
Institut EURECOM
Corporate Communications

2229, route des Crêtes BP 193
06904 Sophia Antipolis

(France)

Research Reporta No 76 — RR-03-076

Background Signature for Sensor Networks

Laurent Bussard and Yves Roudier

June 18, 2003

aEurecoms research is partially supported by its industrial partners: Bouygues Telecom, Fondation d’entreprise
Groupe Cegetel, Fondation Hasler, France Telecom, Hitachi, ST Microelectronics, Swisscom, Texas Instruments, and
Thales

Background Signature for Sensor Networks

Laurent Bussard and Yves Roudier
Institut Eurécom

Corporate Communications
2229, route des Crêtes BP 193

06904 Sophia Antipolis
(France)

{bussard, roudier}@eurecom.fr

June 19, 2003

Abstract

Sensor networks are characterized by lack of
trusted infrastructure and severe hardware lim-
itations in terms of computational power and
memory size. Securing the exchanges between
a set of distributed sensors is challenging. On
one hand, ad hoc infrastructures imply a lack of
a priori trust between entities that can dynam-
ically appear and disappear. In this context, it
is necessary to ensure non-repudiation of origin
and integrity of alarm messages sent by sensors:
asymmetric cryptography must be available. On
the other hand, asymmetric cryptography is too
costly and drastically increases the response time
of sensors. For instance, due to the signature
slowdown, sending a measure or an alarm can
take several seconds. This paper presents a new
approach that allows strong acceleration of sig-
natures by pre-computing the major part of the
signature process. This scheme is based on one-
time signatures and pre-computation of RSA sig-
natures. This paper studies the impact of this
scheme on computation and response time when

a sensor has to send a signed message. Memory
and communication restrictions are taken into
account to find an optimal structure of one-time
key pairs.

1 Introduction

Pervasive computing, ad-hoc networks and sen-
sor networks are exploding in popularity because
they are not only a vision but are becoming a re-
ality. Pervasive computing assumes that smaller
computers are increasingly spreading in our en-
vironment. Being available ubiquitously in the
devices and appliances that we use everyday, this
embedded computing power increases their ca-
pacities. Furthermore, these computers are also
increasingly interconnected into varying range
networks, thus enabling access to a pervasive
flow of information and services. Ad-hoc net-
working assumes that there is no infrastructure
and that each involved device has to provide ser-
vices from network level (e.g. routing packets)
to application level (e.g. displaying data). Sen-
sor networks are more specific in that devices

2

(sensors) have a very small computational power:
sensors are small and cheap chips that are spread
in the environment to provide accurate measures
(e.g. light, heat, and pressure).

Enabling security features in ad-hoc sensor
networks is challenging because of the lack of
infrastructure, the lack of a priori trust among
involved entities and, the lack of computational
power. When sensors send messages that can
be measures or alarms, message integrity and
non-repudiation of origin are necessary: signa-
ture of messages is necessary. It is also neces-
sary to ensure message authentication but com-
mon authentication, which is based on identities,
is meaningless in such an open environment. It
is the reason why certification of sensors is pro-
posed to strongly linking attributes to sensors.
For instance, it is possible to verify that a mes-
sage was sent by a sensor with a given attribute
(e.g. belonging to a given company).

A way to let sensors sign message is required.
This signature has to be very efficient so that
a sensor can send a signed message immedi-
ately when triggered by an external event and
the overall computation cost has to be relatively
small to fit computational limitations of sensors
and/or to limit their energy consumption.

We first give a description of the environ-
ment and security requirements. Section 3 shows
how the combination of one-time signatures and
pre-computed RSA signatures can speed the re-
sponse time of a sensor up. Section 4 describes
other work aiming at accelerating the computa-
tion of signatures. Possible enhancement of the
basic scheme are presented in Section 5: an op-
timal tree of one-time key pairs and a way to
pre-distribute part of the data are proposed. Fi-
nally, Section 6 shows how this signature scheme
can be used for ensuring non-repudiation of ori-
gin and for certifying sensors.

