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Abstract

Recent efforts for watermarking digital video basically extend the results previously
obtained for still images. Thus, most of the proposed algorithms rely on a frame-
by-frame approach. Such a direct adaptation leads to non-secure algorithms because of
collusion attacks. Depending of the targeted application, this may be a critical concern.
A new watermarking system, extending current schemes based on spread spectrum, is
consequently introduced in this paper. It basically embeds alternative orthogonal water-
marks in successive video frames, which succeeds in obtaining superior performances
in terms of security. Finally, a discussion is conducted to check that this new architec-
ture cannot be easily broken with a straightforward attack.
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Chapter 1

Introduction

Digital watermarking has now been investigated for ten years. This technology basi-
cally embeds a robust and invisible watermark in digital data. The watermark encodes
the message associated with the targeted application: rights related to the data for copy-
right protection, client signature for traitor tracing, data signature for authentication...
The embedded signal is inherently tied to the content and survives D/A conversion.
Digital watermarking is indeed often regarded as a second line of defense once digital
data has been left in clear after decryption. Sooner or later, encrypted digital data has
to be decrypted to be presented to a human observer/listener. As a result, encryption
does not protect any more the data and digital watermarking has been introduced here
to fill this analog gap.

Digital watermarking, the art of hiding information in a robust and invisible man-
ner, has consequently been investigated as a complementary technology. There exists
a complex trade-off between the three parametersdata payload, fidelity androbustness
in digital watermarking. The data payload is the amount of information, i.e. the num-
ber of bits encoded by the hidden watermark. The fidelity is another property of the
watermark: the distortion, which the watermark embedding process is bound to intro-
duce, should remain imperceptible to a human observer. Finally, the robustness of a
watermarking scheme can be seen as the ability of the detector to extract the underly-
ing watermark from some altered watermarked data. Those parameters are conflicting
and a compromise has to be found, which is often tied to the targeted application. For
further insight regarding digital watermarking, the reader is redirected towards existing
books [16, 5]. If digital watermarking has been mostly devoted to still images at the
beginning, watermarking other types of multimedia data is currently investigated.

One of thosenew objects of interest is digital video. There are indeed many ap-
plications in the context of video [8] where inserting a digital watermark might be of
interest. Cinema studios are reluctant to disseminate their high valued videos, which
might be perfectly copied and rapidly distributed at large scale, and are requesting
copyright protection services. The recently popular peer-to-peer networks are great
tools to efficiently find and exchange digital data. However, a malicious user can also
use it to distribute copyrighted data that he/she does not own. Traitor tracing should
be introduced. Advertisers want to get what they have paid for i.e. to have their ad-
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vertisements broadcasted during the air time they have booked. The broadcasts need
consequently to be monitored in an automatic and reliable way. In few words, many
applications can benefit from digital watermarking. However it would be utopian to
think that a single watermarking system will fit them all. Depending on the targeted
application, the specifications will be slightly different, particularly in terms of security
i.e. resistance of the watermark against hostile intelligence (collusion).

To date, video watermarking has mostly inherited from the results obtained for still
images. If some algorithms exploit the specificities of a compression standard [14, 20]
or embed a watermark in a three dimensional transform [6, 27], watermarking digital
video content is regarded most of the time as watermarking a sequence of still images.
The drawback of such a straightforward adaptation is that it does not consider the very
specific nature of video content and this results in weak algorithms in terms of security.
This may be critical depending on the targeted application. In Chapter 2, two reference
spread spectrum video watermarking schemes are described. Two collusion attacks
are then introduced in Chapter 3 which succeed in trapping the previously introduced
watermarking schemes. As a result, a new architecture is proposed in Chapter 4 which
is proven to be robust against both attacks. In Chapter 5, the solutions left to the attacker
are discussed to show that the system cannot be easily broken. Finally, conclusions are
drawn and tracks for future work given in Chapter 6.
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Chapter 2

Video Watermarking

One of the pioneer techniques for video watermarking has been described by Hartung
and Girod [12]. It basically relies on the Spread Spectrum (SS) theory [25]. The
payload to be hidden is first duplicated and then frequency spread thanks to a modu-
lation with a pseudo-random noise. The resulting watermark signal is then scaled by
an embedding strength and added to the video signal. This approach is still used as
an underlying layer in recent video watermarking schemes [15, 23]. Depending on
how the modulation is performed, two different systems can be obtained, which will
be described in the next two subsections.

2.1 SS System

In the original algorithm [12] that Hartung and Girod proposed, video is considered
as a one-dimensional signal and the modulation is global. In other terms, a different
watermark is inserted in each video frame [23] as depicted in Figure 2.1. This approach
will be referred asSS system in the remaining of the article and is further described
below.

On the embedder side, a pseudo-random watermark is inserted in each video frame
according to the following additive embedding rule:

F̌t = Ft + αWt(K), Wt(K) ∼ N (0, 1) (2.1)

whereFt is thetth video frame,F̌t its watermarked version,α the embedding strength
andK a secret key. The inserted watermarkWt(K) has a normal distribution with
zero mean and unit variance and should be different at every instantt. A simple way
to obtain this property is to useK + t as a seed for the pseudo-random generator.
Perceptual shaping can be introduced to improve the invisibility of the watermark by
making for example the embedding strengthα dependent of the local content of the
frame [29]. In practice, a global embedding strength has been used and its value has
been set equal to 3, so that the resulting distortion is around 38 dB in terms of Peak
Signal to Noise Ratio (PSNR).
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Figure 2.1: Description of SS system embedder.

