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Abstract: We present a new universal noiseless com-
pressor of sources with memory based on the concate-
nation of the Burrows—Wheeler block sorting transform
(BWT) with the syndrome former of an LDPC code. The
proposed scheme makes use of a library of LDPC parity-
check matrices of different rates and of a simple method to
estimate and encode the tree source model from the BWT
output. Unlike existing works that use error-correcting
codes for data compression, our scheme can deal with
sources with memory and achieves lossless compression.
Our method offers competitive performance over existing
methods such as Lempel-Ziv (gzi p) and standard BWT-
based schemes (bzi p), while being amenable to joint
source-channel decoding.
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1 Introduction

In [1], we proposed an explicit scheme for fixed-length
data compression/decompression based on the concate-
nation of the Burrows-Wheeler block sorting transform
(BWT) (see [2] and references therein) with the syndrome
former of a linear error-correcting code. Using a sequence
of capacity-achieving codes we obtain an asymptotically
optimal scheme for a large class of finite-memory station-
ary and ergodic sources. In practice, however, we wish to
have encoding and decoding schemes with linear complex-
ity in the blocklength. Therefore, in the proposed scheme
we replace the asymptotically optimal sequence of codes
by low-density parity-check (LDPC) codes (see [3] and
references therein) and the asymptotically optimal decod-
ing scheme (e.g., ML or typical-set decoding) by iterative
Belief-Propagation (BP) decoding as the linear code com-
ponent.

By relaxing the fixed-length requirement, the scheme
of [1] can be made exactly lossless at the cost of a small
variance of the output length. The basic scheme of [1]
is not universal, as it assumes that the source statistics is
known to both the encoder and the decoder. Since universal
encoding is variable-length by its very nature, as it applies
to sources with possibly different entropy, here we focus
only on the variable-length option of the scheme of [1] and
we describe an augmented scheme to handle universal data
compression.

The reminder of this paper is organized as follows. Sec-
tion 2 recalls the basics of the universal data compression
problem and describes the proposed coding scheme in gen-
eral. Section 3 recalls the variable-length LDPC encoding-
decoding scheme of [1], which is the basic building block
of the proposed universal scheme. Section 4 describes the
details of the universal scheme, and Section 5 presents
some numerical comparisons with standard compression
methods.

2 Universal data compression

Consider a class of stationary ergodic sources {Py :
6 € A} indexed by some parameter § and defined over the
alphabet X. For x € X™ define the empirical entropy

Hy(x) = —% log, Py(x) (D)

and the entropy rate Hy(X) = lim,,_,~ Eg [I?[a (x)] (where
Ey[] indicates expectation w.r.t. the probability measure
Py). Consider a coding strategy to encode n-sequences
x with output length £,,(x). The pointwise and expected
redundancy per input letter are defined by

5n(x(0) = %Kn(x) _ (%) @)

and by 6,,(6) = LEy[¢,(x)] — Hg(X), respectively. For
A being a compact set in R*, both 0n(x|0) and 4,,(6) are
lower bounded by (K /2) log,(n)/n + O(1/n) [4]. On the
other hand, this rate of convergence is shown to be achiev-
able and, for the class of stationary finite memory sources
(FMS) with S states, coding schemes achieving pointwise
redundancy < S(]X| — 1)/2logs(n)/n + O(1/n) have
been proposed (see [5] and references therein).

For simplicity, we focus on binary FMSs. We now
give a general overview of our scheme. Consider a col-
lection of Q LDPC ensembles * (defined by the left and
right degree distributions (A,, p,) for ¢ = 1,...,Q) of
rates 0 < R; < < Rg < 1, and, for each
g-th ensemble, a set of ¢ parity-check matrices 3, =

{H,"q e Fyem ™« = 1,...,0} such that mg/n = 1 —

1\We assume that the reader is familiar with the basics of LDPC coding
and iterative decoding, with their Tanner graph representation and with
standard terminology such as “bitnodes”, “checknodes”, “edges” and left
and right “degree sequences”. This background can be found, for exam-
ple, in the special issue of IEEE Trans. on Inform. Theory [3].



R, and each matrix H; , is independently and randomly
generated over the ensemble (\y, p,).