2 Problem Statement

A set of sensors S1 · · ·Sp is deployed in an en-
vironment. Each sensor is in charge of sending
some alert message when an event occurs (tem-
perature increase, proximity detection, etc.). A
set of observers O1 · · ·Oq collects messages sent
by sensors and analyzes those messages. There is
no a priori trust between sensors and observers
that can belong to different domains. There is
no communication infrastructure (ad hoc): sen-
sors and observers can appear and disappear in
the environment (see Figure 1).

Figure 1: Overview of the ad hoc environment:
sensors and observers

Sensors offer a low computation power and
cannot afford crypto-processors. They only have
a small memory and relatively low speed com-
munication channels (wired or wireless). Finally,
sensors need a low consumption rate but are
regularly powered (solar power, kinetic energy,
etc.).

The challenge tackled by this paper is to en-
sure non-repudiation and certification (i.e. sig-
nature) in such a context with fast enough re-
sponse time when an event triggering an alert
message occurs.

3

3 Pre-computing Signatures

3.1 Basic Principle

Sensors are triggered by external events such as
temperature increase, movement, etc. and have
to react quickly by sending a signed message. In
order to shorten the response-time, this paper
proposes a scheme based on one-time signatures
(OTS) [8], which can be computed quickly but
are only usable once. Figure 2 presents this ap-
proach: Before being triggered, the sensor cre-
ates a pair of one-time public and private keys
(OTPK and OTSK) and signs the one-time pub-
lic key with its RSA private key. After being
triggered, the sensor signs in an efficient way the
message with the one-time private key. Next,
the sensor sends the one-time signature of the
message and the RSA signature of the one-time
public key.

Figure 2: Principle of background signatures

Merkle [8] proposed an efficient one-time sig-
nature construction: the signer generates a one-
time private key, which is a vector OTSK =
{R1, . . . , Rn} of n = l + b1 + log2(l)c random
numbers where l is the digest size of the message

to sign. The one-time public key is OTPK =
{h(R1), . . . ,h(Rn)}.

When the signer wants to sign a message m,
he gets the l bit digest h(m), counts the num-
ber of bits set to ’0’ in this digest and appends
this checksum to h(m) so that he obtains a n
bit digest d. This checksum is necessary to en-
sure the integrity of the signed message. Indeed,
the one-time signature scheme allows pretending
that bits set to ’1’ are set to ’0’. The checksum
avoids this attack against the one-time signature
scheme. The signature SIGNOTSK(m) is:

if d[i] = 1 : release Ri 1 ≤ i ≤ n (see Table 1)

For instance, if h(m) = 10110 (thus l = 5 and
n = 8), there are two bits set to ’0’ and the
checksum is 010 then d = 10110010 and the sig-
nature SIGNOTSK(m) = {R1, R3, R4, R7}. The
verifier can check that the received Ri is a sig-
nature done with the private key corresponding
to the one-time public key OTPK:

h(Ri)
?= OTPK[i] ∀i | Ri ∈ SIGNOTSK(m)

We define background signature (BS) as the
combination of pre-computed asymmetric signa-
tures and one-time signatures based on Merkle’s
scheme. Before being triggered, the sensor gen-
erates n random numbers (one-time private key),
computes n hash functions (one-time public key)
and one RSA signature. As shown in Figure 2,
when the sensor is triggered, it computes one
hash function to get the digest of the message
to sign. The one-time signature does not require
more security function.

Background signatures allow to accelerate re-
actions to an event (see 3.2) but the overall cost
of a signature slightly increases in term of size
and computational time (see 3.3):

4

- RSA: m, SIGNSK(m)

- BS : m, SIGNOTSK(m), OTPK, SIGNSK(OTPK)

However, Section 5 shows how the overall cost
can be reduced when one RSA signature is used
for multiple one-time signatures.