On the detector side, the presence/absence of a watermark is checked thanks to a
correlation scoreρ(.) computed as follows:

ρ
(
{F̌t}

)
=

1
T

T∑
t=1

F̌t · Wt

=
1
T

T∑
t=1

Ft · Wt +
α

T

T∑
t=1

Wt · Wt

= α +
1
T

T∑
t=1

Ft · Wt

≈ α (2.2)

whereT is the number of considered video frames and· denotes the linear correlation
operation. Other detection metrics can be used, like the normalized correlation or
the correlation coefficient for example. Here linear correlation has been chosen to
facilitate the derivations. Moreover, prefiltering can be performed before computing
the correlation score so that the detection statistics are enhanced. This correlation
score should be equal toα if a watermark is present in the video, while it should be
almost equal to zero if no watermark has been inserted. As a result, the computed
score is compared to a thresholdτdetect in order to assert the presence or the absence
of the watermark. The value given to this detection threshold will determine the false
positive and false negative probabilities and it need to be chosen carefully depending
on the targeted application. In practice, the valueα/2 has been chosen which results in
equal false positive and false negative probability.

2.2 SS-1 System

A major drawback of the previous system is that it relies on temporal synchronization
on the detector side. As a result, a simple frame drop or insertion succeeds in confusing
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the detector. Consequently, one may rather insert the same watermark as depicted in
Figure 2.2, encoding multiple bits, in each video frame. The frames are subsequently
accumulated in a buffer before detection. This is basically what Philips has done for
its video watermarking algorithm JAWS [15]. This approach will be referred asSS-1
system in the remaining of the article and is further described below.

Original
video frames

Reference
Watermark

Watermarked
video frames

Secret key

Embedding strength

Figure 2.2: Description of SS-1 system embedder.

On the embedder side, the same pseudo-randomwatermark is inserted in each video
frame with the additive embedding rule given in Equation 2.1. This can be written:

F̌t = Ft + αW0(K), W0(K) ∼ N (0, 1) (2.3)

whereW0(K) is a reference watermark which has a normal distribution with zero mean
and unit variance and which has been pseudo-randomly generated with the secret key
K used as a seed. Once again, a global embedding strength has been used and its value
has been set equal to 3 to obtain a distortion around 38 dB in terms of PSNR.

On the detector side, the same correlation scoreρ(.) than in Equation 2.2 is com-
puted in order to assert the presence or the absence of the watermark. However, since
the same watermark is inserted in each video frame, the linearity of the operator· can
be exploited as follows:

ρ
(
{F̌t}

)
=

1
T

T∑
t=1

F̌t · W0 =

(
1
T

T∑
t=1

F̌t

)
· W0 (2.4)

This equation means that averaging several correlations between different video frames
and the same watermark is equivalent to computing a single correlation between the
average of the video frames and this watermark. This reduces the number of compu-
tations required for the detection. Here again, the correlation score should be equal to
α if a watermark is present in the video, while it should be almost equal to zero if no
watermark has been inserted. As a result, the computed score is compared to a thresh-
old τdetect, which is set equal toα/2 in practice, in order to assert the presence or the
absence of the reference watermarkW0.
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Chapter 3

Collusion Attacks

The robustness of a watermarking scheme is often evaluated via the survival of the
embedded watermark after attacks. This has motivated the development of efficient
benchmarking tools [2] to compare different watermarking systems. However, video
watermarking algorithms have not yet been evaluated in a hostile environment. In other
terms, the verification process simply checks if the watermark survives attacks without
any underlying malicious intelligence, e.g. noise addition, frame filtering, chrominance
resampling (4:4:4, 4:2:2, 4:2:0), lossy compression, transcoding, changes across dis-
play formats (4/3, 16/9, 2.11/1), changes of spatio-temporal resolution (NTSC, PAL,
SECAM), etc. Nevertheless, digital watermarks protecting high-valued video items are
likely to be submitted to strong hostile attacks when they are distributed to a large audi-
ence. Basically, several watermarked contents can be colluded to produce unprotected
content [26]. Collusion traditionally occurs when a clique of malicious customers
gather together to produce unwatermarked content. That isinter-videos collusion i.e.
several watermarked video are required to produce unprotected content. Additionally,
successive frames of a watermarked video can be regarded as several watermarked im-
ages. Thus, a single malicious user can collude several watermarked frames to produce
an unprotected video. That isintra-video collusion i.e. a watermarked video alone
permits to stir out the watermark signal from the video stream. The next two subsec-
tions describe two of such intra-video collusion attacks, which succeed in removing a
watermark inserted by one or the other previous systems.

