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Abstract

In content networks, messages are routed on the ba-
sis of their content and the interests (subscriptions)
of the message consumers. This form of routing
offers an interesting alternative to unicast or mul-
ticast communication in loosely-coupled distributed
systems with large number of consumers, with di-
verse interests, wide geographical dispersion, and
heterogeneous resources (e.g., CPU, bandwidth). In
this paper, we propose a novel protocol for content-
based routing in overlay networks. This protocol
guarantees perfect routing (i.e., a message is re-
ceived by all, and only those, consumers that have
registered a matching subscription) and optimizes
the usage of the network bandwidth. Furthermore,
our protocol takes advantage of subscription aggre-
gation to dramatically reduce the size of the routing
tables, and it fully supports dynamic subscription
registrations and cancellations without impacting
the routing accuracy. We have implemented this
protocol in the application-level routers of an over-
lay network to build a scalable XML-based data dis-
semination system. Experimental evaluation shows
that the size of the routing tables remains small,
even with very large populations of consumers.

1 Introduction

Content-based routing differs significantly from tra-
ditional unicast and multicast communication, in
that messages are routed on the basis of their con-
tent rather than the IP address of their destination.
This form of addressing is widely used in event no-
tification or publish/subscribe systems [11] to de-
liver relevant data to the consumers, according to

the interests they have expressed. By allowing con-
sumers to define the type of messages they are in-
terested in, data producers do not need to keep
track of the consumer population and can simply
inject messages in the network. In turn, consumers
with scarce resources (e.g., mobile devices with lim-
ited bandwidth) can restrict the type and amount
of data that they receive by registering highly-
selective subscriptions, and hence limit their incom-
ing network traffic. The complex task of filtering
and routing messages is left to the network infras-
tructure, which consists typically of application-
level routers organized in an overlay network.

In order to route messages to all, and only those,
consumers that have registered a matching sub-
scription, the distributed routers of a content-based
network must keep track of the consumers’ sub-
scriptions in their routing table.1 With large num-
bers of consumers, the size of the routing tables can
quickly become a bottleneck, as each router must
match each incoming message against the subscrip-
tions of its routing table at “wire speed” and the
filtering speed is highly dependent of the number of
subscriptions. It is thus of paramount importance
for a scalable content-based network to incorporate
a space- and bandwidth-efficient routing protocol,
and highly-efficient filtering mechanisms.

In the paper, we present the XRoute content-
based routing protocol that we have designed for
our XNet XML-based data dissemination sys-
tem [7]. Although XNet uses XML as data format
and XPath as subscription language, our routing

1In contrast, in broadcast networks, filtering must be per-
formed at the consumers. This approach has the drawback
of misspending network bandwidth and consumer resources
(consumers also receive, and must filter out, the messages
they are not interested in).
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protocol can be readily applied to other subscrip-
tion models, including simple IP prefixes. The pro-
tocol implements perfect routing, i.e., a message is
routed only to the consumers that have registered
a matching subscription, and to all of them. It
takes advantage of subscription similarities to “ag-
gregate” them in the routing tables, and hence min-
imize the space requirements and increase the fil-
tering speed at the routers. Furthermore, the pro-
tocol allows consumers to register new subscrip-
tions, and cancel them, at any time without im-
pacting the routing accuracy. To the best of our
knowledge, this is the first content-based routing
protocol that takes advantage of subscription ag-
gregation and fully supports subscription cancella-
tions. Experimental evaluation demonstrates that
subscription aggregation is effective and dramati-
cally reduces the size of the routing tables.

The rest of this paper is organized as follows:
We first discuss related work in Section 2, and we
introduce the system model and definitions in Sec-
tion 3. In Section 4, we present the general princi-
ple of our content-based routing protocol, and we
formally describe it in Section 5. Section 6 presents
results from experimental evaluation. Finally, Sec-
tion 7 concludes the paper.

2 Related Work

Selective event dissemination can be achieved by
various means. The simplest approach, called flood-
ing, consists in broadcasting events and filtering
out unwanted data at the consumer (or at the
consumer’s local content router). This approach
can quickly lead to network saturation. Alterna-
tively, routers can be configured to match pub-
lished events against all subscriptions and compute
a destination list used to route events. This ap-
proach, called match-first, increases the space re-
quirements and the filtering time at the routers,
and does not scale well to large numbers of sub-
scriptions. These two approaches are generally not
classified as “content-based routing” because data
is routed to all nodes in the first case, and accord-
ing to a pre-computed list of addresses in the second
case.

Several publish/subscribe systems implement
some form of content-based routing (see [11] for a
survey). Elvin [13] is architectured around a single

server that filters and forwards producer messages
directly to consumers, thus alleviating the need for
a real content-based routing protocol. The authors
mention a distributed extension of Elvin, but do
not discuss how they plan to achieve distributed
content routing.

IBM Gryphon [2] uses a set of networked brokers
to distribute events from publishers to consumers.
It uses a distributed filtering algorithm based on
parallel search trees maintained on each of the bro-
kers to efficiently determine where to route the mes-
sages. To construct or to update the parallel search
trees, each broker must have a copy of all the sub-
scriptions in the system, which makes this approach
unpractical with large number of subscriptions or
when subscriptions are frequently registered and
canceled.

Siena [4] also uses a network of event servers
for content-based event distribution. The rout-
ing protocol of Siena [5] is most similar to ours.
Each event server maintains a routing table that
holds a subset of the subscriptions, and the as-
sociated subscribers and neighbor routers. Mes-
sages are matched against each subscription and
forwarded along the paths corresponding to match-
ing subscriptions. However, Siena’s routing proto-
col does not support subscription cancellation (can-
cellations in Siena would degrade routing accuracy,
and the system could eventually degenerate into a
flooding approach). In addition, we could not de-
termine the space- and time-efficiency of the pro-
tocol, and whether it can be extended to support
more general subscription languages.

Jedi [9] proposes several variations for event rout-
ing among its networked event servers, including
the flooding and match-first approaches. With the
hierarchical approach, event servers are organized
in an (arbitrary) tree; subscriptions are propagated
upward the tree, and messages are propagated both
upward and downward to the children that have
matching subscriptions. This approach may lead
to very large routing tables at the root of the tree,
and unnecessary propagation of events upward the
tree.

In [15], the authors propose an approach for
content-based routing of XML data in mesh-based
overlay networks. They introduce a routing proto-
col that reassembles data streams sent over multiple
redundant paths to tolerate some node or link fail-
ures. The focus of this work is on reliable delivery
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of streaming data, and does not explicitly address
subscription management.

In [14], the authors propose to add content-based
routers at specific nodes of an IP multicast tree
to reduce network bandwidth usage and delivery
delays. They propose algorithms for determining
the optimal placement of a given number of con-
tent routers. The routing protocol merely consists
of propagating subscriptions upward the tree, until
they reach the producer or are subsumed by other
subscriptions. Subscription cancellation is not sup-
ported.

Note that, in this paper, we focus on the routing
of messages in an overlay network, and we do not
explicitly address the issue of efficiently matching
the messages against subscriptions. This problem
has been widely studied elsewhere (e.g., in [1, 12,
3, 7, 10]).

