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Causal Lossy and Lossless Coding of Vectorial Signals

D. Mary

The aim of source coding, or compression, is to reliably represent some information by means of bits,

with the natural concern for using a small number of bits. If the information can be exactly recovered from

these bits, the code is called lossless; otherwise it is lossy. Both lossy and lossless coding are of interest in

this work. Compression allows one to save bandwidth for data transmission over communications channels,

or memory space for information storage.

The informationconsidered in this thesis will be represented by vectorial signals, which compose a wide

class of signals, among which scalar and multichannel signals. Multichannel signals may be obtained as

soon as scalar signals are, in the context of various applications, gathered together. If this signals present

some dependencies, such as audio signals for example, one should code them jointly in order to achieve a

more efficient compression.

The initial idea of developping coding techniques for audio signals1 motivated this choice of a vectorial

representation. Though some applications will be presented for this kind of signals, the Gaussian assump-

tion is often made since it allows one to derive closed form expressions, to compare, and possibly to prove

the optimality of the considered coding schemes.

The first part of this thesis presents lossy coding techniques for vectorial signals.

In a transform coding framework firstly, we derive the optimal (linear) transform subject to the constraint

of causality. This transform is shown to correspond to an LDU (Lower-Diagonal-Upper) factorization of

the signal covariance matrix. This triangular transform is then compared to the Karhunen-Lo`eve Transform

(KLT), which is the optimal unitary transform for Gaussian signals, and which is therefore traditionallyused

as a benchmark. One criterion of merit used for this comparison is the coding gain, which corresponds to

the ratio by which the distortion is decreased when using a particular transformation. Similarly as in DPCM

(Difference Pulse Code Modulation), we show that practical causal coding schemes should be implemented

in closed loop around the quantizers and, as in DPCM also, we show that at low rates a quantization noise

feedback decreases the coding performance. For moderate to high rates however, we show that the opti-

mal causal transform yields the same coding gain as its unitary counterpart. The optimal causal transform

presents furthermore several advantages with respect to the KLT, such as lower implementation and design

complexities, and perfect reconstruction property in the case of quantization of the transform coefficients.

In most of practical coding situations however, the data are nonstationary, which poses the problem of the

adaptation of signal dependent transforms such as KLT or LDU. The main advantage of backward over

forward adaptive coding schemes is to update the coding parameters with the data available at the decoder,

avoiding thereby any excess bit rate. The coding performance of the two transformations are thus compared

in this framework. This analysis allows one to quantitatively describe the influence of estimation and quan-

tization noise as compared with the ideal case where the statistics of the signal are known.

Finally, the LDU transform is extended to (matricial) filtering in the last chapter of this first part. In this

case, the optimal causal decorrelating scheme can be described by means of a prediction matrix, whose

1The first results of this work were obtained in the framework of the french RNRT projectCOBASCA:COdage en Bande ´elargie

avec partage Adaptatif du d´ebit entre Source et CAnal pour r´eseaux cellulaires de deuxi`eme et troisi`eme générations (UMTS).
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entries are optimal prediction filters. The diagonal filters are scalar intrasignal prediction filters, and the

off-diagonal predictors are Wiener filters performing the intersignal decorrelation. By considering vectors

of infinite size, one can get frequential expressions for the coding gains. We show that this decorrelating

scheme leads to the notion of “generalized” MIMO (Multiple Input Multiple Output) prediction, in which

a certain degree of non causality may be allowed for the off-diagonal prediction filters. In the case of non

causal intersignal filters, the optimal MIMO predictor is still lower triangular, and hence“causal”, in a wider

sense. The notion of causality may be generalized : the causality between channels becomes processing the

channels in a certain order. Some signals may be coded using the coded/decoded versions of the “previous”

signals. An interesting result is that if the quantization noise feedback is taken into account, the triangular

predictor is the more efficient. Moreover, the coding gain is maximized if the signals are decorrelated by

order of decreasing variance.

