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Abstract
In this paper, we explore the potentialities of Variational
Bayesian (VB) learning for speech recognition problems. VB
methods deal in a more rigorous way with model selection and
are a generalization of MAP learning. VB training for Gaussian
Mixture Models is less affected than EM-ML training by over-
fitting and singular solutions. We compare two types of Vari-
ational Bayesian Gaussian Mixture Models (VBGMM) with
classical EM-ML GMM in a phoneme recognition task on the
TIMIT database. VB learning performs better than EM-ML
learning and is less affected by the initial model guess.

1. Introduction
This paper aims at investigating the application of variational
Bayesian methods to speech recognition dealing with problems
related to initial priors choice with speech data. Variational
Bayesian (VB) learning is a relatively new learning technique
that allows the processing of Bayesian models that cannot be
trained using full Bayesian approach because of their complex-
ity. Many classical models like Gaussian mixture models or hid-
den Markov models can be trained using this new approach. Re-
cently application to speech data shows many advantages (see
[6],[5],[4]). VB techniques offers a new framework for doing
parameter estimation and model selection in a more rigorous
way. Like the MAP, they consider parameter posterior probabil-
ity distributions but unlike MAP, this is not a point estimation,
but the whole model probability is evaluated. VB estimation
provides information about the model quality while training the
model itself i.e. the objective function is a measure itself of how
good the model is. Another interesting property of VB learning
is the self-pruning i.e. model during the training does not use
extra degrees of freedom that get lost. That behavior can be
seen as an advantage or not. On the one hand, uncertainty about
the model is not taken into account but on the other hand, model
selection is done during the learning itself because parameters
that are not used disappear. In this paper we investigate the ap-
plication of VB learning to Gaussian mixture models and test it
with some speech data. We compare two different approach to
VBGMM with classical maximum likelihood EM algorithm for
GMM (that can be seen as a special case of VB learning). Clas-
sical GMM-ML algorithms often suffer from overfitting when
the component number is not adequate with the data amount.
VBGMM are not that affected by initial model choice because
the model prunes extra degrees of freedom and because inte-
grating priors leads to a kind of regularization.

2. Variational Bayesian learning
Given a set of observed variables � and some parameters � ,
Bayesian learning aims at optimizing the so called marginal

likelihood �����	� , where parameters � have been integrated out.
From Bayes rule we have: �����	��
��������������������� �	� and
considering the log of both members it is possible to write:����� �����	��
 ����� ������������ ����� ������� �	� . Instead of integrating
parameters � w.r.t. their true unknown pdf, an approximation
called variational posterior, and denoted as ������� �	� , is used.
Taking expectation w.r.t ������� � � , we obtain:
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where +-��������� �	���.� � ������� / � represents the Kullback-Leiber
(KL) distance between the variational posteriors and the true
posteriors. The term 0	������� �	� �����1$ ������������&������� ���(' "�� is often
indicated as negative free energy 2	����� . Because of the KL-
distance property +-��34� � 5.� 687 (with equality if 39
:5 ), 2	�����
represent a lower bound on

����� �����	� i.e.
����� �����	�-6;2	����� .

Variational Bayesian learning aims at maximizing the lower
bound 2	����� that can be rewritten as:

2	������
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The second term in eq. (2) represents the distance between the
approximate posterior and the parameter prior and can be inter-
preted as a penalty term that penalizes more complex models.
For this reason 2	����� , can be used to determine the model that
best fits to data in the same way the BIC criterion is used.

Maximum a Posteriori can be seen as special cases of VB
learning. In fact, if ������� �	��
?>����	�=�A@�� , finding the maximum
of equation (2) means:
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where the term 0=������� ����� ��������"�� has been dropped because it
is constant. Expression (3) corresponds to the classical MAP
criterion. It is important to notice that the VB approach carries
information about the uncertainty on parameters � while MAP
does not. In fact in MAP parameter learning is done punctually
( B 3�C �����%$ �����<� � @ � ����� @ ���(' ) while in VB, parameters are inte-
grated out, even if they are integrated w.r.t. variational posterior
( B 3�C90	������� �	� �����I$ �����<� ��� �������(' "�� ). Furthermore VB allows
model comparison: free energy value gives information on the
model quality, while MAP only gives best parameters for an im-
posed model. The price to pay is that the free energy is only a
lower bound and not an exact value.