3 System Model and Defini-
tions

Our protocol routes messages (or events) through
the nodes of an overlay network, according to the
messages’ content and the subscriptions registered
by the consumers. Each node of the overlay net-
work acts as a content-based router. Each data
consumer and producer is connected to some node
in the network; we call such nodes consumer and
producer nodes. To simplify the presentation, we
assume that consumer and producer nodes are dis-
tinct, i.e., one cannot directly connect both a pro-
ducer and a consumer to the same router node.
Nodes that have no consumer or producer are in-
ner nodes. A sample network topology is shown in
Figure 5.

We assume that all routers know their neighbors,
as well as the best paths that lead to each producer.
We also assume that the number and location of
the producer nodes is known. In contrast, the con-
sumer population does not need to be known a pri-
ory.

Nodes communicate with their neighbors using
reliable point-to-point transport such as TCP, and
we assume that nodes and links do not fail. Each
node has a set of links, or interfaces, that connects
the node to its direct neighbors. We assume that
there exists exactly one interface per neighbor (we

ignore redundant links connecting two neighbors).
For a given producer, we will generally denote by
Iup, or upstream interfaces, the interfaces along the
path up to the producer, and Idown, or downstream
interfaces, the other interfaces (along the paths to
the consumers). In general, we will discuss the
properties and behavior of our protocol in the case
of a single producer; it can be, however, trivially
extended to the case of multiple producers.

The actual consumers are connected to consumer
nodes via links that are not part of the overlay net-
work, and therefore not associated with any of the
node’s interface. Furthermore, to simplify the pre-
sentation of the protocol, we assume that consumer
nodes are edge routers with a single interface that
connects them to the overlay network (this prop-
erty can always be satisfied by introducing virtual
consumer nodes at the edges of the overlay). Con-
sumers register and cancel subscriptions via their
consumer nodes. A consumer cannot cancel a sub-
scription that it did not previously register (the
consumer node will filter out such requests).

Consumer interests are expressed using a sub-
scription language. Subscriptions allow to specify
predicates on the set of valid events for a given
consumer. Our XNet system was designed to
use a significant subset of the XPath language [16]
to specify complex, tree-structured subscriptions,
and the XTrie filtering algorithm [7] for efficient
matching of events against large number of sub-
scriptions. However, our routing protocol can be
used with any subscription language.2

We say that a subscription S1 covers another
subscription S2, denoted by S1 ⊇ S2, iff any event
matching S2 also matches S1, i.e., matches(S2)⇒
matches(S1). The covering relationship defines a
partial order on the set of all subscriptions. For
XPath expressions, we have shown in [6] that cov-
ering relationships can be evaluated in O(nm) time,
where n and m are the number of nodes of the two
expressions being compared.

2Most publish/subscribe systems use custom subscrip-
tion languages with name-value pairs of properties, basic
comparison operators (=, <, ≤, >, ≥), and logical opera-
tors (and, or, not).
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4 Overview of the Protocol

4.1 Goals

Our routing protocol has been designed to achieve
several goals. First, it should lead to perfect rout-
ing of data in the network, i.e., when an event is
published, all the consumers that are interested in
that event, and only those, must receive it. Second,
routing should ideally be optimal, i.e., the link cost
of routing an event should be no more than that of
sending the event along a multicast tree spanning
all the consumers interested in the event.

Third, the protocol should take advantage of sub-
scription aggregation to minimize space and pro-
cessing requirements at the nodes. informally, sub-
scription aggregation is a mechanism that enables
us to reduce the size of the routing tables by detect-
ing and eliminating subscription redundancies; it is
a key technique to scale to very large populations
of consumers in a publish/subscribe system.

Finally, the protocol should be efficient and allow
consumers to register and cancel subscriptions at
any time. In particular, canceling a subscription
should leave the system in the same state as if the
subscription were not registered in the first place.

4.2 Routing

Routing works in a distributed manner. Each node
N in the network contains in its routing table a
set of entries that represent the subscriptions that
its neighbor nodes are interested in. For each sub-
scription S, node N maintains some information in
its routing table in the form “if match S, send to
N1, N2, . . .”. In other words, node N knows which
neighbor nodes it must forward an event to, if that
event matches S. When a node is a consumer node,
it knows the consumers which are interested in re-
ceiving events matching S. The process starts when
a publisher produces an event at its publisher node
and ends when all consumer nodes that are inter-
ested in that event have received it.

Example 1. Consider the network in Figure 1,
with two publisher nodes P1 and P2, and three con-
sumer nodes C1, C2, and C3. The other nodes N1,
N2, N3, N4, and N5 are internal nodes. Nodes
C2 and C3 have consumers interested in receiving
events matching subscription S. Suppose that e1,
an event matching subscription S, is published at

N1

P1

P2

C1 C2
C3

N2

N3

N4 N5

S S

e1

S      N4

S      N3

S      N1 , N2

S      N3

S      C3S      C2

e1

e1

e1

e1

e1

e1

Figure 1: A sample publish/subscribe network.
Subscriptions are represented underneath the con-
sumers that registered them, and routing table en-
tries are listed next to the node they are associated
with.

node P1. Event e1 will follow the path highlighted
by the arrows.

4.3 Principle of the Algorithm

When some consumer registers or cancels a sub-
scription, the nodes of the overlay must update
their routing tables accordingly; to do so, they
exchange pieces of information that we call sub-
scription advertisements, or simply advertisements.
An advertisement carries a subscription, and cor-
responds either to a registration or a cancellation.
From the point of view of node N , an advertisement
for subscription S received from a neighbor node
N ′ indicates that a consumer at N ′ or downstream
from N ′ has registered or canceled subscription S.
The subscription algorithm works by propagating
advertisements recursively across the overlay, from
the consumers toward the producers, following the
best path (see Section 3). Note that subscriptions
may be transformed along the propagation path
due to aggregation, i.e., a subscription received as
part of an incoming advertisement may be differ-
ent from the subscription carried by the resulting
outgoing advertisement.

The general principle of the algorithm is shown
in Algorithm 1, and illustrated in Figure 2. The
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Algorithm 1 Sketch of the protocol at node N

1: when receive adv(S) from N ′ via interface Idown

2: update routing table
3: generate outgoing advertisement adv(S′)
4: send adv(S′) via Iup upward to the producer
5: end when

algorithm starts when a consumer registers or can-
cels a subscription S. It builds an advertisement
corresponding to this subscription and sends it to
its consumer node C. The algorithm ends when the
publisher node has been reached. When a subscrip-
tion should be registered by multiple producers, the
advertisements are sent along the paths to each of
the producers.

N1

P1

P2

C1 C2
C3

N2

N3

N4 N5

S1

Adv(S2)

Adv(S1)

Adv(S1)

S1

Adv(S1)

Adv(S1)

Adv(S2)

S1 S1

S1

S1

Figure 2: Subscription advertisements are propa-
gated upward from the consumers to the publishers.
They may be transformed along the propagation
paths due to aggregation (here, we have S1 ⊇ S2).

4.4 Subscription aggregation

Subscription aggregation is a key technique that al-
lows us to minimize the size of the routing tables
by eliminating redundancies between subscriptions,
and consequently to improve the routing perfor-
mance.

