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Abstract — A new fixed-length asymptotically optimal an e-correcting(n, k) binary linear code can be represented
scheme for lossless compression of stationary ergodic treeby their unique codewords having weight less than or equal to
sources with memory is proposed. Our scheme is basede, the binary inputz-string can be encoded with — % bits
on the concatenation of the Burrows-Wheeler block sort- that label the coset it leads. The decompressor is simply the
ing transform with the syndrome former of a linear error-  mapping that identifies each coset with its leader. The fact
correcting code. Low-density parity-check (LDPC) codes that this is equivalent to computing the syndrome that would
together with Belief Propagation decoding lead to linear result if the source sequence were the channel output was ex-
compression and decompression times, and to natural uni- plicitly recognized by Allard and Bridgewater [1]. Both [1]

versal implementation of the algorithm. and Fung et al [9] remove Weiss’ bounded weight restriction
and come up with variable-to-fixed-length schemes where ze-
|. INTRODUCTION ros are appended prior to syndrome formation so that the re-

We propose a new approach to lossless data compressiging syndrome is correctable. Ancheta [2] considered fixed-
based on error correcting codes and the block-sorting trak®sfixed linear source codes based on syndrome formation
form. Existing zero-error variable-length data compression &nd dealt with binary memoryless sources and a bit-error-rate
gorithms suffer from the following shortcomings when used iperformance measure, rather than a “noiseless” or “almost-
data-transmission applications through noisy channels: ~ noiseless” approach. Since the only sources the approach in
[18, 1, 9, 2] was designed to handle were memoryless sources

¢ Lackof resilience to transmission errors. with known distributions (essentially biased coins) and since

e Packetized transmission/recording often means that IIII? ﬂa;:tlca: errotr cohr ri(;url]g COde.f k?ho v;/?nat tr]l?t t|mer dr:d n%t
compression output length is only relevant up to an ir?— € ?es cAolse Ic')c'tad te capaci 31 ab'l € otresearch came
teger multiple of a given packet length. 0 a close. Also limited to memoryless binary sources is an-

other, more recent, approach [12] in which the source is en-

e The asymptotic regime for which the algorithms apsoded by a Turbo code whose systematic outputs as well as

proach the source entropy rate requires much longeportion of the nonsystematic bits are discarded; and decom-

packet lengths than those use in modern high-spe@igssion is carried out by a Turbo decoder that uses knowledge

wireless applications. of the source bias. Also germane to this line of research is the
use of Turbo and LDPC codes [3, 11, 15, 14] for Slepian-Wolf

e The traditional separation approach to source-chanpglying of correlated memoryless sources as specific embodi-
coding enforces the artificial constraint that errors aggents of the approach proposed in [19].

uniquely due to the channel and does not lend itself nat-
urally to packetized transmission. Linear source codes are known to achieve the entropy rate
of memoryless sources [5]. We have extended this result to
§ery general sources with memory and nonstationaritys |f
is the source vector, given the linearly encoded veElsithe
e Zero-error variable-length data compression algorithrid@ximum likelihood decoder selegfs (Hs), the most likely
cannot be adapted for use in Slepian-Wolf separate &@urce vecton that satisfiediu = Hs. On the other hand,
coding of correlated sources. consider an additive-noise discrete channet x + u driven
by a linear channel code with parity check matkk It is
In this paper we show that our approach is quite compegiasy to see that the maximum likelihood decoder selects the
tive with existing algorithms even in the purely lossless dab’(l)dewordy — ga(Hy), i. e. it selects the most likely noise
compression setting. The gains over the conventional schem&siization among those that lead to the sayedromeHy.
in the setting of source-channel coding will be reported elsghus, the problems of almost-noiseless fixed-length data com-
where. pression and almost noiseless coding of an additive-noise dis-
crete channel whose noise has the same statistics as the source
are identical. This strongly suggests using the parity-check
The interplay of error correcting codes and noiseless daetrix of a channel code as the source encoding matrix. One
compression has received scant attention in the literatuoéthe immediate (but neglected) consequences of this power-
Dealing with source sequences known to have a limited Hafot equivalence relates to the construction of optimusto-m
ming weight, Weiss [18] noted that since t2&~* cosets of source codes, which are well-known to be those that give a

e Incorporation of prior knowledge of source statistics i
cumbersome for some lossless algorithms.