3.1 Temporal Frame Averaging

Digital watermarks are generally localized mostly in high frequencies since the Hu-
man Visual System (HVS) is less sensible to noise addition. As a result, one of the
earliest proposed attack to remove hidden watermarks is to apply a low-pass filter to
the protected data [19]. Spatial filtering has been investigated extensively and most
watermarking algorithms for still images are robust against it today. In the context of
video, since neighbor video frames are highly similar, temporal low-pass filtering can
be used to obtain an estimate of the original video frames i.e. without the underlying
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watermark. This can be written:

Ḟt = Lw(Et), Et = {Fu,−w/2 ≤ t − u < w/2} (3.1)

wherew is the size of the temporal window,Lw is the used temporal low-pass filter and
Ḟt is the resultingtth attacked video frame. In practice, a simple temporal averaging
filter has been used with a window sizew equal to 3. The attack will be considered as
a success if the correlation score computed with the attacked video frames falls below
the detection thresholdτdetect.

Proposition 1 Averaging successive video frames succeeds (resp. fails) in removing a
digital watermark embedded in a video with the SS system (resp. SS-1 system).

Proof When a watermarked video{F̌t} is temporally averaged, the resulting attacked
video frames are given by:

Ḟt =
1
w

∑
u∈[−w

2 , w
2 [

F̌t+u

=
1
w

∑
u∈[−w

2 , w
2 [

Ft+u +
α

w

∑
u∈[−w

2 , w
2 [

Wt+u (3.2)

As a result, when the correlation score is computed on the detector side, the following
result is obtained:

ρ
(
{Ḟt}

)
=

1
T

T∑
t=1

Ḟt · Wt

=
1

wT

T∑
t=1

( ∑
u∈[−w

2 , w
2 [

Ft+u · Wt

)

+
α

wT

T∑
t=1

( ∑
u∈[−w

2 , w
2 [

Wt+u · Wt

)

≈ α

wT

T∑
t=1

( ∑
u∈[−w

2 , w
2 [

Wt+u · Wt

)
(3.3)

Depending on the strategy enforced during embedding, the correlation score is reduced
or not. With the SS-1 system, the same watermarkW0 is embedded redundantly i.e.
Wt = W0 for all t. Consequently, every correlation termW t+u · Wt is equal to 1 and
the correlation score is equal toα. In other terms, temporal frame averaging has no
effect on a watermark inserted by the SS-1 system. Alternatively, with the SS system,
watermarks inserted in neighbor frames are uncorrelated. As a result, only the term
corresponding to the indexu = 0 in the summation

∑
u∈[−w

2 , w
2 [ Wt+u · Wt will not

be null. This results in a final correlation score equal toα/w. It means that, when
the watermark has been inserted with the SS system, temporal frame averaging with a
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window sizew reduces the correlation score by a factorw. Forw greater than 2, it im-
plies that the attack has made the correlation score drop below the detection threshold
τdetect which is equal toα/2.

In summary, if the same watermark has been embedded in all the video frame, av-
eraging several frames is completely useless since it has no impact on the detector. On
the contrary, enforcing analways insert a different watermark strategy on the embed-
der side introduces a weakness against temporal frame averaging on the detector side.
This result has to be contrasted with the content of the video scene. Indeed, averaging
several successive frames may result in a poor quality video if fast moving objects are
present in the scene or if there is a camera global motion. As a result, this attack is
particularly relevant in static scenes.

3.2 Watermark Estimation Remodulation

When all the video frames carry the same watermark, the attacker can estimate the em-
bedded watermark in each video frame and obtain a refined estimation of the watermark
by combining (e.g. taking the average) those different estimations.

W̃T =
1
T

T∑
t=1

E(F̌t) (3.4)

whereE(.) is a watermark estimator. The ideal estimator consists in computing the dif-
ference between a watermarked video frame and the associated original one as follows:

E0(F̌ ) = F̌ − F (3.5)

whereF is an original video frame anďF its watermarked version. However, in prac-
tice, an attacker has not access to the original video frames and the watermark esti-
mation process should be done in a blind manner. Previous work [28] has been done
to estimate a watermark inserted in an image. As previously mentioned, a digital wa-
termark is generally localized in high frequencies and a quite good estimation can be
obtained by computing the difference between a watermarked video frame and its low-
pass filtered version:

E1(F̌ ) = F̌ − L(F̌ ) (3.6)

whereL(.) is a spatial low-pass filter. Unfortunately, in practice, some sample are badly
estimated e.g. around the edges of the frame and in textured regions. As a result, an
additional thresholding operation is performed to remove those non-pertinent samples:

E2(F̌ ) = Tτestim

(
F̌ − L(F̌ )

)
(3.7)

where the thresholding functionTτ (.) is defined as follows:

Tτ (x) =
{

x if |x| < τ
0 otherwise

(3.8)
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In practice, a simple5 × 5 spatial averaging filter is used forL(.) and the threshold
τestim has been set to 14. Moreover, fifty successive video frames are used to estimate
the potentially embedded watermark.