PKA public key of entity A
SKA private key of entity A
m[i] ith bit of message m
m1‖m2 concatenation of messages m1

and m2

EK(m) plaintext m encrypted with key
K

h(m) digest of data m with hash func-
tion h

SIGNSK(m) m signed with the private key
SK: SIGNSK(m) = ESK(h(m)).

OTPK one-time public key
OTSK one-time private key
SIGNOTSK(m) one-time signature of plaintext

m (see section 3.1)

Table 1: Cryptographic notations used in this
paper.

3.2 Impact on Response Time

The background signature scheme allows an im-
portant speed-up factor. When the sensor is
triggered by an event, it computes the digest of
the message and releases an average of 1/2 · (l +
log2(l)) pre-computed private factors Ri.

speed-up factor =
Response time of RSA sig

Response time of BS

Figure 3 shows the speed-up factor as a func-
tion of the message size for different key lengths.
Those value have been measured on a Pentium

102 103 104 105 106 107
100

101

102

103

104
Speed up of signature response−time

message size [Bytes]
S

pe
ed

 u
p

fa
ct

or

 512 bits
1024 bits
2048 bits
4096 bits

Key Size

Figure 3: Impact of background signatures on
response time with different key sizes

4 running at 2 GHz with a Java program based
on the cryptographic library Bouncy Castle [6].
Section 3.4 shows that the speed-up ratio is al-
most independent of the chosen platform even
if the response times can strongly vary. When
a 2 kBytes message is signed with RSA (1024
bits), the speed-up factor is about 300. In other
words, a slow sensor that requires 3 seconds to
sign a message can react in 10 milliseconds when
background signature is used. The impact of the
communication bandwidth will be described sub-
sequently.

3.3 Impact on Computation

The basic background signature scheme adds
overhead: the pre-computation of a signature is
more expensive than its computation. Indeed, in
both cases a RSA signature has to be computed
and the former requires the generation of a one-
time key pair. Left of Figure 4 shows the impact

5

on the signature. For instance, a 1024 bit RSA
signature of a 2 kBytes message is 6% more ex-
pensive when background signature is required.
The impact on signature verification is more im-
portant at 130% of overhead for the same mes-
sage. However, it is assumed that signature veri-
fication is only performed by powerful observers.

512 768 1024 15362048 30724096
0

5

10

15

20

25

30

35

40
Impact on Signature Computation

key size [bits]

in
cr

ea
se

 d
ue

 to
 O

TS
 [%

]

 100
 2000
 50000
1000000

512 768 1024 15362048 30724096
0

50

100

150

200

250

300

350

400
Impact on Signature Verification

key size [bits]

in
cr

ea
se

 d
ue

 to
 O

TS
 [%

]

Message size [Bytes]

Figure 4: Impact of background signatures on
computation with different message size

Section 5 shows how it is possible to reduce
the cost of background signatures by using one
asymmetric operation to sign a set of one-time
public keys.

3.4 Platform Dependences

For the sake of simplicity and efficiency, mea-
sures presented in this paper have been done
on a workstation. However, the ratio between
signatures and digest is relatively independent
of the memory and computational power. Ta-
ble 2 compares some software approaches: mea-
sures on a workstation (Pentium 4 with J2SE

1.4 and Bouncy Castle), measures on a PDA
(iPaq 200 MHz with Jeode and Bouncy Castle),
and estimation based on results of an experimen-
tal smart card [3] (C implementation, RISC 25
MHz). When a crypto-processor is used, this
ratio can decrease down to 500 but it is still in-
teresting to use background signatures.

