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Chapter 1

Variational Bayesian
Learning

1.1 Introduction

This report aims at applying variational bayesian learning to two class of well-
known models: gaussian mixture models and hidden Markov models. Varia-
tional bayesian (VB) learning is a relatively new approach to model learning
that offers many advantages respect to classical ML, and MAP learning that can
be seen as a particular case of VB learning.

1.2 Variational Bayesian Learning, Maximum Like-
lihood and EM algorithm

Let’s consider a probabilistic model with some observed variables Y, some hid-
den variables X and model parameters ©. The goal of the learning process is
to find the optimal value of © given some instances of Y.

The learning process is typically done maximizing the model likelihood

p(Y]©). Let’s define

p(Y, X|0)
p(X[Y, ©)

the log-likelihood L(0) = logp(Y|®)can then be expressed like:

p(Y]0) = (L.1)

L(©) = log p(Y, X|0©) — log p( XY, O) (1.2)

The variational approach suppose that the true hidden variables probability
p(X) can be approximated by the distribution @, (where A are the distribution
parameters). So integrating out H we can write:

£(0) = [ Qu(I) log p(X.¥10)iX — [ Qu(I) log p(X|Y.0)ax  (13)

After a few manipulation we can write 1.3 as:



L(©) = F(X,©) + D(@llp) (1.4)

where

F(A0) = /Q/\(X) log % (1.5)
@l = [ mewog]% (1.6)

The KL-divergence D(Q||p) represent the distance between the approxi-
mated hidden variables distribution function and the real hidden variable dis-
tribution p(X|Y, ©).

Tt can be proved that (Q||p) > 0 in other words L(©) > F (A, ©) with equality
if Qs = p(X[V, 0).

The variational learning consists in using the lower bound F(A, ©) as func-
tion to optimize instead of the log-likelihood. An EM like algorithm with an
approximated E step can be used:

o Approximated E-step: fix model parameters at ©;_1, and update varia-
tional parameters A to maximize F'(A, ©).

o M-step: fix variational parameters at A\;, and update model parameters ©
to maximize F (A, ©).

1.2.1 EM as special case of VB Learning

When Qx(H) = p(X|Y, ©) the learning algorithm becomes the classical EM al-
gorithm for ML training because D(Q||p) = 0 and the strict lower bound F'(X, ©)
is equal to the log-likelihood. In this case the approximated E-step becomes an
exact E-step because the expectation is done w.r.t. the true distribution and
not the approximated one.

1.3 Variational bayesian learning

An important use of variational learning is the approximation of posterior den-
sities in bayesian learning.

Let’s define p(Y") the likelihood of a probabilistic model after the model’s
parameters © has been integrated out. Let’s write:

_r(v,0)
p(Y) = o) (1.7)

and so:

log p(Y') = log p(Y, ©) — logp(O[Y) (1.8)

Again we suppose that the real posterior distribution p(©]Y) can be approx-
imated with a distribution ¢(0[Y") that we will call variational posterior and so
integrating out model parameters @, we obtain:



logp(V) = [ (@ iogp(v, @10~ [ (@ )igp@lY)  (19)

Multiplying the probability p(©]Y) top and bottom by ¢(©]Y) and rear-
ranging gives:

logp(Y) = F(©) + D(¢q(0]Y)|[p(0]Y)) (1.10)
where
_ p(Y,0)
F(O) _/q(®|Y)log p(@|Y)d® (1.11)

As before, D(¢(©]Y)||p(©]Y)) is the KL-divergence between the approxi-
mate posterior distribution and the true posterior distribution. Because of the
fact D(Q|p) > 0 with equality when @@ = p we obtain

log p(Y) > F(6) (1.12)

Maximizing F'(©) means make the approximate posterior as close as possible
to the true posterior. Using Bayes rule p(Y,0) = p(Y|©)p(0) we can write:

F(©) = [ 4(01Y)logp([0)dO — D(OIV)[Ip(®©)  (113)

The KL-divergence in this case is the divergence between the approximat-
ing posterior and the prior. This means that the quantity D(¢(0|Y)||p(©))
penalizes more complex models.