Consider the situation illustrated in Figure 2. At
node N1, two subscriptions S1 and S2 were adver-
tised by consumer nodes C1 and C2, respectively.
From the point of view of node N3, this means that

some consumers downstream N1 are interested in
receiving events matching S1 or S2. Now, assume
that S1 ⊇ S2, that is, any event matching S2 also
matches S1. The mechanism of subscription aggre-
gation is based on the following observation: when
an event e arrives at node N3, it is only necessary
to test e against S1, because, by definition, any
event matching S2 also matches S1, and any event
that does not match S1 does not match S2 either.3

Because of that property, S2 becomes redundant
and can be “aggregated” with S1 (in particular, S2

does not need to be propagated upstream from N1

to N3).
We distinguish between two forms of subscription

aggregation. If S1 and S2 are registered through
the same interface Ik (e.g., at Node N3 in Figure 2),
we say that S2 is represented by S1 at interface
Ik. If they are not registered through the same
interface, we say that S2 is substituted by S1 (e.g.,
at Node N1 in Figure 2). In both situations, only
S1 is advertised upstream.

5 The Subscription Algorithm

In this section, we formally present our content-
based routing protocol.

5.1 Data Formats

Routing Tables. Each node N maintains a rout-
ing table that consists of a set of entries. Each entry
corresponds to one distinct subscription (two iden-
tical subscriptions share the same entry). We will
write entry(S) to refer to the entry corresponding
to subscription S. It maintains information about
all the registrations for subscription S that have
been received by node N . More precisely, the in-
formation in entry(S) represents N ’s view of its
neighbor’s interests in subscription S. Moreover,
entry(S) also contains the information required to
implement the aggregation principle introduced in
Section 4.

An entry entry(S) in the routing table of node
N has the following format:

S ; (T 1
S , · · · , Tn

S ) ; RS ; PtrS

3An IP networking analogy would be that of network
prefixes, where S1 is a prefix of S2.
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where S is the subscription and n is the number of
interfaces of node N . T k

S represents the population
of consumers downstream interface Ik that are in-
terested in events matching S. Each T k

S consists of
a set of three integers that we will refer to as T k

S .x,
T k

S .y, and T k
S .z (to be described shortly). T k

S is de-
fined by T k

S .x + T k
S .y + T k

S .z and is always greater
than or equal to 0 (it is strictly greater than 0 iff
there are consumers downstream interface Ik inter-
ested in receiving events matching S). Finally, RS

represents the total number of subscriptions that
have been “aggregated” in S (either through rep-
resentation or substitution), and PtrS , if non-null,
points to another entry in the routing table that S
is substituted by.

The sum of T k
S .x and T k

S .y represents the popu-
lation of subscriptions S downstream interface Ik,
i.e., the number of consumers interested in receiv-
ing events matching S (the distinction between
T k

S .x and T k
S .y will be discussed later). T k

S .z cor-
responds to the number of subscriptions “aggre-
gated” in S (either through representation or sub-
stitution) downstream interface Ik.

Advertisements. As mentioned previously, ad-
vertisement messages are exchanged between
routers to register or cancel a particular subscrip-
tion. From the point of view of node N , receiving
an advertisement message adv(S) from interface Ik

means that a change about the population of sub-
scriptions S has occurred downstream interface Ik.
Node N must update its routing table to take this
change into account; in particular, T k

S needs to be
updated. N also needs to generate and send an
advertisement to the upstream neighbor node.

An advertisement message adv(S) is a sequence
of triples with the following format:

S ; nS ; rS

where S is the subscription advertised, and nS is
the number of times S should be registered (nS >
0) or canceled (nS < 0). rS represents the number
of subscriptions, distinct from S, that have been
substituted by S downstream Ik, and that should
be registered (rS > 0) or canceled (rS < 0) at node
N . Finally, adv(S) may contain additional triples,
with the same format, indicating additional modifi-
cations to perform to the routing tables upstream.

Events. Events are messages whose content can
be matched against consumer subscriptions. In our
XNet system, events are formatted as XML doc-
uments. Once the routing table have been pop-
ulated, routing an event is a trivial task. When
node N receives event e sent by producer P from
interface Iup, it matches e against the subscriptions
in his routing table (in our system, efficient match-
ing is implemented using the algorithms presented
in [7]). For each interface Ik

down such that there is
at least one subscription S with T k

S > 0, node N
propagates e downstream that interface. Note that
there cannot be cycles because each node always
receives events through its Iup interface located on
the best path (see Section 3) from the producer to
the node, and never propagates them along that
path.

5.2 Representation and Substitution

Before describing the subscription algorithm, we
need to describe more formally the representation
and substitution relations, and how they are imple-
mented.

Definition 1 (Representation). Consider en-
tries for subscriptions S1 and S2 at non-consumer
node N such that S1 ⊃ S2, T k

S1
> 0 and T k

S2
> 0,

then S2 must be represented by S1 at interface Ik.
This operation consists in modifying their entries
as follows:

1. T k
S1

.z ← T k
S1

.z + T k
S2

2. RS1 ← RS1 + T k
S2

3. RS2 ← RS2 − T k
S2

.z

4. T k
S2
← 0

When the operation has been done, we say that S2

is represented by S1 at interface Ik.

The representation operation implements the
subscription aggregation mechanism introduced in
Section 4. Indeed, having both T k

S1
and T k

S2
greater

than zero is redundant, because it is not necessary
to test an event against S2 to know if it has to be
forwarded down that interface. Therefore, when
S2 has been represented by S1 at interface Ik, T k

S2

becomes null, which is equivalent to say that no
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client is interested in receiving events matching S2

downstream interface Ik.
Note that if some subscriptions were previously

represented by S2 at interface Ik, they now become
represented by S1 at Ik. Indeed, T k

S2
represents the

sum of the instances of S2 registered at Ik and all
the subscriptions that are represented by S2 at Ik.
At the time S2 is represented by S1 at Ik, S1 takes
control of all instances of S2 and all the subscrip-
tions that it represents (steps 1 and 2 in Defini-
tion 1), and S2 loses control of the subscriptions it
used to represent (steps 3 and 4).

Definition 2 (Substitution). Consider entries
for subscriptions S1 and S2 at node N such that:
S1 ⊃ S2, PtrS1 = null, and PtrS2 = null. Then
S2 must be substituted by S1. This operation con-
sists in modifying their entries as follows:

1. PtrS2 ← S1

2. RS1 ← RS1 +
∑

k≤n T k
S2

.x + RS2

When the operation has been done, we say that
S2 has been substituted by S1, and S2 must sub-
sequently be advertised by S1, i.e., any incoming
advertisement (S2;n; r) yields an outgoing adver-
tisement (S1; 0; n + r). Note that a subscription
may be substituted by only one other subscription.

The signification of a substitution operation can
be understood by observing the following scenario.
Suppose that the conditions for substituting S2 by
S1 are met, but we do not perform the substitu-
tion operation. If an incoming advertisement for S2

(registering nS2 subscriptions) arrives at node N ,
the outgoing advertisement sent to the upstream
neighbor node N ′ at interface Ij will be advup(S2).
Then, S2 will be represented by S1 at interface Ij

of N ′. Thus, by substituting S2 by S1 at node N ,
we anticipate this representation. The outgoing ad-
vertisement advertises S1 and specifies that S1 is to
represent nS2 additional subscriptions at interface
Ij .

Although it adds some complexity to the pro-
tocol, the subscription substitution mechanism is
necessary to guarantee perfect routing when can-
celing a subscription that acts as a substitute for
some other subscriptions. In addition, it can help
save bandwidth by propagating smaller advertise-
ments.