The second part of this thesis investigates lossless coding techniques, based on the previously consid-

ered causal approaches.

Recent work has shown that coding schemes using a lossless (integer-to-integer) implementation of the

Karhunen-Loève Transform followed by scalar entropy coders are almost as efficient as vector entropy

coders. We compare the integer-to-integer implementations of the KLT and LDU in this framework, which

we refer to as “single-stage” lossless transform coding. We define the lossless coding gain for a transfor-

mation as the bitrate reduction operated by the corresponding lossless coding scheme. In a first step, we

show that the maximal achievable coding gain corresponds to the average mutual information shared by the

components of the vector. In a second step, we analyze the effects of the integer-to-integer constraint on

the coding gains. A third step analyzes the effects of estimation noise uppon the coding gains : in this case,

the transforms are based on an estimate of the covariance matrix of the quantized signals. We find that for

stationary Gaussian signals, the coding gains are close to their maxima after a few tens of decoded vectors.

Moreover, because of its triangular structure, the LDU based approach is shown to yield the highest coding

gain.

Orthogonal transforms are then compared with the causal transform in “multi-stage” lossless transform

coders. For internet browsing applications, or in the case of varying transmission bandwidth, this kind of

schemes allows one to deliver in a first step a low resolution (lossy) version of the signal, and to transmit

separately the error signal. In a two-stage lossless coder, each vector is transformed, quantized, and an error

signal is generated by substraction to the original signal. For orthogonal transforms, the cost of the multires-

olution approach is a bitrate penalty of0:25 bit per sample. This excess bitrate is due to a “gaussianization

effect” of the transforms. We show that the causal approach allows one, in this framework, to code the

data (almost) without causing any excess bitrate as compared with a single-stage coder. Also, the approach

based on the causal transform allows one to easily switch between a single- or a multi-stage compressor.

Moreover, the proposed approach allows one to easily fix the distortion and rate for both the low resolution

and the error signal in each channel. Any of the channels may, as a particular case, be chosen to be directly

losslessly coded.

Finally, we apply our results about optimal coding of vectorial signals to the single- and multi-stage loss-

less structures described so far. In a first step, prediction matrices of the generalized MIMO prediction

framework are used in single-stage coders. The corresponding compression performances are compared

to the optimal compression performances, as achievable by any lossless coding technique. The particular
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cases of the classical and the triangular MIMO predictors are investigated, and shown to present equivalent

performances. In a second step, we investigate the performances of two-stage structures where (A)DPCM

loops are introduced. The quantizers of these loops allow one to choose the respective bitrates for both the

error and the low resolution signals. For these two-stages structures, the overall bitrate delivered by the

multiresolution structure is compared to that of the corresponding “one-shot” approach. These two-stage

structures are shown to be slightly suboptimal because of the noise feedback created in the (A)DPCM loops.

Finally, we show that the two-stage structure can easily be extended to a larger number of stages. In that

case, a simple method is proposed so that the delivered bitrates approach some predetermined target rates.
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Techniques Causales de Codage avec et sans Pertes

pour les Signaux Vectoriels

D. Mary

La nécéssité de “comprimer” les signaux num´eriques trouve son origine dans les moyens limit´es dont

disposent les communications num´eriques : la compression permet d’´economiser la bande passante des

canaux sans-fil ou internet; elle permet aussi d’´economiser l’espace m´emoire en ce qui concerne leur stock-

age. D’une fa¸con générale, le codage de source consiste `a mettre au point des techniques permettant, suiv-

ant l’application visée, de d´eterminer le meilleur compromis entre la qualit´e avec laquelle les informations

seront repr´esentées, et la ressource, ou le d´ebit, qui sera n´ecessaire pour d´ecrire la repr´esentation choisie.

Selon que l’information initiale peut ˆetre partiellement, ou parfaitement reproduite apr`es l’opération de

codage, on parle de codage avec, ou sans pertes. Cette th`ese présente diverses techniques, et l’´evaluation

de leur efficacit´e, pour ces deux types de codage.