The bayesian framework can be extended to models with hidden variables
X. In this case F(O) can be written:

F(0,X) = /q(@,X|Y)log %

Using the following factorization : ¢(0, X|Y) = ¢(0]Y)¢(X|©) and p(V, X, 0) =
p(Y, X|©)p(O) we can write:

dO dx (1.14)

p(X,Y]0)

Wd@‘”{ = D(@(OY)|lp(©)) (1.15)

F(©.X) = [ 4(@lY)q(X1¥ )iog

The first term is the average likelthood while the second term is the KL-
divergence between the approximating posterior and the prior. It can be demon-
strated that when N — oo the KL-divergence reduces to (|©¢|/2)logN which
is linear in the number of parameters |Og| i.e. eq. 1.13 corresponds to the
Bayesian Information Criterion.

The optimization of 1.13 can be done using a free-form optimization and an
EM-like algorithm as described in [1].

e [ step: compute the posterior over the hidden nodes solving 0F (0, X)/9q(X) =
0 to obtain:

¢(X) o e<logp(XY10)>0 (1.16)

The notation < . >¢ means that the average is taken w.r.t ¢(©).



e M step: compute the posterior distribution over the parameters solving

OF(0,X)/9¢(0) = 0 to obtain:

9() ox e<lo9PXY10)>x () (1.17)
The notation < . >x means that the average is taken w.r.t ¢(X).

Tt’s important to notice that if we choose p(©) such that ¢(©) x f(©)p(O©)
belongs to the same family i.e. p(©) is conjugate to f(©), the learning proce-
dures will simply consists in updating hyperparameters, transforming the prior
parameters into posterior parameters.

1.3.1 Another point of view

Another way of looking the optimization process was proposed by McKay and
Neal (see [2] ). The first assumption is that there is no difference between la-
tent variables and model parameters: both of them corresponds to unobserved
stochastic variables and can be treated on the same level. The second assump-
tion is considering the approximated posterior factorizable:

Q(2) = HQZ»(ZZ») (1.18)

where Z is the ensemble of model parameters and latent variables.
So we can maximize in the variational sense of the term with respect to
Qi(Z;) keeping all others Q;(Z;) with j # 7 fixed.

So we can rewrite 1.13 as:

log Qi(Z;) =< logP(Y, Z) > ;2 +const (1.19)

where < . >; denotes an expectation with respect to the distribution Q:(X:).
So taking exponentials of both sides and normalizing we obtain:

exp < logP(Y, 7)) >;2;
Qi(Zi)_ ( ) J#

= 1.2
>z, exp <logP(Y,Z) > (1.20)

#i

Those equations are coupled equations since the solution for Q; depends on
expectations with respect to the other factors Q;;.

So the optimization process consists in initializing each of the @); and then
iteratively update each factor at time using values computed during previous
iterations.

1.3.2 Variational Bayesian Learning and MAP

Classical MAP learning can be interpreted as a special case of variational learn-
ing. To obtain the MAP formulation it’s enough to set @A (0]Y) = d(6 — 6).
Free energy maximization becomes:

mazgeyF(0) = mazy [8(0— 0 )log[p(Y|0)p(6)]do

= mazy log[p(Y|0 )p(6'))] (1.21)



The term [ @1(©)log(Q»(©)dX is constant and doesn’t play any role in
the maximization, for this reason has been dropped. Generalization to hidden
variables case is easygoing.

The variational bayesian approach generalizes the MAP because it carries
information about the uncertainty in © even if it’s only an approximation. Fur-
thermore classical MAP doesn’t allow any model selection and doesn’t bring
any information on the model quality.
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Chapter 2

Gaussian Mixture Models

2.1 Introduction

One of the most popular model widely used in speech recognition is the mixture
of gaussians. In this chapter we will give an overview of current works for
learning variational bayesian GMM (based on [1] and [3]) after giving a fast
review of classical EM algorithm.

As general notation we will denote the pdf. associated with a M components
guassians mixture as:

y|® Zﬂ'zpz y|® Zﬂ'z ,un i (2.1)

where Z _, m = 1 and each p; is a gaussian density function parameterized
by ©; = {p;,%;}. Let’s denote with S = {s,}}¥, the hidden variables that
indicate the component that generated the t*» observation ;.

2.2 Gaussian Mixture Models and EM algorithm

A current approach for finding optimal parameters for the GMM consists in the
application of the EM algorithm as described in the previous chapter.

