
Trust and Authorization in Pervasive B2E
Scenarios

Laurent Bussard1, Yves Roudier1, Roger Kilian-Kehr2, and
Stefano Crosta1

1 Institut Eurecom, Network Security Team
2229, route des Crêtes BP 193

06904 Sophia Antipolis (France)
http://www.eurecom.fr/∼nsteam/

2 SAP Labs France S.A., Corporate Research
805, Av Maurice Donat, Font de l’Orme

06250 Mougins (France)
http://www.sap.com/research/

Abstract. Many pervasive and ubiquitous application scenarios con-
sider the interaction of users with surrounding devices offering services
anywhere and anytime as one of the main future challenges. However,
before this vision becomes reality, many security issues have to be solved.
More specifically, the problem of trustworthiness of unknown devices is
one of the major obstacles hindering the acceptance of pervasive applica-
tions. This paper focuses on solutions for business-to-employee scenarios,
a particular sub-domain of the ubiquitous computing paradigm in which
valuable a priori trust information is available. Mechanisms and pro-
tocols are introduced to assess the trustworthiness of devices federated
around a mobile user, and to allow for the delegation of authorizations
between such devices. The first results of a prototype implementation
are finally presented.

1 Introduction

Many researchers consider the general progress in the development of microelec-
tronics leading to small integrated devices, small high-resolution displays, wire-
less communication technologies, etc. as the driving force behind the ubiquitous
wave [1]. It is commonly believed that computers are likely to disappear in many
application contexts and that people will not carry around heavy-weight devices
such as laptops, but instead use devices and user interfaces they encounter in
their environment, e.g. cars, airport lounges, airplanes, hotels, public zones, etc.
Nomadic users will take advantage of such devices to communicate with their
companies, access information on the Net, and perform everyday tasks. However,
this is where security problems immediately arise: who gives a device access to
some data? Under which assumption? And for what purpose?



2

1.1 Security in Pervasive and Ubiquitous Applications

The literature generally envisions pervasive and ubiquitous computing in an
application-centric manner that is focused on particular user application scenar-
ios for which authors provide partial solutions. Most often, security aspects are
neglected and considered as disturbing factors in these scenarios. In contrast, we
are convinced that pervasive approaches will only be successful if the associated
security problems are solved. The only ubiquitous or pervasive applications that
will be successfully deployed and developed in the future will be those who will
protect users’ assets in terms of security and privacy. Of course, bridging the gap
between security requirements on one hand and user-friendliness on the other
hand is a specially challenging task.

Security is a major concern for employees and corporations, who may be the
most interested in the spreading of pervasive technologies as described above. A
large company with a mobile workforce has a natural interest in protecting its
digital assets. Hence, if a mobile employee decides, for instance, to read email
on a public display, there must be mechanisms available and enforced in order
to prevent the leakage of company-confidential information via that display.

Put differently, an enterprise must be able to enforce its corporate security
policy in a systematic manner, wherever company-related operations may take
place. Pervasive computing environments specifically raise the problem of how
information flow (e.g. displaying, printing, copying) can be reasonably controlled.
The major issues to be solved are the following:

– Each mobile employee needs a certain root of trust, e.g. a user-specific iden-
tity and security module such as a smart card with some added functionality
such as a trustworthy display and input channels.

– Interaction with surrounding devices requires the delegation of rights from
the user to these devices, e.g. to access corporate systems on behalf of the
user.

– Prior to delegation of rights, a device’s trust level must be determined in or-
der to decide upon the amount, type, and duration of the privileges granted.

1.2 B2E and B2B Environments

Solving these issues, especially determining or estimating the trustworthiness of
the surrounding devices is in general a hard problem with many non-technical
issues involved. However, this paper focuses on business-to-employee (B2E) and
business-to-business (B2B) settings. In this context, these issues may be solved
in a much simpler way since there is usually sufficient a priori trust information
available related to the relationship between an employer and his employees, a
company and its devices, or between business partners.