S1

S2 S3

S5S4

S1:   /stock
S2:   /stock[symbol="IBM"]
S3:   /stock[symbol="LU"]
S4:   /stock[symbol="LU"][price<10]
S5:   /stock[symbol="LU"][volume>1000]

Figure 3: The substitution relations apply recur-
sively. Subscriptions can be organized in a tree,
where a link indicates that a child is substituted by
its parent.

Note that there may be multiple substitution re-
lations between subscriptions. That is, subscrip-
tion S can be substituted by S′, which is in turn
substituted by S′′, etc. We call such a sequence
a substitution chain. For any subscription Si, we
denote by h(Si) the subscription at the top of the
chain, i.e., the subscription S with PtrS = null.
We denote by tree(S) the set of all the subscrip-
tions Sj that have been substituted, directly or in-
directly, by S (including S). Figure 3 shows a sub-
scription tree, where links represent substitutions
(the child is substituted by its parent). For in-
stance, tree(S1) contains all subscriptions, tree(S3)
contains S3, S4, and S5, and tree(S5) only contains
S5.

A substitution operation can only be performed
between two subscriptions if none of them has al-
ready been substituted, in other words between two
tops of chains. Let S1 and S2 be two such sub-
scriptions. When S2 is substituted by S1, RS1 is
incremented by

∑
k≤n T k

S2
.x, which represents the

number of subscriptions S2 (step 2 in Definition 2).
Indeed, as S2 was not substituted before, T k

S2
.y = 0

for all k. Besides, RS1 is also incremented by RS2 ,
which represents the number of subscriptions that
are represented by S2 at all interfaces, plus the ones
that have been substituted by S2, if any. Thus,
recursively, RS1 represents all the subscriptions in
tree(S1), plus those that are represented by any of
them. This is true for any subscription.

We can identify the following properties on the
representation and substitution relations.

Consider node N . Let node Ndown be the node
downstream interface Ik and Nup be the upstream
neighbor node.
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Property 1. When an advertisement for the reg-
istration of subscription S arrives from node N ′ at
interface Ik of node N , S cannot be represented by
any subscription at that interface.

Proof. Suppose that S can be represented by sub-
scription S′ at interface Ik. That means that we
have T k

S′ > 0, which means that S′ has an entry
at node Ndown. But then at that node, subscrip-
tion S would have been substituted by S′ and no
advertisement for S would have reached node N .
Contradiction.

It is very important to note that T k
S1

.z indicates
how many subscriptions are represented by S1 at
interface Ik, but that we do not know which sub-
scriptions are represented by S1.

Corollary: It follows from property 1 that the
only case when S2 can be represented by S1 is when
T k

S1
= 0 and an advertisement for S1 arrives at

interface Ik. Then T k
S1

becomes strictly positive
and S2 is represented by S1 at interface Ik. In
other words, an advertisement for S2 has arrived
before the advertisement for S1.

Property 2. Assume that PtrS1 = null. If S2 is
being represented by S1 at any interface Ik of node
N , then S2 will also be represented by S1 at the
upstream neighbor node Nup, at incoming interface
Ij (toward N).

Proof. This property comes partly from the oper-
ation of the routing protocol. We have seen in the
corollary of property 1 that if S2 is being repre-
sented by S1, then the advertisement for S2 ar-
rived before that for S1. Suppose that S2 was not
substituted by any subscription at node N . Then
S2 has an entry at node Nup. At node N , S1 is
not substituted and thus the advertisement sent to
Nup advertises S1. Then at node Nup, the condi-
tions for representing S2 by S1 are met. Now if S2

is substituted by a subscription S′ at node N , the
operation of the routing protocol is such that S2

will be represented by S at node Nup, at interface
Ik.

Property 3. If S2 is substituted by S1 at node N ,
then S2 is represented by S1 at the upstream neigh-
bor node, at incoming interface Ij (toward N).

Proof. Suppose that S2 arrived at node N before
S1. Then S2 also has an entry at the upstream node

Nup, because it has not bee substituted at node
N . Because S1 is not substituted, the outgoing
advertisement advertises S1. When it arrives at
node Nup the conditions for representing S2 by S1

are met. Now suppose that S1 arrived first at node
N . Then when S2 is substituted by S1, according
to the definition of the substitution relation, the
incoming advertisement for S2, (S2;n; r) yields an
outgoing advertisement for S1: (S1; 0; n + r). That
means that S1 is to represent n + r instances of
subscription S2 at node Nup.

Property 4. If S2 is represented by S1 at interface
Ik of node N , no registration advertisements for S2

can be received at interface Ik.

Proof. Suppose that an advertisement for S2 ar-
rives at interface Ik of node N . That means that
at node Ndown, S2 is not substituted by any sub-
scription. But if S2 is represented by S1 at interface
Ik of node N , that means that we have T k

S1
> 0,

and S1 has an entry at node Ndown. Thus S2 would
have been substituted by S1 at node Ndown and no
advertisement for S2 would reach node N . Contra-
diction.

Property 5. Consider subscription S. RS repre-
sents the number of subscriptions that are repre-
sented by S at all interfaces, plus the number of
all the subscriptions on tree(S), plus the number
of the subscriptions that any of them represent at
any interface.

Proof. According to the definition of the represen-
tation relation, RS is incremented by T k

S′ when S′

is being represented by S at interface Ik. Thus RS

represents at least the instances of all the subscrip-
tions that are represented by S at all the interfaces.

Suppose that the height of tree(S) is one. In
other words, no subscriptions are substituted by S.
Then the only way to increase RS is by representa-
tion relations. Thus RS represents exactly the in-
stances of all the subscriptions that are represented
by S at all the interfaces, and the property is true
(tree(S) comprises S only).

Now suppose that the height of tree(S) is two.
In other words, if {Substituted} is the set of
all the subscriptions that are substituted by S,
no subscriptions are substituted by a subscription
in {Substituted}. Consider S1 ∈ {Substituted}.
Then tree(S1) is of height one, and RS1 is exactly
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the number of subscriptions that are represented by
S1 at all the interfaces. When S1 was substituted
by S, RS was increased by

∑
k≤n T k

S1
.x+RS1 . Thus

in RS are included all the instances of subscription
S1 plus the instances of the subscriptions that are
represented by S1 at all the interfaces. This is true
for all the subscriptions in {Substituted}, and the
property is true.

Now suppose that the property is true for a
height of h (recursive assumption). If the height
of tree(S) is h+1, then again let {Substituted} be
the set of all the subscriptions that are substituted
by S. We have seen that RS represents at least
the instances of all the subscriptions that are rep-
resented by S at all the interfaces. Now for each
S1 ∈ {Substituted}, tree(S1) is of height at most
h. When S1 is substituted by S, RS is increased
by

∑
k≤n T k

S1
.x + RS1 , that is by all the instances

of subscription S1 plus RS1 . But because tree(S1)
is of height at most h, according to the recursive
assumption, RS1 is exactly the number of subscrip-
tions that are represented by S1 at all the inter-
faces, plus the number of all the subscriptions on
tree(S1), plus the number of the subscriptions that
any subscription on tree(S1) represents at any in-
terface. Thus the property is true for a height h+1,
and according to the theorem of recursivity, it is al-
ways true.

Property 6. At node N , for any subscription S,
T k

S .z is equal to RS at node Ndown.

