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Abstract. A novel probabilistic deformable model of face mapping was
recently introduced and successfully applied to automatic person identi-
fication. In this paper, we consider the use of discrimination to improve
the performance of this system. It is possible to introduce discriminative
information at two different levels: 1) in the deformable model used to
match face images and 2) in the face representations. We explore both
types of discrimination and compare them in terms of performance and
computational complexity. Results are presented on the FERET face
database and show that, in this framework and for the discriminative
techniques that were considered, the discrimination of the deformable
model should be preferred and can result in a 25-40% relative error rate
reduction compared to the non-discriminative system.

1 Introduction

We recently introduced a novel probabilistic deformable model of face mapping
[1] whose philosophy is similar to Elastic Graph Matching (EGM) [2]. The global
face deformation, which is too complex to be modeled directly, is divided into a
set of local transformations with the constraint that neighboring transformations
must be consistent with each other. Local transformations and neighboring con-
straints are embedded within a probabilistic framework using two-dimensional
Hidden Markov Models (2-D HMMs).

Given a template face Fr, a query face Fg and a deformable model of the
face M, for a face identification task we have to estimate P(Fr|Fg, M). The
two major differences between EGM and the approach presented in [1] are 1)
in the use of the HMM framework which provides efficient formulae to compute
P(Fr|Fq, M) and train automatically all the parameters of M, 2) in the use of
a shared deformable model of the face M for all individuals, which is particularly
useful when little enrollment data is available.

This recognition system can be improved through the use of discrimination.
In this framework, it is possible to introduce discriminative information at two
different levels: in the deformable model M or in the face representations Fr
and Fg. Although both types of discrimination aim at reducing the error rate,
it must be underlined that they are conceptually very different.

The remainder of this paper is organized as follows. Our probabilistic de-
formable model of face mapping is briefly reviewed in the next section. In sections



3 and 4, we describe the two techniques used for discrimination. To discriminate
the deformable model, we perform discriminative training of HMM parameters.
To discriminate face representations, we project Gabor features in discriminant
sub-spaces. In section 5 we give experimental results for a face identification
task on the FERET face database which show that, in this framework and for
the discriminative techniques that were considered, the discrimination of the
deformable model M should be preferred as it performs better and it is more
computationally attractive.

2 A Deformable Model of the Face

As a global face transformation (deformation) may be too complex to be mod-
eled directly, it should be approximated with a set of local transformations. The
composition of all local transformations, i.e. the global transformation, should
be rich enough to model a wide range of facial deformations. However, if we allow
any combination of local transformations, the model could be over-flexible and
may manage to patch together very different faces. Hence the introduction of
a neighborhood coherence constraint whose purpose is to provide context infor-
mation. To combine local transformations and consistency costs, we embed the
system within a probabilistic framework using 2-D HMMs. At any position on
the face the system is in one of a finite set of states where each state represents a
local deformation. Emission probabilities model the cost of local transformations
and transition probabilities relate states of neighboring regions and implement
the consistency rules.

2.1 Local Transformations

Feature vectors are extracted on a sparse grid from the template image Fp
and on a dense grid from the query image Fg as is done in EGM [2]. Each
vector summarizes local properties of the face. In our experiments, we used
Gabor features (c.f. section 5). We then apply a set of local deformations (i.e.
translations) at each position (4, j) of the sparse grid. Each transformation maps
a feature vector of Fr with a feature vector in Fy.

Let 0; ; be the observation extracted from Frp at position (¢, j) and let ¢; ; be
the associated state (i.e. local deformation). If 7 is a translation vector, the prob-
ability that at position (4, j) the system emits observation o; ; knowing that it is
in state ¢; ; = 7, is b, (0; ;) = P(0s;|¢i ; = 7, A) where A = (Ag, Am). We clearly
separate A into Face Dependent (FD) parameters Ag which are extracted from
Fq (ie. the feature vectors) and the Face Independent Transformation (FIT)
parameters Aaq, i.e. the parameters of the shared deformation model M that
can be trained reliably by pooling together all training. The emission probabil-
ity b,(0; ;) represents the cost of matching o; ; with the corresponding feature
vector in Fg that will be denoted mZ»Tyj . by (05 ;) is modeled with a mixture of
Gaussians as linear combinations of Gaussians have the ability to approximate



arbitrarily shaped densities:
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b k(0s ;)’s are the component densities and the 'wﬁj’s are the mixture weights

and must satisfy the following constraint: ¥(¢,j) and V7, ), wﬁj = 1. Each
component density is a N-variate Gaussian function of the form:
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where ,u * and Ek» are respectively the mean and covariance matrix of the
Gausswn N is the size of feature vectors and |.| is the determinant operator.
This HMM is non-stationary as Gaussian parameters depend on the position
(,7). We use a bi-partite model which separates the mean into additive FD and
FIT parts:

Hf’; =m; +8f; (3)

where m] . is the FD part of the mean and 6 ; 1s a FIT offset. Intuitively, b, (0i 5)

should be approximately centered and max1mum around m; ;.

2.2 Neighborhood Consistency

The neighborhood consistency of the transformation is ensured via the transi-
tion probabilities of the 2-D HMM. If we assume that the 2-D HMM is first
order Markovian in a 2-D sense, the transition probabilities are of the form
P(qi ;195 j-1,9i—1 5, A). However, as explained in the next section, a 2-D HMM
can be approximated by a Turbo-HMM (T-HMM): a set of horizontal and ver-
tical 1-D HMMs that “communicate” through an iterative process. As we want
to be insensitive to global translations of face images, we choose the transition
probabilities of the horizontal and vertical 1-D HMMs to be of the form:

Plgij=r7lgij—1=1, /\)_a ((57’) P(g;ij =7lgi—1; =1, )\)_a ((57’) 4)

where 07 = 7 — 7', aH» and a? . model respectively the horizontal and vertical

elastic properties of the face at position (i,j) and are part of the face transfor-
mation model M.

We assume in the remainder that the initial occupancy probability of the
2-D HMM is uniform to ensure invariance to global translations of face images.
To summarize, the parameters we need to estimate are the FIT parameters Aaq,

i.e. w’s, §’s, L’s and transition probabilities aZ'LJ s and aY ;s

2.3 Turbo-HMMs

While HMMs have been extensively applied to one-dimensional problems [3],
the complexity of their extension to two-dimensions grows exponentially with



the data size and is intractable in most cases of interest. [1] introduced Turbo-
HMMs (T-HMMs), in reference to the turbo error-correcting codes, to approxi-
mate the computationally intractable 2-D HMMs. A T-HMM consists of horizon-
tal and vertical 1-D HMMs that “communicate” through an iterative process.
The T-HMM framework provides efficient formulae to 1) compute efficiently
P(Fr|Fqg, M) and 2) train automatically all the parameters of M.

The computation of P(Fr|Fg, M), i.e. of P(O|]), is based on a modified
version of the forward-backward algorithm which is applied successively and
iteratively on the rows and columns until the horizontal and vertical passes reach
some kind of agreement. This algorithm is clearly linear in the size of the data.
It must be underlined that we obtain one horizontal and one vertical scores. As
experiments showed that they were generally close, to obtain one unique score
we simply averaged them.

The Mazimum Likelihood Estimation (MLE) formulae for HMM parameters
can be derived directly by maximizing Baum’s auxiliary function Q(A|)) in the
1-D case [3]. In the T-HMM framework we obtain one horizontal and one vertical
functions Q(A*|A*) and Q(AY|\Y) that may be incompatible in the case where
horizontal and vertical passes do not converge. So a simple idea is to maximize:

QMY = QU IA™) + Q(AYAY) (5)

At training time, we present pairs of pictures (a template and a query image)
that belong to the same person and optimize the transformation parameters Aag.

3 A Discriminative Deformable Model of the Face

MLE formulae for HMM parameters can be shown to be optimal when certain
conditions hold, including model correctness and infinite training data. However,
as generally the true data source is not an HMM and as training data is sparse,
other training criteria, especially discriminative criteria, should be considered.
While MLE adjusts model parameters Axq to increase the value of P(Fr|Fq, M)
without taking into account competing faces, discriminative criteria take into
account competitors. Hence, a new possible objective function could be:

F(A) =log P(Fr|Fg, M) —log P(Fr|Fg, M) (6)

where ]:'Q is a competitor for Fg. The choice of such competitors will be ex-
plicited in section 5. We should note that a similar criterion is often used in
speech recognition to train HMM parameters discriminatively and is referred as
Mazimum Mutual Information Estimation (MMIE) [5, 6].