Il. MEMORYLESSSOURCES
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unique codeword to the-sequences with the largest probabilwith the initializationu;ﬂk =0forallj € {1,...,m}. At
ities. However, even for biased coins no explicit constructiorsch iteration, the parity-check equations

have previously been given. This can be accomplished for cer-

tain (m, n) by using the parity-check matrix of perfect codes. Z Tr=2z2,, j=1,....m

For example, in the binary case, we can obtain optimum 7-to- keB;

4 and 23-to-12 codes by using the Hamming and Golay codes o )

respectively. are evaluated. If they are all satisfied, the algorithm stops. If

For general good codes, syndrome forming (source enc&f€r @ maximum number of allowed iterations some parity-
ing) has quadratic complexity in the blocklength and maxiheck equations are not Sa'[ISerd', a block-error is declared.
mum likelihood decoding has exponential complexity in the BY using the symmetries of bitnode and checknode map-
blocklength. When the code is an LDPH, is a sparse matrix pings, we have shown that the same p0|ntW|se.correspondence
with a number of nonzero entries growing linearly with th@€tween channel decoding and source decoding stated for the
blocklength, and, thus, the compressor has linear compl&4l decoder holds glso for the BP decoder: the sets of source
ity in the blocklengthn. Note that this is in contrast to theS€quences and noise sequences that lead to errors of the re-
encoding of LDPC codes for channel encoding as the muféPective BP decoders are identical.
plication by the generator matrix is far less straightforward, /N contrast to channel decoding, in noiseless data compres-
requiring the application of the technique in [17] to achiev@On, the source encoder has the luxury of running an exact
nearly linear complexity. The sparsenesstbfdoes not im- COpy of the decoder iterations. We have taken advantage of
ply that a polynomially-complex maximum likelihood decodethis fact to design an algorithm that noticeably decregses the
exists. For LDPCs the suboptimal iterative technique knowtfock error probability of the scheme. Olierative Doping
asBelief-Propagatiordecoding (BP) has proved to yield veryAlgorithmmakes use of multiple codebooks and symbol dop-
good results on a variety of memoryless channels. The B8, Which proceeds along the BP iterations at the cost of one
decoders used in channel decoding of binary symmetric ch&¥H-Per iteration. For a given parity-check matfikand source
nels [10, 16] operate with the channel outputs rather than witgduence the syndrome: = Hs is computed. Then, the po-
the syndrome vector. Thus, they are not directly useful for ogifion of the doped symbols is computed iteratively as follows:
purposes. However, counterparts to those algorithms that givel) Initialization:ﬂj(.(zk =0forallj e {1,...,m}.
an approximation to the syndrome-decoding funcggncan 2) Repeat the following steps for= 1, 2, . . . until success-
be found. In these algorithms, the data is not present at fhédecoding is reached:
variable nodes (which represent the uncompressed bits) but at

the check nodes, since in the source-coding case, each parity-" Reliability sorting: for all bitnodes = 1,...,n com-

check equation has a value given by the compressed data. For pute o (t—1)
simplicity and concreteness we specify the algorithm in the bi- k k E : j—k
nary memoryless case with nonstationary probabilities (which JEA

will be relevant in Section IIl). Fix the realization of the input

. X _ and sort the vaIueL?/,(f)| in increasing order.
to the decoderz. The set of checknodes in which the bitnode

k € {1,...n} participates is denoted byl, C {1,...m}, e Least-reliable symbol doping: let
and the set of bitnodes which are connected to checknode R
j € {1,...m} is denoted by3; C {1,...n}. Define the a k= argk_nfin {|u,it)|},

priori source log-ratos T

1-— feed the symbat-: directly to the decoder and let
Lr=log— % ke{l,..n} 1) ymbatz y
. . l . +oo if z; =0
For each iteratiot = 1,2,..., the algorithm computes the Ly = oo i =1
s =

value of the bitnodes

R _ ® e Bitnode update (2) and Checknode update (3).
Fp=signd Lo+ Y o :
JEAL At each decoder iteration, the source symbol for which the

. h by the checknod BP algorithm has accumulated the least reliability is commu-
by updating the messages sent by the checknodes to tlﬁ?érated to the decoder. Some qualitative properties of the It-

_neighboring bitnodes and by the_bitnodes to their rzteighb(gr'ative Doping Algorithm are: 1) Because of reliability sort-
ing checknodes, denoted respecnvely;léﬁk and byv,. ", ing, the position of doped symbols need not be explicitly com-

according to the message-passing rules municated to the decoder. Hence, the cost of doping is the
V]gtl S= L+ Z Iu;t/;lk) @) (random) number of iterations necessary to achieve success-

ful decoding. 2) The algorithm never dopes twice the same

A= symbol. 3) The algorithm stops in at mastiterations, i.e.,
and it never expands the source sequence length. 4) Doping the
symbol with least reliability is an effective strategy. In fact,
uﬁ‘ik = (=1)%2tanh~! H tanh(yl(j)_w,/z) (3) subject to the assumption of cycle-free graph, at each iteration
k'€B,—{k} t the conditional entropy of each symbol given the messages
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in the oriented neighborhood of deph decreases with the of the almost-noiseless compressor by the Shannon-type block

symbol reliability. Since doping a symbol costs one bit, it isrror rate.

