
Hierarchical Peer-to-peer Systems

L. Garćes-Erice1, E.W. Biersack1, P.A. Felber1,
K.W. Ross2, and G. Urvoy-Keller1

1 Institut EURECOM, 06904 Sophia Antipolis, France
{garces|erbi|felber|urvoy }@eurecom.fr

2 Polytechnic University, Brooklyn, NY 11201, USA
ross@poly.edu

Abstract. Structured peer-to-peer (P2P) lookup services organize peers into a
flat overlay network and offer distributed hash table (DHT) functionality. Data
is associated with keys and each peer is responsible for a subset of the keys. In
hierarchical DHTs, peers are organized into groups, and each group has its au-
tonomous intra-group overlay network and lookup service. Groups are organized
in a top-level overlay network. To find a peer that is responsible for a key, the
top-level overlay first determines the group responsible for the key; the responsi-
ble group then uses its intra-group overlay to determine the specific peer that is
responsible for the key. We provide a general framework and a scalable hierarchi-
cal overlay management. We study a two-tier hierarchy using Chord for the top
level. Our analysis shows that by using the most reliable peers in the top level,
the hierarchical design significantly reduces the expected number of hops.

1 Introduction

Peer-to-peer (P2P) systems are gaining increased popularity, as they make it possible to
harness the resources of large populations of networked computers in a cost-effective
manner. A central problem of P2P systems is to assign and locate resources among
peers. This task is achieved by a P2Plookup service.

Several important proposals have been recently put forth for implementing dis-
tributed P2P lookup services, including Chord [1], CAN [2], Pastry [3] and Tapestry [4].
In these lookup services, each key for a data item is assigned to the live peer whose
node identifier is “closest” to the key (according to some metric). The lookup service
determines the peer that is responsible for a given key. The lookup service is imple-
mented by organizing the peers in a structured overlay network, and routing a message
through the overlay to the responsible peer. The efficiency of a lookup service is gener-
ally measured as a function of the number of peer hops needed to route a message to the
responsible peer, as well as the size of the routing table maintained by each peer. For
example, Chord requiresO(log N) peer hops andO(log N) routing table entries when
there areN peers in the overlay. Implementations of the distributed lookup service are
often referred to asDistributed Hash Tables (DHTs).

Chord, CAN, Pastry and Tapestry are all flat DHT designs without hierarchical rout-
ing. Each peer is indistinguishable from another in the sense that all peers use the same

rules for determining the routes for lookup messages. This approach is strikingly differ-
ent from routing in the Internet, which uses hierarchical routing. Hierarchical routing in
the Internet offers several benefits over non-hierarchical routing, including scalability
and administrative autonomy.

Inspired by hierarchical routing in the Internet, we examine two-tier DHTs in which
(i) peers are organized in disjoint groups, and(ii) lookup messages are first routed to
the destination group using an inter-group overlay, and then routed to the destination
peer using an intra-group overlay.

We present a general framework for hierarchical DHTs. Each group maintains its
own overlay network and intra-group lookup service. A top-level overlay is defined
among the groups. Within each group, a subset of peers are labeled as “superpeers”.
Superpeers, which are analogous to gateway routers in hierarchical IP networks, are
used by the top-level overlay to route messages among groups. We consider designs
for which peers in the same group are locally close. We describe a cooperative caching
scheme that can significantly reduce average data transfer delays. Finally, we also pro-
vide a scalable algorithm for assigning peers to groups, identifying superpeers, and
maintaining the overlays.

After presenting the general framework, we explore in detail a particular instantia-
tion in which Chord is used for the top-level overlay. Using a novel analytical model,
we analyze the expected number of peer hops that are required for a lookup in the hier-
archical Chord instantiation. Our model explicitly captures inaccuracies in the routing
tables due to peer failures.

The paper is organized as follows: We first discuss related work in Section 2. We
then present the general framework for hierarchical DHT’s in Section 3. We discuss
the particular case of a two-tier Chord instantiation in Section 4, and we quantify the
improvement of lookup latency due to the hierarchical organization of the peers.

2 Related Work

P2P networks can be classified as being either unstructured or structured. Chord [1],
CAN [2], Pastry [3], Tapestry [4], and P-Grid [5], which use highly structured overlays
and use hashing for targeted data placement, are examples of structured P2P networks.
These P2P networks are all flat designs (P-Grid uses a virtual distributed search tree
only for routing purposes). Gnutella [6] and KaZaA [7], whose overlays grow organi-
cally and use random data placement, are examples of unstructured P2P networks.