How this information can be structured and exploited to develop a user-
friendly security framework is the main contribution of this paper, which is
organized as follows: Section 2 provides an in-depth study of the context and
requirements of B2E security. In particular, it discusses the trade-off between se-
curity and user-friendliness and the trust model underlying our approach. Section



3

3 describes a security architecture for distributed access control, trust level verifi-
cation, data distribution, and authorization. A prototype implementation based
on devices interconnected through short-distance wireless links is described in
Section 4 together with a sample application. Section 5 concludes this paper and
gives an outline on future work items.

2 Problem Statement

Pervasive computing architectures in which many devices cooperate to achieve
some function are developing quite fast nowadays. This section presents the
rationale for security in such architectures.

2.1 The Pervasive Salesman Scenario

A salesman comes to visit commercial partners. He only carries a small trusted
personal device (TPD) that could be a personal digital assistant (PDA), a watch,
or even digital jewelry or some wearable computer. A positioning service provided
by the building makes it possible for his TPD to guide him to the meeting room,
opening the doors to the only rooms he is authorized to access. The visitor
being alone in the meeting room, he can personalize the room illumination and
have his favorite music played. While he is waiting for other participants to
arrive, he wants to read his email on a workstation in the meeting room. He
federates it with his personal device so that this terminal can have access to his
corporate mailing box and show the list of emails received. The visitor reads a few
non-classified emails, and then selects one email that is tagged as confidential.
According to the security policy of the salesman’s company, confidential data
must not be displayed on any device not belonging to the company: the mail does
appear on the smaller display of his TPD that is trustworthy. As other meeting
participants arrive, their virtual business cards are displayed on the TPD. When
the meeting starts, a space for securely sharing data is created between the
meeting members. A slide show application in the visitor’s TPD can then have
all people in the meeting room sign an electronic non-disclosure agreement before
it shows the visitor’s corporate data on the local video projector. Even after the
visitor has left the building, he has access to a list of the interactions performed
with meeting participants. Back in his office, the salesman can browse classified
data and emails on any corporate terminal. Because those displays are trusted,
he can directly access confidential data.

2.2 Security Implications

The pervasive salesman scenario outlined in Section 2.1 shows that B2E appli-
cations can be expected to collaborate dynamically with surrounding devices. A
federation of devices is defined as a group of devices with different trust levels
that collaborate towards the same application. Security is an integral part of fed-
erations. By their very nature, federations of communicating devices are more



4

exposed to attacks than plain mobile devices since an application running within
a federation spans across devices owned by different entities.

This scenario entails multiple security implications. Users need some autho-
rization to use local facilities. They also need some authorization to access cor-
porate data remotely and a way to delegate specific rights to federated devices.
Federations have to evaluate whether an execution environment is trustworthy.
And last but not least, communication channels have to be protected, i.e. confi-
dentiality, integrity, message authentication, and sometimes non-repudiation are
necessary for applications used in a federation.

2.3 Trust Model

Corporate security policies define whether a given operation (e.g. dealing with
confidential data) can be done by an appliance with an ascertained trust level.

Securing federations is about evaluating the trust level of each platform that
takes part in the federation. This evaluation is not easy to achieve in general. If
a person makes use of a terminal in a public place, it is impossible to assume
that the terminal is trusted in any way without some additional information that
makes up the trust model. In general, there is no relation that can be exploited
between the user or his company and the owner of the terminal: this can be
called an open trust model as opposed to an a priori trust model.

B2E context introduces assumptions that make it simpler to construct a
workable trust model based on limited a priori trust information. First of all,
public key based authentication is possible and meaningful since employees are
directly managed by their corporation. In contrast, in an open trust model,
there will generally be no authentication (or trust) infrastructure shared by all
entities. Secondly, trust may be based on the partnership established between
companies. The trust expectation regarding every partner’s tasks and behaviors
are contractual and can be translated into a security policy. Trust may also
be based on the certification of devices, and specifically their level of tamper-
resistance. Again compared with the open trust model, this assumption enables
the automation of secure data distribution to different devices.