3. Variational Bayesian learning with
hidden variables

Variational Bayesian learning can be extended to the incomplete
data case. In many machine learning problems, algorithms must
take care of hidden variables � as well as of parameters � (see
[1]). In the hidden variables case, the variational posterior be-
comes ����� ���� �	� and a further simplification is assumed con-
sidering it factorizable as ����� ���� �	�#
:�����,� � ��������� �	� . Then
the free energy to maximize is:
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where ��� �� means average w.r.t. � . Note that � is al-
ways understood to be conditioned on � . It can be shown that
when ����� the penalty term reduce to ��� ����� ��� � ����� � where��� is the number of parameters i.e. the free energy becomes
the Bayesian Information Criterion (BIC). To find the optimum������� and �����9� an EM-like algorithm is proposed in [1] based
on the following steps:
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Iteratively applying eq.(5) and eq.(6) it is possible to estimate
variational posteriors for parameters and hidden variables. If������� belongs to a conjugate family, posterior distribution �������
will have the same form as ������� .

A different method for optimizing variational parameters
can be found in [2]. Latent variables and model parameters are
considered as unobserved stochastic variables and are treated in
the same way. If we define . to designate both � and � and
assume the factorization ����. �	
0/21 ����. 1 � , an iterative set of
re-estimation formulae can be found minimizing the KL dis-
tance between the variational distribution ����. 1 � and prior dis-
tributions giving:

����. 1 � 
 �&C �3� ����� �������. � ��4657 1
08�&C �3� ����� �������. � ��4657 1 "6. 1 � (7)

An interesting property of VB learning is that extra degrees of
freedom are not used i.e. the model prunes itself. There are
two possible philosophies about the correctness of the model
self pruning: on the one hand it is not satisfactory because pre-
diction will not take into account uncertainty that models with
extra parameters can provide (see [7]), on the other hand it can
be used to find the optimal model while learning the model it-
self, initializing it with a lot of parameters and letting the model
prune parameters that are not used.

4. Variational Bayesian GMM
GMM can be trained using VB learning. GMM makes
the hypothesis that a given data set has pdf of the form9 1�: 1 �9��; 1 �< 1 � , where �9��; 1 �< 1 � is Gaussian with mean ; 1
and covariance matrix < 1 . Many models for priors and latent
variables have been proposed. In this paper, we will consider
models described in [1] and [3].

4.1. Variational Bayesian GMM I

Let’s consider the model proposed in [1]. Given set of �
observation vectors � 
 ��=#> ?� � �  =�@ � and latent variables

A 
 ��B�> �� � �  B�C � that denotes the hidden component that gen-
erated

=�C
where

B�CED $ F  B ' and m is the number of Gaussians.
The GMM is:
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where ��� =�C � B�C 
 B ����9
J�9��; I !K I � and ��� B�C 
 B � ��� 

: I . Let’s now define conjugate priors on the parameters�:
 � : I �; I !K I � : weight coefficients are jointly Dirichlet,��� � : I � � 
�+-��LM� � , means conditioned on precisions are Nor-
mal, ����; I � K I �=
N�9��O � QP � K I � , and precisions are Wishart,����K I �-
SR8��T����UV�&� (notice that R8��3��W	� is sometimes de-
fined as R8� F �&3�?WYX

>
��� . Parameter variational posteriors fac-

torize into ������� 
 ��� � : I � �M/ I ����; I !K I � under severe inde-
pendence hypothesis. Posteriors for hidden variables

A
factor-

ize into ��� A ��
Z/ C ��� B�C � . Using (5) (E-step) we can compute��� B�C ��
\[
C
I . Using (6) (M-step) it is possible to compute new

parameters and new posterior parameters. For GMM parame-
ters

� : I !; I �< I � we obtain:
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where ^
CI 
 � =�C � ]; I ��� =�C � ]; I �!_ and

]� I 
Z� ]: I . Parameter
posteriors will have the same form as priors because they belong
to a conjugate priors family: ��� � : I � ��
 +-� � L I � � , ����; I � K I � 
�9��O I QP I K I � , ����K I ��
ZR8��T I �U I � where:

`Macbedfga�hE`6i?jlk�amb2nMdfga!oMa�hYpMi?k?i�q�r�nMdfga�hYpMi�q
pMacbedfga�hYpMi s�acbedfga*hYs6i
tmacbedfga�duma�hvdfga�pMi?n doMacwEk?i�q�n doMacwYk?i?q%xcr�nMdfga*hYpMi?q6hytci (10)

Prediction of unseen data can be made integrating out parame-
ters in eq. (8); it is possible to show that the resulting distribu-
tion is a mixture of Student-t distribution (see [1]):
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where component s has . I 
JT I ) F � " d.o.f., mean O I ,
covariance | I 
 ���}P I ) F ���~P I . I �!U I and weight coefficient]: I 
�L I � 9 I @ L�I @ . Eq. (11) reduces to a GMM when����� . A close form for the free energy 2 can be obtained
and used for choosing the model that best fits to data. A seri-
ous numerical problem with classical ML-EM algorithm occurs
when very few vectors are assigned to a Gaussian component so
that its covariance matrix becomes almost singular. In VBGMM
I formulation, this problem does not exists thanks to initial pri-
ors UV� : when only a very few vectors will be assigned to a
Gaussian components, its coefficient : I will converge to zero,
reducing the number of Gaussians and avoiding any singularity.