In fact in the case of a GMM the probability of hidden variables is triv-
1al: given an observation y;, the probability of the hidden variable s; can be
expressed as:

(C]
ﬁps(ytl 5) (2.9)
> i=1 mipi(y|©i)
So it’s possible to compute the exact E step in which the expectation is

done w.r.t. the true hidden variable distributions. Applying EM algorithm,
well known update formulas for GMM parameters can be obtained.

P(St = Slyt) =

N
T, = NZ_: sy, © (2.3)
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S wep(slye, ©)
Yz p(sly, ©)
SO p(slye, ©) (e — ) (e — p1s)”
S p(slye, ©)

(2.4)

Y, =

(2.5)

2.3 Variational Bayesian Gaussian Mixture Mod-
els I

An interesting application of variational bayesian learning is the GMM training.
Let’s specify again the model:

M M
p(WI©) = > mipi(©:) = p(ylsn, O)p(sn = 5/O) (2.6)
s=1 s=1
where p(y|sn,©) = N(us, Xs) and p(s, = s|0) = 7. Let’s define conjugate
priors on parameters © = (yus, w5, X5 ). We choose the following conjugate priors
for parameters distributions:

p({m}) = D(X%) (2.7)
p(ps|Bs) = N(p°, B°%5) (2.8)
p(3s) = W', 8% (2.9)

where D(.) denotes a Dirichlet distribution, N(.) a normal distribution and
W(.) a Wishart distribution.

Let’s define ¢(©) the approximation of parameters posterior and let’s assume
that it can be factorized like ¢(©) = ¢({ms }) [], ¢(1s, X5).

Now it’s possible to apply the EM-like algorithm defined in [1]. In the E-step
we obtain:

NP = (50 = lyn) o 7B | Cem Wn=p ) Selyn=p2)/2 o=d/25. (2.10)
where

log7t, =< logm, >= b(\) — (> Ay) (2.11)

d
logS, =< log|S,| >= " ¥((vs + 1 —i)/2) — log|®,| + dlog2 (2.12)
1=1

T, =a,B" (2.13)

This expression is equivalent to classical ML, accumulator where parameters
have been integrated out. (s) is the digamma function defined as dlogT'(z)/dz.

Then in the M-step is possible to update parameters of the gaussian mixtures
as well as new parameters posteriors that will have the same form of parameters
priors because of the choice we have done (conjugate priors).

For the gaussian mixture parameters we will have:

12



N
1 1 = 1 T
Ty = — g7 = gn7 Es:— s (YUn _5 n__s
Nnizl'y = 5. EI Y 5, (o — ) (un — )
(2.14)
where Ny = NT,. Parameters posteriors will have the same form of priors

q(ms) = D(Xs),  q(ps|As) = N(ps, B:Ts),

q(Ts) = W(vs, @) (2.15)
Posteriors parameters can be updated following this rules

/\szﬁs+/\07 P_s—( sks + ,60 0)/(N +;60) ;BSIN5+;BO

Vs :N5+V07 U :N525+N5;6 ( 0)(:”5 ) /(NS +ﬁ0)+q>0(2'16)

We can express the approximate marginal likelihood 1.15:

FI/ (ﬂs)log

d+2/

s+
- ,u5| s psnlﬂ'
5 / q(uslfs)log( i+ 353 0t [ a6 gﬁm
s=1 s=1n=1
Sn // ,uslr lng(ynlrsJiMSn)dF dps (217)

First three terms are KL-distance and the last two are the average likelihood

F=—=KLpir(\Xo) = 3 K Lw (as, Bs; ao, Bo) +

s=1

— > KLy(my, Bo/(Beas);mo, B /(Boas)) + Y Lik(s) (2.18)
where

a N,
Lik(s) = Nlogws — Z’y?log’yg 3
n=1

2 (—dlog2 + logT, — Tr(T,)E, — d/Bs)

(2.19)

KL distances between prior and posterior can be interpreted as a model

penality term and the free energy F' can be used to select the best model. The
KL penalty reduces to BIC penalization term when N — oo i.e

BIC(m Zlogp yn|®) — —log N (2.20)
n=1

where N, is the number of parameters in a model of size m. For a GMM

Ny =m(1 +d+d(d+1)/2).
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2.4 Variational Bayesian Gaussian Mixture Mod-
els 11

A different version of variational bayesian gaussian mixtures has been proposed
by Bishop [3]. Hyperparameters are here optimized using a ’type 2’ maximum
likelihood technique in which the values of the hyperparameters are chosen
to optimize the marginal likelihood of the observed data in which the model
parameters have been integrated out.