3 Security Architecture

This section presents the architecture developed to enable security features as
described in Section 2.2. The notations used within this paper are defined in
Tables 1 and 2.

3.1 Architecture Overview

Any employee has a trusted personal device that contains some credentials usable
to prove his rights. Java enabled PDAs and cell-phones have been chosen for this
purpose as this might become the platform of choice for developing on many
appliances. This trusted personal device is part of a federation of surrounding



5

devices that can be managed by other companies. The federation is used by
the employee when accessing some resources protected by a corporate backend
server. Access control is based on user’s rights and trust level of each federated
device.

Each device has its own asymmetric key pair and can be certified by its
owner. Trust level evaluation and access control are based on those certificates.
The backend and the TPD are in charge of enforcing the corporate security
policy.

Access Control. Access to resources is protected at two levels (see Figure 1).
The first access control layer verifies whether a given user is authorized to access
the required resource. The user’s rights are described in authorization certificates
referencing the user’s public key as an identifier. The corresponding private key
is kept in the user’s TPD or physically protected by a dedicated tamper-resistant
module. SIM cards are specifically envisioned because of their ubiquity in mobile
devices. Next, the second access control layer distributes data according to the
trust level of each federated device. Each device has its own asymmetric key pair
that may also be physically protected. Manufacturers, owners, or administrators
of devices can install certificates providing useful information about the device
trust level. When the trust level of a federated device is known, it becomes
possible to decide whether it can access some confidential data or not.

Fig. 1. Server side two stages access control based on employee’s right and trust level
of each federated device

Tamper-Resistant Module. Tamper-resistance of the TPD is also essential
for enforcing the corporate security policy since it can hold private keys as well
as the decryption keys of confidential data. It is very difficult to protect the



6

execution of pieces of code [2] or even the evaluation of functions [8] in untrusted
environments. A straightforward way to ensure that a device can be trusted
is proposed by the Trusted Computing Platform Alliance (TCPA) [12]. The
hardware is certified and can verify whether a certified kernel is running on top
of it. This kernel controls the OS, which can check applications. This architecture
makes it possible to prove that a given environment is running. As long as all
layers are trusted (i.e. certified) and without implementation errors, it is possible
to trust the environment. In other words, confidential data can be provided
to any TCPA public terminal with the guarantee that those data will not be
misused.

TCPA being unavailable as of now, a pragmatic approach relying on trust-
based distribution has been chosen: data are distributed according to the trust
level of each federated device. Trust level evaluation is possible because the trust
model proposed in this paper is restricted to B2E scenarios. When B2B relation-
ships exist, a priori trust is a realistic assumption. It is possible to base trust
on the knowledge of the manager of a device. It is assumed that partner com-
panies can be more or less trusted and that they correctly manage their devices
(patches, antivirus, etc.) in order to protect themselves. Instead of proving the
security of any involved device, data distribution is performed according to the
trust that can be derived from established relationships.

Flexibility versus Security. On one hand, employees would like to use trans-
parently any surrounding appliance such as a larger display embedded in a plane
seat, a printer in an airport lounge, or location services offered by a building.
On the other hand, the corporation has to protect its resources and prevent that
an employee unintentionally reveals corporate data to untrusted and potentially
malicious devices. The tradeoff between flexibility and security is based on the
corporate security policy that defines whether a given device certified by an
entity can be involved when getting access to non-public data. Such an open
federation, in which devices owned by different entities are used, will have to be
restricted to secure interactions, and yet remain fully usable.

In this architecture, access control must be enforced, devices have to be
certified, and resources have to be tagged. Deploying such a solution is possible
in a B2E application context where local PKI exists (without global CA) and
where trust can be specified. This architecture offers a pragmatic approach to
secure the use of potentially malicious environments in B2E applications. It
ensures secure federations without loosing their flexibility and user-friendliness.

Notations. Table 1 defines the involved actors. E2 is an employee of company
C2. He is visiting company C1 and would like to federate his cell-phone D2 with
the partially trusted display D1 in front of him in order to access corporate data
R2. E2 must be granted the right to use D1 and to access R2 (Section 3.2).
The trust level of D1 is evaluated in order to distribute data to the federation
〈 D2 , D1 〉 (Section 3.3).



