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Abstract — A new fixed-length asymptotically optimal
scheme for lossless compression of stationary ergodic tree
sources with memory is proposed. Our scheme is based
on the concatenation of the Burrows-Wheeler block sort-
ing transform with the syndrome former of a linear error-
correcting code. Low-density parity-check (LDPC) codes
together with Belief Propagation decoding lead to linear
compression and decompression times, and to natural uni-
versal implementation of the algorithm.

I. I NTRODUCTION

We propose a new approach to lossless data compression
based on error correcting codes and the block-sorting trans-
form. Existing zero-error variable-length data compression al-
gorithms suffer from the following shortcomings when used in
data-transmission applications through noisy channels:

• Lack of resilience to transmission errors.

• Packetized transmission/recording often means that the
compression output length is only relevant up to an in-
teger multiple of a given packet length.

• The asymptotic regime for which the algorithms ap-
proach the source entropy rate requires much longer
packet lengths than those use in modern high-speed
wireless applications.

• The traditional separation approach to source-channel
coding enforces the artificial constraint that errors are
uniquely due to the channel and does not lend itself nat-
urally to packetized transmission.

• Incorporation of prior knowledge of source statistics is
cumbersome for some lossless algorithms.

• Zero-error variable-length data compression algorithms
cannot be adapted for use in Slepian-Wolf separate en-
coding of correlated sources.

In this paper we show that our approach is quite competi-
tive with existing algorithms even in the purely lossless data
compression setting. The gains over the conventional schemes
in the setting of source-channel coding will be reported else-
where.

II. M EMORYLESSSOURCES

The interplay of error correcting codes and noiseless data
compression has received scant attention in the literature.
Dealing with source sequences known to have a limited Ham-
ming weight, Weiss [18] noted that since the2n−k cosets of

an e-correcting(n, k) binary linear code can be represented
by their unique codewords having weight less than or equal to
e, the binary inputn-string can be encoded withn − k bits
that label the coset it leads. The decompressor is simply the
mapping that identifies each coset with its leader. The fact
that this is equivalent to computing the syndrome that would
result if the source sequence were the channel output was ex-
plicitly recognized by Allard and Bridgewater [1]. Both [1]
and Fung et al [9] remove Weiss’ bounded weight restriction
and come up with variable-to-fixed-length schemes where ze-
ros are appended prior to syndrome formation so that the re-
sulting syndrome is correctable. Ancheta [2] considered fixed-
to-fixed linear source codes based on syndrome formation
and dealt with binary memoryless sources and a bit-error-rate
performance measure, rather than a “noiseless” or “almost-
noiseless” approach. Since the only sources the approach in
[18, 1, 9, 2] was designed to handle were memoryless sources
with known distributions (essentially biased coins) and since
the practical error correcting codes known at that time did not
offer rates close to channel capacity, that line of research came
to a close. Also limited to memoryless binary sources is an-
other, more recent, approach [12] in which the source is en-
coded by a Turbo code whose systematic outputs as well as
a portion of the nonsystematic bits are discarded; and decom-
pression is carried out by a Turbo decoder that uses knowledge
of the source bias. Also germane to this line of research is the
use of Turbo and LDPC codes [3, 11, 15, 14] for Slepian-Wolf
coding of correlated memoryless sources as specific embodi-
ments of the approach proposed in [19].