The mixture model is re-interpreted using the latent variables s;, with
Sin€0,1 where 1 = 1,.., M Zj‘il s;n = 1. The latent variables represent the
gaussian that generated the y, samples. Let D be the data set, we can write:

D|,u,2 S H H ynl,uu z T (221)

The latent variables s;, are a discrete distribution that depends on mixing
coefficients m;

P(s|t) = H 1= (2.22)

Then we introduce conjugate priors on means and inverse covariance ma-
trix (we don’t need conjugate priors on weights because anyway they will be
integrated out).

M=

Pp)= | ] N(uil0,87) (2.23)

L

=W @ v) (2.24)

where [ 1s a fixed parameter, I is the unit matrix, and W is a Wishart
distribution with parameters v and V. It is possible to write:

P(D,p, 2, s|7) = P(D|u, X, s)P(s|m) P(p) P(X2) (2.25)

Now variational bayesian learning can be used to evaluate hyperparameters.
Mixing coefficients 7 will be optimized in a separate M step. So introducing an
approximating distribution Q(®©) it is possible to write:

@) 2.0l P(D,®|)
Q) Q()

Making the assumption that approximated priors are independent, it is pos-
sible to write:

log P(D|) :log/ (D,0|m)do = log/Q do > /Q Vlog——F——=—d@R2.26)

Q1 X, 5) = Qu(p) Qs (X) Qs (5) (2.27)
Applying method described in 1.3.1, we obtain:

14



N M
Q(s) = JIIIwi

M . .
Qu(w) = TN (uilmi?, =0)

M
Qs(®) = [[wEe v

where we have defined

Pin = ﬁin
n — M -
2‘521) Pin
log|%; 1
Bin = exp(w +logm, — LTr{< 5 >

(vl — < i >yl —yo < i >T + < pipl >)})

N
SO =B+ <> Y < sin >
n:l
N
mLZ) — ELZ)_l < Ei > Zyn < Sin >

n=1

N
I/S) :1/—|—Z < Sin >
n=1

N N
Ve =V Sl < sin > = > yn < sin >< pl >+
n=1 n=1
N N

— <> Y Y < sin > < gl > < sin >

n=1 n=1

and assuming that the expected values are:

< Sin >= Pin

< pi >= mﬁ)

< ,ui,uiT >= (Eﬁ))_l + mLi)(mLi))T
<=0

d
< log|%;| >= Zl/}((l/g) +1—135)/2)+dlog2 — log|VX(:Z)|
s=1

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

Once a form on the approximated priors , (s @ is assumed, it is possible

to compute the lower bound on the marginal likelihood:

L =<logP(D|p,E,8) >+ <logP(s) >+ <logP(p) >+ < logP(X) > +

15



— < 1logQ;(s) > — < logQu(p) > — < logQ=(X) > (2.42)

where
M N 1 d
logP(D X = in 'S l Ei —=l 2
<logP(D|u, %, s) > ;;«; > 5 <log|Si| > —Zlog(2m)+
1
—§Tr(< i > (Un¥h —yn < pl > — < pi >yt 4 < papi >)) (2.43)
M N
< logP(s) >= Z Z < Sip > logm; (2.44)
i=1 n=1
M
Md B, B T
log P =2—log(—) — = T 2.4
<logP(p) >= 2——log(; ) 2;<uzu> (2.45)
d
d d(d—1 1-—
<logP(X) >= M{—%log? — %logﬂ' — ;log’y(LQS) + glog|V|}
vod—1g 1 l
+—— Z; <log|s| >~ Tr (VZ_; < >) (2.46)
M N
<logQs(s) >= Z Z < Sin > log < sin > (2.47)
1=l n=1
Mo/ od 1 :
<1ogQ(n) >= Z <—§(1 + log(2m)) + §log|2ﬁ)|> (2.48)

1=1

2

1=

Y AR N

<logQs(X) >= Z}( 2 + §log|§]“ | + ;logf - |+
(7) . (1) _ d—1 1 .

