Impact of Buffer Sharing in Multiple Disk Video Server Architectures

Jamel Gafsi, Ernst Biersack
phone: +3349300 26 89, fax: +33493 0026 27, email: (gafsi,erbi)@eurecom.fr
Institut EURECOM
2229, route des Cretes B.P. 193, 06904 Sophia Antipolis Cedex, FRANCE

Abstract

A video server allows to deliver multiple video streams to different clients. To provide the required
amount of storage and bandwidth, a video server must contain a large number of disks. Since the retrieval rate
of the disk and the consumption rate of the clients differ, the data retrieved from disk need to be temporarily
stored in main memory, which is an important cost factor in a video server. Video data must be retrieved from
disks in such a way that neither buffer starvation nor overflow occurs for all concurrent video streams. In this
paper we calculate the required buffer for the GSS scheduling algorithm for multiple streams retrieved from
multiple disk server nodes. We prove analytically that shared buffer management reduces, in comparison
with the dedicated buffer management, the required buffer by up to 50%.

1 Introduction

Large scale video server can contain hundreds of disks and support thousands of concurrent clients. Because
of the synchronous nature of multimedia streams and the asynchronous nature of data retrieval, main memory
is needed where video information is stored before transmission onto the network. Since main memory is very
expensive, a cost effective video server architecture must minimize the total amount of main memory. In this
paper, we calculate the buffer requirement for constant bit rate video streams for the case of single or multiple
streams and single or multiple disks. The calculations are analytical and assume the worst case.

2 Video Server Architecture and Environment Parameters

An important issue designing a large scale video server is its scalability. Such a video sever comprises many
server nodes (server array). Each node contains a set of disks (disk array). To achieve perfect load balancing,
every video is stored over all server nodes. To retrieve video data from the video server, all server nodes send
substreams of the required video stream in a fixed order to the client. For more details about the server array
design see [BB96].

To satisfy the increasing demand for bandwidth and admit more concurrent clients, new server nodes have to
be added into the video server. Thus, the total number of disks become higher. Further, when we distribute a
video over all available disks of the server, the number of seek events of video data inside the disks increases as
the total number of disks increases. Consequently, the seek times, which are added to the latency, increase too.
Additionally we need very large buffer space to support all substreams retrieved from all disks. To overcome
these problems, we propose to divide the whole video servetimdependent groups, calleetrieval groups.

Figure 1 shows an example of the proposed video server architecture that containkes with respectively a

set of disks. Disks of a retrieval groyp(g € [1..G]) belong to different nodes. In this way, the load balancing

in terms of storage volume and required bandwidth is conserved over all nodes of the server array. During a time
interval calledservice round each client is served from a single retrieval group. During the next service round,
the next retrieval group has to serve this client. We assume round robin to order the retrieval groups. It should
be mentioned that the amount of buffer required for one video stream (one client) does not depend on the total
number of disks maintaining in the server, but only on the retrieval group size (number of disks inside a retrieval

group).

i
L] Main Memory

illiallia 0 [0 0] S
008 8080 .
.00 iRl
818 8 T e
NN][]

Network

Pt I ooy
- ~ I \

I

Figure 1: Video Server Architecture.

We introduce now all parameters needed in this paper to calculate the total buffer by the server array that supports
many concurrent clients.

e D: The total number of disks in the whole server array.
¢ d: Denotes a single disk, whedec [1..D]

e N: The total number of server nodes in the server array.
¢ n: Denotes the server nodeandn € [1..V]

e D,: Number of disks that belong to the server nadeWe assume that our video server contains only
homogeneous server nodes and the whole number of disks is a multiple of the number of nodes. Thus:
¥n € [1..N]: D, = D/N

e S;: Denotes the-th video stream. the maximum valuesaddepends on the system throughput (the number
of admitted streams or clients).

e by: The size of the disk retrieval block. A disk retrieval block is the amount of data retrieved for one video
(client) from a single disk during a service round. Its value is a multiple of the physical disk block and
depends on the striping method used (Video-Narrow/Wide-Striping and Segment-Narrow/Wide-Striping).