Proof. This property comes from the operation of
the routing protocol. Indeed, the update of the
routing table is such that T k

S .z corresponds to the
number of subscriptions “aggregated” in S (ei-
ther through representation or substitution) down-
stream interface Ik, that is at node Ndown (as we
have seen in the description of the format of a
routing table). Then according to property 5, RS

represents exactly the number of those subscrip-
tions.

Corollary: From this property, it follows that
part of the subscriptions that are represented by
S at interface Ik of node N are subscriptions Si

at node Ndown such that PtrSi
points to S. The

other part consists of subscriptions that are rep-
resented by S at all the downstream interfaces of
node Ndown. Recursively we can completely iden-

tify them, because there are no representations at
client nodes.

5.3 Protocol Description

Updating the routing table constitutes the main
task of the subscription algorithm. The table must
be updated at node N each time an advertisement
for a subscription S arrives from an interface Ik,
i.e., when a change has occurred in the popula-
tion of the subscriptions S downstream interface
Ik. The routing table at node N must be up-
dated so that its entries are accurate enough to
enable perfect routing. Moreover, the algorithm
must make full use of subscription aggregation at
all times. The details of the algorithm are given in
Algorithms 2, 3, and 4, and described in the rest of
this section.

When an advertisement for a subscription S ar-
rives at interface Ik of node N , we first update T k

S .
Then we try to establish some relations with the
other subscriptions in the routing table, if possible.
We now identify and discuss the various situations
that may occur.

Establishing Subscription Relations

First we consider the following property:

Property 7. When an advertisement for the reg-
istration of subscription S2 arrives at node N , if S2

can be substituted by another subscription S1, then
no subscription can be substituted by S2.

Proof. Suppose that a subscription S3 can be sub-
stituted by S2. This implies that S3 is not substi-
tuted by a subscription yet. Also this implies that
S3 ⊃ S1 (because of the transitivity property of
the covering relation). Then S3 would have been
substituted by S1. Contradiction.

Now consider an advertisement adv(S) for sub-
scription S arriving at interface Ik of node N . If
that advertisement corresponds to a subscription
cancellation, it means that a registration adver-
tisement for S has been received earlier at inter-
face Ik (consumers cannot cancel subscriptions that
they have not previously registered). Otherwise, if
entry(S) exists and is such that T k

S > 0, then some
advertisement for the registration of S has been re-
ceived earlier at interface Ik. In both situations,
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the possible aggregation (representation or substi-
tution) relations between S and the other subscrip-
tions have already been established.

Algorithm 2 — Routing Table Update
1: if PtrS 6= null then
2: T k

S .y ← T k
S .y + nS

3: for all S′ ancestor of S in tree(h(S)) do
4: RS′ ← RS′ + nS + rS

5: end for
6: advout ← (h(S); 0; nS + rS)
7: else
8: T k

S .x← T k
S .x + nS

9: advout ← (S; nS ; rS)
10: end if
11: T k

S .z ← T k
S .z + rS

12: RS ← RS + rS

Thus, we will only try to establish some relations
when (i) adv(S) corresponds to a registration and
(ii) there is no entry for S or entry(S) is such that
T k

S = 0. Moreover, if S has an entry in the routing
table, then some advertisement for the registration
of S has been received earlier and substitution rela-
tions have already been established. We therefore
try to build the following relations when conditions
(i) and (ii) above are met:

• If there is no entry for S in the routing ta-
ble, we try to substitute S by another sub-
scription. If that is possible, then according to
property 7, no other subscription can be sub-
stituted by S (lines 2−3 in Algorithm 4). Oth-
erwise, we try to substitute other subscriptions
by S (lines 5− 7 in Algorithm 4).

• We try to represent other subscriptions by S
at interface Ik (Algorithm 3). Recall that, ac-
cording to property 1, S cannot be represented
by another subscription.

Establishing the aggregation relations between
S and the other subscriptions in the routing ta-
ble may require modifying existing relations. We
now identify these cases.

Modifying Subscriptions Relations

Consider an advertisement for the registration of
subscription S arriving at interface Ik of node N ,
and suppose that we have T k

S = 0. A subscription

Algorithm 3 — Subscription Representation
1: declare A = 0
2: for all Sj subscriptions that can be represented by

S at Ik do
3: declare Tj = T k

Sj

4: Represent Sj by S at Ik

5: if Sj ∈ tree(S) then
6: for all Sk ancestor of Sj in tree(S) do
7: RSk ← RSk − Tj

8: end for
9: else

10: if Sj ∈ tree(h(S)) then
11: for all Sk ancestor of Sj in tree(h(S)) do
12: RSk ← RSk − Tj

13: end for
14: else
15: for all Sk ancestor of Sj in tree(h(Sj)) do
16: RSk ← RSk − Tj

17: end for
18: if Sj 6= h(Sj) then
19: append (h(Sj); 0;−Tj) to advout

20: A← A + Tj

21: end if
22: end if
23: for all Sk ancestor of S in tree(h(S)) do
24: RSk ← RSk + Tj

25: end for
26: end if
27: remove entry(Sj) if

∑
p≤n T p

Sj
= 0

28: end for
29: for all Sk ancestor of S in tree(h(S)) do
30: RSk ← RSk + nS + rS

31: end for
32: RS ← RS + rS

33: T k
S .z ← T k

S .z + rS

34: if h(S) 6= null then
35: T k

S .y ← T k
S .y + nS

36: advout ← (h(S); 0; nS + rS + A) [+ appended
triples]

37: else
38: T k

S .x← T k
S .x + nS

39: advout ← (S; nS ; rS + A) [+ appended triples]
40: end if
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can only have one substitution relation. Thus, es-
tablishing a substitution relation between S and
some other subscriptions does not require extra
modifications to be performed to the routing table.

On the other hand, a subscription can have mul-
tiple representation relations with other subscrip-
tions. Consider the case where a subscription Sj is
to be represented by S at interface Ik. There are
Tj = T k

Sj
instances of subscription Sj . We have two

cases:
First case: Sj ∈ tree(S). The Tj instances of

subscription Sj are now represented by S. For
each subscription ancestor of Sj in tree(S), the Tj

instances of subscription Sj are no longer substi-
tuted it it. Thus subscription Sk must have its
R field decremented by Tj (lines 6 − 8 in Algo-
rithm 3). However, the subscriptions ancestor of S
in tree(h(S)) (if any) are still a substitute for the
Tj instances of subscription Sj , and do not need to
have their entry modified.

Algorithm 4 — Subscription Substitution
1: create a null entry(S)
2: if ∃S′, S′ ⊃ S, P trS′ = null then
3: substitute S by S′

4: else
5: for all Sk that can be substituted by S do
6: substitute Sk by S
7: end for
8: end if
9: call algorithm 3: “Subscription Representation”.

Second case: Sj 6∈ tree(S). Then the Tj in-
stances of subscription Sj (that are now repre-
sented by S at Ik) also have for substitutes every
subscription ancestor of S in tree(h(S)) (if any).
Thus those subscriptions must have their R field
incremented by Tj (lines 23− 25 in Algorithm 3).

Then, if Sj belongs to tree(h(S)), all subscrip-
tions ancestor of Sj in tree(h(S)) (if any) must
have their R field decremented by Tj (lines 11− 13
in Algorithm 3).