4.2. Variational Bayesian GMM II

Let’s now consider the model proposed in [3]. The latent vari-
ables

B 1 C where i=1,..,M is defined in order to have
B 1 C 
 F if

i=j where j is the component that generates
=6C

and 0 in all other
cases. It follows that it is possible to write the likelihood of a
data set � as:

� ����� ;��<# B � 
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Given weight coefficients : 1 , latent variables will have the
following discrete distribution:

� � B � :4�<
�/ �1 7 > /
@C 7 > : I!� �1 .

Contrarily to VB GMM I priors on weight coefficients will not
be defined; the learning procedure consists in iteratively opti-
mizing the lower bound on ���������� :4� w.r.t : and � . Let’s define
conjugate priors on means and covariance matrices:

� ��;E��

��
1 7 > �9��; 1 � 7 QP�����

� ��<*��

��
1 7 > R8��< 1 � T �/	� (13)

Defining � 
 � ;�?<# B � , assuming �������:
 ����;�?<# B �8
������;E��������<*������ B � and applying (7) to ���������� :4� , variational
posterior distributions are (for details see [3]):
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where � 1 C  B F 1 H�,�! F 1 H�:!T F 1 H� �/ F 1 H� are posterior distribution pa-
rameters. Once the lower bound on

� �������� :4� has been max-
imized w.r.t ������� , weight coefficients can be updated. Setting
derivatives of negative free energy to zero we obtain:
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Even in this case, free energy can be computed in closed form.
In [3] the previously discussed property of model self pruning
was used successfully to recover the correct model dimension
in synthetic data problems. An initial guess model with a high
number of Gaussian is used, and during the training degrees of
freedom that are not used are dropped, converging at the end of
the training to the optimal number of Gaussians.

4.3. Variational Bayesian learning and priors

In those approaches, both authors have used non-informative
priors. When relatively small amount of synthetic data are used
both techniques seem to be robust to initial prior choice. Any-
way, as it was observed in [4] when large amount of speech
data is used, a certain sensitivity to initial priors is observed,
and optimal initial priors depends on the amount of data. In
VBGMM, priors have a consistent influence in how the model
prunes itself: the final number of Gaussians that survive to the
training will depends on the values of Ug� for VBGMM I and /
for VBGMM II (see [5]). Because speech recognition training
uses important amount of data, estimation of optimal initial pri-
ors is an extremely computationally expensive tasks and for this
reason they are often empirically chosen.

5. Experiments
To test the efficiency of VBGMM I and VBGMM II in deter-
mining the original data set dimension we carried out experi-
ments on a synthetic data set constituted by 5000 vectors ran-
domly generated following a 3 components GMM pdf. We tried
to recover the correct data set dimension using the ML-BIC cri-
terion and the VBGMM I free energy. Figure 1 shows results
for BIC criterion, the maximum is achieved for B 
#" and then
other models are progressively penalized. Figure 2 shows the
negative free energy obtained with U �-
%$&� with $ 
 F : the
function has an important peak at m=3 that gives the right di-
mension without any ambiguity. Figure 3 shows the negative

free energy for $-
 F 7 7 ; paradoxally all models with B 6'"
have the same variational free energy; looking at models with
more than 3 Gaussians it is possible to notice that at the end of
the learning only 3 components have survived while all other
extra components have zero weight; in other words even if the
model was initially a n-Gaussian model with ( � " , the final
model has only 3 components i.e. the original data set dimen-
sion. On the same test set we run VBGMM II with a different
number of initial models and with a value of / 
)$&� with $
moving from 10 to 100 and in all cases we recovered the cor-
rect number of Gaussians, their means and their covariance ma-
trices.

To run experiments on speech data we used confusing
phonemes set like in [5] from the TIMIT database. Acous-
tic vectors consist in 12 MFCC obtained with the HTK sys-
tem. Confusing phonemes set consists of 6 stop consonants:
p,t,k,b,d,g. Training data for each phoneme is limited to 10000
acoustic vectors for reducing computational charge. Our ex-
periments aim at comparing the classical ML-EM algorithm for
GMM with VBGMM I and VBGMM II previously described
in a speech recognition task studying the influence that initial
priors can have on final models. First we run recognition ex-
periments on the 6 stop consonants using ML EM changing the
initial number of Gaussians for the model from 1 to 10; results
are given in table 1. Then we tested the VBGMM approach giv-

GMM 1 2 6 10

recognition rate 51.0% 55.2% 62.4% 62.6%

Table 1: Recognition rate function of Gaussian components

ing an initial model of 10 Gaussian components to observe how
VB learning behaves. If VBGMM I is used, recognition can be
done using (a) GMM parameters i.e. parameters (9) or using (b)
inferred distribution i.e. equation (11), or even simply using (c)
the part of the free energy relative to data � i.e. the first term of
equation (4). We studied as well dependency on initial prior $
where UV��
'$&� and the consequent dimension inferred by the
VB learning. Results for VBGMM I are in table 2, with the fol-
lowing initial priors L �<
 F  P � 
 F *O � 
 ]= *T���
 F where]=

is the average value of input data. The second part of table 2
shows the inferred number of Gaussian per phoneme after VB
training.