Platform RSA-Sig [s] Hash [s] Ratio
Workstation 19 · 10−3 5 · 10−6 3800
PDA 190 · 10−3 120·10−6 1600
Smart card 490 · 10−3 350·10−6 1400

Table 2: Ratio between signature (RSA 1024)
and digest (SHA-1 of 512 bit message) on differ-
ent platforms

3.5 Impact of Event Occurrence

Figure 5 shows the result of a simulation based
on the previous measures. The response time is
a function of the frequency of event occurrence.
RSA is compared with different types of back-
ground signatures. The message size is 2 kBytes.
Top and bottom plots respectively use 512 bit
and 1024 bit keys. The following items describe
all simulation of Figure 5:

- RSA: a whole RSA signature is done each
time an event occurs. With a 512 bit RSA
key, the signature lasts 3 ms on the worksta-
tion and thus, when the frequency of events
is bigger than 330 signature per second, the
response time grows exponentially (see top
of Figure 5). With RSA 1024, a signature
lasts 19 ms and thus the frequency of events
should not be more than 52 signature per
second (see bottom of Figure 5).

- Basic BS : the basic background signature

6

101 102 103
0

0.5

1

1.5

2

2.5

3
x 104

Signature request frequency (RSA key size = 512 bits)

R
es

po
ns

e
tim

e
[u

s]

101 102 103
0

1

2

3

4

5

6

7

8
x 104

Signature request frequency (RSA key size = 1024 bits)

R
es

po
ns

e
tim

e
[u

s]

RSA
Basic BS
BS, Buff=3
BS, Buff=20
Set BS, Buff=2
Set BS, Buff=4
Set BS, Buff=20

1)

2)

2)

1)

3) max

3) max

Figure 5: Impact of signature request frequency
[sig/s] on response time

scheme is the one described previously. The
sensor prepares one pair of one-time keys
and signs the one-time public key with its
RSA private key. When an event occurs,
the one-time private key is used then a new
one-time key pair is generated and signed.
Section 3.3 shows that the creation of the
one-time key pair adds some overhead that
limits the frequency of event occurrence.

- BS, Buff 3 : background signature with sig-
nature buffer of size 3. The sensor can store
up to three one-time key pairs in a buffer.
The sensor prepares pairs of one-time keys
and signs each one-time public key. When
an event occurs, a one-time private key is
used and a new one-time key pair can be

generated and signed.

- BS, Buff 20 : background signature with sig-
nature buffer of size 20. The sensor can
store up to twenty one-time key pairs in a
buffer.

- Set BS, Buff 2 : background set of signature
with signature buffer of size 2. The sensor
creates two one-time key pairs and uses only
one RSA signature to sign both of them.
This scheme has a stronger impact when the
key size is large because the maximum event
frequency (i.e. when the buffer is infinite)
does not depend on the key size.

- Set BS, Buff 4 : background set of signature
with signature buffer of size 4. The sensor
creates four one-time key pairs and uses only
one RSA signature to sign all of them.

- Set BS, Buff 20 : background set of signa-
ture with signature buffer of size 20. The
sensor creates eight one-time key pairs and
uses only one RSA signature to sign all of
them. The effect of a large buffer is negli-
gible with small key sizes (RSA 512). The
computation cost of a background signature
based on RSA 1024 with 20 memory cells is
smaller than RSA 512 with 4 memory cells.

Label 1) of Figure 5 shows the acceleration
factor due to the background signature scheme
(see Figure 3). Label 2) shows the computation
overhead of background signatures (see Figure
4).

When a set of one-time public keys is signed in
one RSA operation, the response time does not
change but the overall background computation
tBS is reduced.

tBS = tOTS +
tRSA

b
+ thash

7

Where tOTS , tRSA, and thash, are the dura-
tions required to compute respectively l+log2(l)
random numbers and their digests, a RSA sig-
nature, and the digest of the message to sign. b
is the buffer size. The maximum frequency oc-
currence of events is:

lim
b→∞

tBS = tOTS + thash

In Figure 5, the limb→∞ tBS = 1.2 ms. Label
3 is the corresponding maximum frequency of
event occurence: 833 signatures per second. To
summarize, the response time does not depend
on the RSA key size and, when there is enough
memory (b → ∞), the background computation
and maximum frequency of event occurrence do
not depend on key size.