Once the embedded watermark has been estimated, the attacker can subtract it in
each watermarked video framěFt with a strengthβ. This process can be written:

Ḟt = F̌t − βW̃T (3.9)

whereḞt is the resulting attacked version of thetth video frame. Again, perceptual
shaping can be introduced during this step by making the remodulation strengthβ
dependent of the local content of the frame. In practice, an attacker usually follows
another constraint which is that the visual distortion introduced by the attack should be
similar to the one introduced by the watermark embedding process. The Mean Square
Error between an original video frame and its watermarked version is equal toα 2, while
the distortion between a watermarked video frame and its attacked version is equal to
β2W̃T · W̃T . Following the previously stated constraint, Equation 3.9 becomes:

Ḟt = F̌t − α
W̃T√

W̃T · W̃T

= F̌t − αW̃TN (3.10)

whereW̃TN is the estimated watermark after normalization. Once again, the attack will
be considered as a success if the correlation score computed with the attacked video
frames falls below the detection thresholdτdetect.

Proposition 2 The watermark estimation remodulation attack succeeds (resp. fails)
in removing a digital watermark embedded in a video with the SS-1 system (resp. SS
system).

Proof Let assume that the attacker has access to the ideal watermark estimatorE 0(.)
i.e. the attacker is in the best possible position. When a watermarked video{ F̌t} is
considered, the resulting estimation of the watermark is given by:

W̃T =
1
T

T∑
t=1

Wt (3.11)

Subsequently, when this estimated watermark is remodulated, the following attacked
video frames are obtained:

Ḟt = Ft + α

(
Wt −

W̃T√
W̃T · W̃T

)
(3.12)

When the detector checks the presence of the watermark in those attacked video frames,
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the correlation score is equal to:

ρ
(
{Ḟt}

)
=

1
T

T∑
t=1

Ḟt · Wt

=
1
T

T∑
t=1

Ft · Wt +
α

T

T∑
t=1

Wt · Wt

− α

T
√

W̃T · W̃T

T∑
t=1

W̃T · Wt

≈ α

[
1 − 1

T 2
√

W̃T · W̃T

T∑
t=1

T∑
u=1

Wu · Wt (3.13)

Now, depending on which embedding strategy has been enforced, the correlation score
will be reduced or not. With the SS system, watermarks embedded in different video
frames are uncorrelated andWu · Wt = δt

u whereδ is the Kronecker delta. It means
that only the term corresponding to the indexu = t contributes to the summation∑T

u=1 Wu · Wt. It also means that the norm
√

W̃T · W̃T of the estimated watermark
is equal to1/

√
T . Combining those two results, it appears that the correlation score

after the attack is equal toα(1 − 1/
√

T ) which is almost equal toα for largeT . Since
T is required to be quite large to obtain a good estimate, the attack is a failure. On the
other hand, with the SS-1 system, the same watermarkW0 is embedded redundantly in
all the video frames and the resulting estimated watermarkW̃T is equal toW0, whose
norm is equal to 1. All the terms in the summation

∑T
u=1 Wu · Wt are equal to 1 and

the final correlation score drops down to 0. In other terms, the watermark estimation
remodulation attack completely removes a watermark embedded with SS-1 system.

To sum up, when a different watermark is embedded in every video frame, the wa-
termark estimation remodulation attack is a failure. Indeed, the underlying idea behind
this attack is that there is a single watermark redundantly embedded i.e. a single wa-
termark to be estimated. Since there are many more in this context, the remodulation
of the estimated watermark will have no significant impact on the correlation score.
Alternatively, enforcing analways insert the same watermark strategy makes sense to
the estimation process. There is a single watermark to be estimated and combining
individual estimates should output a refined estimation of the redundantly inserted wa-
termark. In fact, the more the video frames are different, the more each individual
watermark estimate refines the final one. In other terms, this attack is more efficient in
dynamic scenes. Once the secret hidden watermark has been estimated, the remodula-
tion process completely removes the watermark from the different watermarked video
frames and the attack is a success.
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Chapter 4

Novel Approach

The danger of collusion is not always critical depending on the targeted application. In
a broadcast monitoring context [15], it is not worthy for the broadcaster to remove a
watermark from a video commercial for example. The advertiser will indeed detect that
the commercial has not been aired and sue the television company in court. In a content
authentication environment [24], if a watermark is removed, the carrier content will
not be considered as reliable and immediately discarded. Nevertheless, there are many
upcoming applications where collusion has to be addressed since it may open ways for
forgery and later on result in a drastic loss of royalties. For example, in a Pay-Per-
View or Video-On-Demand architecture, the service provider owns some high-valued
video items, may be with exclusive rights. Some security devices need consequently to
be inserted to prevent, for example, a customer who breaks his/her license agreement
from capturing the video signal, burning it on a CD-ROM and distributing it widely.
Digital watermarking may be a solution and a new system is described in Section 4.1.
The proposed approach is then proven to be robust against intra-video collusion, first
theoretically in Section 4.2 and then experimentally in Section 4.3.

4.1 SS-N System

One lesson learned from the previous watermarking systems is that embedding a single
fixed watermark in all the frames of the video introduces a weakness against the water-
mark estimation remodulation attack. This has consequently motivated the design of
a multi-watermarks scheme as depicted in Figure 4.1, which will be referred asSS-N
system in the remaining of the article. On the embedder side, for each video frame, a
watermark is randomly chosen from a finite set ofN watermarks{W i}. Each water-
mark has a normal distribution with zero mean and unit variance and has a probability
pi to be chosen at an instantt. Moreover, the watermarks are orthonormalized with the
Gram-Schmidt algorithm [3] to prevent cross-talk on the detector side.

