the-shelf components and implements RAID in software. This is

a cost advantage, since hardware RAID systems commonly used as reliable storage media are very
expensive and not well adapted to the needs of real-time retrieval [6]. Our implementation achieves
the same high degree of reliability as offered by RAID systems, with only small computing overhead
for the client in case of a disk failure. During normal operation, there is no computing overhead at all
for the client.

We use a proactive error recovery mechanism by sending redundant information even in the error-free
case. This allows to protect video data against both component failures at the server level and network
failures and simplifies server operation: scheduling (retrieval) is the same in normal operation mode
as well as in failure operation mode.
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The maintenance options of the video server are already build for real-world operation, since video
objects can be renamed, deleted, or new video objects can be striped on the video server while clients
are being scheduled by the disk servers without interrupting service.

The performance of our implementation allows to serve as many as twenty-five clients with MPEG
videos (1.5 MBit/s) from one single disk. Since the video server is scalable in a way that an arbitrary
number of new server nodes can be added, a growing number of clients can be served. The addition of
a new server node does not affect the already stored video objects.
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