7

C1 a company
C2 another company working with C1

E1 an employee of C1

E2 an employee of C2. He is called visitor when working in C1

D1 a device (e.g. wall display, printer, terminal, coffee machine) of C1

D2 a trusted personal device (e.g. PDA, cell-phone, smart card) of C2

Table 1. List of actors involved in the protocols of this paper.

It is also possible to define subject roles E corresponding to a set of employees
and object roles D corresponding to a set of devices [3].

3.2 User-level Access Control Infrastructure

In order to enforce security, an access control system to corporate data has to
be set up. In this system, each employee receives a security profile (set of rights)
to access resources or use other devices.

Access control is a classical problem that becomes complex when delegation
(e.g. a device from the visited company) is required. To be compatible with
the issuance of local rights, this paper proposes to use authorization certificates
(similar to SPKI [6]). Delegation happens for instance when a secretary gives
a visitor access to a meeting room for a few hours, as well as when a visitor
authorizes a wall display to access some specific corporate data in order to display
them. Short term and application specific rights may also be required.

PKA public key of entity A
SKA private key of entity A
EK(m) plaintext m encrypted with key K
h(m) digest of data m using hash function h applied
SIGNA(m) plaintext m signed with the private key of A

i.e. SIGNA(m) = {m, ESKA(h(m))}.
certCA→A certification authority CA certifies that the entity A has some

attributes (e.g. rights, identity, owner).
CERTA(m) = SIGNA(m)

Table 2. Cryptographic notations used in this paper.

Case 1: Accessing Corporate Database. Any employee E of company C
receives an authorization certificate certC→E = CERTC(PKE , RE , deleg) where
RE = 〈r1, r2, · · · , rn〉 is a set of rights and deleg is the ability to delegate those
rights. It is necessary to distinguish between delegation to other users (deleg



8

tag) and delegation to devices. Indeed, when employee E wants to let a federated
device D access a resource, he has to delegate some specific short-term rights.
For instance, E will browse a file server on his cell-phone and authorize the
terminal in front of him to access a given file in order to open it for editing.
It does not mean that E is allowed to delegate rights to another employee. E
provides certE→D = CERTE(PKD, RD) where RD ⊆ RE is a subset of the
employee’s rights. It is important to define RD as precisely as possible and to
set a short validity in order to avoid unexpected access from federated devices.

When D accesses the resource r, it has to provide the following certificate
chain:

〈 CERTC(PKE , RE)︸ ︷︷ ︸
authorization

, CERTE(PKD, RD)︸ ︷︷ ︸
auth. (delegation)

〉 with RD ⊆ RE

During access control, the links between the components of the chain are veri-
fied, the signature and validity of certificates are controlled, a challenge-response
protocol is used to check whether D knows the private key SKD corresponding
to the public key PKD embedded in the certificate certE→D, and the server
finally verifies that r ∈ RD. When the whole verification has succeeded, trust
level evaluation and trust-based distribution can start.

Case 2: Using a Surrounding Device. Authorization certificates are sim-
ilarly defined to enable the use of surrounding devices that can be owned by
another company. When a visitor E2 enters the building of the partner company
C1, he needs some rights to benefit from the services offered by the environ-
ment (like using wall displays and printers, getting a map of a building and his
location, opening a door to access a room, getting a lunch, etc.). Those rights
can be based on an agreement between the visitor’s company and the visited
company, or can be delivered when the visitor enters the building. Depending
on the security policy, rights can be provided automatically or require that a
human being E1 be involved. For instance, the policy may specify that anybody
physically in the building can use the wall display but it is necessary to register
to get access to some restricted areas. Different chains are possible. For instance,
company C1 authorizes company C2 to use its wall displays D1. This right can
be delegated to employees:

〈 CERTC1(PKC2 , D1)︸ ︷︷ ︸
authorization

, CERTC2(PKE2 , D1)︸ ︷︷ ︸
auth. (delegation)