%logﬂ/z(;l)b + yxf < log|%;| > —§TT(V§(;Z) <X;>) (2.49)
Once the bound is calculated we have an approximation of log P(D|m). Tt

is now possible then to re-estimate new values of 7 using the so called ’type

2’ maximum likelihood technique. Deriving the lower bound and setting the

results to zero, it is possible to compute new values of .

| X
i == in 2.
T n;p (2.50)

So the variational bayesian learning will consists in iteratively updating vari-
ational parameters and mixing coefficients.

16



Chapter 3

Experiments

3.1 Experiments on synthetic data

In order to study the efficacity of those three approach, we realized some sim-
ple experiments on synthetic data i.e. data generated from a known gaussian
mixture.

We used a simple 3 gaussian mixture with mean [2,2] [-2,-2] [5.5 5], diago-
nal covariance matrix and 0.3 0.5 0.2 as mixing coefficients; 5000 samples were
generated following this distribution.

First of all we tried to find the correct dimension of the data set using
the BIC criterion. Figure 3.1 shows the plot of BIC(m) function of gaussian
mixtures; the maximum is for m=3 that is the effective number of gaussian.

-19+

24

1 1 1 1 1
2 4 6 8 10 12 14 16 18
gaussian mixture

Figure 3.1: BIC(m) function of gaussian mixtures

Then we tried the variational bayesian technique described in citeattias
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(VBGMM1) where we used the negative free energy to determine the best model.

We noticed that results of the VBGMMI1 strongly depends on the choice of
the covariance matrix priors. In fact the value of ®; determines the gaussians
components that dominates over the others. There’s a simple way to see this
problem: in classical EM when very few vectors are attributed to a gaussian
component, the covariance matrix relative to this component becomes more
and more singular and in the limit case of just one vector for component it
becomes a zero matrix. In VBGMM, because of priors, it cannot happen that
the covariance matrix becomes singular and when just one vector is attributed
to a gaussian component, the weight relative to this component go to zero. This
prevents from overfitting.

On the other side, the value of @ is the main cause of another phenomenon
typical of variational bayesian learning: the self-pruning i.e. degree of freedom
that are not used are pruned out. For this reason changing the value of ®; can
determine the number of gaussian components that will be pruned.

To corroborate those ideas we run experiments with different p values where
® = pd I and I is a unit matrix, d is the vector dimension.

Figure 3.2 shows the plot of the negative free energy function of the gaussian
mixtures with p = 1.

Figure 3.3 shows the plot of the non-negative components function of the
gaussian mixtures with p = 1.

x 10°
7.5

7.4

7.3

7.2

N
[N

~

negative free energy

o
©

6.8

6.7

6.6 I I I I I I I
1 2 3 4 5 6 7 8 9

gaussian mixtures

Figure 3.2: Negative free energy function of gaussian mixtures for p = 1

(VBGMMI)

From figure 3.2, the best model is the model with 3 gaussians that cor-
responds to model used to generate data. Figure 3.3 shows that all different
gaussian components have non-zero coefficients at the end of the VBGMM train-
ing.

Now consider the same experiment with p = 1000.

18



Figure 3.3: Non-zero components function of gaussian mixtures for p = 1

(VBGMMT1)

Figure 3.4 shows the negative free energy: its value increases progressively
when the components number goes from 1 to 3 and then is constant. Looking at
the number of non zero coefficients in figure 3.5, we can notice that even when
the initial number of gaussian components is bigger then 3, the model prunes
freedom degree that are considered useless recovering the original number of
components. For this reason all models with more than 3 gaussians have the
same negative free energy i.e. they have the same number of non zero gaussian.

Now let’s compare the original values with the recovered one: original weights
are 0.2 0.3 and 0.5; recovered weights are 0.204 0.506 and 0.29; original means
are [2,2] [-2,-2] and [5.5 5]; recovered means are [2.01,2.02] [-1.96,-1.99] [5.5 4.9];
original diagonal covariance matrix are [1 0.5] [1 1] [1 1]; recovered diagonal

covariance matrix are [0.99 0.50] [1.07 0.98] [1.03 0.96].