L’ informationconsidérée dans cette th`ese sera repr´esentée par des signaux vectoriels, qui forment une large

classe de signaux, incluant par exemple les signaux scalaires ou les signaux multicanaux. Ces derniers peu-

ventêtre construits d`es que plusieurs signaux scalaires sont, pour des applications diverses, regroup´es. Dès

lors que les signaux scalaires individuels pr´esentent des d´ependances, comme certains signaux audio par

exemple, il y a un int´erêt à les traiter conjointement, en vue d’une compression plus efficace.

L’id ée initiale de d´evelopper des techniques adapt´ees aux signaux audio2 a motivé ce choix d’une repr´esen-

tation vectorielle. Bien que quelques applications soient pr´esentées pour ce type de signaux, l’hypoth`ese de

signaux gaussiens est souvent retenue, car elle permet d’obtenir des r´esultats analytiques et donc de com-

parer et de prouver, le cas ´echéant, l’optimalité des sch´emas de codage consid´erés.

La première partie de cette th`ese présente des techniques de codage avec pertes pour les signaux vecto-

riels.

Dans le cadre du codage par transform´ee tout d’abord, nous nous int´eressons au codage de signaux vec-

toriels par une transformation d´ecorrélatrice causale de type DPCM (Differential Pulse Code Modulation,

technique utilis´ee pour les signaux scalaires, supprimant les redondances par pr´ediction linéaire). Nous

montrons que la transformation causale optimale correspond `a une factorisation triangulaire LDU (Lower-

Diagonal-Upper) de la matrice d’autocorr´elation du vecteur de signal `a coder. Cette approche est compar´ee

à sa contrepartie unitaire, la transformation de Karhunen-Lo`eve (KLT), bien connue parce qu’´etant opti-

male pour les sources gaussiennes, elle sert traditionnellement de r´eférence. Plusieurs aspects sont abord´es

dans cette comparaison, comme le gain de codage apport´e par la transformation (qui correspond au facteur

par lequel la distortion est r´eduite, pour un mˆeme débit, grâceà la transformation), les effets intervenants

lorsque le sch´ema de codage est impl´ementé en boucle ferm´ee (c’està dire lorsque la transformation utilise

des donn´ees précédemment quantifi´ees, ce qui introduit dans le sch´ema de codage un retour de bruit), ou

la complexité algorithmique. Nous proposons une analyse des perturbations li´ees au retour de bruit, qui

montre que quand celui-ci devient n´egligeable, les performances sont identiques `a celles obtenues dans le

2Les premiers r´esultats de ce travail ont ´eté obtenus dans le cadre du projet RNRTCOBASCA: COdage en Bande ´elargie avec

partage Adaptatif du d´ebit entre Source et CAnal pour R´eseaux cellulaires de deuxi`eme et troisi`eme générations (UMTS).

v



cas unitaire, bien que la complexit´e de la LDU soit notablement moindre. Dans la plupart des cas pra-

tiques cependant, les donn´ees réelles sont non stationnaires, ce qui pose un probl`eme d’adaptation pour des

transformations d´ependant du signal telles que la KLT ou la LDU. Nous ´etudions donc les performances

de schémas de codage pour lesquels ces transformations sont adapt´ees sur la base de donn´ees quantifi´ees,

ce quiévite un surcroˆıt de débit qui correspondrait `a transmettre au d´ecodeur une description de ces trans-

formations. Dans ce contexte, nous analysons les effets de perturbation li´es au bruit de quantification et au

bruit d’estimation qui se posent par rapport au cas id´eal. Cette analyse permet d’´evaluer quantitativement,

en fonction d’un d´ebit moyen impos´e et du nombre de donn´ees précédemment d´ecodées, l’écart entre la

performance r´eelle des deux syst`emes et leur performance id´eale, où les statistiques des signaux `a com-

presser sont connues.