Wi · Wj = δj
i ∀(i, j) (4.1)
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Figure 4.1: Description of SS-N system embedder.

The chosen watermark is then inserted in the video frame with the additive embedding
rule given in Equation 2.1. This can be written:

F̌t = Ft + αWφ(t), P
(
φ(t) = i

)
= pi (4.2)

where thepi’s can be regarded as the emission probabilities of the system. Here again,
a global embedding strength equal to 3 has been used, which results in a distortion
around 38 dB in terms of PSNR. It should be noted that both previous systems are a
specific case of this novel architecture:N = 1 for SS-1 system andN = ∞ for SS
system.

The second lesson learned with the previous systems is that, when different wa-
termarks are embedded in successive video frames, temporal frame averaging with a
window sizew spreads the energy of a given watermark over thew neighboring frames.
As a result, a new correlation score is computed on the detector side:

ρ
(
{F̌t}

)
=

1
T

T∑
t=1

( N∑
i=1

|F̌t · Wi|
)

(4.3)

In other terms, for each video frame,N linear correlation scores are computed in paral-
lel and their absolute values are summed before being temporally averaged. The com-
plexity of the detector has been increased by a factorN , which may prevent real-time
detection whenN grows large. Moreover, the absolute values prevents from using
the linearity of the operator· to reduce the complexity as in Equation 2.4. Anyway,
off-band detection remains interesting in many video applications e.g. traitor tracing.
When detection is performed after embedding i.e. without any attack, the following
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correlation score is obtained:

ρ
(
{F̌t}

)
=

1
T

T∑
t=1

N∑
i=1

|Ft · Wi + αWφ(t) · Wi|

≈ α

T

T∑
t=1

N∑
i=1

|Wφ(t) · Wi|

≈ α

T

T∑
t=1

N∑
i=1

δ i
φ(t)

≈ α (4.4)

Several interfering termsFt ·Wi appear in the summation and the detection statistic can
be improved by removing any correlation between the original video frames and the
set of watermarks in a preprocessing step [4]. Once again, the correlation score should
be equal toα if a watermark is present in the video, while it should be almost equal to
zero if no watermark has been inserted. As a result, the computed score is compared to
a thresholdτdetect, which is set equal toα/2 in practice, in order to assert the presence
or the absence of an hidden watermark.

4.2 Enhanced Security

The SS-N system has been proposed as a more secure alternative to the previously
presented watermarking systems. It has indeed been shown that the SS system is weak
against temporal frame averaging, while the system SS-1 is weak against the watermark
estimation remodulation attack. Consequently, it will be checked in this subsection that
this new system keeps its promise.

Proposition 3 Temporal frame averaging does not remove a digital watermark em-
bedded in a video with the SS-N system.

Proof Let assume that a watermarked video{F̌t} is temporally averaged with a large
window sizew i.e. the attacker perform a really strong attack without any concern for
the video quality. The resulting attacked video frames are then given by:

Ḟt =
1
w

∑
u∈[−w

2 , w
2 ]

F̌t+u

=
1
w

∑
u∈[−w

2 , w
2 ]

Ft+u +
α

w

∑
u∈[−w

2 , w
2 ]

Wφ(t+u)

=
1
w

∑
u∈[−w

2 , w
2 ]

Ft+u + α

N∑
i=1

piWi (4.5)

Subsequently, when the detector compute the correlation score with those attacked
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video frames, the following result is obtained:

ρ
(
{Ḟt}

)
=

1
T

T∑
t=1

N∑
i=1

|Ḟt · Wi|

≈ α

T

T∑
t=1

N∑
i=1

∣∣∣ N∑
j=1

pjδ
i
j

∣∣∣
≈ α

T

T∑
t=1

N∑
i=1

pi

≈ α (4.6)

Temporal frame averaging does not affect the correlation score and the attack is a suc-
cess.

Here, the robustness against temporal frame averaging is achieved by checking the
presence ofall the watermarks of the set{Wi} in each video frame. Since temporal
frame averaging spreads the energy of a watermark embedded in a video frame over the
neighbor frames contained in the temporal window, such a process permits to retrieve
all the parts of each watermark. With the SS system, the detector only checks for the
presence of the watermark that should be embedded in a video frame and consequently
misses most of the watermark signal which is present in the neighbor frames.

Proposition 4 The watermark estimation remodulation attack does not remove a dig-
ital watermark embedded in a video with the SS-N system.

Proof Let assume again that the attacker has access to the ideal watermark estimator
E0(.) i.e. the attacker is in the best possible position. If a single watermark is estimated
from a watermarked video{F̌t}, the following result is obtained:

W̃T =
1
T

T∑
t=1

Wφ(t) =
N∑

i=1

piWi (4.7)

Later on, when this estimated watermark is remodulated, the produced attacked video
frames look like:

Ḟt = Ft + α

[(
1 − pt

K

)
Wφ(t) −

∑
i�=φ(t)

pi

K
Wi

]
(4.8)

whereK =
√

W̃T · W̃T is the norm of the estimated watermark. Now, if the detector
checks the presence of the watermark in those attacked video frames, the computed
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correlation score is equal to:

ρ
(
{Ḟt}

)
=

1
T

T∑
t=1

( N∑
i=1
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(4.9)

Now let assume that all thepi are equal to1/N . The normK of the estimated water-
markW̃T is then equal to1/

√
N . When this is introduced in the previous equation, the

computed correlation score becomes:

ρ
(
{Ḟt}

)
= α

[
1 + (N − 2)

√
N

N

]
(4.10)

In other terms, forN greater or equal to 2, the correlation score is greater or equal to
τdetect and the attack is a failure.