Increasing p to the value 1000 data are clustered in two clusters. For this
reason the choice of the p value is an important issue depending on the appli-
cation.

Now let’s consider the other approach we described as VBGMM2. The
philosophy of this approach is slightly different. In fact the idea is to initialize
the model with a high number of gaussian and let the model pruning itself.
Again priors on the covariance matrix (here V') play a fundamental role in the
gaussian number that will survive at the end of the training. Figure 3.6 plots
gaussian number at the end of the training session function of covariance matrix
priors.

We can notice that using priors for V' between 1 and 100 permits the correct
evaluation of the original gaussian components while lower values allows more
components to survive after the pruning.

19
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~
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T
Il

69t |
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1 2 3 4 5 6 7 8 9
gaussian mixtures
Figure 3.4: Negative free energy function of gaussian mixtures for p = 100
(VBGMMI1)

3.2 Conclusion

Experiments show that Variational Bayesian technique can help to fit model
to data better than classical techniques. Anyway we must notice that those
approach are very sensible to prior choice (even if we try to use non-informative
priors): changing priors final result seems to change considerably. Furthermore,
as it was notice in [4], the model self pruning has no theorical evidence: we don’t
have a theorical reason for saying that the model self pruning works correctly
but practical evidence.
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Figure 3.5: Non-zero components function of gaussian mixtures for p = 100

(VBGMMI)

551 b

45+ B

gaussian number
w
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15F B

10 10" 10 10 10 10 10 10°*
covariance prior

Figure 3.6: gaussian number function of covariance prior (VBGMM?2)
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Chapter 4

Variational bayesian HMM

It’s also possible to train an HMM using variational bayesian learning. The
first formulation of the problem come from McKay in [5] who described the
training of a discrete density HMM using Dirichlet distributions as priors. In
next section we give details about this solution.

4.1 Discrete density HMM

Let’s consider the following notations:

e S ={s1,59,...,s7}: hidden state sequence. (se¢1...M )

o X ={x1,2;,...x7}: observed sequence (ze1...M)

A ={ai;}, aij = P(st41 = j|s¢ = ©): state transition probability matrix.

B = {bim}, P(x: = m|s; = 7) emission probabilities

m = {m}, m = P(s1 = i) initial state distribution

6 = {A, B, 7}: model’s parameters.
o U = {u(A)7 u®), u(”)}: hyperparameters that define prior over 6

Given parameters 6, it’s possible to write:

T-1 T
P(X,S|€) = [H a5t5t+1][Hb5tl‘t]7T51 (41)

and for the posterior probability of the hidden variables S| it’s possible to
write:

T—1 T
P(S]X,0) = ﬁ[ﬂ Grsips [T borealmon (4.2)

where P(X|©) is the normalization constant. McKay assumes prior proba-
bilities over {A, B, w} like product of Dirichlet distribution i.e.

23



P(AluM) = T] Dirichlet({as ...air}; u™) (4.3)

The ensemble learning consists in approximating the distribution of hidden
variables S and parameters © by an ensemble distribution Q(.S, ©). We assume
that this distribution can be separable such that:

Q(5,0) = Qs(5)Qa(A)QB(B)Qx(7) (4.4)
The optimization task consist in minimizing the free energy F(Q(S,0)):

—/A/B/ZQ (5,0) log[%] (4.5)

The strategy proposed by McKay consists in iteratively optimize each @.
while keeping others constant.
The log-probability can be written:

I
log P(X,S,0|U) = Z( (4 _ 1)log a;; —|—Z Z 1)log bim
1,j 71 i=1 m=1
I T—1
—|—Z(u£ ™) _ 1)log mi + Z log ag,s,,, + Zlog bs,z, +logms1 + const.  (4.6)
i=1 t=1 t=1

Now let’s consider the optimization of 4.6.

4.1.1 Optimization of (4

Let’s assume that distributions Qp, Q~, Qs are fixed, and let consider the free
energy as a functional of @ 4:

T-1
= [ - X =l = iogasy + 32 Qs(5) T 107 e
t=1

1,j 71
—log Qa(A)] + const. (4.7

taking inspiration from the Baum-Welch algorithm, it’s possible to write:

wll) =3 (9)0(se = i, 5141 = ), (4.8)

s

and so, 1t’s possible to write 4.7:

Qa(A)
l _— 1 4.9
F(Qa) /QA og [ y ” ]_1]]4‘60”5 (4.9)
where
Wi _E w(t) ul) (4.10)
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Using Gibbs’s inequality, the expression fx Q(z)log % is minimized with

respect to Q(z) by Q(z) = % where 7 is the normalizing constant.