Linear source codes are known to achieve the entropy rate
of memoryless sources [5]. We have extended this result to
very general sources with memory and nonstationarity. Ifs
is the source vector, given the linearly encoded vectorHs the
maximum likelihood decoder selectsgH(Hs), the most likely
source vectoru that satisfiesHu = Hs. On the other hand,
consider an additive-noise discrete channely = x + u driven
by a linear channel code with parity check matrixH. It is
easy to see that the maximum likelihood decoder selects the
codewordy − gH(Hy), i. e. it selects the most likely noise
realization among those that lead to the samesyndromeHy.
Thus, the problems of almost-noiseless fixed-length data com-
pression and almost noiseless coding of an additive-noise dis-
crete channel whose noise has the same statistics as the source
are identical. This strongly suggests using the parity-check
matrix of a channel code as the source encoding matrix. One
of the immediate (but neglected) consequences of this power-
ful equivalence relates to the construction of optimumn-to-m
source codes, which are well-known to be those that give a
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unique codeword to then-sequences with the largest probabil-
ities. However, even for biased coins no explicit constructions
have previously been given. This can be accomplished for cer-
tain (m,n) by using the parity-check matrix of perfect codes.
For example, in the binary case, we can obtain optimum 7-to-
4 and 23-to-12 codes by using the Hamming and Golay codes
respectively.

For general good codes, syndrome forming (source encod-
ing) has quadratic complexity in the blocklength and maxi-
mum likelihood decoding has exponential complexity in the
blocklength. When the code is an LDPC,H is a sparse matrix
with a number of nonzero entries growing linearly with the
blocklength, and, thus, the compressor has linear complex-
ity in the blocklengthn. Note that this is in contrast to the
encoding of LDPC codes for channel encoding as the multi-
plication by the generator matrix is far less straightforward,
requiring the application of the technique in [17] to achieve
nearly linear complexity. The sparseness ofH does not im-
ply that a polynomially-complex maximum likelihood decoder
exists. For LDPCs the suboptimal iterative technique known
asBelief-Propagationdecoding (BP) has proved to yield very
good results on a variety of memoryless channels. The BP
decoders used in channel decoding of binary symmetric chan-
nels [10, 16] operate with the channel outputs rather than with
the syndrome vector. Thus, they are not directly useful for our
purposes. However, counterparts to those algorithms that give
an approximation to the syndrome-decoding functiongH can
be found. In these algorithms, the data is not present at the
variable nodes (which represent the uncompressed bits) but at
the check nodes, since in the source-coding case, each parity-
check equation has a value given by the compressed data. For
simplicity and concreteness we specify the algorithm in the bi-
nary memoryless case with nonstationary probabilities (which
will be relevant in Section III). Fix the realization of the input
to the decoder,z. The set of checknodes in which the bitnode
k ∈ {1, . . . n} participates is denoted byAk ⊂ {1, . . . m},
and the set of bitnodes which are connected to checknode
j ∈ {1, . . . m} is denoted byBj ⊂ {1, . . . n}. Define the a
priori source log-ratios

Lk = log
1− pk

pk
, k ∈ {1, . . . n } (1)

For each iterationt = 1, 2, . . ., the algorithm computes the
value of the bitnodes

x̂k = sign



Lk +

∑

j∈Ak

µ
(t)
j→k





by updating the messages sent by the checknodes to their
neighboring bitnodes and by the bitnodes to their neighbor-
ing checknodes, denoted respectively byµ

(t)
j→k and byν

(t)
k→j ,

according to the message-passing rules

ν
(t)
k→j = Lk +

∑

j′∈Ak−{j}
µ

(t−1)
j′→k (2)

and

µ
(t)
j→k = (−1)zj 2 tanh−1


 ∏

k′∈Bj−{k}
tanh(ν(t)

k′→j/2)


 (3)

with the initializationµ
(0)
j→k = 0 for all j ∈ {1, . . . , m}. At

each iteration, the parity-check equations

∑

k∈Bj

x̂k = zk, j = 1, . . . , m

are evaluated. If they are all satisfied, the algorithm stops. If
after a maximum number of allowed iterations some parity-
check equations are not satisfied, a block-error is declared.

By using the symmetries of bitnode and checknode map-
pings, we have shown that the same pointwise correspondence
between channel decoding and source decoding stated for the
ML decoder holds also for the BP decoder: the sets of source
sequences and noise sequences that lead to errors of the re-
spective BP decoders are identical.