Define a finite set of possible source models {Py : 6 €
8}, and assume that the model 6 can be described by L,(6)
bits. Finally, define the length function

M, :{1,...,Q} x § xFy — {1,...,n} €)]

such that for each binary sequence x € IF5, source model
Py and integer ¢, M, (q,6,x) is the output length of the
basic LDPC compression scheme of [1] (see next section)
applied to x, with the set of LDPC parity-check matrices
J, and assuming the source probabilities Py.

Then, in order to encode x, the proposed scheme finds
the model in § and the set of parity-check matrices J(, that
minimize the overall output length, i.e., it finds

~

(q,0) = arg rg’ien{Ln(ﬂ) + Mn(q,0,%)}  (4)

It then encodes the source model 6 using Ln(§) bits,
and the sourceword x with the basic LDPC compression
scheme using the parity-check matrices in Hz.

The minimization in (4), although feasible in principle,
is generally too complex for any practical purpose. In Sec-
tion 4 we provide a heuristic but effective practical method
to approximate such minimization with linear complexity
in the block length n.

3 LDPC lossless compression of FM Ss

In this section we recall the basic LDPC lossless data
compression algorithm of [1], which is the main building
block of the universal scheme outlined before.

For a parity-check matrix H € 5" *", the correspond-
ing syndrome-based fixed-length source encoder is given
by the linear mapping e : F; — F5" such that e(x) = Hx.
The corresponding ML source decoder is the mapping
dm : F3" — T3 such that, for each z € F', dmi(z) =
argmax, @ ., Px (u). When H is an LDPC (sparse)
matrix, the syndrome-based encoding e : x — z has linear
complexity in the blocklength . On the contrary, the ML
decoder has generally exponential complexity in the block-
length. For LDPCs, the suboptimal BP iterative decoding
proved to yield very good results on a variety of memo-
ryless channels [3]. In the framework of source decoding,
BP is more conveniently stated as a noise vector estimation
problem.

Fix the realization of the input to the decoder, z. The
set of checknodes in which the bitnode k € {1,...n} par-
ticipates is denoted by A, C {1,...m}, and the set of
bitnodes which are connected to checknode j € {1,...m}
is denoted by B; C {1,...n}. Define the a priori source
log-ratios

1—pg
Dk

Ly = log Y k=1,...,n (5)

where, for the time being, we do not specify how the proba-
bilities py, are related to the joint source probability assign-
ment Px. For each iteration ¢ = 1,2,..., the algorithm
computes the value of the bitnodes

B =signq L+ > ull,
JEAR

by updating the messages sent by the checknodes to their
neighboring bitnodes and by the bitnodes to their neigh-

boring checknodes, denoted respectively by ugg  and by

u,(:l) i according to the message-passing rules
ZANER D D A (6)
j'eAr—{i}
and

(t)
v
ug.zk = (=1)*2tanh ! H tanh <%>
k’E'ij{k}

()
with the initialization 1.\”), = 0 forall j € {1,...,m}.
In source coding the encoder has the luxury of running
the decoding algorithm and check if successful decoding
is achieved. Therefore, it can take several countermea-
sures to drive the decoder to successful decoding at the
cost of a small additional redundancy [1]. In this work we
consider the use of Closed Loop Iterative Doping. This
technique, proposed in [1], consists of feeding to the BP

decoder the source symbol with least reliability, i.e., for
which ‘Lk + 2 iea u;zk‘ is minimum, every D > 1 it-
erations. The algorithm converges to error-free decoding
in t(x) < nD iterations, and requires d(x) = [t(x)/D|
redundancy bits in addition to the syndrome bits. The vari-
ance of the number of doped bits is greatly reduced by us-
ing ¢ > 1 parity-check matrices and taking the minimum
of the resulting d(x).

It is immediate to show that estimating x via the above
BP is equivalent to decoding the all-zero codeword trans-
mitted through a time-varying BSC with noise realization
x. It follows that efficient LDPC parity-check matrices
for the time-varying BSC are also efficient for the source
coding problem at hand. In particular, if p;, = p for all
k, source coding rates close to the binary entropy H(p)
can be obtained by designing LDPC codes for the BSC
with (channel) coding rate R close to the BSC capacity
1= 3H(p).