2

e b,,. The size of the retrieval unit. The retrieval unit is the whole amount of data retrieved for one video
(client) during one service round. It is a multiple of the disk retrieval block and can be read either from
all disks or only from a group of disks of the server. This value influences directly the amount of buffer
needed for one client. When it increases, the required buffer size increases too. Thus, optimizing the
buffer requirement consists on minimizikg,. b,, is a multiple ofb,.. The later discussion will more
focus this issue.

G Number of Retrieval Groups in the server array: Each retrieval unit is read from a set of disks during
a service round. This set of disks is called the retrieval group.

¢: Denotes the Retrieval Group numbere [1..G]

D,: Number of disks that belong to the Retrieval Grauplt also depends on the striping policy and
indicates where the Retrieval Unit is to be read from (during one service round). Like for nodes, we
assume that we only deal with homogeneous Retrieval Group® dmd multiple ofG. Thus the Retrieval
Group size is the same for all Retrieval Groupg: € [1..G] : D, = g. We distinguish the following

cases:

— D, = 1: The whole Retrieval Unit is stored on a single disk. This is the case of the Independent
Retrieval.

— D, = D: The Retrieval Unit is distributed over all disks of the server: the Dependant Retrieval
Technique.

— 1 < D, < D: The Retrieval Unit is distributed over a subset of disks of the server (Dependant
Retrieval).

e ()4 Is the maximal number of clients that can be simultaneously served by thé.disk
o (), Is the maximal number of clients that can be simultaneously served by the Retrievalgsroup

e (): Is the whole number of clients that can be simultaneously served by the video server. The variable
which denotes the Video Streash has the characteristie: € [1..QQ] When the server has only one group
(9 = 1), then we have@), = Q

e 7: Isthe service round size. In this paper, we assume that the service round &f rp IS the playback
rate of every video stream.

During 7, up to(), disk retrieval blocks belonging 1@, Video Streams (clients) are read from a single
disk and put in the server buffer. For the CBR coding algorithm, every service rocad be partitioned
into)4 equalsub-service-rounda as:7 = Q4 * A.

3 Buffer Requirement

Because of the asynchronous nature of data retrieval from the disk, the video server needs to store the retrieved
video information in a buffer before sending it to the sender through the network. Designing a cost effective
video server consists in admitting the maximal number of concurrent video streams for a given amount of
resources. Optimizing the required buffer is a potential factor to reduce server costs. This section gives detailed
buffer calculations. We are the first who exactly calculate the buffer requirement for a multiple disk server array,
where each disk supports ttiple streams and compare tbedicatedbuffer management and tsbaredbuffer
management strategies. We assume round based scheduling algorithms and prove analytically that the buffer
requirement strongly depends on the scheduling policy (Round Robin, SCAN or GSS). Section 3.1 introduces

3

the exclusive and shared buffer management strategies. In section 3.2 we classify round based scheduling
algorithms into order- (OCS), non-order- (NOCS) and semi-order-conserving (SOSC) algorithms. Since the
paper space is limited, we only analyze the buffer requirement for SOCS algorithms in section 3.3.

3.1 Exclusive and Shared Buffer Management

In the following, we list the functions needed to compute the buffer requirement regarding multiple streams and
multiple disks. We make the difference between the two different buffer management strategeesitiséese

and thesharedbuffer management. The exclusive buffer management does not take into account the dependency
of multiple video streams or multiple disks and assumes that there is a dedicated buffer for every disk and every
stream. The shared buffer management assigns to all video streams a single buffer. We use the guftixe
exclusive buffer management and the suffix; for the shared buffer management. Furthermore, we introduce

the corresponding formulas for the different functions.

e B...(s,d): exclusive buffer needed to support the video streasarved by the disK.

e Bgu-4(s,d): shared buffer needed to support the video streasarved by the disk. Because we only
consider a single video stream, there can be no buffer sharing. Thus:

Bprd (57 d) = Beya (57 d) (1)

e B...(d): exclusive buffer needed to support te video streams served by the digk
Qa
Bexcl(d) = Z Bewcl(sv d) = Qd : Beaccl(87 d) (2)
s=1

e Bgu-q(d): shared buffer needed to support the video streams served by the digk We consider the
worst case buffer situation:

Qa
Bshra (d) = max(z Bshrd(57 d)) (3)

s=1

e B.,.(s,D,): exclusive buffer expected to support the video streasarved by the server. (we take the
general case, where a video stream only néedef the D disks of the server:

Bexcl(57 Dg) = Dg : Bexcl(57 d) (4)

e Bg.q(s,D,): shared buffer needed to support the video streaserved by the server. (we take the
general case, where a video stream only néggdef the D disks of the server. There is no buffer sharing
possible, when we assume a single stream:

Bshrd (57 Dg) = Bexcl(57 Dg) = Dg : Bshrd (57 d) (5)

e B.,(D,): exclusive buffer needed to suppdnt, disks. D, can take values between 1 ahd In this
case, there ar@,, video streams that can be supported. Whgr= D then), = ():

Dy Qq Qg Dy

Qg
Bever(Dg) = (D (D Bewet(s,d))) = (D (D Bea(s, d))) = Z_: Begei (s, Dy) (6)

d=1 s=1 s=1 d=1

e Bg.q4(D,): shared buffer needed to suppét} disks.D, can take values between 1 afid In this case,
there arey), video streams that can be supported. Wﬁ)@n: D then@, = Q.

Qg Dy

Dg g
Bgpra(Dy) = max Z ZBshrd s,d))) = maw(Z(Z Bishra(s, d))) @)

d=1 s=1 s=1 d=1

To calculate the total buffer requirement for the whole video server, wéuseD,, - G. Thus the amount of

buffer needed to support thie disks of the server is a multiple of the buffer requirement for a retrieval group
(D, disks). LetB.,« (D) and B, (D) denote the buffer values of the whole video server respectively for the
exclusive and the shared buffer model. It is important to know that the amount of buffer needed for the whole
video server is the sum of the amounts of buffer needed to support every retrieval group independently from the
others.

G

excl ZBexcl =G- Bexcl(D) (8)
g=1
G

shrd Z shrd =G- Bshrd(D) (9)

3.2 Order and Non-order Conserving Scheduling

The required amount of buffer depends on the number of clients that can be simultaneously served. It also
depends on the scheduling algorithm that determhmes data is retrieved from the disks. We classify the
existing round-based scheduling algorithms depending on whetherdbein which the data is read for the
different streams is maintained from round to round. We distinguish the following classes:

e Order Conserving Scheduling algorithn@Q@9: With OCS, the retrieval of video streams happens in a
round robin fashion respectindgiaed orderfor all service rounds. An example of this class is Rmund
Robinscheduling algorithm [NY94].

e Non-Order Conserving Scheduling algorithndQCS: With NOCS, concurrent video streams are re-
trieved in different orders during different service rounds. This allows to minimize the seek times that
takes the physical disk head and therefore to increase the maximal number of admitted S(eanis.

a NOCS algorithm [Mou96].

e Semi-Order Conserving Schedulin8@C$. NOCS algorithms minimize the latency overhead. OCS
optimize the buffer because of the fixed order of data retrieval. A combination of NOCS and OCS resultsin
the SOCS class. In [YCK93] the GSS algorithm was proposed as a typical example of a SOCS algorithm.

3.3 Buffer Requirement for SOCS Algorithms

We consider GSS as example of a SOCS algorithm. With GSS, the order of block retrieval from disks is not
conserved between single video streams, but between sets of ther®.; Thecks are grouped intb sets and

the order, in which the sets are set to the buffer is constant for all service rounds. The order of video stream
belonging to the same set can change inside this set during different service rounds. A service round is therefore
partitioned ink equal round-groups. We assume tfatis a multiple ofk. Let have@); = m - k£ where mis an

integer (compare with [TPBG93]).