The robustness against this second attack is mainly due to the use of several wa-
termarks, which confuses the watermark estimation process of the attacker. In each
video frame, the attacker can only remove a small fraction

√
N/N of the embedded

watermark signal. On the other hand, he/she also removes a small part of all the other
watermarks from the set{Wi}. Then, summing the absolute values of the linear corre-
lations succeeds in compensating the loss of correlation with the originally embedded
watermark. In fact, the reader can notice that the absolute values play a key role here.
If the absolute values are removed from the correlation score formula, the algorithm is
still immune to temporal frame averaging but the watermark estimation remodulation
attack makes then the correlation score drop down to zero. Finally, one can also notice
that forN = 1 (SS-1 system), the above formula predicts that the attack is a success.

4.3 Experimental Results

In order to verify the validity of the previous theoretical proofs, experiments have been
conducted on several small video shots of 50 frames taken from five larger videos. The
shots alternate between static and dynamic video content, as well as static and moving
camera. The video shots are watermarked with the three previously presented water-
marking schemes with an embedding strength equal to 3. Three different watermarks
have been used for the SS-N system. The watermarked videos are then submitted to
temporal frame averaging on one hand and to the watermark estimation remodulation
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Figure 4.2: Resilience of the three presented watermarking systems (SS, SS-1 and SS-
N) against intra-video collusion attacks.

attack on the other hand. Finally, the correlation score is computed for all the videos.
The obtained results have been gathered in Figure 4.2.

Each watermarking scheme is represented by a specific symbol: crosses for video
shots watermarked with SS system, triangles for those with SS-1 system and circles for
those with SS-N system. The figure has also been divided into four quadrants whose
borders are defined by the detection thresholdτdetect = 1, 5. The very first observation
is that each kind of point is mainly located in a single quadrant. The crosses of the SS
system are located in the upper-left quadrant, which confirms that this system resists
the watermark estimation remodulation attack while it is weak against temporal frame
averaging. In fact, theoretical results have shown that the circles should have coordi-
nates like(x/w, x). One can easily check that the circles are in the neighborhood of the
line defined byy = wx, which has been drawn on the figure for the window sizew = 3
used in the experiments. On the other hand, the triangles of the SS-1 system are in the
lower-right quadrant, which supports the theoretical results asserting that this system is
robust against temporal frame averaging while the watermark estimation remodulation
attack succeeds in stirring out the watermarked signal. In fact, one can also notice that
this second attack is more or less efficient depending on the video content of the shot.
If a static shot is considered, the estimation is poorer and the attack less effective i.e.
the associated triangle lies in the upper-right quadrant. Being in this quadrant means
that the video shot still contains a watermark either after temporal frame averaging,
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or the watermark estimation remodulation attack. As a result, finding all the circles
of the SS-N system in this region of the figure confirms the theoretical prediction that
the algorithm resists both attacks. The watermark estimation remodulation attack even
increases the correlation score as asserted in Equation 4.10.
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Chapter 5

Attacker Options

It has been previously shown that the introduced SS-N system is robust against two for-
merly designed intra-video collusion attacks. However, the attackers are likely to mod-
ify and adjust their approach according to the newly released watermarking scheme.
Obviously, it is useless to perform an attack based on temporal frame averaging since
the detector has been designed to detect watermarks whose energy has been potentially
spread between several video frames. There is also no reason to launch a watermark
estimation procedure, which outputs a single watermark, if it is known that several al-
ternative watermarks have been embedded. Basically, the SS-N system relies on the
secrecy of the set of watermarks{Wi}. If this set is disclosed, the attacker can find
out which watermark has been embedded in each frame and perform a simple remod-
ulation to remove it. As a result, the next subsections will verify that the set of secret
watermarks cannot be easily estimated in a blind manner.

5.1 Brute Force Approach

According to Kerckhoffs’ principle [17], the watermarking system is publicly known
and the attacker is aware thatN alternative watermarks have been randomly embed-
ded in the video. One approach consists then in distributing the watermarked video
frames betweenN setsSi and estimating the watermarks̃Wi from each one of those
sets. Assuming that the attacker has access to the ideal watermark estimatorE0(.), the
following watermarks are obtained:

W̃i =
N∑

j=1

ni,jWj (5.1)

whereni,j is the number of frames carrying the watermarkW j in the setSi. Moreover,
if each setSi containsP frames, theni,j ’s verify:

N∑
i=1

ni,j = P and
N∑

j=1

ni,j = P (5.2)
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Once those watermark estimations have been obtained, the attacker should have a cri-
terion to determine if one or more watermarks have been correctly estimated.