4 Related Work

This section presents different approaches that
have been proposed to accelerate the computa-
tion of a digital signature.

Server-Aided Signature: a small tamper-
resistant trusted module uses the computational
power of an untrusted server to compute a sig-
nature. The server can try to obtain the se-
cret (i.e. private key) of the module or to cheat
with a false result. The trusted module must
protect its secret and verify the computation
received from the server. [2] proposes a solu-
tion enabling server-aided RSA signatures. With
enough bandwidth between the server and the
trusted module, this scheme can be ten times
faster than the trusted module alone. The draw-
back of this approach is that it implies the avail-
ability of a powerful server each time a signature
has to be computed. Finally, numerous former
server-aided signature schemes have been found
insecure [9].

Verifiable Server : an approach similar to
server-aided signature is proposed in [1]. A
trusted module asks a trusted server to sign some
data. The server is in charge of all asymmetric
cryptography operations. However, the signa-
ture scheme is modified so that a valid signature
cannot be generated without the help of the se-
curity module. Non-repudiation is ensured even
if the private key is hold by the server. As in
the previous scheme this approach suffers from
relying on trusted servers.

Batch Signatures: the idea of batch signatures
[10] is to do only one asymmetric operation for
a set of signatures. A set of messages are linked
and signed together. For instance, a hash tree
can be used to ensure that the signature of a mes-
sage can be verified without knowing the other
messages. This approach is useful when a set of
messages has to be signed simultaneously but it
cannot be used to accelerate the response-time
of individual signatures.

Other Public Key Cryptosystems: it is also
possible to replace RSA by another signature
scheme. For instance, the McEliece cryptosys-
tem [7] can be used to efficiently sign data [4], the
main drawback of this approach being the size
of the public key. Elliptic curve cryptography
could be investigated too. However, all asym-
metric cryptosystem are computationally expen-
sive compared with hash functions.

5 An Enhancement: Signature
Trees

This section studies how one RSA signature can
be used to enhance BS for a set of messages. It
is not similar to batch signatures [10] because in
background signature, there are no simultaneous
messages to be signed. The principle is first de-

8

scribed and an optimal structure of one-time key
pairs is proposed.

5.1 Principle

Using a tree of one-time signatures is not a new
idea: in [8], binary trees were proposed. How-
ever, constraints due to sensor networks suggest
new tree structures.

A complete k-ary tree of height h has n nodes
and can be used to sign n− 1 messages.

n = 1 + k + k2 + · · ·+ kh =
h∑

i=0

ki =
kh+1 − 1

k − 1

Figure 6: Tree of one-time signatures

The root key pair (SK0, PK0) does not change
since it is the RSA key pair of the sensor. A set of
n − 1 nodes (i.e. one-time key pairs) is created
and the RSA private key of the sensor is used
to sign the public keys of depth one. One-time
signatures of messages can then start, signatures
being done alphabetically (i.e. 1, 11, 111, 112,
113, 12, 121, etc.). When message m1 is signed
with private key OTSK1, this message is signed
together with the public keys of the next level in
the tree: SIGNOTSK1(h(m1)‖h(OTPK11)‖ · · ·).
The result is a chain of signatures linking the
root RSA key PK0 to a message (e.g. m11):

- SIGNSK0(h(OTPK1)‖ · · · ‖h(OTPK3))
- SIGNOTSK1(h(m1)‖h(OTPK11)‖ · · · ‖h(OTPK13))
- SIGNOTSK11(h(m11))

An observer receiving message m11 needs the
following data to verify the signature:
- m11

- SIGNOTSK11(h(m11))
- OTPK11

- {h(m1), h(OTPK12), · · · , h(OTPK13)}
- SIGNOTSK1(h(m1)‖h(OTPK11)‖ · · · ‖h(OTPK13))
- OTPK1

- {h(OTPK2), · · · , h(OTPK3)}
- SIGNSK0(h(OTPK1)‖ · · · ‖h(OTPK3))
- PK0

Part of this information can be pre-installed in
the observer (e.g. PK0) or pre-distributed with
the precedent message (e.g. OTPK1, etc.), the
rest being sent with the signature.