intuitively convenient to spend this bit to correct the symbol The proof of optimality of the scheme for stationary er-

with the largest conditional entropy at each iteration. godic sources using capacity-approaching channel codes uses
The iterative doping algorithm implements a variablehe tools developed in [6].

length scheme. The mean and variance of the number of dopeds in the case of memoryless sources, the computational

symbols can be reduced by using a library of several parigomplexity of both compression and decompression grow lin-
check matrices, by applying the above algorithm to each mgarly with the data size.

trix, choosing the one that achieves successful decoding withgince a fixed-to-fixed scheme in principle fixes the com-

the smallest Iength, and indicating the label of the best matB}(ession rate without regard to the actual source realiza-
to the decoder. tion, we could think that universality is not possible in this
approach. However, recall that even within the “almost-
noiseless” framework described above the encoder can try the
So far we have limited our discussion to encoding memornyost ambitious compression rate that guarantees success. No
less nonstationary sources. As we saw, it is easy to incorpomwmdge of the source is required by the BWT. However,
the knowledge about the source marginals in the BP decodigg need a robust LDPC design procedure that yields ensem-
algorithm. However, for sources with memory the marginal§ies of codes that perform close to capacity for nonstationary
alone do not suffice for efficient data compression. It would k?ﬁemoryless channels. Since the capacity-achieving distribu-
futile to search for encoders and decoders as a function of {j is the same (equiprobable) regardless of the noise distri-
memory structure of the code. We next describe a design ggtion, Shannon theory [5] guarantees that without knowledge
proach that enables the use of a BP (marginal based) decodjghe channel sequence at the encoder it is possible to attain
algorithm while taking full advantage of the source memoryihe channel capacity (average of the maximal single-letter mu-
We propose to use a one-to-one transformation, callggh| informations) with the same random coding construction
the block-sorting transform or Burrows-Wheeler transforfpat achieves the capacity of the stationary channel.
(BWT) [4] which performs the following operation: after A key modification in order to make the algorithm univer-
adding a special End-of-file symbol, it generates all cycligy) is to include a move-to-front algorithm (e.g. [7]) between
shifts of the given data string and sorts them lexicographicaljje B\WT and the LDPC encoder. Indeed, most of the existing
The last column of the resulting matrix is the BWT outpuiata compressors based on BWT use such a module. At the
from which the original data string can be recovered.  eypense of a slight introduction of dependence, move-to-front
Note that the BWT performs no compression. Fashionaligryes a smoothing effect: making the marginal distributions
universal data compression algorithms (etgip) have been more stationary. This has beneficial effects at both the encoder
proposed which are quite competitive with the Lempel-Ziv aly,g gecoder in universal mode. At the encoder, the nonstation-
gorithm. To understand how this is accomplished, it is begfity (hoth in range and in dynamics) of the marginals seen by
to consider the statistical properties of the output of the BWihe'| ppC is lessened; thus the code need not be as robust as
It is shown in [6] that the output of the BWT (as the blockis it were applied directly to the output of the BWT. At the de-
length grows) is asymptotically piecewise i.i.d. For stationagger, the richness of parameters that the decoder must adapt
ergodic tree sources the length, location, and distribution @f yecreases considerably since the marginal distributions are
the i.i.d. segments depend on the statistics of the source. T/a?ying much more slowly. Run-length coding is also bene-
universal BWT-based methods for data compression all hing§5| in order to avoid very low-entropy segments. The ex-
on the idea of compression for a memoryless source with @fng universal BWT-based methods for variable-length data
adaptive procedure which learns implicitly the local diStribLb‘ompression all hinge on the idea of compression for a mem-
tion_of the piecewise i.i.d. segments, while forgetting the EﬁESFyless source with an adaptive procedure that learns the lo-
of distant symbols. cal distribution implicitly while forgetting the effect of distant
Our approach s to et the BWT be the front-end. Then wgmpols. In our universal implementation the encoder esti-
apply the output of the BWT to the LDPC parity-check Mamates the evolving first-order distribution and communicates
trix, as explained in Section Il 'for memoryless nonstatlonaglrough piecewise approximation to the decoder using a num-
sources. Moreover, we found it advantageous to set a thregh of symbols that is a small fraction of the total compressed
old 1y, reasonably close to 1 bit/symbol and feed directly taquence. After each iteration, the BP decoder refines its esti-
the output the symbols on segments whose entropy excegfljes of individual probabilities on a segment-by-segment ba-
Hin. ) . sis by weighing the impact of each tentative decision with the
The decompressor consists of the BP decoder, making Wggrent reliability information. Naturally, such procedures are
of the prior probabilitieg;. The locations of the transitions gite easy to adapt to prior knowledge that may exist from the
between the segments are random, and must be communicgigdding of the previous data blocks for example. Moreover,
explicitly to the decoder. the encoder can monitor the statistics from block to block.
Once the string has been decompressed we apply the\Wyen it sees that there is a large change in statistics it can