Dedicated SOCS-buffer requirement for the video streans served from the diskd Let us compute the
maximal amount of buffer needed to serve one video stream retrieved from one disk (figure 2(a)). We analyze
two consecutive service rounds in terms of the arrival and the consumption of multiple video streams to and
from the buffer. Assume that,;, is the minimal time between two arrivals to the buffer serving the same client.
Thus we havet,,;, = ((’“;1)) ST+ (é) r=(1+ i _ %) o

We compute the required buffer by computing the amount of data contained in the buffer at the worst case:
After ¢,,,i,,, the buffer content equabs, — (1 + 5~ — 1) -bar = (— g7) - bar (UP 0L, (1 + 5= — 1) - bar

was consumed from the buffer).

After ¢,,i, + 55— the buffer content equals, + (+— 7)) bar — @ - by, We finally derive the maximal buffer

. ¢ ! . Qua
for a single video stream served from a single disk as follows:

1 2
Bewcl(sv d) = bdr : (1 + - - _) = Bshrd(57 d) (10)
ko Qu

Dedicated SOCS-buffer requirement for the(),; video streams served from the diski

& 12
exrc d = exrc 7d — b et - —
Bege(d) S;B 1(8,d) = Qg - gy - (1 + p Qd) (11)

Dedicated SOCS-buffer requirement for the video streanms served from D,, disks

1 2
Bexcl(57 Dg) = Dg : Bexcl(57 d) = Dg : bdr : (1 + E - @) (12)

Dedicated SOCS-buffer requirement forQ), video streams served fromD, disks

Qg
1 2
Bexcl(Dg) = Dg : E Bmaw(57d) = D; : Qd : bdr : (1 + E - Qd) (13)
s=1

Dedicated SOCS-huffer requirement for all¢) video streams served from alll) disks

Bexcl(D) =G 'Bexcl(Dg) =D- Dg 'Qd : bdr . (1‘|’ % - %) (14)

Shared SOCS-buffer requirement for the (), video streams served from the diski : To compute the

amount of buffer needed, we must take into account that buffer starvation must be avoided. With the SOCS
algorithm, i.e. GSS, the retrieval order only changes inside a group. In the following, we calculate the worst
case amount of buffer needed while using the shared buffer management (figure 2(b)). Inside a group of retrieved
streams, the order of streams is not conserved during two consecutive service rounds. Let us consider the first
service round. Because we do not know the order of retrieval of streams during the next service round, we
assume for each of they the worst case (retrieval of the stream as late as possible during the next service round).
To be sure that there is no buffer starvation, the consumption time must be delayed. The additional delay for a
stream depends on its retrieval position inside a group. Let ddhdte earliest time, at which the consumption

of all streams of a group can begin.

For the first group:7y = (3) — (g;), for the second group?, = (37) - (g;) and for thek' group:

T = (%) - (3;)

group 1

group k

group 1

group k

stream 1

stream 2

stream 3

stream Qd

stream 2

stream 1

stream 4

stream (Qd-1)

Tmin

group 1

service round (k)

group 2

group k

service round (k+1)

! tau

stream 1

tau/ Qd

stream 2

tau/k

_(tau/ k -tau / Qd)

streamm

stream (m+1)

stream (m+2)

tau/k

stream 2m

- (2tau/ k- tau/ Qd)

stream (Qd-m)

jstream (Qd-m+1)

tau/k

_ (ktau /k - tau / Qd)

stream Qd

streamm

stream 2

stream 1

[(k-1) /K] . tau

first service round

second service round

(a) Aworst case example of an SOCS buffer occupancy scenariab) The Retrieval of Video Streams from a Single Disk for GSS
during a service round

Figure 2: Data Retrieval for GSS.