〉

Or, company C1 authorizes a secretary E1 to delegate rights to registered
visitors. E2 receives some rights:

〈 CERTC1(PKE1 , D1, deleg.)︸ ︷︷ ︸
authorization

, CERTE1(PKE2 , D1)︸ ︷︷ ︸
auth. (delegation)

〉



9

The certificate chain can be longer but it can be assumed in B2E environ-
ments that certificate chains remain short enough. Their verification can thus be
simplified by providing well-formed chains instead of individual certificates that
would have to be assembled by the verifier on the corporate side.

3.3 Device-Level Access Control Infrastructure

It is not sufficient to base access control on users’ rights: characteristics of fed-
erated devices have to be taken into account.

Trust Level Verification. New types of capabilities have been defined to
evaluate the trust level of federated devices. Device D is owned and managed by
company C (say for instance a wall-display in a meeting room that is phys-
ically protected). Company C provides an ownership capability certC→D =
CERTC(PKD, ownership) to device D.

Agreements between companies are necessary to formally define trust rela-
tionships. Such agreements are also defined by certificates. Company C2 is a
partner of C1. Employees of C2 frequently need to work in C1’s offices and use
local facilities D1. Because C2 trusts C1, they can have the following agreement:
certC2→C1 = CERTC2(PKC1 , trust=confidential) meaning that devices owned
by C1 can be used to deal with confidential and unclassified data.

The trust level of a federated device is evaluated thanks to the chain:

〈 CERTC2(PKC1 , trust=confidential)︸ ︷︷ ︸
agreement

, CERTC1(PKD, ownership)︸ ︷︷ ︸
ownership

〉

Here, it is assumed that all devices managed by a specific entity have the same
trust level. It is possible to define more precise trust relationships involving other
parameters such as tamper-resistance, location, etc.

Data and Key Distribution. Data distribution is based on the rights of the
requestor and on the trust level of the devices involved. Suppose that a set of
resources Rreq = 〈r1, · · · , r2〉 are requested from C1’s server by an employee E1

using a federation F = 〈D1, D2, · · ·〉. As shown in Figure 1, the access control is
done in two stages: user’s authorization defines which data can be retrieved and
the trust level of each federated device combined with the classification tags of
resources defines which device can deal with given data. The first access control
layer requires the user’s authorization chain and delivers authorized resources
RAC = RE1 ∩ Rreq.

Each device can receive any data in an encrypted form but can only retrieve
keys corresponding to its trust level. Resources RAC are encrypted according to
their classification cl ∈ CL. For instance, CL = 〈unclassified = 0, confidential =
1, secret = 2〉. The classification of a resource r is defined as cl(r). Tags are
associated to resources in order to specify their classification. The trust level of
a device d is defined as cl(d) (see Section 2.3). A chain of certificates has to be



10

resolved for each device in order to verify their trust level. When cl(d) ≥ cl(r),
device d is enabled to deal with resource r. A symmetric key Kcl has to be
defined for each classification cl:

∀cl ∈ CL : Server generates symmetric key Kcl

Each resource r has to be encrypted with the symmetric key Kcl correspond-
ing to its classification cl(r):

∀r ∈ RAC : Server computes encrypted resource r̂ = EKcl(r)(r)

The set of encrypted resources is R̂AC = 〈r̂ | r ∈ RAC〉. Before sending it to
the federation, the devices’ trust chains are necessary for discovering trust levels
in order to distribute keys:

∀d ∈ F and ∀cl ∈ CL : if cl(d) ≥ cl : Server computes EPKd
(Kcl(d))

The result is that each federated device can receive any encrypted resource
but only keys for decrypting the parts it is authorized to deal with. For instance,
a terminal that is trusted enough to deal with confidential data will receive
Kconfidential and Kunclassified but will not receive Ksecret.