Ratnasamy et al. [8] explore using landmark nodes to bin peers into groups. The
basic idea is for each peer to measure its round-trip time (RTT) toM landmarks, order
the resulting RTTs, and then assign itself to one ofM ! groups. Our hierarchical DHT
schemes bear little resemblance to the scheme in [8]. Although in [8] the peers are
organized in groups according to locality, the lookup algorithm applies only to CAN,
does not use superpeers, and is not a multi-level hierarchical algorithm.

Our approach has been influenced by KaZaA, an enormously successful unstruc-
tured P2P file sharing service. KaZaA designates the more available and powerful peers
assupernodes. In KaZaA, when a new peer wants to join, it bins itself with the existing

supernodes, and establishes an overlay connection with the supernode that has the short-
est RTT. The supernodes are connected through a top-level overlay network. A similar
architecture has been proposed in CAP [9], a two-tier unstructured P2P network. Our
design is a blend of the supernode/hierarchy/heterogeniety of KaZaA with the lookup
services in the structured DHTs.

Brocade [10] proposes to organize the peers in a two-level overlay. All peers form a
singleoverlayOL. Supernodes are typically well connected and situated near network
access points, forming another overlayOH . Brocade is not truly hierarchical sinceall
peers are part ofOL.

Finally, Castro et al. present in [11] a topology-aware version of Pastry [3]. At
each hop Pastry presents multiple equivalent choices to route a request. By choosing
the closest (smallest network delay) peer at each hop, they try to minimize network
delay. However, at each step the possibilities decrease exponentially, so delay is mainly
determined by the last hop, usually the longest. We propose large hops to first get to a
group, and then shorter local hops inside the group, leading to a more natural caching
scheme, as shown later in section 3.4.

3 Hierarchical Framework

We begin by presenting a general framework for a hierarchical DHT. Although we focus
on a two-tier hierarchy, the framework can be extended to a general tier hierarchy.

Let P denote the set of peers participating in the system. Each peer has a node
id. Each peer also has an IP address (dynamic or not). The peers are interconnected
through a network of links and switching equipment (routers, bridges, etc.) The peers
send lookup query messages to each other using a hierarchical overlay network, as
described below.

The peers are organized into groups (see group management in Section 3.3). The
groups may or may not be such that the peers in the same group are topologically close
to each other, depending on the application needs. Each group has a unique group id.
Let I be the number of groups,Gi the peers in groupi, andgi the id for groupi.

The groups are organized into atop-level overlay networkdefined by a directed
graph(X, U), whereX = {g1, . . . , gI} is the set of all the groups andU is a given set
of virtual edges between the nodes (that is, groups) inX. The graph(X, U) is required
to be connected, that is, between any two nodesg andg′ in X there is a directed path
from g to g′ that uses the edges inU . It is important to note that this overlay network
defines directed edges among groups and not among specific peers in the groups.

Each group is required to have one or moresuperpeers. Let Si ⊆ Gi be the set
of superpeers in groupi. Our architecture allows forSi = Gi for all i = 1, . . . , I,
in which case all peers are superpeers. We refer to architectures for which all peers
are superpeers as thesymmetric design. Our architecture also allows|Si| = 1 for all
i = 1, . . . , I, in which case each group has exactly one superpeer. LetRi = Gi − Si

be the set of all “regular peers” in groupgi. For non-symmetric designs (Si 6= Gi), an
attempt is made to designate the more powerful peers as superpeers. By “more power-
ful,” we primarily mean the peers that are up and connected the most (and secondarily,
those with high CPU power and/or network connection bandwidth). The superpeers are

g

S

1
g

2

2

3

3

4
4

1

g

S

g
S

S

1g
Group

4

Group
CAN

g

r1

Group
Chord

g3

< 102 peers

r1

r2

r3

hash

r1
r2

r1

s
s 3

r2

r2

r3

r4

Top−level overlay network

s 4

1s

2− 10

List of peers
in group

r3

r2

r1

2g

CARP
Group

peers3> 10

peers3> 10

3

r3

102 peers

Fig. 1. Communication relationships between groups in the overlay network and superpeers in
neighboring groups (left). On the right, a ring-like overlay network with a single superpeer per
group. Intra-group lookup is implemented using different lookup services (CARP, Chord, CAN).

gateways between the groups: they are used for inter-group query propagation. To this
end, we require that ifsi is a superpeer inGi, and(gi, gj) is an edge in the top-level
overlay network(X, U), thensi knows the name and the current IP address of at least
one superpeersj ∈ Sj . With this knowledge,si can send query messages tosj . If p is
a regular peer, thenp can only reach other groups through superpeers. Figure 1 (left)
shows a top-level overlay network and possible communication relationships between
the corresponding superpeers. Figure 1 (right) shows an example for which there is one
superpeer in each group and the top-level overlay network is a ring. Within each group
there is also an overlay network among the peers in the group.