When theN setsSi are built, theni,j are unknown. The attacker can only compute
the different correlations between the estimated watermarks{W̃i} defined as follows:

ci1,i2 = W̃i1 · W̃i2 =
N∑

j=1

ni1,j.ni2,j (5.3)

For a given estimated watermark̃Wi0 , the sum of the correlations with the set of esti-
mated watermarks{W̃i} is equal to:

N∑
i=1

ci0,i =
N∑

i=1

N∑
j=1

ni0,j .ni,j = P 2 (5.4)

Now, let assume that there exists an indexi0 for whichci0,i0 > mP 2 with m in [0.5, 1].
It can be shown thatni0,j∗ = maxj(ni0,j) is greater thanmP . Sincem is greater than
0.5, the correlation score betweeñWi0 and the video frames carryingWj∗ is higher
than with the other ones. As a result, the attacker can distinguish the frames carrying
Wj∗ , obtain a finer estimate forWj∗ and iterate the attack with a reduced set of video
frames to estimate the remaining watermarks i.e. with a reduced complexity.

In summary, this demonstrates that the attacker can remove the embedded water-
mark. However, the complexity of this brute force approach is very high. Since the
probability thatci,i is greater thanmP 2 is difficult to estimate, the probability that
ni,j is greater thanmP will be considered below to obtain a lower bound for the com-
plexity. It is quite straightforward that the probability thatn i,j is equal ton is given
by:

P
(
ni,j = n

)
=

(
P

k

)
P
(
W = Wi

)k

P
(
W �= Wi

)P−k

=
(

P

k

)( 1
N

)k(
1 − 1

N

)P−k

(5.5)

Those probabilities can then be summed to obtain the probabilityp L thatni,j is strictly
greater thanL.

pL =
P∑

n=�L+1�

(
P

k

)( 1
N

)k(
1 − 1

N

)P−k

(5.6)

Proposition 5 The attacker is required to compute at least O(N �mP+4�) linear cor-
relations between estimated watermarks to terminate this brute force attack.

Proof WhenN grows large, the probabilitypL is almost reduced to a single term:

pL ≈
(

P

�L + 1	

)( 1
N

)�L+1�(
1 − 1

N

)P−�L+1�

≈
(

P

�L + 1	

)
N−�L+1� (5.7)
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As a result, the attacker should in average distribute the video frames betweenN sets
1/pL times before obtaining a distribution that can be exploited. Moreover, for each
one of those distributions,N(N +1)/2 correlations between estimated marks are com-
puted. In other terms, the number of correlationnN

corr is equal to:

nN
corr =

1
2

(
P

�L + 1	

)−1

N �L+1�N(N + 1)

≈ 1
2

(
P

�L + 1	

)−1

N �L+3� (5.8)

When the attacker has performed all those operations, a single watermark has been esti-
mated and the process has to be continued to estimate theN−1 remaining watermarks.
Consequently the total number of computed correlations is equal to:

ncorr =
N∑

i=2

ni
corr ≈ 1

2 �L + 4	

(
P

�L + 1	

)−1

N �L+4� (5.9)

In practice,L is equal tomP with m in [0.5, 1] and the asserted result is obtained.

Checking for the presence ofN alternative watermarks in each video frame in-
creases the complexity of the algorithm by a factorN . On the attacker side, the com-
plexity of a brute force attack is proportional toN �mP+4�. For example, forN = 64,
P = 50 andm = 0.5, Equation 5.9 means that the brute force attack requires at least
3.1036 correlation computations, which makes the attack unpractical.

5.2 Vector Quantization

The brute force attack basically exploits a previously designed attack, which is water-
mark estimation remodulation. However, it might be more efficient to design a new
attack, specifically adjusted to the new watermarking algorithm. In particular, the sev-
eral individual watermark estimates obtained, from each video frame, can be regarded
as several vectors{vt} in a very high dimensional space. Since those vectors should
approximate the embedded watermarks{W i}, the whole problem comes down to vec-
tor quantization [11]. In other terms, it should be possible to defineN clustersC i whose
centroidsci are good estimates of the embedded watermarks. When a single watermark
has been embedded in all the video frames (SS-1 system), this approach is completely
equivalent to the watermark estimation remodulation attack: the single centroid is set
equal to the average of all the vectors i.e. watermark estimates. On the other hand,
when the same watermark is never inserted twice (SS system), the clusters will contain
a single watermark estimate, which is a poor estimate of the embedded watermark, and
the attack is a failure. In summary, the vector quantization approach only makes sense
if enough individual estimates are available for each watermark to be estimated.

Thek-means algorithm is a very simple way to perform vector quantization. In a
first step, the vectors{vt} are distributed among the different clusters{C i}, so that each
vector is assigned to the cluster associated with its nearest centroidc i according to a
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given distance e.g. the Euclidean distance. In a second step, the centroids are updated
and the algorithm iterates until convergence. Additionally, this original algorithm has
been slightly modified so that non-pertinent estimated watermark samples, i.e. the sam-
ples whose value is greater thanτestim in absolute value, are discarded during distance
and centroid computations. This algorithm has been proven to converge toward a po-
sition which locally minimizes the sum of the distance from the estimated watermarks
to their associated centroid. However, nothing insures that theperfect estimation, i.e.
when the centroids are equal to{Wi}, is a local minimum. In fact, experiments have
shown that the algorithm iterates for a while before terminating when the set of embed-
ded watermarks{Wi} is given as the initial guess. In other terms, the algorithm makes
the centroids move a bit away, which means that the optimal estimation will never be
reached after convergence, whatever the initial guess is. Moreover, the attacker has in
practice no a priori knowledge of the centroids and should use a random initial guess,
which has an impact on the finally reached local minimum.