3.4 Management of Security Data

The natural choice for the format of both attribute certificates and the security
policy markup that serves as the reference for data and key distribution has
been XML [4]. The set of resources R is an XML document with different parts
r1, · · · , rn. Tags are used to define the classification of each part. A new document
based on XML-encryption [13] can be generated for distribution.

As a matter of fact, XML is becoming the standard format for any data trans-
action on the Internet, due to its well known benefits: it is text based, human
legible, self describing, structured, easy to treat, modular, and object oriented.
Associating XML with one of the many existing libraries for parsing, display-
ing, transforming documents, and standards for signatures (xml-dsig) [14], en-
cryption (xml-encrypt) [13], remote procedure call (SOAP), user data exchange
(SAML) [11], access control (XACML) [15] deliver a powerful combination. Us-
ing XML as the format for secure attributes instead of S-expressions (SPKI) or
ASN.1 (X.509) is not a novelty, and references can be found in an expired draft
from Otani [9] and project Akenti [10]. However, the framework described in this
paper deals with different problems and environments, which cannot be fulfilled
with existing standards or applications.

XML Attribute Certificates. The proposed framework uses a proprietary
format of XML attribute certificates, which allows to securely associate a capa-
bility to an employee or device. A public key is associated with each certificate,
and only the user or device that is in possession of the corresponding private



11

key can use the capability. Rights can be delegated if the certificate allows so
and delegation can be performed in a local way without the need to connect
to a centralized authority: each user behaves as a local authority for attribute
certificates. Delegated credentials have a short lifetime, thus rendering the use of
centralized revocation lists unnecessary, and permitting a local validation of the
certificate chain. For long-lasting capabilities, revocation lists are envisaged. In
this way, a trusted personal device can empower another device in a federation
for acting in his place, for instance to retrieve a confidential document. Attribute
certificates are used to store a different type of information: for an employee, it
can consist of his role or personal rights, along with some useful personal data;
for a device, information about its trust level, the company he belongs to, and
its properties may be provided.

XML Documents. XML has also been chosen as the format for document
storage. XML is actually becoming the natural format for many kinds of doc-
uments, be they in pure text, vector graphics, or more complex data formats;
XML databases are spreading. Adding trust and security information to an XML
document is quite straightforward, because XML has been conceived to be nat-
urally extensible. In this work, there are two different kinds of XML documents.
One is the stored document, which can be seen in the middle of Figure 1. The
other one is the transmitted document, on the right part of Figure 1.

Upon a user request to the server for a resource stored in the backend
database, an XML Parser generates a document depending on security poli-
cies, user credentials, and federated devices credentials. This document contains
some cleartext parts, some encrypted parts, and an additional section to dis-
tribute symmetric keys for the encrypted sections. The receiving device will be
able to show the encrypted parts if it can retrieve the corresponding key.

4 Implementation

The development of a full-fledged application using the security concepts pre-
sented in this paper is under way. A first prototype showing in what way secure
federations are required in B2E has already been deployed and demonstrated.

4.1 Prototype Scenario

A salesman travels with his trusted personal device. He can use this one to access
corporate emails but reading them on a small display is not always user-friendly.
He uses surrounding public terminals, laptops, or video projectors to enlarge his
display. He selects an email on his TPD and delegates it to a discovered device.
Depending on trust levels, this device can be allowed to retrieve the email and
to display it.

The prototype implements access control and trust based distribution for a
specific service, displaying Web pages on surrounding devices. It is possible to



12

extend this concept to other applications (e.g. signature or mobile code protec-
tion).

The corporate security policy defines which data can be accessed by the
salesman, i.e. his emails (see Section 3.2) and the classification of data that can
be handled by federated devices (see Section 3.3). For instance, some emails or
attachments can be tagged as confidential.

– Case 1: User not authorized. Access control ensures that the salesman can
only access the documents that he is authorized to.

– Case 2: User authorized but untrusted terminal. Using a public terminal,
the emails that are confidential will not appear but will be replaced by
a hypertext link. Upon selecting this link, the email is displayed by the
salesman’s personal device that is a trusted enough member of the federation.