verse BWT to recover the original string. We note that thgert the decoder to the segments that are most affected, or
inverse BWT does not degrade gracefully with respect to &yen pack off in rate.

rors. If only one symbol is in error the output will be seriously
erroneous. This is yet another reason to gauge the reliability

IIl. SOURCES WITHMEMORY

IV. NUMERICAL EXPERIMENTS
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Figure 1: Block error rate of 500-t0-303 source codes forFagure 2: Block error rate of 2000-to-1103 source codes for a
biased coin. biased coin.

n=2350, 4-state Markov source, H = 0.5407

In this section we test the nonuniversal version of our . 1 : ; ; :
gorithm for binary memoryless sources and simple Mark
chains.

In Figure 1 we analyze the behavior of our scheme fol L
binary memoryless source. We show the probability of blo
error for biaseg ranging from 0.11 to 0.08. Since the cod
rate isR = 303/500, this translates into normalized redur 107
dancie R — h(p))/h(p) ranging from 0.21 to 0.51 where ¢

2

3 Information spectrum

1 1
— _ _ - 10°F
h(p) = plog, o (1-p)log, 5 —

The coding scheme is based on 8 different realizations of (: d=150
regular low-density parity-check matrices with 50 bits alle "¢
cated to iterative doping, and 3 bits allocated to identifyil
the LDPC matrix used. Despite the fact that the choice of |
code is not “optimized,” we observe that the performance o1 oo 0 0.05 o1 015 02 025
remarkably close to that of nonuniversal arithmetic coding (- Redundaney (R
corporating knowledge of the source bias). The curve labellgigure 3: Block error rate of a 2350-to-(1350+source code
‘Optimal block coding’ gives the block-error probability offor a four-state Markov chain.
the (non-constructible) optimal code which assigns a distinct
codeword to the most probal®é® source realizations. The
curve labelled “information spectrum” (cf. [13]), characterentropy) and uses the same scheme used in Figure 2 for the
izes the behavior of an ‘ideal’ variable-length coding schenfigmaining symbols. Varying the number of symbols allocated
where the length of the codeword assignedrto. ..z, is to doping yields different rate values. Again, the degree of

New: LDPC R-1/2, c=8

d=200

equal to—log, Px, . x, (=1, ..,z,), plotting the probabil- approximation to the ideal coding curve is rather encouraging.
ity of the set of source realizations whose ‘ideal’ codelengths Figure 4 shows the histogram of the output lengths (di-
exceedRn. vided by the blocklength) obtained from 2000 independent

Figure 2 gives the results of an analogous experiment witials for another four-state Markov source with entropy rate
alonger blocklength and a library of 8 ra%eiifregular LDPCs 0.469 bit/symbol. In this case, we take the longer blocklength
drawn at random from the ensemble designed for the BSCrin= 22658, and we leth’ = 2658 be the length of the seg-
[8]. We show the effect of varying the number of bits allocatemhent of high-entropy symbols that are fed directly to the out-
to doping from 80 to 100. At the point marked B—® no put. The scheme now operates in variable-length mode with
errors were detected in 10,000 trials. as many doping bits as necessary to achieve perfect decom-

Figure 3 shows the results obtained with a 4-state Markpvession, a number which is dictated by the source realiza-
chain with conditional biases equal{@®.1,0.6,0.4,0.9) lead- tion. Also shown in Figure 4 is the histogram of the lengths
ing to an entropy rate of 0.5407 bits per symbol. The codiraghieved by an efficient implementation of the Lempel-Ziv al-
scheme does not code 350 of the source symbols (correspaatithm, which suffers a rather severe penalty due to its uni-
ing to the segments at the output of the BWT with highesersality.
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Discrete Memoryless Systenfscademic, New York, 1981.
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Figure 5: Block error rate of a 3000-to-1703 source code and

Figure 5 illustrates the very different resilience of arith@rithmetic coding for a biased coin a a channel with erasure
metic coding and the new scheme against channel erasureBrapability equal tez = 0.001
should be noted that in neither case we take any countermea-
sures against the channel erasures. In future work, we report , _ , )
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