3.1 Hierarchical Lookup Service

Consider a two-level lookup service. Given a keyk, we say that groupgj is responsible
for k if gj is the “closest” group tok among all the groups. Here “closest” is defined by
the specific top-level lookup service (e.g., Chord, CAN, Pastry, or Tapestry).

Our two-tier DHT operates as follows. Suppose a peerpi ∈ Gi wants to determine
the peer that is responsible for a keyk.

1. Peerpi sends a query message to one of the superpeers inSi.
2. Once the query reaches a superpeer, the top-level lookup service routes the query

through(X, U) to the groupGj that is responsible for the keyk. During this phase,
the query only passes through superpeers, hopping from one group to the next.
Eventually, the query message arrives at some superpeersj ∈ Gj .

3. Using the overlay network in groupj, the superpeersj routes the query to the peer
pj ∈ Gj that is responsible for the keyk.

This approach can be generalized to an arbitrary number of levels. A request is first
routed through the top-most overlay network to some superpeer at the next level below,
which in turn routes the request through its “local” overlay network, and so on until the
request finally reaches some peer node at the bottom-most level.

The hierarchical architecture has several important advantages when compared to
the flat overlay networks.

– Exploiting heterogeneous peers:By designating as superpeers the peers that are
“up” the most, the top-level overlay network will be more stable than the corre-
sponding flat overlay network.

– Transparency:When a key is moved from one peer to another within a group, the
search for the peer holding the key is completely transparent to the top-level algo-
rithm. Similarly, if a group changes its intra-group lookup algorithm, the change is
completely transparent to the other groups and to the top-level lookup algorithm.
Also, the failure of a regular peerri ∈ Gi (or the appearance of a new peer) will be
local to Gi; routing tables in peers outside ofGi are not effected.

– Faster lookup time:Because the number of groups will be typically orders of mag-
nitude smaller than the total number of peers, queries travel over fewer hops.

– Less messages in the wide-area:If the most stable peers form the top-level DHT,
most overlay reconstruction messages happen inside groups, which gather peers
that are topologically close. Less hops per lookup means also less messages ex-
changed. Finally, content caching inside groups can further reduce the number of
messages that need to get out of the group.

3.2 Intra-Group Lookup

The framework we just described is quite flexible, allowing for different independent
intra-group overlays:

If a group has a small number of peers (say, in the tens), each peer could track
all the other peers in its group (their ids and IP addresses); CARP [12] or consistent
hashing [13] could be used to assign and locate keys within the group. The number
of steps to perform such an intra-group lookup in the destination group isO(1) (g2 in
Figure 1, right).

If the group is a little larger (say, in the hundreds), then the superpeers could track
all the peers in the group. In this case, by forwarding a query to a local superpeer, a peer
can do a local lookup inO(1) steps (g1 in Figure 1, right).

Finally, for larger groups, a DHT such as Chord, CAN, Pastry, or Tapestry can be
used within the group (g3 andg4 in Figure 1, right side). A local lookup takesO(log M)
hops, forM peers in the group.

3.3 Hierarchy and Group Management

We now briefly describe the protocols used to manage groups: consider peerp joining
the hierarchical DHT. We assume thatp is able to get the idg of the group it belongs to
(e.g.,g may correspond to the name ofp’s ISP or university campus). First,p contacts
and asks another peerp′ already part of the P2P network to look up keyg. Following
the first step of the hierarchical lookup,p′ locates and returns the IP address of the
superpeer(s) of the responsible group. If the group id of the returned superpeer(s) is
preciselyg, thenp joins the group using the regular join mechanisms of the underlying
intra-group DHT; additionally,p notifies the superpeer(s) of its CPU and bandwidth
resources. If the group id is notg, then a new group is created with idg andp as only
(super)peer.