Dans la fin de cette premi`ere partie, l’approche matricielle causale de type LDU est g´enéralisée au cas o`u les

coefficients de la matrice de transformation triangulairesont des filtres pr´edicteurs (pr´ediction MIMO -Multi

Input Multi Output- triangulaire). Cette g´enéralisation d´ebouche sur la pr´ediction MIMO dite “généralisée”,

pour indiquer que la pr´ediction MIMO classique et la pr´ediction MIMO triangulaire constituent deux cas

particuliers, parmi une infinit´e, d’une même approche totalement d´ecorrélatrice, et “causale” dans un sens

plus large. Nous montrons que si les effets de retour de bruit de quantification sont pris en compte, la pr´e-

diction MIMO triangulaire est, parmi toutes ces approches, celle qui maximise le gain de codage. Dans ce

cas, décorréler les signaux par ordre de variance d´ecroissante est optimal. Une application de ces r´esultats

est propos´ee dans le cadre du codage de la parole large bande ([0-7kHz]).

La deuxième partie de cette th`ese développe des techniques de codage sans pertes bas´ees sur les ap-

proches causales consid´erées précédemment.

Une premièreétape consiste `a comparer les performances de la LDU `a celles de la KLT dans le cas o`u elles

sont implémentées de fa¸con à être sans pertes (transformations “d’entiers `a entiers”). Le gain correspond

alorsà la réduction de d´ebit opérée par la transformation, tout en garantissant une repr´esentation exacte de

la source. Nous montrons d’abord que le gain maximal qui peut ˆetre apport´e par de telles transformations

correspond `a la moyenne des informations mutuelles partag´ees par les diff´erentes variables qui composent

le processus vectoriel. Nous analysons ensuite les gains apport´es par la KLT et la LDU dans ce cadre, et

décrivons notamment les effets dˆusà la contrainte “entiers `a entiers” en terme de d´ebit supplémentaire par

rapport au gain id´eal. Le bruit d’estimation pour un sch´ema adaptatif est aussi trait´e. L’approche causale,

grâceà sa nature triangulaire, s’av`ere présenter dans ce cadre des performances l´egèrement sup´erieures `a

l’approche unitaire.

Nousétudions ensuite des sch´emas de codage sans pertes qui permettent de d´elivrer, dans un premier temps,

une version basse r´esolution du signal d’int´erêt, et de transmettre le signal compl´ementaire par la suite. Ce

genre de sch´ema est utile pour des applications de navigation rapide sur internet, ou de transmission `a bande

passante variable. La transformation causale est compar´ee dans ce cadre aux transformations orthogonales.

Nous consid´erons une version l´egèrement modifi´ee d’un sch´emaà deux niveaux de r´esolution simple (util-

isé par exemple dans le contexte du codage audio sans pertes), dans lequel chaque vecteur est d’abord

transformé, quantifié, puis transmis comme version basse r´esolution du signal. Un signal d’erreur est en-

suite généré par soustraction au signal original, et transmis comme compl´ement. L’extension de ce sch´ema

à plusieurs niveaux de r´esolution est obtenue en introduisant des quantificateurs de type APCM dans le

schéma sans pertes. On montre que les transformations orthogonales classiques sont sous-optimales pour
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de telles approches multir´esolutionpar rapport `a leur alternative causale. La transformation causale pr´esente

d’autres avantages par rapport `a des transformations telles que la KLT ou la DCT, comme la possibilit´e de

passer instantan´ement d’un sch´ema de codage sans pertes monor´esolution,à des sch´emas multirésolution,

de pouvoir choisir des niveaux de r´esolution différents pour chacun des canaux et, notamment, de pouvoir

coder sans pertes un ou plusieurs canaux particuliers uniquement.