So the distribution @4 that minimize 4.9 is given by a product of Dirichlet
distributions:

Qa(A) = [[ Dirichlet(ai;i_; Wij'i_,) (4.11)

4.1.2 Optimization of Qg,Q,

Applying the same procedure we can obtain analogous formula for @ g, @, with

wih = (8)d(se = i,z = m) (4.12)
wi = > Qs(8)d(sy =) (4.13)

4.1.3 Optimization of Qs(5)

Now let’s fix {Qa,Qn,Qr} and let’s consider the free energy just function of
the hidden variables S.

FQs) = = Qs [ Qu) T togan+ [ Qa3 Y tober

—|—/ Qr(m)log nr, —log Qs(S)] + const (4.14)
Let’s define
aj; = @fL‘P[/A Qa(A)log ajj] (4.15)
by, = @fL‘P[/ QRp(B)log bix] (4.16)
B
™= e:vp[/ Qnr, ()] (4.17)

and let’s rewrite 4.14 as

F(Qs(9)) = ZQS(S)log [[ g @s(9) ]+ const.  (4.18)

T
t=1 astsH_l][Ht:l bﬁtxt] Tr?l

The optimal Qg (.S) distribution is given by:

T-1 T
1
Qs(S5) = Z_S[H e 1 | e (4.19)
t=1 t=1
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Equation 4.19 has the same form of 4.2. So it’s possible to compute the
relevant properties of @Qg(S) distribution i.e. quantities w using a forward-

backward algorithm using «*, b*, 7*. To compute those values, the following

formula can be used:

/Dirichlet(p; w)log pi = ¥(u;) — ¥(u) (4.20)

P

where

P(x) = %log T(z) u= Zuj (4.21)

4.1.4 Another point of view

It’s interesting to notice that the same update formula can be obtained using
the EM-like algorithm described in section 1.3. In fact applying formula 1.16
we have:

q(S) e<logp(5,X]9)>e

= ST e+ [ Qe (BY Y 00 bae+ [ @n(mlog megro9)

and defining a*, b*, 7* as in the previous section we can write

T-1 T
g(8) o< [IT @t J T 50 ) 7 (4.23)
t=1 t=1

For distribution parameters, let’s optimize its posterior distribution Q(A), Q(B), Q().
Applying formula 1.17 we have:

Q(A)Q(B)Q(r) ox e<togr(SXIO)>s,(Ayp(B)p(r) (4.24)

Knowing that Dirichlet distribution has conjugate priors i.e. the posterior
probability has the same form of the prior probability, Q(A), Q(B), Q(x) will
be Dirichlet distributions.

Q(A)Q(B)Q(r) o 625 Q(S)[Zt log astst+1+zt log beyx, +l09”51]p(A)p(B)p(7r)
" (4.25)

. t . . . .
Defining W, wl(»nz, w] and Ws;, Wi, Wias in the previous section we obtain:

QUQBQ(m =[] aE.]Z“’”'] I1 p el T #2221 p(A)p(B)p()(4.26)

2

Tt’s easy to obtain formulas for Q(A), Q(B), Q(r):
Qa(A) = [[ Dirichiet(a, Wi;) (4.27)
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Qg (B) = [ Dirichlet(b, Win,) (4.28)

Qr(m) = H Dirichlet(m, W;) (4.29)

4.2 Variational bayesian HMM with GMM

In this section we extend the variational bayesian HMM framework to contin-
uous density emission probabilities using variational bayesian GMM described
in previous sections.

Let’s keep the same notations of previous section for HMM parameters but
for the emission probabilities. In fact now we will consider continuous emission
probabilities modeled by a GMM.