– Case 3: User authorized and trusted terminal. When the salesman uses a
terminal of a partner company, the confidential document is displayed.

Federations allow user-friendly interactions with surrounding artifacts and
security is ensured by combining authorization (i.e. what a user is authorized
to do) and trust levels (i.e. what kind of data can be securely handled by a
federated device).

Next sections describe the platform used to implement a prototype of the
system which permitted some early experiments.

4.2 Communication Technology

PAN Communications. Federations require local communications and dis-
covery mechanisms to work with surrounding devices. Bluetooth is appropriate
to implement those concepts and thus has been preferred to WLAN. Moreover,
it is planed to run the application on smart-phones that do not offer WLAN
interfaces. The access to Bluetooth from Java has been specified [5] but there is
no available implementation. A Dynamic Link Library has been implemented to
connect devices through the Bluetooth serial profile. Bluetooth connections can
be piloted from applications thanks to Java Native Interface (JNI).

Web-based application. Figure 2 gives an overview of the architecture. A
Web-mail interface was adopted that makes it easy to integrate XML transfor-
mations. On each machine, a local HTTP server acts as a proxy when accessing
corporate intranet. This proxy is in charge of transforming XML into HTML,
decrypting encrypted parts when the key is available or encapsulating them in
applets when the key is unknown, and pushing data to the browser. It has been
chosen to use a browser for the graphical user interface because it is standard-
ized and available on all considered platforms. The browser loads some applets
that communicate with the proxy so that pages can be pushed from browsers
of other devices. Moreover, a toolbar allows to select discovered devices and to
push them pages or URL (i.e. delegate access right).

XML has been chosen for exchanging data between proxies and the backend
and for defining attribute certificates.



13

Fig. 2. Prototype architecture

4.3 Platform

Hardware. Personal devices need short range wireless communication. More-
over, an important computational power can be required when signing certifi-
cates or parsing XML data. The iPAQ 3870 was chosen for implementing a
personal device and laptops for federated devices (terminals). Tamper-resistant
modules can be used to handle critical data such as private key: it has been
chosen to use a SIM card to protect the user’s private key. This module has been
selected because of its ubiquity in mobile environments. The API to access a
SIM card from Java is under way [7].

Software Environment. In order to reuse results of this work, it has been
chosen to work on a Pocket PC operating system. This choice has a strong impact
on the Java virtual machines supported and Bluetooth profiles available. Only
Personal Java (Jeode) was offering Java Native Interfaces for the Pocket PC.
JNI was a mandatory feature to be able to access Bluetooth from Java without
JSR-82 implementation [5], which were non-existent when the development was
started. Personal Java is a lightweight Java for PDAs that offers an extension of
JDK1.1.8 with Java 2 security. Those restrictions limit the libraries available to
parse and transform XML data. For application level security, the Bouncy Castle
cryptographic library was chosen. It provides a Java Cryptographic Extension
(JCE) that runs in JDK1.1.8 and offers all required cryptographic tools.

4.4 Prototype

Figure 3 shows some snapshots of the prototype. The Web browser, which runs on
a public terminal in an airport, displays a welcome message (see Label 1). When
the pervasive salesman is close enough, the terminal is discovered and appears in
a toolbar of his PDA browser. He can select a link to an email and delegate it to



14

Fig. 3. example of trust-based distribution

the discovered terminal (see Label 2). When a part of the document cannot be
decrypted by a terminal that is not trusted enough, this part is replaced by an
applet displaying a button (see Label 3). Here, the negotiated price of a contract
is tagged as confidential and cannot appear on a public terminal: security policies
enforcement ensures that a public terminal is not able do decrypt confidential
data. The user can press the button to find a member of the federation that is
trusted enough. For instance, the confidential part of the document will appear
on his PDA (see Label 4). When the same operation is done on a corporate
terminal, the whole email (including confidential data) appears.

This approach offers a simple mechanism to adapt a content to the trust level.
User-friendliness is not sacrificed for security: the salesman does not have to care
when delegating the presentation of information to another device because the
mandatory security model of his corporation ensures that classified data will
never be delivered to an entity untrusted by his company.