Finalement, des sch´emas de codage sans pertes multir´esolutions sont pr´esentés, qui se basent sur la pr´edic-

tion MIMO considérée dans la premi`ere partie. Nous montrons que l’approche multir´esolution est l´egère-

ment sous-optimale en terme de d´ebit total par rapport `a une approche de compression globale `a cause du

retour de bruit dans les boucles de type ADPCM. On propose aussi une m´ethode pour que les d´ebits générés

par chacune des r´esolutions correspondent `a des d´ebits cibles pr´edetermin´es.
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10.3.3 Prédiction MIMO d’Entiers-à-Entiers Mono- et Multir´esolution . . . . . . . . . . 216



xiv Contents

10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Bibliography 221



List of Figures

1.1 Shannon’s schematic diagram of a general communication system.. . . . . . . . . . . . 2

1.2 General representation of a source code. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Distortion-rate functions of several scalar quantizers. . . . . . . . . . . . . . . . . . . . . 10

1.4 Modular structure of a transform code [1].. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Open loop causal transform coding (Q denotes a set of scalar quantizers). . . . . . . . . . 26

2.2 Closed loop causal transform coding (Q denotes a set of scalar quantizers). . . . . . . . . 27

2.3 Open loop scalar DPCM coding scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Closed loop scalar DPCM coding scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Comparison between actual value and high rate approximation of coefficientc for ECUQ. . 34

2.6 Comparison between theroetic and actual distortion-rate functions for Entropy Coded Uni-

form Quantization (ECUQ), and DPCM with ECUQ . . . . . . . . . . . . . . . . . . . . 35

2.7 Comparison between actual and theoretic SNRs for DPCM . . . . . . . . . . . . . . . . . 36

2.8 Closed loop causal transform coding sheme. . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Closed loop causal transform based on whitened quantized data. . . . . . . . . . . . . . . 38

2.10 Distortion-rate functions of the optimal prediction error signals. . . . . . . . . . . . . . . 42

2.11 Average distortionvs rate for the causal transform with equal quantization stepsize (de-

creasing variances). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.12 Average distortionvsrate for the causal transform with equal quantization stepsize (increas-

ing variances). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.13 Comparison of actual distortion-rate performance for algorithms based either on recon-

structed, or on quantized and whitened data (decreasing variances). . . . . . . . . . . . . 46

2.14 Comparison of actual distortion-rate performance for algorithms based either on recon-

structed, or on quantized and whitened data (decreasing variances). . . . . . . . . . . . . . 46

2.15 Comparison of actual distortion-rate performance for algorithms using either the transform

L orL0 (decreasing variances). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.16 Comparison of actual distortion-rate performance for algorithms using either the transform

L orL0 (increasing variances). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.17 Comparison of the average distortionsvs rate for the causal and the KL transforms with

equal quantization stepsize(increasing and decreasing variances) . . . . . . . . . . . . . . 48

2.18 Input-output characteristic of an unbounded roundoff uniform quantizer. . . .. . . . . . . 50

2.19 Comparison between actual distortion and�2

12 approximation for unbounded uniform quan-

tization of a Gaussian r.v.,�2x = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xv



xvi List of Figures

2.20 Estimated, and R´enyi’s correspondence�=� vsactual rate for a Gaussian r.v.. . . . . . . 52

2.21 Comparison between actual and theoretic�2xq for unbounded uniform quantization of a

Gaussian r.v.,�2x = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Backward adaptation of the causal transform. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Coding Gainsvsrate in bit/sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Influence of the ordering of the signalsxi. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Gains for KLT and LDU with estimation noise. . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Gains for KLT and LDU� = 0:9, rate=3 b/s,N = 8. . . . . . . . . . . . . . . . . . . . . 72

3.6 Gains for KLT and LDU� = 0:9. The rate is3 b/s andN = 4. . . . . . . . . . . . . . . . 73

3.7 Ordering of the signals : Compared coding gains for LDU. The rate is3 b/s andN = 4. . . 73

4.1 Backward adaptive transform coding system with fixed quantization stepsize�r. . . . . . 89

4.2 Distortion-rate functions for the KLT and the LDU using a backward adaptive algorithm

with constant quantization stepsize. N=3 and� = 0:9. . . . . . . . . . . . . . . . . . . . . 91