Next, let us consider a stationary ergodic FMS. As
we saw, it is easy to incorporate the knowledge about the
source marginals in the BP decoding algorithm. However,
for sources with memory the marginals alone do not suffice
for efficient data compression. In this case, in [1] we pro-
posed to use a one-to-one transformation, called the block-
sorting transform or Burrows-Wheeler transform (BWT)
[2] which performs the following operation: after adding



a special End-of-file symbol, it generates all cyclic shifts
of the given data string and sorts them lexicographically.
The last column of the resulting (n + 1) x (n + 1) ma-
trix is the BWT from which the original data string can be
recovered if we just add the row location of the original
string in the BWT array, at the cost of log, n bits. By ap-
plying the BWT to the time-reversed source sequence x,
the symbols in the BWT outputy = BWT(x) are ordered
lexicographically by their prefix. Hence, symbols having
the same preceding context are grouped together. We refer
to these groups of consecutive symbols in y with the same
context in x as segments.

Note that the BWT performs no compression. Fashion-
able universal data compression algorithms (e.g. bzi p)
have been proposed which are quite competitive with the
Lempel-Ziv algorithm. This is accomplished by exploiting
the fact that the BWT output y (as the blocklength grows)
is asymptotically piecewise i.i.d. (p.i.i.d.) [2]. For station-
ary ergodic tree sources and finite blocklength, the length,
location, and distribution of the segments depend on the
statistics of the source and on the source sequence realiza-
tion, i.e., the transition points 7; separating the segments
in the BWT output block are random variables. However,
T; /n converges to a deterministic limit for all s as n — oo.
The universal BWT-based methods for data compression
all hinge on the idea of compression for a memoryless
source with an adaptive procedure which learns implicitly
the local distribution of the segments, while forgetting the
effect of distant symbols.

Our approach is to let the BWT be the front-end. Then
we apply the LDPC parity-check matrix to the BWT output
y, as explained before. At the decoder, we exploit the fact
that y is ~ p.i.i.d., and treat the symbols as independent
with probability P(y, = 1) = p;, for k € [T;_1,T;). The
transitions 7; between the segments and the prior proba-
bilities p; are measured by the encoder by observing the
source sequence x and its BWT y, and must be communi-
cated explicitly to the decoder.

At the decoder, once the compressed sequence has been
processed by the BP decoder we apply the inverse BWT to
recover the original source sequence. We note that the in-
verse BWT does not degrade gracefully with respect to er-
rors. If only one input symbol is in error, the inverse BWT
output will be seriously erroneous. Thus, even more than
for memoryless sources, in this case the block-error rate
is the main performance indicator for the decompression
algorithm.

4 Theuniversal scheme

If the encoder knew that the source is Markov with S
states, then it could detect the segment transitions T7; just
by looking at the first A/ = log, S columns of the BWT
array. In this case, each probability p; can be estimated by
the empirical frequency of ones in the i-th segment. If the
source memory is not known a priori, then all memories
M = 0,1,..., up to some maximum L can be consid-

3

ered, and the corresponding empirical frequencies can be
obtained hierarchically, on a tree.

A coarse description of the segmentation and associ-
ated log-ratios £; is supplied to the iterative decoder. The
discrete set of possible sources § communicated to the de-
compressor corresponds to all possible quantized probabil-
ities and quantized transition points, for all possible source
memories. We denote the quantized parameters of a par-
ticular instance of the source model by 8 € 8. We wish to
encode {7;} and {£;} by using

L,(0) = 5(20) log,n 4+ O(1) Dbits (8)
where S(6) is the number of states in the model 6. Apart
from the value of the constant term, this is the best possible
redundancy to encode the source model, according to the
minimum description length principle [4].