5.2 Optimal Tree

Two parameters have to be taken into account
to find an optimal tree: on one hand, the main
goal is to limit the size of the messages sent to
have a short response time. On the other hand,
it is necessary to limit the computation: memory
has to be well managed in order to associate a
large number of one-time key pairs with one RSA
signature.

Message size is directly related to the height of
the tree. Each new level increases the signature
length with the following information:
- OTPKz1

- {h(mz), h(OTPKz2), · · · , h(OTPKzk)}
- SIGNOTSKz(h(mz)‖h(OTPKz1)‖ · · · ‖h(OTPKzk))

The resulting message overhead is:

Oh = h ·
(

l · k +
3
2
· l · (l + log2(l))

)
The shortest messages are sent when the tree

height h is defined as follows: Oh−1 > Oh <

9

Oh+1. With k ∼= h
√

n, it is necessary to choose h
so that:

(h− 1) h−1
√

n− h h
√

n >
3
2
(l + log2(l))

and

h h
√

n− (h + 1) h+1
√

n <
3
2
(l + log2(l))

Figure 7 shows the message size overhead for
different tree heights (SHA-1 being used, l = 160
bits). This figure shows that the minimum mes-
sage size is obtained when h = 1 if n− 1 < 281,
when h = 2 if 281 < n− 1 < 29438, etc.

100 101 102 103 104 105 106
0

0.5

1

1.5

2

2.5

3
x 105

Number of one−time key pairs in a tree: n−1

m
es

sa
ge

 s
iz

e
ov

er
he

ad
 [b

its
]

h=1
h=2
h=3
h=4
min

Figure 7: Impact of tree’s depth on message size

When a message is signed, part of the one-time
key pairs has to be defined. All keys linking the
current key to the RSA key are required. In Fig-
ure 6, key pairs 0, 1, and 11 are needed to sign
message m11. Moreover, each key pair signed by
those keys is defined: key pairs 2, 3, 12, and 13
are defined and will be used subsequently. In

other words, h · k key pairs are stored. It is
possible to show that 3-ary trees maximize the
number of nodes (i.e. one-time signatures per
RSA signature) with a fixed amount of memory.
Response time and communication restrictions
advocate for a limited height (i.e. h = 1 or
h = 2 when n < 104) and the memory is well
used when 3-ary trees are chosen (i.e. k = 3).
Fast response time being our main goal, we have
decided to use h = 2. In this setting, the best
tree from a memory point of view has the struc-
ture proposed in Figure 8. The value under each
node is the number of one-time key pairs that
have to be stored when the one-time private key
is used to sign a message. The tree is asym-
metric because part of the one-time key pairs
that have been used previously can be erased;
i.e. only the hash of the one-time public key is
necessary. For instance, when key 3 of Figure
8 is used, it is necessary to store eight one-time
key pairs (3,4,5,31,32,33,34,35), when key 31 is
used, the same key pairs have to kept but when
key 34 is used, only five key pairs have to be
stored (3,4,5,34,35). In this example, by main-
taining eight key pairs at any time, it is possible
to compute thirty signatures.

Figure 8: Optimal key pair tree

The memory used is m = dk1 · 3/2e and the
number of possible signatures is n− 1 = k1 + k2

1.
To optimize the communications, it is possible

10

to take advantage of the tree structure in order
to pre-distribute part of the data necessary to
verify the next signature. In Figure 9, OTPK12,
etc. have been sent with the previous message
signature. Observers that received the previous
signature can verify the new message more effi-
ciently than arriving observers. Due to the tree
structure, redundant communication is limited.

6 Discussion

This section presents some applications of back-
ground signature and possible enhancements.