Analogous to the Baum-Welch algorithm for MLE, the Extended Baum-
Welch (EBW) for rational objective functions was introduced in [4] and extended
in [5] to continuous density HMMs. The update equations for the delta-offset
and the variance, assuming diagonal covariance matrices, can be adapted to our
problem as follows (the update for a single dimension is shown):

_— {0 ;(0) — 05 ,(0)} + D&F ;
M (k) = (k) + D

(7)
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where
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and v; ; (7, k) is the probability of being in state ¢; ; = 7 at position (¢, j) with the
k-th mixture component accounting for o; ;. v; ; (7, k)’s, ?ﬁj((’))’s and Hjj((’)‘?)’s
are the accumulators estimated for Fg and %; ;(7, k)’s, Hﬁj((’))’s and 9%((’)2)’8
are estimated for Fg. The choice of a proper learning step 1/D is of utmost
importance as a large value of D would result in slow convergence while a small
value may lead to instability. We chose a strategy similar to the one used in [6]:
D is set on a per Gaussian level (i.e. a Gaussian specific Dﬁj is used) to the
maximum of (1) %; ;(7, k) and (2) twice the minimum value that guarantees a
positive update of variances for all dimensions.

As for the update of mixture weights and transition probabilities, we did not
apply the formulae for discrete output probabilities derived in [4] but the update
formulae proposed in [7] which are generally preferred for their convergence
properties.

It must be underlined that there is no modification of the algorithm at test
time.

4 A Discriminative Representation of the Face

Although it should be possible to train a discriminative representation of the face
using equations similar to (7), this would require abundant enrollment data. As
we generally have very limited data to learn the representation of the face, we
implemented another approach based on discriminant sub-spaces.

While Gabor features may be useful for representing local properties of the
face, there is no guarantee they are optimal for discriminating between different
faces. Hence, the idea is to build a sub-space F; ; which is optimal for discrimi-
nating between the features of different individuals at each position (4, j) of the
sparse grid, and to project Gabor features in these spaces.

The construction of the spaces is done as follows. We assume we have pairs
of template and query images (F7., fg) for building the space (one pair of pic-
tures per person). For each pair we perform the modified version of the forward-
backward algorithm and estimate the following quantities (we index each quan-
tity 7, o and u with p to show it corresponds to the p-th pair of pictures):

7.k, _
/f:'),j = Z'Yf,j(ﬂk)ﬂi,j P f/’f,j = (05,]' + Hf,j)/Q (10)
T,k

Then, we compute the within- and between-scatter matrices:

Szl'l,}j = Z(Of,j - luf,j)(Of,j - Nf,j)T Szl?,j = Z(¢f,j - ¢i,j)(¢f,j - ‘/)i,j)T (11)
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where ¢; ; is the average of the qb?j’s. The optimal projection matrix F; ; is
chosen such that it maximizes the following ratio [8]:

|PTS,P|
|PTS, P|

P; ; = arg max (12)
The columns of the optimal F; ; are the generalized eigenvectors that correspond
to the largest eigenvalues ey in:

SPiek = AnSien (13)

This is known as Fisher’s Linear Discriminant (FLD).

The feature vectors o; ;’s extracted from F7 can be directly projected using
the corresponding F; ;’s. However, this is not possible for Fg as, for each feature
m, we generally do not know beforehand with which feature o; ; in Fp it will be
matched, and hence, we do not know in which space F; ; it should be projected.
Therefore, for Fg the projection of features has to be done on-line, at both
training and test time, which is computationally intensive.

5 Experimental Results

The following experiments were carried out on a subset of the FERET face
database [9]. 1,000 individuals were extracted: 500 for training the face deforma-
tion model and the projection matrices and 500 for testing the performance. We
use two images (one target and one query image) per training and test individ-
ual. It means that test individuals are enrolled with one unique image. Target
images are extracted from the gallery (FA images) and query images from the
FB probe. FA and FB images are frontal views of the face that exhibit large
variabilities in terms of facial expressions. Images are pre-processed to extract
128x128 normalized facial regions.