In contrast to channel decoding, in noiseless data compres-
sion, the source encoder has the luxury of running an exact
copy of the decoder iterations. We have taken advantage of
this fact to design an algorithm that noticeably decreases the
block error probability of the scheme. OurIterative Doping
Algorithmmakes use of multiple codebooks and symbol dop-
ing, which proceeds along the BP iterations at the cost of one
bit per iteration. For a given parity-check matrixH and source
sequences the syndromez = Hs is computed. Then, the po-
sition of the doped symbols is computed iteratively as follows:

1) Initialization:µ(0)
j→k = 0 for all j ∈ {1, . . . , m}.

2) Repeat the following steps fort = 1, 2, . . . until success-
ful decoding is reached:

• Reliability sorting: for all bitnodesk = 1, . . . , n com-
pute

ν
(t)
k = Lk +

∑

j∈Ak

µ
(t−1)
j→k

and sort the values|ν(t)
k | in increasing order.

• Least-reliable symbol doping: let

k̂ = arg min
k=1,...,n

{|ν(t)
k |},

feed the symbolxbk directly to the decoder and let

Lbk =
{

+∞ if xbk = 0
−∞ if xbk = 1

• Bitnode update (2) and Checknode update (3).

At each decoder iteration, the source symbol for which the
BP algorithm has accumulated the least reliability is commu-
nicated to the decoder. Some qualitative properties of the It-
erative Doping Algorithm are: 1) Because of reliability sort-
ing, the position of doped symbols need not be explicitly com-
municated to the decoder. Hence, the cost of doping is the
(random) number of iterations necessary to achieve success-
ful decoding. 2) The algorithm never dopes twice the same
symbol. 3) The algorithm stops in at mostn iterations, i.e.,
it never expands the source sequence length. 4) Doping the
symbol with least reliability is an effective strategy. In fact,
subject to the assumption of cycle-free graph, at each iteration
t the conditional entropy of each symbol given the messages
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in the oriented neighborhood of depth2t decreases with the
symbol reliability. Since doping a symbol costs one bit, it is
intuitively convenient to spend this bit to correct the symbol
with the largest conditional entropy at each iteration.

The iterative doping algorithm implements a variable-
length scheme. The mean and variance of the number of doped
symbols can be reduced by using a library of several parity-
check matrices, by applying the above algorithm to each ma-
trix, choosing the one that achieves successful decoding with
the smallest length, and indicating the label of the best matrix
to the decoder.

III. SOURCES WITHMEMORY

So far we have limited our discussion to encoding memory-
less nonstationary sources. As we saw, it is easy to incorporate
the knowledge about the source marginals in the BP decoding
algorithm. However, for sources with memory the marginals
alone do not suffice for efficient data compression. It would be
futile to search for encoders and decoders as a function of the
memory structure of the code. We next describe a design ap-
proach that enables the use of a BP (marginal based) decoding
algorithm while taking full advantage of the source memory.

We propose to use a one-to-one transformation, called
the block-sorting transform or Burrows-Wheeler transform
(BWT) [4] which performs the following operation: after
adding a special End-of-file symbol, it generates all cyclic
shifts of the given data string and sorts them lexicographically.
The last column of the resulting matrix is the BWT output
from which the original data string can be recovered.

Note that the BWT performs no compression. Fashionable
universal data compression algorithms (e.g.bzip) have been
proposed which are quite competitive with the Lempel-Ziv al-
gorithm. To understand how this is accomplished, it is best
to consider the statistical properties of the output of the BWT.
It is shown in [6] that the output of the BWT (as the block-
length grows) is asymptotically piecewise i.i.d. For stationary
ergodic tree sources the length, location, and distribution of
the i.i.d. segments depend on the statistics of the source. The
universal BWT-based methods for data compression all hinge
on the idea of compression for a memoryless source with an
adaptive procedure which learns implicitly the local distribu-
tion of the piecewise i.i.d. segments, while forgetting the effect
of distant symbols.