4.3 Backward adaptive transform coding system with adaptive quantization stepsize. . . . . . 93

4.4 Distortions for algorithm[1 ] vsK, r0 = 3 b/s. . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Distortions for algorithm[2 ] vsK, r0 = 3 b/s. . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Distortions for algorithm[1 ] vsK, r0 = 4 b/s. . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Distortions for algorithm[2 ] vsK, r0 = 4 b/s. . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Distortions for algorithm[1 ] vsK, r0 = 2:3 b/s. . . . . . . . . . . . . . . . . . . . . . . 102

4.9 Distortions for algorithm[2 ] vsK, r0 = 2:3 b/s. . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Polyphase representation of a filter bank.. . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Encoder of the triangular MIMO predictor (“Vectorial DPCM”) forM = 2. The bitstreams

i1 andi2 are transmitted to the decoder. Prediction ofx2 is non causal w.r.txq1 (through

L21(z)), and causal w.r.t.xq2 (throughL22(z)). . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Triangular MIMO prediction applied to WideBand Speech Coding.. . . . . . . . . . . . . 121

5.4 (a) Classical filterbank and (b) Laplacian pyramid-likestructure applied to wideband coding

of speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Equivalent representations of the analysis-by-synthesis filterbank. . . . . . . . . . . . . . 130

5.6 Equivalent optimizations of the analysis-by-synthesis filterbank w.r.t. the impulse response

of G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.7 Representation of the analysis-by-synthesis filterbank as the Wong’s structure.. . . . . . . 131

5.8 Transform based lossless coding scheme embedded in a lossy codec. . . . . . . . . . . . 136

5.9 Classical two-stage lossless transform coding.fQg denotes uniform scalar quantizers,f
ig
andf
0ig scalar entropy coders, and[:]1 rounding operators. . . .. . . . . . . . . . . . . . 137

6.1 Coding schemes considered in this chapter.(1 ) Direct entropy coding of thexqi (2 ) Intro-

duction of a lossless transform after quantization and(3 ) Classical transform coding scheme.144

6.2 Entropy and mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3 Lossless implementation of the LDU transform. An optimal prediction matrixLq is first

computed; the transform coefficientsyqi are obtained by rounding off and substracting the

corresponging estimatesbxqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



List of Figures xvii

6.4 Equivalent implementation of the integer-to-integer LDU transform. . . . . . . . . . . . . 152

6.5 Lossless coding gains for integer-to-integer implementations of the LDU and KLTvsquan-

tization stepsize.N = 2 and� = 0:9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.6 Compression ratios achieved by integer-to-integer transforms.N = 2 and� = 0:9. . . . . 161

6.7 Correlation coefficient of quantization noises versus correlation coefficient of the variables

x1 andx2 for several quantization stepsizes. The variablesx1 andx2 have variance1. . . 162

6.8 Importance of the coarseness of the quantization of the first signal. . . . . . . . . . . . . . 162

6.9 Lossless coding gain for integer-to-integer LDU withN = 5. � = 0:51. . . . . . . . . . 163

6.10 Lossless coding gain for integer-to-integer LDU withN = 5. � = 0:21. . . . . . . . . . 163

6.11 Compression ratios for several values of�=� vsN for I2I LDU (AR(1) and� = 0:9). . . . 164

6.12 Lossless coding gains for several values of�=� vsN for I2I LDU (AR(1), � = 0:9). . . . 164

6.13 Lossless coding gains with estimation noise versus K forN = 2. �
�x

= 0:51. . . . . . . . 165

6.14 Lossless coding gains with estimation noise versus K for N=5.� = 0:51. . . . . . . . . . 165

6.15 Lossless coding gains with estimation noise versus K for N=5.� = 0:21. . . . . . . . . . 166

7.1 Classical two-stage lossless transform coding.fQg denotes uniform scalar quantizers,f
ig
andf
0ig scalar entropy coders, and[:]1 rounding operators. . .. . . . . . . . . . . . . . . 168