We used Gabor features that have been successfully applied to face recog-
nition [2]. They have desirable properties of spatial locality and orientation se-
lectivity and are optimally localized in the space and frequency domain. Gabor
wavelets can be characterized by the following equation:

kpyoll? kuol?]|2]]? .
Yuu(z) = Hiiénexp <—%) [exp(zkuyuz) — exp(—0'2/2)] (14)

where ky, = k,exp(i¢y). kv = kmao/f” with v € [1,N] and ¢, = wu/M
with p € [1, M]. p and v define respectively the orientation and scale of &, ,.
After preliminary experiments, we chose the following set of parameters: N = 5,
M = 8 (which makes 40-dimensional features), o = 2, ke = /4 and f = V2.
For each image we normalized the feature coefficients to zero mean and unit
variance. A feature vector is extracted every 16 pixels of the template images
in both horizontal and vertical directions (sparse grid) and every 4 pixels of the
query images (dense grid).



o8

o7

o6

os |

oal

o3|

identification rate

o2

o1

—— GB + MLE
-e - GB + MMIE
—+— FD + MLE

o

8o

o 1 2 B °

s 2 s 3
number of Gaussians per mixture

Fig. 1. Performance of the baseline system (GB + MLE), the system which discrimi-
nates on the deformable model (GB + MMIE) and the system which discriminates on
the face representations (FD + MLE).

For MLE, we first perform a rigid matching of each couple (Fr,Fg) and
initialize the parameters of single Gaussian mixtures. Transition probabilities
are initialized uniformly. Then the Axq parameters are re-estimated using the
modified Baum-Welch (deformable matching). To train multiple Gaussians per
mixture we implemented an iterative splitting/re-training strategy.

Before MMIE training we estimate the Axpq parameters using standard MLE
for the desired number of Gaussians per mixture (GpM). Then identification is
performed on the training set to find for each query image Fg the best com-
petitors Fg. We only consider the competitors Fg that satisfy P(Fr|Fg,A) —
P(TT|]?Q, A) < O where O is a parameter that has to be set by hand. Moreover,
to reduce the amount of computation, for each Fg the number of competitors is
limited to a maximum of 5. Once competitors are selected, MMIE training can
be carried out.

As for the Fisher Discriminant features (FD), after preliminary experiments
we decided to project Gabor features (GB) into 20-dimensional sub-spaces.

Results are presented on Figure 1. While both types of discrimination clearly
outperform the baseline system for 1 GpM (approximately 40% relative error rate
reduction), for a larger number of Gaussians the discrimination of the transfor-
mation model (GB + MMIE) outperforms the discrimination of the face repre-
sentations (FD + MLE). For 8 GpM, GB + MMIE still manages to outperform
the baseline system (25% relative error rate reduction) while the performance of
FD 4+ MLE is similar to the baseline (the difference can be considered insignif-
icant). We also tried to combine the discriminations of the deformable model
and the representations of the face (FD + MMIE) but we did not manage to
outperform GB + MLE.

We should note that the discriminative system based on the face represen-
tation is the most computationally intensive. To perform identification on the
whole test set (500 x 500 = 250, 000 comparisons) using 8 GpM models, it takes
approximately 50 min for GB + MLE and GB + MMIE and 1 h 30 min for FD



+ MLE on a Pentium IV 2 GHz with 1 GB RAM. This is due to the on-line
projection of Gabor features in the discriminant sub-spaces.

Finally, it must be underlined that the difference in performance and compu-
tation time may be due to the framework, i.e. we may draw different conclusions
if we used another deformable model of face mapping, but also to the choice of
the techniques used for discrimination.

6 Conclusion

In this paper, we considered the use of discrimination to enhance the performance
of an automatic person identification system based on a probabilistic deformable
model of face mapping. Two types of discrimination were considered: 1) on the
deformable model M with discriminative training of HMM parameters or 2)
on the face representations Fr and Fg by projecting features into discriminant
sub-spaces. It was shown that, in this framework and for the discriminative tech-
niques that were considered, the discrimination of the deformable model was su-
perior to the discrimination of the face representations, in terms of performance
and computational complexity.

As discussed in section 4, the same technique based on discriminative training
of HMM parameters could theoretically be used for both types of discrimination
and this should be tested in the case where abundant enrollment data is available.
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