6.1 Non Repudiation of Origin

When there is no a priori trust relationship be-
tween sensors and observers, it is important to
offer non-repudiation of origin so that observer
can prove subsequently that a given sensor sent
a message. Imagine for instance that an observer
automatically calls the firemen when some sur-
rounding sensors indicate a sudden temperature
increase. If there is no fire, it is important that
the observer have a way to prove that it received
some measures before acting.

Letting a sensor and an observer share a secret
is not sufficient for non-repudiation. Indeed, a
message authentication code allows the verifica-
tion of message integrity and the authentication
of the sender but it cannot be used as a proof
in case of a dispute between the sensors’ owner
and the observer. Signature is necessary for en-
suring non-repudiation of origin and background
signature allows signature in sensor networks.

6.2 Certifying Sensors

Signatures are useless if the signer is not known.
Because identity of signers (e.g. serial number

of sensors) is meaningless in open context, it is
interesting to certify attributes of sensors. For
instance, the simple public key infrastructure
(SPKI) [5] can be used. The manufacturer or
some local certification authority (CA) can cer-
tify that a sensor has some properties, that it be-
longs to a given entity, or when it has been con-
trolled. Those data being linked to the sensor’s
public key, an observer that receives a message
from a unknown sensor has the following infor-
mation: alarm message m was sent by a sensor
that has been deployed by a partner and that has
been controlled two months ago. Background
signature allows sending this certified message
quickly.

6.3 Avoiding Replay Attacks

The replay attack is a well-known attack in
which an attacker sends an old message to fool
the receiver. Generally, nonces or some repre-
sentation of time (e.g. counter, time stamps)
are used to avoid that a message be replayed.
Assuming that sensors cannot afford a real-time
clock, a simple way to avoid replay attacks when
messages are signed by sensors is to have an
observer in charge of periodically sending time
stamps that can be used to increment some
counter acting as a static clock in each sensor.

6.4 Letting Sensors Verify Signatures

This paper proposes a way to shorten the re-
sponse time of sensors. This scheme is adapted
to sensors working in push mode, i.e. the sen-
sor immediately sending a signed message with
relevant information (e.g. temperature of a con-
tainer) when an event occurs. When sensors
are in pull mode, i.e. when observers period-
ically send requests to sensors in order to get

11

some measure, the response time is less criti-
cal. In this case, it can be important to have a
way to authenticate observers. Background ver-
ification of signatures could be implemented to
’pre-verify’ part of the signature. For instance,
a server or another sensor could send a OTPK
signed with its RSA private key. Each sensor re-
ceiving this data could verify the signature as a
background task and wait for a message signed
with the related one-time private key. Unfortu-
nately, the response time of the signature veri-
fication is longer than the response time of the
signature computation because the (l+log2(l))/2
hash functions cannot be pre-computed.

6.5 Limitations of Background Signa-
ture Scheme

The major limitation of the scheme proposed in
this paper is the size of a signature (about ten
times a RSA 1024 signature). Background signa-
ture scheme is efficient when the computational
power is low and when the bandwidth is rela-
tively large. For instance, a cell-phone needs
about ten seconds to sign a document when
asymmetric cryptography (RSA 1024) is done
by the device itself (e.g. J2ME) and not by a
crypto-processor (e.g. SIM card). If Bluetooth
is used (100 kbits/s measured), the speed-up fac-
tor is about fifty. However, if the same scheme is
used with an iPaq and the same communication
channel, there is no more speed-up effect. This
scheme only fits devices with restricted compu-
tational power which is typical of sensors.

Let us assume a sensor with low computa-
tional power that needs 60 seconds to compute
a RSA 1024 signature. A tree with height h = 2
and k1 = 5 is chosen (Figure 8). It allows 30 sig-
natures and requires memory to store 8 one-time
key pairs. The communication channel offers 64

kbits/s. In this case (Figure 9), the response
time after an event is 0.3 s when keys are pre-
distributed (200 times faster) and 1.3 s for ob-
servers that did not receive the keys in advance
(46 times faster).