On the other hand, if Sj does not belong to
tree(h(S)), then all the subscriptions ancestor of
Sj in tree(h(Sj)) must have their R field decre-
mented by Tj (lines 15 − 17 in Algorithm 3). In
addition, we necessarily have h(Sj) 6= Sj (other-
wise, Sj would have been substituted by S). Then,
at the incoming interface of the upstream neigh-
bor node, the Tj instances of subscription Sj are

represented by subscription h(Sj). This is incom-
patible with the fact that those Tj instances are
now represented by S at node N . Thus, we must
indicate that h(Sj) should represent Tj fewer in-
stances of subscription Sj at that node, whereas
h(S), should represent Tj additional instances of
Sj . This information is appended to the outgoing
advertisement in the form of two additional triples
(h(S); 0; Tj) and (h(Sj); 0;−Tj) (lines 19−20, 36 in
Algorithm 3).

Dealing with Registrations

In this section, we detail the routing table updates
performed by a node N when it receives from down-
stream interface Ik a registration advertisement for
a subscription S: (S;nS , rS). The process is differ-
ent according to the value of entry(S) in the rout-
ing table.

First case: entry(S) exists and T k
S > 0 (Algo-

rithm 2). As previously mentioned, no new rela-
tions can be established. All we have to do is to
update T k

S and RS , as well as the entries of the
subscriptions ancestor of S in tree(h(S)).

Second case: entry(S) exists and T k
S = 0 (Algo-

rithm 3). We have to look for all the subscriptions
that can be represented by S at interface Ik. We
must also modify the existing relations and include
those modifications in the outgoing advertisement,
if necessary. When this is done, we update T k

S and
RS , as well as the entries of the subscriptions an-
cestor of S in tree(h(S)) (lines 29− 40).

Third case: entry(S) does not exist (Algo-
rithm 4). We try to substitute S by another sub-
scription that is not substituted (lines 2 − 3). If
that is possible, then we look for other subscrip-
tions that can be substituted by S (lines 5 − 7).
When this is done, we are in the second case and
we apply Algorithm 3.

Additional updates: The incoming advertisement
may contain additional triples (S′; 0; U). These
triples are generated by Algorithm 3 (lines 19) at
downstream neighbor node and are such that U < 0
and PtrS′ = null. We are thus in the case where
entry(S′) exists and T k

S′ > 0. Therefore, we can
apply algorithm2 for each S′.

Example 2. Figure 4 illustrates the operation of
the subscription algorithm on the publish/subscribe
network of Figure 1. Four consumers have already
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registered some subscriptions. A consumer at client
node C2 registers subscription S0, resulting in up-
dates of the routing table at each node on the path
from C2 to each publisher. For the sake of clarity,
we have only represented inner nodes N1 and N3.

At nodes C2, N1, and N3, entry(S0) does not
exist. Thus, algorithm 4 (which in turn calls algo-
rithm 3) is called to update the routing table. The
following relations are established: At node C2, S2

is substituted by S0. At node N1, S3 is substituted
by S0, S2 is represented by S0 at the downstream
interface to C2, and entry(S2) is removed. At node
N3, S3 is represented by S0 at the downstream in-
terface to N1 and its entry is removed.

Dealing with Cancellations

In this section, we outline the principle of subscrip-
tion cancellations.

Considerations. Consider node N and entry(S)
of its routing table. Let node Ndown be the node
downstream interface Ik and node Nup be the up-
stream neighbor node. Let advin(S) be an adver-
tisement for the cancellation of subscription S (thus
nS < 0), arriving at interface Ik from node Ndown.
In most situations, we can update the routing table
using Algorithm 2. One scenario, however, must be
dealt with differently.

Consider the case where, after applying Algo-
rithm 2, we have T k

S .x+T k
S .y = 0 and T k

S .z > 0. In
other words, the incoming advertisement has can-
celed all instances of subscriptions S. Now consider
an event e that arrives at node N and matches
S. Because T k

S > 0, e will be forwarded down-
stream interface Ik. However, there are no more
consumers interested in events matching S down-
stream Ik, and node N cannot determine whether e
matches any of the subscriptions represented by S
at Ik. Consequently, we may have imperfect rout-
ing, and in the worst case routing may degener-
ate into flooding. Therefore, we need to implement
an additional operation to deal with this problem.
This operation is implemented in algorithm 6.

This problem occurs when T k
S .x + T k

S .y =
|nS | and T k

S .z > 0. Let {Si} denote the set of sub-
scriptions that S represents at interface Ik. To pre-
vent imperfect routing, each subscription Si must
be such that T k

Si
> 0. In other words, the rep-

resentations must be “undone”. Moreover, all the

possible relations between Si and the other sub-
scriptions in the routing table must be established,
if not already. Thus we first have to identify these
subscriptions {Si}. Moreover, for each Si, T k

Si
must

be accurate, that is, it must account for the number
of instances of Si, and the number of subscriptions
that are represented by Si. Then all the possible
relations must be established.

According to the corollary of property 6, part of
the subscriptions that are represented by S at inter-
face Ik of node N are those that are substituted by
S at node Ndown (i.e., their Ptr entry field points
to S). The other part consists of the subscriptions
that are represented by S at all of node Ndown’s
interfaces.

Operation at consumer node. Let CN be the
consumer node where the consumer issues the can-
cellation of all instances of subscription S that it
had registered before. Let Nup be the upstream
neighbor node, and interface Ik such that CN is
the node downstream that interface. We have seen
that to prevent imperfect routing at node Nup, that
node needs to know all the subscriptions that S rep-
resents at interface Ik. But because there are no
representations at a consumer node, those subscrip-
tions are the ones at node CN that are substituted
by S. Thus at node CN , we first need to remove
entry(S). Then we have to reorganize the subscrip-
tions that were substituted by S, in the sense that
we have to establish the possible relations. Because
CN is a consumer node, we will not try to establish
representation relations. Let {L} be the set of the
subscriptions that were directly substituted by S,
that is such that their Ptr field pointed to S. When
entry(S) has been deleted, they do not point to S
anymore. First we try to establish substitution re-
lations between the subscriptions in {L}. When
this is done, we have a new set of subscriptions
{L′} (such that their Ptr field is null). Then we
try to establish substitution relations between the
subscriptions in {L′} and the other subscriptions in
the routing table. This leads to a new set of sub-
scriptions: {Lreinserted} such that their Ptr field is
null. Let reinsert(L) be the operation of reinsert-
ing the subscriptions in {L} in such a way. Then we
create an advertisement for the cancellation of sub-
scription S, advin(S), and we append to it the sub-
scriptions in {Lreinserted}, in the form (Si;nSi ; rSi)
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N1

C1 C2

N3

S1 S2 S3
S2

S1  (1,0,0)  1  null

S2  (0,1,0)  0   S1

S3  (1,0,0)  0  null

S1  (1,0,1) (0,0,0)  4  null
S2  (0,0,0) (2,1,0)  0   S1

S3  (1,0,0) (0,0,0)  0  null

S1  (1,0,4)  4  null
S3  (1,0,0)  0  null

S0  1  0

S1  (1,0,1) (0,0,0)  1  null
S3  (1,0,0) (0,0,0)  0   S

0
S0  (0,0,0) (1,0,3)  4  null

S1  (1,0,1)  1  null
S0  (1,0,4)  4  null

S2  (3,0,0)  0   S1
S2  (3,0,0)  0   S0

S0  (1,0,0)  3  null

S0  1  0

S0  1  3
S1  0 -3

S0  1  3
S1  0 -3

Figure 4: Example of the subscription algorithm. Registered subscriptions are represented below their
corresponding client nodes. Routing tables (shown next to the nodes) are updated as a result of the
registration of subscription S0 (updated tables are shown with a thick frame). Here, we have S0 ⊇ S2,
S1 ⊇ S2, and S1 ⊇ S3. There are no relationships between S0 and S1, and between S2 and S3.