In a network withm superpeers per group, the firstm peers to join a groupg be-
come the superpeers of that group. Because superpeers are expected to be the most
stable nodes, we let superpeers monitor the peers that join a group and present “good”
characteristics. Superpeers keep an ordered list of the superpeer candidates: the longer
a peer remains connected and the higher its resources, the better a superpeer candidate
it becomes. This list is sent periodically to the regular peers of the group. When a super-
peer fails or disconnects, the first regular peer in the list becomes superpeer and joins
the top-level overlay. It informs all peers in its group, as well as the superpeers of the
neighboring groups.

We are thus able to provide stability to the top-level overlay using multiple super-
peers, promoting the most stable peers as superpeers, and rapidly repairing the infre-
quent failures or departures of superpeers.

3.4 Content Caching

In many P2P applications, once a peerp determines the peerp′ that is responsible for a
key,p then asksp′ for the file associated with the key. If the path fromp′ to p traverses
a congested or low-speed link, the file transfer delay will be long.

In many hierarchical DHT setups, we expect the peers in a same group to be topo-
logically close and to be interconnected by high-speed links (corporate or university
campus). By frequently confining file transfers to intra-group transfers, we reduce traf-
fic loads on the access links between the groups and higher-tier ISPs.

Such hierarchical setups can be naturally extended to implement cooperative caching:
when a peerp ∈ Gi wants to obtain the file associated with some keyk, it first uses
groupGi’s intra-lookup algorithm to find the peerp′ ∈ Gi that would be responsible
for k if Gi were the entire set of peers. Ifp′ has a local copy of the file associated with
k, it returns the file top; otherwise,p′ obtains the file (using the hierarchical DHT),
caches a copy, and forwards the file top. Files are cached in the groups where they have
been previously requested. Standard analytical techniques to quantify the reduction in
average file transfer time and load on access links can be found in [14].

4 Chord Instantiation

For the remainder of this paper we focus on a specific top-level DHT, namely, Chord.
In Chord, each peer and each key has am-bit id. Ids are ordered on a circle modulo
2m (see Figure 2, left). Keyk is assigned to the first peer whose identifier is equal to or
follows k in the identifier space. This peer is called the successor of keyk. Each peer
tracks its successor and predecessor peer in the ring. In addition, each peer tracksm
other peers, calledfingers; specifically, a peer with idp tracks all the successors of the
ids p + 2j−1 for eachj = 1, . . . ,m (note thatp’s first finger is in fact its successor).
The successor, predecessor, and fingers make up the Chord routing table.

During a lookup, a peer forwards a query to the finger with the largest id that pre-
cedes the key value. The process is repeated from peer to peer until the peer preceding
the key is reached, which is the “closest” peer to the key. When there areP peers, the
average number of hops needed to reach the destination isO(log P) [1].

4.1 Inter-Group Chord Ring

In the top-level overlay network, each “node” is actually a group of peers. This implies
that the top-level lookup system must manage an overlay of groups, each of which is
represented by a set of superpeers. Chord requires some adaptations to manage groups
instead of nodes. We will refer to the modified version of Chord as “top-level Chord”.

finger i−1

finger i+1

n

finger i

)
in+2successor(

)
i−1

n+2successor(

)n+2successor(
i−2

Group

Table
Routing

g

fingers

pred.

succ.

SS

S
r

r

r

rr

SS

r
r

S

S S

rr

r

r

r

Fig. 2.Normal Chord routing (left) and hierarchical Chord routing (right).

Each node in top-level Chord has a predecessor and successorvector, holding the
IP addresses of the superpeers of the predecessor and successor group in the ring, re-
spectively. Each finger is also a vector. The routing table of a top-level Chord with two
superpeers per group is shown in Figure 2 (right).

The population of groups in the top-level overlay network is expected to be rather
stable. However, individual superpeers may fail and disconnect the top-level Chord ring.
When the identity of the superpeersSi of a groupgi changes, the new superpeers ea-
gerly update the vectors of the predecessor and successor groups. This guarantees that
each group has an up-to-date view of its neighboring groups and that the ring is never
disconnected. Fingers improve the lookup performance, but are not necessary for suc-
cessfully routing requests. We lazily update the finger tables when we detect that they
contain invalid references (similarly to the lazy update of the fingers in regular Chord
rings [1]). It is worth noticing that the regular Chord must perform a lookup operation to
find a lost finger. Due to the redundancy that our multiple superpeer approach provides,
we can choose without delay another superpeer in the finger vector for the same group.