Experiments have shown that this naive algorithm does not usually succeed in con-
verging toward a fine enough estimation of the watermarks{W i} to trap the detector.
Nevertheless, this algorithm can be further improved. First, thek-means algorithm
can be regarded as a simplified version of the more general Expectation-Maximization
(EM) algorithm for Gaussian Mixture Models with equal variances for the Gaussians
and hard decisions i.e. each vector is assigned to single cluster at each iteration. Thus,
it can be interesting to consider a general Gaussian mixture and to perform the EM al-
gorithm with soft decisions [22] i.e. each vector is assigned to each cluster with a given
probability. The second potential improvement is related to the initial guess. Random-
ness makes indeed the final position not reliable and a splitting strategy as in [21] might
be more efficient. Initially, the centroidc0 of all the vectors is split into two centroids
c0 ± ε whereε is a small perturbation along the direction of principal variation. The
traditionalk-means algorithm iterates then with two centroids. When convergence is
reached, each centroid is split, iterations are made until convergence and so on until
the desired number of centroids is obtained. The last improvement is related with the
fact that incomplete data are used i.e. some samples of the vectors{v t} are not per-
tinently estimated and are ignored. Instead of discarding such samples, an alternative
consists in completing the missing data with a maximum likelihood criterion [7]. Those
improvements may make the vector quantization approach a success but it cannot be
denied that the theoretical requirements to perform such a successful attack have been
raised. With the former watermark estimation remodulation attack, image filtering and
temporal averaging were indeed the only requirements.
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Chapter 6

Conclusion

To date, very few watermarking schemes (SLIDE algorithm [26]) have addressed the
intra-video collusion issue. Most of the existing systems relies indeed on a frame-
by-frame approach [15, 23], so that previous results obtained for still images can be
exploited. Unfortunately, this results in weak algorithms in terms of security. Thus,
a new watermarking system (SS-N system) based on the spread spectrum theory has
been introduced in this paper, which can be seen as some generalization of existing
systems (SS and SS-1 systems). The embedding process basically consists in insert-
ing a watermark randomly chosen from a finite set of key-dependent pseudo-random
watermarks{Wi}. On the other side, the detector blindly checks for the presence of
all the watermarks{Wi} in each incoming video frame and has the asset not to re-
quire any temporal synchronization. Furthermore, the system has been proven to be
robust against two common intra-video collusion attacks, which defeat the previous
watermarking systems. The only noticeable drawback of the proposed system is that
checking for the presence of several watermarks in each video frame may prevent real-
time detection. On the attacker side, a brute force approach has been shown to be
unpractical to estimate the set of watermarks{Wi} and a potentially successful attack
based on vector quantization has been proposed. However, such an attack requires a
much higher level of expertise in signal processing than previously. Further efforts
have also to be made to resist more advanced intra-video collusion attacks [9].

If the introduced watermarking system has improved performances in terms of se-
curity, several tracks remain for future research to obtain a complete secure watermark-
ing system:

Capacity Currently, the SS-N system has no capacity. It only checks for the presence
of a set of watermarks. However, some applications require that a watermark
encoding a multi-bit message is embedded. For example, in a video-on-demand
framework, the embedded watermark should encode the identity of the customer
so that he/she can be identified if an illegal copy of the video is found. The
codewords need to be chosen cautiously [1] so that inter-video collusion is not
possible.

Security Security against collusion has been enhanced with the proposed approach in
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comparison with previous systems. However, it has also been demonstrated that
the scheme can still be broken with a higher level of expertise. Embedding either
one watermark or another one allows indeed attacks based on vector quantiza-
tion. It should be interesting to investigate how theN alternative watermarks
can be randomly mixed in each video frame so that1/N percent of the resulting
watermark samples are from a given watermark of the set{W i}.

Visibility Embedding alternative watermarks in successive video frames is likely to
introduce some annoying visible artifacts due to flicker noise [30]. As a result,
frame hashing [10] might be introduced to monitor the changes of the watermark
and subsequently control the flicker noise.

Spatial synchronization The SS-N system does not require any temporal synchro-
nization. However, spatial desynchronization (cropping, rotation, translation,
scaling) is likely to defeat the system. A common counterattack consists in intro-
ducing a fixed known template [18] so that the transformation can be estimated
and inverted. Unfortunately, such a template is not secure [13] and becomes the
Achilles heel of the system. As a result, an alternative solution has to be found
to be able to face spatial desynchronization.

Watermarking compressed data All the presented systems embed a secret water-
mark in uncompressed video frames. Since video data is often compressed for
storage and/or transmission, one should investigate how the embedding can be
made directly in the compressed domain.
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