Our approach is to let the BWT be the front-end. Then we
apply the output of the BWT to the LDPC parity-check ma-
trix, as explained in Section II for memoryless nonstationary
sources. Moreover, we found it advantageous to set a thresh-
old Hth reasonably close to 1 bit/symbol and feed directly to
the output the symbols on segments whose entropy exceeds
Hth.

The decompressor consists of the BP decoder, making use
of the prior probabilitiespi. The locations of the transitions
between the segments are random, and must be communicated
explicitly to the decoder.

Once the string has been decompressed we apply the in-
verse BWT to recover the original string. We note that the
inverse BWT does not degrade gracefully with respect to er-
rors. If only one symbol is in error the output will be seriously
erroneous. This is yet another reason to gauge the reliability

of the almost-noiseless compressor by the Shannon-type block
error rate.

The proof of optimality of the scheme for stationary er-
godic sources using capacity-approaching channel codes uses
the tools developed in [6].

As in the case of memoryless sources, the computational
complexity of both compression and decompression grow lin-
early with the data size.

Since a fixed-to-fixed scheme in principle fixes the com-
pression rate without regard to the actual source realiza-
tion, we could think that universality is not possible in this
approach. However, recall that even within the “almost-
noiseless” framework described above the encoder can try the
most ambitious compression rate that guarantees success. No
knowledge of the source is required by the BWT. However,
we need a robust LDPC design procedure that yields ensem-
bles of codes that perform close to capacity for nonstationary
memoryless channels. Since the capacity-achieving distribu-
tion is the same (equiprobable) regardless of the noise distri-
bution, Shannon theory [5] guarantees that without knowledge
of the channel sequence at the encoder it is possible to attain
the channel capacity (average of the maximal single-letter mu-
tual informations) with the same random coding construction
that achieves the capacity of the stationary channel.

A key modification in order to make the algorithm univer-
sal is to include a move-to-front algorithm (e.g. [7]) between
the BWT and the LDPC encoder. Indeed, most of the existing
data compressors based on BWT use such a module. At the
expense of a slight introduction of dependence, move-to-front
serves a smoothing effect: making the marginal distributions
more stationary. This has beneficial effects at both the encoder
and decoder in universal mode. At the encoder, the nonstation-
arity (both in range and in dynamics) of the marginals seen by
the LDPC is lessened; thus the code need not be as robust as
if it were applied directly to the output of the BWT. At the de-
coder, the richness of parameters that the decoder must adapt
to decreases considerably since the marginal distributions are
varying much more slowly. Run-length coding is also bene-
ficial in order to avoid very low-entropy segments. The ex-
isting universal BWT-based methods for variable-length data
compression all hinge on the idea of compression for a mem-
oryless source with an adaptive procedure that learns the lo-
cal distribution implicitly while forgetting the effect of distant
symbols. In our universal implementation the encoder esti-
mates the evolving first-order distribution and communicates
a rough piecewise approximation to the decoder using a num-
ber of symbols that is a small fraction of the total compressed
sequence. After each iteration, the BP decoder refines its esti-
mates of individual probabilities on a segment-by-segment ba-
sis by weighing the impact of each tentative decision with the
current reliability information. Naturally, such procedures are
quite easy to adapt to prior knowledge that may exist from the
encoding of the previous data blocks for example. Moreover,
the encoder can monitor the statistics from block to block.
When it sees that there is a large change in statistics it can
alert the decoder to the segments that are most affected, or
even back off in rate.

IV. N UMERICAL EXPERIMENTS
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Figure 1: Block error rate of 500-to-303 source codes for a
biased coin.

In this section we test the nonuniversal version of our al-
gorithm for binary memoryless sources and simple Markov
chains.

In Figure 1 we analyze the behavior of our scheme for a
binary memoryless source. We show the probability of block
error for biasesp ranging from 0.11 to 0.08. Since the code
rate isR = 303/500, this translates into normalized redun-
dancies(R− h(p))/h(p) ranging from 0.21 to 0.51 where

h(p) = p log2

1
p

+ (1− p) log2

1
1− p

.