To route a request to a group pointed to by a vector (successor or finger), we choose
a random IP address from the vector and forward the request to that superpeer, thus
balancing load among superpeers.

4.2 Lookup Latency with Hierarchical Chord

In this section, we quantify the improvement of lookup latency due to the hierarchical
organization of the peers. To this end, we compare the lookup performance of the flat
Chord and a two-tier hierarchical DHT in which Chord is used for the top level overlay,
and arbitrary DHTs are used for the bottom level overlays. For each bottom level group,

we only suppose that the peers in the group are topologically close so that intra-group
lookup delays are negligible.

In order to make a fair comparison, we suppose that both the flat and hierarchical
DHTs have the same number of peers, denoted byP . Let I be the number of groups
in the hierarchical design. Because peers are joining and leaving the ring, the finger
entries in the peers will not all be accurate. This is more than probable, since fingers
are updated lazily. To capture the heterogeneity of the peers, we suppose that there are
two categories of peers:Stable peers, for which each peer is down with probabilityps.
Instable peers, for which each peer is down with probabilitypr, with pr � ps. We
suppose that the vast majority of the peers are instable peers. In real P2P networks,
like Gnutella, most peers just remain connected the time of getting data from other
peers [15]. For the hierarchical organization, we select superpeers from the set of stable
peers, and we suppose there is at least one stable peer in each group. Because there
are many more instable peers than stable peers, the probability that a randomly chosen
Chord node is down in the flat DHT is approximatelypr. In the hierarchical system, as
all the superpeers are stable peers, the probability that a Chord node is down isps.

To compare the lookup delay for flat and hierarchical DHTs, we thus only need to
consider a Chord ring withN peers, with each peer having the same probabilityp of
being down. The flat DHT corresponds to(N, p) = (P, pr) and the hierarchical DHT
corresponds to(N, p) = (I, ps). We now proceed to analyze the lookup of the Chord
ring (N, p). To simplify the analysis, we assume theN peers are equally spaced on the
ring, i.e., the distance between two adjacent peers is2m

N . Our model implies that when
a peer attempts to contact another in its finger table, the peer in the finger table will be
down with probabilityp, except if this is the successor peer, for which we suppose that
the finger entry is always correct (i.e., the successor is up or the peer is able to find the
new successor. This assures the correct routing of lookup queries).

Given an initial peer and a randomly generated key, let the random variableH de-
note the number of Chord hops needed to reach the target peer, that is, to reach the peer
responsible for the key. LetT be the random variable that is the clockwise distance
in number of peers from the initial peer to the target peer. We want to compute the
expectationE[H]. Clearly

E[H] =

N−1∑
n=0

P (T = n)E[H|T = n] =
1

N

N−1∑
n=0

E[H|T = n] (1)

From (1), it suffices to calculateE[H|T = n] to computeE[H]. Leth(n) = E[H|T =
n]. Note thath(0) = 0 andh(1) = 1. Let jn = max{j : 2j ≤ 2mn

N }. The valuejn

represents the number of finger entries that precede the target peer, excluding finger 0,
the successor. For each of the finger entries, the probability that the corresponding peer
is up isp.

Starting at the initial peer, when hopping to the next peer, the query will advance
d 2jn

2m/N e peers if thejnth finger peer is up; if this peer is down but the(jn − 1)th finger

peer is up, the query will advanced 2jn−1

2m/N e; and so on. Letqn(i) denote the probability
that theith finger is used. We therefore have

h(n) = 1 +

jn∑
i=0

qn(i)h
(
n −

⌈ 2i

2m/N

⌉)
(2)

The probability that theith finger is used is given byqn(i) = pjn−i(1 − p) for i =
1, . . . , jn, and byqn(0) = pjn . Combining Equation 2 with the above expression for
qn(i) we obtain

h(n) = 1 + pjnh(n − 1) + (1 − p)

jn∑
i=1

pjn−ih
(
n −

⌈ 2i

2m/N

⌉)
(3)

Using this recursion, we can calculate all theh(n)’s beginning ath(0) = 0. We then
use Equation 1 to obtain the expected number of hops,E[H].

0
10
20
30
40
50
60
70
80
90

100
110
120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
nu

m
be

r
of

 h
op

s
pe

r
lo

ok
-u

p

Probability of node failure

224 nodes
220 nodes
216 nodes
210 nodes

Fig. 3.Nb. of hops per lookup in Chord.