Figure 9: Response time of a sensor using back-
ground signatures

7 Conclusion

The background signature scheme proposed
in this paper has some interesting properties.
Background signature shortens response time:
this paper has shown that using background sig-
nature in sensor networks allows a fast response
time even when non-repudiation of origin, mes-
sage integrity, and sensor certification have to be
ensured. The acceleration factor is higher with
short messages, long keys, and large bandwidth.
Background signature freely enhances security :
the response time of a sensor does not depend
on the key size. Moreover, when there is enough
memory to create a large tree of key pairs, the
overall computation does not depend on the key
size. In this context, using background signa-
ture based on RSA 512 or RSA 2048 exhibits
the same performances. Background signature
can be seen as a ’battery’ : an important time
(and energy) consuming activity of sensors is the
signature of messages. When the small battery
of an inactive sensor is filled and some power is

12

available, the sensor can use CPU cycles (that
cannot be stored) and available electric power
(that can no more be stored) to pre-compute
some signatures. Memory is used to store pre-
computation and somehow extends the battery
capability. When an event occurs, the sensor can
react quickly and requires less energy for compu-
tation.

The main limitation of this scheme is the in-
crease of message size due to the one-time signa-
ture. In some cases, the response time profit in
term of computational complexity can be elimi-
nated by the communication overhead. In other
words, this scheme is only valuable when the
communications are fast or when the computa-
tion is slow (see Section 6.5). Fortunately, this
assumption is realistic in case of sensor networks.
To summarize, this scheme can be used to accel-
erate signatures done by cell-phones or sensors
but is useless in case of smart cards with crypto-
processors or powerful workstations.

The generation of new signature trees is still
an open topic. When each one-time private key
of a tree has been used, it is necessary to com-
pute a new RSA signature. The sensor cannot
sign any message during this phase that can last
a long time when the key size is big. Two trees
could be combined to avoid this problem.

References

[1] K. Bicakci, N. Baykal, SAOTS: A New Ef-
ficient Server Assisted Signature Schema
for Pervasive Computing, In proceedings of
Security in Pervasive Computing SPC’03,
March 2003.

[2] P. Bégiun, J.J. Quisquater, Fast Server-
Aided RSA Signatures Secure Against Ac-

tive Attacks. In proceedings of CRYPTO’95,
pages 57-69, 1995.

[3] Cascade project, Chip Architecture for
Smart CArds and portable intelligent DE-
vices, European Commission, Esprit Pro-
gram (EP8670).

[4] N. Courtois, M. Finiasz, N. Sendrier How
to achieve a McEliece-based digital signa-
ture scheme. In Advances in Cryptology -
ASIACRYPT 2001, number 2248 in LNCS,
pages 157-174. Springer-Verlag, 2001.

[5] C.M. Ellison, B. Frantz, B. Lampson, R.
Rivest, B.M. Thomas and T. Ylonen, SPKI
Certificate Theory RFC 2693, 1999, ex-
pired.

[6] Legion of the Bouncy Castle, Java Crypto
APIs, http://www.bouncycastle.org/

[7] R. McEliece, A public-key cryptosystem
based on algebraic coding theory. In Jet
Propulsion Lab. DSN Progress Report,
1978.

[8] R. Merkle, A digital signature based on a
conventional encryption function, In pro-
ceedings of Crypto’87, 1987

[9] J. Merkle, Multi-Round Passive Attacks on
Server-Aided RSA Protocols. Proceedings,
CCS’00, pp. 102–107, 2000.

[10] C. Pavlovski, C. Boyd, Efficient Batch
Signature Generation using Tree Struc-
tures, International Workshop on Cryp-
tographic Techniques and E-Commerce
(CrypTEC’99), City University of Hong
Kong Press, pp.70-77, 1999.

13