Let’s assume that b; =3 €im N (fim, Zim ) 1s the pdf of emission in state .
In the variational bayesian framework let’s define priors on this quantities as:

p({eim}) = D(AY) (4.30)
p(,uimlz:im) = N(P07 ,BOEim) (431)
p(Sim) = W(°, °%) (4.32)

In GMM/HMM there are two different hidden variables sequences: the hid-
den state sequence S and the hidden emitting gaussians M and we will approx-
imate their probabilities with a distribution Q(S, M). Tt’s possible to write:

T-1 T
P(X7 S,Ml@) = [H a5t5t+1][Hb5tmt~'L‘t]ﬂ-51 (433)
t=1 t=1
where
bstmtl't = Cstth(/’LStm7 Estm) (434)

is the probability of the emission of the m-th gaussian in the s-th state. and
now let’s try to apply the EM-like algorithm. In the M step we should compute:

4(S, M) o e<logp(SM.X]0)>e (4.35)

where

T—1 T
< logp(S, M, X|0©) >@>:/ QAZlOga5t5t+1+/ / / Zlogbstmt—k/Qﬂlogﬂ'sl
A t=1 c n Qs =1 T
T—1 T T
= Z/ QAlogastsHl—FZ/ / / logbstmt—FZ/Qﬂlogﬂs(AﬁG)
t=1 A t=1 c I = t=1“T7

Defining now

ajy; = @xp[/A Qalog azj) (4.37)
by = exp] / / / 10g bimy] (4.38)
m = exp| / Qrlog i (4.39)
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we can rewrite 4.35 as:

T-1 T
Q(S, M) o< [TT s AT 8r i 750 (4.40)
t=1 t=1
Computation of af ; and mF can be done using formula 4.20, while computa-
tion of &%, . can be done using results from 2.10.

To obtain the probability Q(S), it’s enough to marginalize Q(S, M) with
respect to M obtaining:

T-1

H 5t5t+1 [H bstmtxt sl

=2 QS M)y |
g

5t5t+1 [szstmﬂ:t Ts1 (441)

t=1 my

Tt’s interesting to notice that Q(S) is not the distribution we obtain marginal-
izing P(S, M, X|0) and then computing the posterior Q(S). In fact someone
may suppose that Q(.S) could be obtained computing exp(< log 3 ,, P(S, M, X|0) >
) because P(S) = >, P(S,M). The problem in doing it is that Q(S) and
Q(S, M) are not exact probabilities but just approximating function, and so
Q(S) is not the probability density that comes from the marginalization of
P(S,M). In other words it’s different to integrate the logarithm of a sum than
integrating the sum of a logarithm. Tmportant statistics of the Q(S, M) dis-
tribution can be found using the forward-backward algorithm or the Viterbi
algorithm.

Now let’s consider the M-step: updating formula for transition probabilities
and initial state probabilities are almost the same because Q(.S, M) is marginal-
ized w.r.t. M while update formulas for gaussian mixtures differs. We can write
the M-step like:

4(A)a(m)g(p)a(L)q(e) = e<IoIPEMXIOZ @m0 p(A)p(m)p(p)p(S)p(e)  (4.42)

where

<logP(S, M, X|0) >q(sa)= ZQSM Z:logastspr1 Zlogbstmtxt+10g771]
SM

:ZQ 2109a5t5t+1+ZQ S, M Zlobetmtxt+ZQ Vlog m(4.43)
B

Update formulas for a;; and 7 are analogous to updating formula in the pre-
vious section with the only difference that Q(S) comes from the marginalization
of Q(S, M).

Let’s consider now updating formula just for gaussians parameters: the prob-
lem is analogous to simple guassian mixtures with the difference that in here we
have to consider the state probability togheter with the component probability.
We can write:
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Q(S? M) ZlOg bstmtl‘t = Z Z Q(S)a(st? mt)log bstmtl‘t = Z Q(St’ mt)log bstmtl‘t

S M t t sy,mMq t
(4.44)
where Q)s, m, 1s the approximated probability for being in state s at time ¢
and for emission of gaussian m. This time we can write Q(s¢, m:) = Q(s¢)Q(me|st) =
Q(st)¥m/ D  Ym- This is the same expression computed in 2.3 using Q(s¢, my)
instead of simply Q(m). Tt means that update formulas for gaussian parame-
ters can be obtains as in section 2.3 using N, = stm Q(s¢, my) instead of

N, = Z’ys.
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