(lines 86 − 91). Those subscriptions are the result
of the re-insertion in the routing table of node CN
of the subscriptions that were substituted by S. In
other words, we have:

∑
Si∈{Lreinserted} nSi

+ rSi
is

equal to RS before entry(S) was deleted. As we
have seen in property 6, it is also equal to T k

S .z in
the routing table of node Nup. To prevent imper-
fect routing at node Nup, those T k

S .z subscriptions
in {Lreinserted}must be inserted in its routing table
after canceling subscription S. That is the object
of the next paragraph.

Operation at inner nodes. Consider node N
receiving the advertisement for the cancellation of
subscription S, advin(S), from the node down-
stream interface Ik, Ndown. Let {L} be the set of
the subscriptions appended to advin(S). We sup-
pose (recursive assumption) that those subscrip-
tions in {L} represent the subscriptions that are
represented by S at interface Ik of node N . Also,
we suppose that those subscriptions are such that
at the node downstream Ik, their Ptr field is null.

When node N processes the advertisement, it sees
that T k

S .x + T k
S .y = |nS | and T k

S .z > 0. Thus it
knows that is has to reinsert the subscriptions ap-
pended to advin(S). A subscription Si in {L} may
or may not have an entry in the routing table. If Si

does not have an entry, we create a null entry for
it, and make the Ptr field point to S (lines 8− 11).
Then for every subscription in {L}, we store those
that belong to tree(h(S)) in a list, Lkeep, and re-
move them from L (lines 12 − 15). For every sub-
scription Sj in Lkeep, we update their T k

Si
field (note

that Si is necessarily substituted by another sub-
scription) and their R field to take into account
that nSi

instances of Si must be present at node
N , and that Si must represent rSi

subscriptions.
Also, keep is a counter that represents the number
of instances of the subscriptions in Lkeep as well
as the number of subscriptions that they represent
(lines 18 − 23). The subscriptions that remain in
{L} are the ones that already have an entry and
do not belong to tree(h(S)). Because of the recur-
sive assumption, we can call algorithm 2 to update
the routing table for each of them, except that the
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Algorithm 5 — Cancellation - Part 1
1: declare Lkeep

2: declare L
3: declare Lreinsert

4: for all Sj ∈ advin(S) do
5: push Sj in L
6: end for
7: for all Sj ∈ L do
8: if Sj does not have an entry then
9: create a null entry for Sj , entry(Sj)

10: PtrSj ← S
11: end if
12: if Sj ∈ tree(h(S)) then
13: push Sj in Lkeep

14: remove Sj from L
15: end if
16: end for
17: declare keep = 0
18: for all Sj ∈ Lkeep do
19: keep← keep + nSj + rSj

20: T k
Sj

.y ← T k
Sj

.y + nSj

21: T k
Sj

.z ← T k
Sj

.z + rSj

22: RSj ← RSj + rSj

23: end for
24: for all Sj ∈ L do
25: call algorithm 2: “Routing Table Update”
26: end for
27: RS ← RS − T k

S .z
28: T k

S ← 0
29: if PtrS 6= null then
30: for all Sk ancestor of S in tree(h(S)) do
31: RSk ← RSk + nS − T k

S .z
32: end for
33: for all Sj ∈ Lkeep do
34: for all Sk ancestor of Sj in tree(h(S)) do
35: RSk ← RSk + nSj + rSj

36: end for
37: end for
38: advout ← (h(S); 0; nS − T k

S .z + keep)
39: if ∀p, T p

S = 0 then
40: for all Sk such that PtrSk = S do
41: PtrSk = PtrS

42: end for
43: delete entry(S)
44: end if
45: else
46: see Part 2
47: end if

Algorithm 6 — Cancellation - Part 2
48: for all Sj ∈ Lkeep do
49: for all Sk ancestor of Sj in tree(h(Sj)) do
50: RSk ← RSk + nSj + rSj

51: end for
52: end for
53: if ∃p 6= k, T p

S 6= 0 then
54: advout ← (S; nS ;−T k

S .z + keep)
55: else
56: for all Sk such that PtrSk = S do
57: push Sk in Lreinsert

58: end for
59: delete entry(S)
60: call reinsert(Lreinsert)
61: advout ← (S; nS ; 0) [+ appended triples]
62: end if

result of the update is appended to the outgoing
advertisement, as part of the additional triples op-
tionally carried by an advertisement (lines 24−26).

Now we consider different cases depending on the
value of entry(S).

Case 1: PtrS is not null
First we must update the entries of the ances-

tors of S, in a similar way to that in algorithm 3.
|nS | instances of subscription S have been can-
celed. Thus those are no longer substituted by
the ancestors of S. Also, T k

S .z subscriptions are
no longer represented by S at interface Ik; they
are no longer substituted by its ancestors neither.
Thus we decrement the R field of every ancestor of
S by |nS |+T k

S .z (lines 30−32) and decrement that
of S by T k

S .z. Also, we reset T k
S (lines 27− 28).

Then, for every subscription Si in Lkeep, we have
to update the entries of its ancestors in tree(h(Si))
to take into account the nSi

new instances of sub-
scription Si, and the rSi

instances of the subscrip-
tions that Si is to represent at interface Ik. Those
nSi + rSi additional subscriptions are now substi-
tuted by every ancestor of Si. Thus we increment
their R field by nSj

+ rSj
(lines 33− 37).

Now if ∀p, T p
S = 0, then entry(S) has to be

deleted. But before doing this, we must take into
account the possible subscriptions that are substi-
tuted by S. Because PtrS is not null, we can just
make the Ptr of those subscriptions point to PtrS

(up one level in the tree(h(S))). Then we delete
entry(S) (lines 39− 44).

Note that subscription h(S) has seen its R field
decremented by |nS | + T k

S .z and incremented by
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keep. At node Nup, subscription S is represented
by h(S) at the incoming interface. We are no longer
in the situation where algorithm 6 must be applied.
The only change to the routing table of node N
that will have an impact at node Nup is the one
made to the R field of entry(h(S)). At node Nup,
subscription h(S) is to represent |nS |+T k

S .z−keep
fewer subscriptions. Thus we just need to send the
corresponding advertisement to node Nup, which
will call algorithm 2 (line 38).

Case 2: PtrS is null

First we update the entries of the ancestors of
the subscriptions in Lkeep, as well as entry(S), as
in the previous case (lines 48 − 52 and 27 − 28).
Then we have to consider the two same subcases.

If ∃p 6= k such that T p
S 6= 0, then entry(S) is not

deleted. This implies that at node Nup we are no
longer in the situation where algorithm 6 must be
applied. As in the previous case, the only changes
at Nup consists in updating entry(S) (lines 53−55).