A simple algorithm approaching this lower bound is
the following. For each given memory M, let the ex-
act transition points of the segments identified by the first
M columns of the BWT array be denoted by T; (M), for
i=1,...,2M — 1. We can write T;(M) = ki/n + G,
where ¢; = T;(6) modulo \/n and x; = |T3(M)//n].
Then, we quantize the reminder (; by using b, bits and
the transition point 7; (M) is known up to a maximum er-
ror of \/n271. We let T;(M) denote the quantized value
corresponding to T;(M). Notice that after quantization
some of the originally distinct transition points might have
been quantized to the same value, i.e., some segments af-
ter quantization have disappeared from the resulting source
model. Let {T;(0) : j = 1,...,5(6) — 1}, denote the set
of distinct transition points after quantization, where S(6)
denotes the number of states in the source model 4. Notice
that, by construction, S(6) < 2M. Let p; denote the em-
pirical frequency of ones in the j-th segment identified by
the transition points {T;(6) }. We use b, bits to encode the
log-ratios £;(¢) = log(1—p;)/p;. The decoder will apply
the (quantized) log-ratio £ ;(#) on the positions of segment
j. Clearly, each «; can be encoded by %log2 n, therefore
the description length for the model 4 is

L(6) = (S(6) — 1) (% logy 1 + bg) + S(6)by

which is compliant with the minimum description length
principle (8).

The degrees of freedom available to the encoder are
the model to be described § € § and the ensemble of
LDPC matrices to be chosen. It is problematic to evaluate
M, (q,6,%) in (4), as this would require the application of
the Closed-loop Iterative Doping Algorithm to x, for all
parity-check matrices {H; , : ¢=1,...,Q,i=1,...,¢c}
and all models ¢ € 8. However, we make the following ob-
servation. Let Hy(x) be the empirical entropy of x accord-
ing to the probability model 6. Then, if R, > 1 — ﬁg(x),
the number of doping bits d(x) is very large. On the con-
trary, if R, < 1 — Hy(x), d(x) is very small with re-
spect to . Hence, in (4) we shall replace M, (q,0,x) by
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Figure 1: Histogram of normalized output lengths for a
fixed Markov source with entropy = 0.4935 bit/symbol.

Mgy = max{l < ¢ < Q : Ry < 1-— ﬁg(x)}. In
other words, we choose the LDPC ensemble with largest
rate not above the normalized information density of the
deterministically time-varying BSC determined by 6 with
noise realization x.

The BWT and the recursive segment determination can
be obtained with complexity linear in n by using suffix-
trees methods. This makes the overall complexity of our
algorithm linear with n, although the (constant with n)
complexity due to BP is large with respect to other uni-
versal linear complexity algorithms based on sequential
arithmetic coding. A source of suboptimality of our al-
gorithm with respect to the optimal pointwise redundancy
is the discretization of the coding rate levels R,. Although
the maximum redundancy max |R, — R41| does not go to
zero with n, it can be made as small as desired by choosing
a sufficiently large Q.

5 Experiments

We compare the performance of the proposed al-
gorithm with the standard compression software gzi p
(based on the Lempel-Ziv algorithm) and bzi p (based on
postprocessing the BWT output using Move-to-Front run-
length coding and adaptive arithmetic coding.

Fig.1 shows the histogram of the normalized out-
put lengths obtained from 2000 independent trials for a
four-state binary Markov source with entropy rate 0.4935
bit/symbols, for the new scheme, gzi p and bzi p, for
block length n = 10,000. We used b, = 3 quantiza-
tion bits for the log-ratios, b; = 3 quantization bits for the
transition points and a collection of irregular LDPC en-
sembles with rates equally spaced from 0.005 to 0.0995.
For each ensemble, ¢ = 8 parity-check matrices were ran-
domly generated.

Instead of testing a given source, we also considered an
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Figure 2: Histogram of codign redundancies for a ran-
dom ensemble of Markov sources with blocklength equal
to 10,000.

ensemble of randomly generated binary Markov sources
with number of states equally likely to be 1, 2, 4, 8 and
16 (i.e., with memory equal to 0, 1, 2, 3 and 4). The
Markov source ensemble is obtained by generating inde-
pendently the memory length, and then conditional distri-
butions are also generated randomly, and it is restricted to
produce sources with entropy ranging from 0.05 to 0.75
bit/symbol. Fig.2 examine histograms of the normalized
redundancy (2) for our universal scheme, gzi p and bzi p
for blocklengths equal to 10,000. For our scheme, the pa-
rameters by and b, that govern the quantization coarseness
in the description of the segmentation are adapted using the
minimum description length principle described above.
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