$ 1 10 100 1000 2000 10000
(a) 64.2% 63.4% 64.0% 66.3% 64.6% 56.1%
(b) 64.1% 63.5% 64.2% 65.5% 63.4% 56.1%
(c) 56.5% 55.1% 56.0% 56.1% 55.2% 51.9%

/p 10 10 10 10 8 3
/t 10 10 10 10 7 2
/k 10 10 10 10 10 4
/b 10 10 10 10 6 4
/d 9 9 9 9 7 2
/g 10 10 10 10 7 2

Table 2: Recognition rate and phoneme dimension function of
priors. (a) GMM parameters, (b) Student t parameter (c) Free
energy

Results show that recognition rate is sensitive to prior
choice. VBGMM I always outperforms ML-EM GMM for 10
Gaussian as initial models. Only when very large initial pri-
ors are used, performance degrades; it means that for some
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Figure 3: Negative free energy function of
Gaussian mixtures for $ 
 F 7 7 (VBGMM I)

reasonable initial prior choice, VB learning outperforms tradi-
tional ML learning. For an appropriate prior value ( $�
 F 7 7 7 )
VBGMM I with 10 Gaussians outperforms largely EM-ML
model. Looking at the final phonemes dimension, it is possi-
ble to observe that when initial priors are big, the model prunes
itself to a lower number of components, when initial priors are
small all components survive to training. Even if all compo-
nents survive to VB learning, priors lead a sort of regulariza-
tion on it, avoiding this way overfitting problems. For inferring
decision, methods (a) and (b) look almost equivalent; bound
(c) seems not robust enough for doing recognition. Let’s now
consider analog experiments for VBGMM II with the following
initial priors T?
 F �/ 
)$&� . This time the recognition can
be done using (a) the inferred parameters or (b) the first term of
equation (4). Results are shown in table 3 as well as the inferred
number of Gaussian per phoneme. VB GMM II again performs

$ 1 10 100 1000 2000 10000
(a) 64.7% 65.4% 64.0% 64.7% 64.9% 57.19%
(b) 63.6% 63.8% 63.1% 62.9% 62.9% 56.1%

/p 10 10 10 7 5 2
/t 9 9 8 7 6 2
/k 9 9 9 7 7 3
/b 10 10 9 7 4 2
/d 9 7 7 6 5 2
/g 7 6 6 5 5 2

Table 3: Recognition rate and phoneme dimension function of
priors. (a) GMM parameters,(b) Free energy

better than EM-ML on 10 Gaussian models. Method (b) is not
as precise as method (a) for doing recognition. Again when
too large initial priors are used, performances are affected. The
final number of Gaussian per phoneme is lower than the one
inferred with VBGMM I; this is probably due to the fact that
there is no distribution imposed on weights. We can conclude
that VBGMM II prunes models harder than VBGMM I.

Another important remark concerns the number of iter-
ations needed by those methods to converge. EM-ML and
VBGMM II converge almost with the same speed while
VBGMM I seems to be always faster than the two other tech-
niques.

6. Discussion and conclusions
Results shows that VB learning suffers less from overfitting
problems than traditional EM ML learning. Experiments on

speech data seem to confirm results previously achieved on syn-
thetic data i.e. VB methods are able to deal with problems re-
lated to model selection better than classical techniques. Even if
preliminary results are interesting many open questions are left.
On the one hand those methods take advantage of regularization
carried out by initial priors (that permits to avoid many prob-
lems e.g. singular solutions) and from informations that come
from the explicit computation (even if in an approximated way)
of integral w.r.t parameter distributions. On the other hand a cer-
tain sensitivity to initial prior choice seems to be an undesirable
characteristic of those approaches; anyway there are reason-
able ranges for initial priors in which recognition rates are still
competitive. Estimation of optimal initial priors is a prohibitive
task because of considerable amount of training data in speech
recognition. Furthermore initial priors strongly affect the way
in which the model prunes itself: for VBGMM I model pruning
has the same results for $ in the range

$ F  F 7 7 7�' while VBGMM
II makes hard pruning depending on initial prior value. Another
open question is about the way self-pruning is done; dropping
out degree of freedom avoid singularities and provides an ef-
ficient way for doing model selection and parameters learning
at the same time but there are actually no guaranty (but experi-
mental evidence) that the model pruning is done in the correct
way.
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