5 Conclusion and Future Work

Solutions to the problem of trust assignment for devices are hard to develop in an
open trust model for pervasive application scenarios. In contrast, the scheme pro-
posed in this paper addresses the business-to-employee and business-to-business
domains that make it possible to exploit a priori defined trust knowledge. Such
knowledge covers the state of the relationships between a company, its employees,
and devices on one hand, and the company’s business partner correspondents on
the other hand. In such a setting, reasonable assumptions about the trustworthi-
ness of devices can be made. This permits the specification and enforcement of



15

the corporate security policy required for letting an employee take advantage of
any device available in his surroundings, be it his companies’ or another one’s,
and yet protect corporate assets. This paper contributes with protocols sup-
porting distributed access control, trust level verification, data distribution, and
authorization within a set of devices federated to provide higher-level services
for a company’s mobile work-force.

A prototype implementation for parts of this architecture was developed
based on personal digital assistants acting as and employees’ trusted personal
device. This prototype is currently being integrated into a larger framework for
securing mobile business applications. The use of GSM SIM cards equipped with
dedicated software as tamper-resistant security modules embedded into a PDA is
currently under work. Such a trusted device will be able to perform all security-
critical operations such as issuing delegation certificates and transferring access
rights of particular resources to federated devices. The XML markup is also
under development at the time of this writing.

We further plan to investigate how the security architecture presented in
this paper can be adapted to scenarios where even less a priori information is
available. More specifically, we are interested in how to assess the trust level of
devices in a federation when connection to corporate back-end services is not
permanently available.

Acknowledgement

This research was supported by European Union Project “WiTness – Wireless
Trust for Mobile Business” (FP5 IST-2001-32275), by SAP, and by Institut
Eurécom. MERCI A LAURENT GOMEZ !!!!!!!!!!!!

References

1. J. Bohn, V. Coroama, M. Langheinrich, F. Mattern, M. Rohs. Disappearing Com-
puters Everywhere - Living in a World of Smart Everyday Objects. Proc. of New
Media, Technology and Everyday Life in Europe Conference, London, UK, April
2003

2. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transfor-
mations, Technical Report 148, Department of Computer Science, University of
Auckland, 1996.

3. M.J. Covington, M.J. Moyer, and M. Ahamad. Generalized Role-Based Access Con-
trol for Securing Future Applications. In 23rd National Information Systems Secu-
rity Conference, 2000.

4. Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation,
6 October 2000, http://www.w3.org/TR/2000/REC-xml-20001006

5. JSR 82: Java APIs for Bluetooth, http://www.jcp.org/en/jsr/detail?id=82
6. Network Working Group, Request for Comments 2693: SPKI Certificate Theory,

September 1999.
7. JSR 177 : Security and Trust Services API for J2ME,

http://www.jcp.org/en/jsr/detail?id=177



16

8. T. Sander and C. Tschudin. On software protection via function hiding. In Pro-
ceedings of the Second Workshop on Information Hiding, Portland, Oregon, USA,
April 1998.

9. Capability Card: An Attribute Certificate in XML, Expired Internet Draft
draft-otani-ccard-00.txt, 18 Nov. 1998

10. Akenti: a security model and architecture to provide scalable security services in
highly distributed network environments http://www-itg.lbl.gov/Akenti/

11. Security Assertion Markup Language (SAML 1.0). OASIS standard, 5-Nov-2002,
http://www.oasis-open.org/committees/security/

12. The Trusted Computing Platform Alliance. Building A Foundation of Trust in the
PC. White paper, January 2000. http://www.trustedcomputing.org/

13. XML Encryption. W3C Recommendation, 10 December 2002,
http://www.w3.org/Encryption/

14. XML Digital Signature. W3C Recommendation, 12 February 2002,
http://www.w3.org/Signature/

15. eXtensible Access Control Markup (XACML 1.0). OASIS Standard , 6 Feb. 2003,
www.oasis-open.org/committees/xacml/