Now, lets compute the amount of data contained in the buffer at thertifafter a service round): This is the
difference between the amount of data written into the buffer from the diBks:{) and the amount of data
read from the buffer and sent to the clie®}.{,4).
It is obvious thatB,,,;;c = Qg - b4,
The calculation of the amount of data consunigd, ; up-tor is more complicated. To derive this, we calculate
first for every group the amount of data consume:

e Forgroup 1:

— The consumption duration of the first streams is- — (%&=L) .7 =7 (1 —

— The amount of data consumediis- (1 — M)

e For group 2:

— The consumption duration of the secandstreams is- — (

— The amount of data consumedis- (1 — Z7=1

e For group k:

— The consumption duration of té” group ist — (

Qa

Qa

7

Qa
. bdr

)'bdr

Zom=ly . =7 (1 -

Qa

2-m—1

Qa

m—1)

2-m—1
[
-1
(1 i—l%d)

. km—1 -1
— The amount of data consumediis- (1 — %) “bgr=m- (1 - %) - by,
This allows as to calculatB, ., q: Breqd = Zf (mebg - (1= (”571))
Consequently we derive the amount of data contained in the buffer attifve use the equatiold); = m - k

(J-m—-1)

Qa)

k
Bshrd (d) = Bwrite - Bread = Qd : bdr - Z m- bdr ' (1 -

k .
= Qd'bdr_m'bdr'Z(Qd—l_lQ)d_]‘m

=1

by (@D kGt

T Qe Qa Qa 5)
-bd 1 [
- Qd'bdr—Qdk r_((k.(Qcé)—L-))_(;_))
= Qd'bdr_(bdf"(Qd‘|‘1))—|-(@d'bd27"'lik+1))

ba, - ba, - 111
N (szd)+(dQ-gd)_de:Qd'bdr'S 2 E Q)

~ Deald (15)

(m k-(k+1)

Shared SOCS-buffer requirement for(), video streams served fromD,, disks

Dy Qy Dy
Bowa(Dy) = maz(D_ (D Bspra(s, d))) = maz(d_(Dy - Bopra(d)))
d=1 s=1 d=1
1 1 1
= Dg'(DQ'BSth(d)):Dj'Qd'bdr'(2+ﬂ— @)
Beva(Dy)

5 (16)

Shared SOCS-buffer requirement for all) video streams served from allD disks

1 1
Bshrd(D) = G'Bshrd(Dg):D'Dg'Qd'bdr (+ﬁ_@)

Beaccl (D)

. (17)

4 Conclusion

In this work:
¢ We calculated the buffer requirement for multiple disk server arrays to support multiple streams.

e The buffer calculations assume that buffer starvation never occurs. We compared the exclusive and shared
buffer management strategies and proved analytically that buffer sharing reduces the buffer requirement
by 50 % for the GSS algorithm.

We considered also the Round Robin and SCAN algorithms and proved the benefit of buffer sharing compared
to dedicated buffer management.

References

[BB96] Chr. Bernhardt and E. W. Biersack. The server array: A scalable video server architecture. In W. Ef-
felsberg, O. Spaniol, A. Danthine, and D. Ferrari, editétigh-Speed Networking for Multimedia
Applications Kluwer Publishers, Amsterdam, The Netherlands, March 1996.

[Mou96] Antoine Mourad. Issues in the design of a storage server for video-on-deMaltimedia Systems
4(2):70-86, 1996.

[NY94] R.T.NgandJ. Yang. Maximizing buffer and disk utilization for news-on-demandrdérc. 20th
VLDB, pages 451-462, Santiago, Chile, 1994.

[TPBG93] Fouad A. Tobagi, Joseph Pang, Randall Baird, and Mark Gang. Streaming raid — a disk array
management system for video files. Hirst International Conference on Multimedidnaheim,
California, August 1993.

[YCK93] Philip S. Yu, Mong-Song Chen, and Dilip D. Kandlur. Grouped sweeping scheduling for dasd-based
multimedia storage managemeACM Multimedia System&(3):99-108, 1993.