Now if ∀p, T p
S = 0, entry(S) is deleted. Then at

node Nup, we will be in the same situation as node
N , where algorithm 6 must be applied. This im-
plies that node Nup must know the subscriptions
that S represents at the incoming interface. But
because ∀p, T p

S = 0, the only subscriptions that S
represented at node N were the ones at interface
Ik. Those were the subscriptions in {L} and they
have been reinserted in the routing table of node
N either by algorithm 2 or as described in algo-
rithm 6. Now the only subscriptions that S repre-
sents at the incoming interface of node Nup are the
ones that are substituted by it at node N . Then we
are in a situation similar to the one that we would
have if N were a consumer node. Moreover, be-
cause of the recursive assumption and property 1,
no representation relations can be established be-
tween the subscriptions in {Lkeep} and the other
subscriptions. Then we call procedure reinsert to
reinsert all the subscriptions that are directly sub-
stituted by S and append the result to the outgoing
advertisement (lines 56−61). Then those subscrip-
tions are such that they represent the subscriptions
that are represented by S at interface Ik of node
Nup. Also, they are such that their Ptr field is
null. Then at node Nup, the recursive assumption
is true and algorithm 6 is called.

6 Protocol Evaluation

To test the effectiveness of our content-based rout-
ing protocol, we have conducted simulations using
real-life document types and large numbers of sub-
scriptions.

6.1 Simulation Setup

We have generated a network topology using the
transit-stub model of the Georgia Tech Internet-
work Topology Models package [17]. The resulting
network topology, shown in Figure 5, contains 64
routers. We then added 24 consumers at the edges
of the network and a single producer.

We have simulated consumer load by registering
subscriptions at the consumer nodes. The subscrip-
tions were expressed using the XPath language [16].
To generate the set of XPath expressions, we have
developed an XPath generator (described in [7])
that takes a Document Type Descriptor (DTD) as
input and creates a set of valid XPath expressions
based on a set of parameters that control: (1) the
maximum height h of the tree patterns; (2) the
probabilities p∗ and p// of having a “∗” or a “//”
wildcard operator at a node of a tree pattern; (3)
the probability pλ of having more than one child at
a given node; and (4) the skew θ of the Zipf distri-
bution used for selecting element tag names. For
our experiments, we have generated sets of tree pat-
terns of various sizes, with h = 10, p∗ = p// = 0.1,
pλ = 0.1, and θ = 1.

We have used the NITF (News Industry Text
Format) DTD [8] to generate our sets of XPath ex-
pressions. The NITF DTD, which was developed
as a joint standard by news organizations and ven-
dors worldwide, is supported by most of the world’s
major news agencies and is used in several com-
mercial applications. It contains 123 elements with
513 attributes (as of version 2.5). Note that the re-
sults of these experiment can easily be generalized
to multiple DTDs. Indeed, as DTDs generally use
distinct grammars, an XML document valid for a
given DTD is unlikely to match a subscription for
another DTD; thus, using multiple DTD essentially
boils down to running separate experiments with
each DTD and combining the results.

We have generated sets of subscriptions of vari-
ous sizes (from 100 to 50, 000 subscriptions). For
each size, we have generated one set containing only
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Figure 5: Simulated network topology with 64 routers (circles), 24 consumers (boxes), and 1 producer
(hexagon).

distinct subscriptions, and a second set with possi-
bly multiple occurrences of each subscription. We
will refer to these as unique and multiple sets, re-
spectively.

We have compared three routing protocols that
implement perfect content-based routing. First,
the match-first routing protocol that matches pub-
lished events against all subscriptions and com-
putes a destination list used to route events (see
Section 2). As previously discussed, this protocol
imposes a high storage and processing load on the
publisher nodes and does not scale well. Second,
we implemented a simple routing protocol that
does not use subscription aggregation, except for
suppressing multiple occurrences of a subscription.
With that protocol, the size of the routing table
at a node is equal to the number of distinct sub-
scriptions that consumers registered downstream.
Finally, our XRoute routing protocol that makes
extensive use of subscription aggregation to mini-
mize the size of the routing tables.

As all these protocols implement perfect routing,
they will exhibit the same bandwidth usage. There-

fore, we are interested in comparing their space re-
quirements. Besides lowering the memory usage at
the routers, keeping routing tables small is essen-
tial to implement efficient filtering: as the filtering
speed typically decreases linearly with the number
of subscriptions (whether matching subscriptions
sequentially, or using sophisticated algorithms as
in [7]), small routing tables can dramatically im-
prove the overall performance of a content network.

We have specifically measured the average and
the maximum sizes of the routing tables at the in-
ner nodes with each protocol. The average sizes
gives an indication of the overall efficiency of our
aggregation techniques, and the maximum sizes
can help dimensioning the resources allocated to
routers in the network (in particular at the pro-
ducer nodes, which typically have the largest rout-
ing tables). We study the variation of these sizes
according to the number of subscriptions injected
in the system.
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the XRoute, match-first, and simple routing proto-
cols.
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6.2 Results and Interpretations

Figure 6 shows the average size of the routing ta-
bles of the XRoute and the simple routing pro-
tocols, with both unique and multiple sets. It ap-
pears clearly that, in both cases, XRoute reduces
the average size of the routing tables dramatically
(by more than a factor of 5).

Figure 7 shows the relative space gain of
XRoute vs. simple routing. We can observe
that the gap between both protocols widens signif-
icantly with large number of consumers. Note that
XRoute is even more efficient with multiple sub-
scriptions instances because of the increased num-

ber of covering relations (even though the simple
routing protocol also benefits from multiple sets).

Figure 8 shows the maximum size of the routing
tables of the XRoute, simple, and match-first pro-
tocols, with multiple subscriptions instances. Here
again, we observe that XRoute is much more
space-efficient than the other protocols. One can
also notice that, with the simple protocol, the max-
imum size of the routing tables is approximately 10
times larger than its average size; in contrast, with
XRoute, the maximum size is less than 5 times
bigger that the average size. Thus, our protocol
seems to better balance the load on the routers.

Finally, Figure 9 directly compares the maximum
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size of the routing tables of simple and match-
first routing with that of XRoute. Our proto-
col clearly outperforms the other protocols, by fac-
tors of up to 14 (w.r.t. simple) and 43 (w.r.t.
match-first). Again, we can see that the differ-
ence between XRoute and the other protocols in-
creases with high numbers of consumers, demon-
strating that our content-based routing protocol is
extremely scalable.

7 Conclusion

We have developed a novel protocol for content-
based routing in overlay networks. Our protocol,
XRoute, implements perfect routing, optimizes
usage of network bandwidth, and minimizes the size
of the routing tables in the system. To the best of
our knowledge, our content-based routing protocol
is the first to take full advantage of subscription
aggregation and support registration cancellation,
without impacting routing accuracy.

Although our protocol was designed for, and
tested with, tree-structured XPath subscriptions, it
can be readily applied to other subscription models.
The experimental evaluation that we conducted
shows that our protocol dramatically reduces the
sizes of the routing tables and scales to very large
consumer populations.

We are currently deploying our content-based
routing protocol in the XNet XML content dis-
semination system, and integrating it with our
highly-efficient XTrie filtering algorithms [7] in
application-level routers. We are also trying to ex-
tend the protocol to take advantage of lossy aggre-
gation (as described in [6]) for further compression
of the routing tables, but at the price of some de-
terioration in the routing accuracy and bandwidth
usage.
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