The coding scheme is based on 8 different realizations of (3,6)
regular low-density parity-check matrices with 50 bits allo-
cated to iterative doping, and 3 bits allocated to identifying
the LDPC matrix used. Despite the fact that the choice of the
code is not “optimized,” we observe that the performance is
remarkably close to that of nonuniversal arithmetic coding (in-
corporating knowledge of the source bias). The curve labelled
‘Optimal block coding’ gives the block-error probability of
the (non-constructible) optimal code which assigns a distinct
codeword to the most probable2303 source realizations. The
curve labelled “information spectrum” (cf. [13]), character-
izes the behavior of an ‘ideal’ variable-length coding scheme
where the length of the codeword assigned tox1, . . . xn is
equal to− log2 PX1,...Xn(x1, . . . , xn), plotting the probabil-
ity of the set of source realizations whose ‘ideal’ codelengths
exceedRn.

Figure 2 gives the results of an analogous experiment with
a longer blocklength and a library of 8 rate-1

2 irregular LDPCs
drawn at random from the ensemble designed for the BSC in
[8]. We show the effect of varying the number of bits allocated
to doping from 80 to 100. At the point marked at10−6 no
errors were detected in 10,000 trials.

Figure 3 shows the results obtained with a 4-state Markov
chain with conditional biases equal to(0.1, 0.6, 0.4, 0.9) lead-
ing to an entropy rate of 0.5407 bits per symbol. The coding
scheme does not code 350 of the source symbols (correspond-
ing to the segments at the output of the BWT with highest
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Figure 2: Block error rate of 2000-to-1103 source codes for a
biased coin.
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Figure 3: Block error rate of a 2350-to-(1350+d) source code
for a four-state Markov chain.

entropy) and uses the same scheme used in Figure 2 for the
remaining symbols. Varying the number of symbols allocated
to doping yields different rate values. Again, the degree of
approximation to the ideal coding curve is rather encouraging.

Figure 4 shows the histogram of the output lengths (di-
vided by the blocklength) obtained from 2000 independent
trials for another four-state Markov source with entropy rate
0.469 bit/symbol. In this case, we take the longer blocklength
n = 22658, and we letn′ = 2658 be the length of the seg-
ment of high-entropy symbols that are fed directly to the out-
put. The scheme now operates in variable-length mode with
as many doping bits as necessary to achieve perfect decom-
pression, a number which is dictated by the source realiza-
tion. Also shown in Figure 4 is the histogram of the lengths
achieved by an efficient implementation of the Lempel-Ziv al-
gorithm, which suffers a rather severe penalty due to its uni-
versality.
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Figure 4: Histogram of compression ratios for a binary four-
state Markov chain with entropy 0.469 bits/symbol.

Figure 5 illustrates the very different resilience of arith-
metic coding and the new scheme against channel erasures. It
should be noted that in neither case we take any countermea-
sures against the channel erasures. In future work, we report
on source/channel schemes derived from the basic scheme of
this paper which exhibit much more robustness against chan-
nel noise. A source block of 3000 biased coin flips is com-
pressed into a block of 1500 syndrome bits, 200 doping bits
and 3 bits identifying the LDPC. The syndrome bits are de-
compressed by the conventional BP algorithm with the only
difference that a subset of the check nodes are now missing
due to the channel erasures. As we vary the coin bias from 0.1
to 0.08, we observe an ‘error floor’ in Figure 5 which is dom-
inated by the fact that the 203 doping and code library bits
are sent completely unprotected. The abscissa in Figure 5 is a
normalized measure of the distance from the fundamental limit
that would be achievable for asymptotically long blocklengths,
namelyR ≈ h(p)

1−e wheree is the channel erasure probability.
From the numerical experiments we can draw the conclu-

sion that the new scheme is quite a bit more robust than con-
ventional variable-length schemes against channel erasures,
while at the same time performing quite close to the ideal cod-
ing performance limits. Naturally, with a more refined channel
code selection than the one performed here those limits can be
approached even more closely.
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