Flat Hierarchical
pr = 0.5 pr = 0.8 ps = 0

P = 216, I = 210 17 43 5
P = 220, I = 216 22 59 8
P = 224, I = 220 28 83 10
P = 224, I = 216 28 83 8

Fig. 4.Flat vs. hierarchical networks.

In Figure 3, we plot the expected number of hops in a lookup as a function of
the availability of the peers in a Chord system, for different values ofN . With smaller
values ofp, although peers in the ring are not totally reliable, we are still able to advance
quite quickly on the ring. Indeed, while the best finger for a target peer is unavailable
with probabilityp, the probability of the second best choice to be also down isp2, which
is far smaller thanp.

Despite the good scalability of the Chord lookup algorithm in a flat configuration,
the hierarchical architecture can yet significantly decrease the lookup delay. Figure 4
gives the expected number of hops for the flat and hierarchical schemes, for different
values ofP , I, andpr (ps = 0). We suppose in all cases groups ofP

I peers. Since the
number of steps is directly related to the lookup delay, we can conclude that the average
lookup delay is severely improved in the hierarchical DHT.

5 Conclusion

Hierarchical organizations in general improve overall system scalability. In this paper,
we have proposed a generic framework for the hierarchical organization of peer-to-
peer overlay network, and we have demonstrated the various advantages it offers over a
flat organization. A hierarchical design offers higher stability by using more “reliable”
peers (superpeers) at the top levels. It can use various inter- and intra-group lookup al-
gorithms simultaneously, and treats join/leave events and key migration as local events

that affect a single group. By gathering peers into groups based on topological proxim-
ity, a hierarchical organization also generates less messages in the wide area and can
significantly improve the lookup performance. Finally, our architecture is ideally suited
for caching popular content in local groups.

We have presented an instantiation of our hierarchical peer organization using Chord
at the top level. The Chord lookup algorithm required only minor adaptations to deal
with groups instead of individual peers. When all peers are available, a hierarchical or-
ganization reduces the length of the lookup path by a factor oflog P

log I , for I groups and
P peers. A hierarchical organization reduces the length of the lookup path dramatically
when superpeers are far more stable than regular peers.

References

1. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-
to-peer lookup service for internet applications,” inProc. ACM SIGCOMM, 2001.

2. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A scalable content-addressable net-
work,” in Proceedings of SIGCOMM 2001, Aug. 2001.

3. A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems,” inIFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), (Heidelberg, Germany), pp. 329–350, November 2001.

4. B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for fault-tolerant
wide-area location and routing,” Tech. Rep. UCB/CSD-01-1141, Computer Science Divi-
sion, University of California, Berkeley, Apr 2001.

5. K. Aberer, “P-grid: A self-organizing access structure for p2p information systems,” inPro-
ceedings of the Sixth International Conference on Cooperative Information Systems (CoopIS
2001), (Trento, Italy), 2001.

6. “Gnutella.” http://gnutella.wego.com.
7. “Kazaa.” http://www.kazaa.com.
8. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware overlay construc-

tion and server selection,” inProceedings of Infocom’02, (New York City, NY), 2002.
9. B. Krishnamurthy, J. Wang, and Y. Xie, “Early measurements of a cluster-based architecture

for p2p systems,” inACM SIGCOMM Internet Measurement Workshop, (San Francisco, CA),
November 2001.

10. B. Y. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. D. Kubiatowicz, “Brocade: Landmark
routing on overlay networks,” inIn Proceedings of IPTPS’02, (Cambridge, MA), March
2002.

11. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Exploiting network proximity in
peer-to-peer overlay networks,” Tech. Rep. MSR-TR-2002-82, Microsoft Research, One Mi-
crosoft Way, Redmond, WA 98052, 2002.

12. K. W. Ross, “Hash-routing for collections of shared web caches,”IEEE Network Magazine,
vol. 11, 7, pp. 37–44, Nov-Dec 1997.

13. D. Karger, A. Sherman, A. Berkhemier, B. Bogstad, R. Dhanidina, K. Iwamoto, B. Kim,
L. Matkins, and Y. Yerushalmi, “Web caching with consistent hashing,” inEighth Interna-
tional World Wide Web Conference, May 1999.

14. J. F. Kurose and K. W. Ross,Computer Networks: A Top-Down Approach Featuring the
Internet, 2nd edition. Addison Wesley, 2002.

15. E. Adar and B. A. Huberman, “Free riding on gnutella,”First Monday, vol. 5, Oct. 2000.