7.2 Lossless “one-shot” implementation of the LDU Transform. . . . . . . . . . . . . . . . . 170

7.3 Encoder of the two-stage lossless coding Structure in the causal case. . . . . . . . . . . . . 172

7.4 Probability of errors induced by the rounding operator (7.1), for even and odd�. . . . . . 173

7.5 Case of odd�: a) Error probability and b) Entropies of low resolution versions. . . . . . . 177

7.6 Case of odd�: a) Entropies for error signals and b) Overall entropies. . . . . . . . . . . . 178

7.7 Case of even�: a) Error probability and b) Entropies for low resolution versions.. . . . . 178

7.8 Case of even�: a) Entropies of the error signals and b) Overall entropies. . . . . . . . . . 179

7.9 Rates obtained by Huffman coding for low resolution versions: a) Odd� and b) Even�. . 179

7.10 Rates obtained by Huffman coding for error signals: a) Odd� and b) Even�. . . . . . . . 180

7.11 Overall Rates obtained by Huffman coding: a) Odd� and b) Even�. . . . . . . . . . . . 180

8.1 Lossless coding scheme considered in this chapter. . . . . . . . . . . . . . . . . . . . . . 182

8.2 “One-shot” integer-to-integer triangular multichannel prediction forN = 2. . . . . . . . . 185

8.3 Equivalent block diagram of the “one-shot” integer-to-integer multichannel predictors. . . 186

8.4 Two-stage encoder of the scalable lossless multichannel triangular predictor, forN = 2.

The bitrates forfi11:Ng andfi21:Ng are fixed by the quantizerQ1. . . . . . . . . . . . . . . 188

8.5 Multistage structure of the lossless multichannel (triangular) prediction scalable encoder

for N = 2. The bitrates of the substreams are determined by the quantizersQi. . . . . . . 190

8.6 Actual entropies delivered by the multistage structurevs several combinations of target

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.7 Actual rates obtained by Huffman coding from the multistage structurevsseveral combina-

tions of target rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10.1 Codage par transformation causale en boucle ferm´ee (Q dénote un ensemble quantificateurs
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Chapter 1

Introduction

Consider a system composed of two parts, a first part which possesses some information, and a second part

which does not. If the first part is concerned in reliably transmitting information to the second one, then

this can be called acommunication system.This formulation is both abstract and general. Communication

systems are ubiquitous. Providing a powerful mathematical framework to analyze communication systems

remained for a long time a complex and unsolved problem. It was the seminal work of Shannon [2], who

introduced a precise and flexible enough abstraction of a communication system, which launched this math-

ematical discipline, Information Theory.

In the last decades, Information Theory has provided many results about two original and fundamental

problems. The problem of building from an originalmessagea signal, which will efficiently represent the

information of interest, once, more fundamentally, “efficiently” has been precisely defined, is calledthe

source codingproblem. The problem of characterizing and understanding the way this signal will be cor-

rupted during the transmission, and proposing further operational systems which will effectively protect the

information of interest, is referred to as thechannel coding problem. However, beyond communications,

many scientific fields were impacted by Information Theory, including Probability, Statistics, Computation

Theory or Economics [3]. In the particular case of physics1, some authors consider that information, as

defined by Shannon, may be a fundamental concept2, even more so than energy [5].

In the framework considered in this work, the “information of interest” may be any mathematical signal

describing physical quantities, images, speech, or music signals. In practice, transmission of these infor-

mation was analog (continuous-time and continuous-amplitude signals) up to the second half of the last

century. Since the introduction of Pulse Code Modulation (PCM) however, communication is almost al-

1As explicitely stated in [2], the difference between Boltzmann’s and Shannon’s entropy merely amounts to a choice of a unit of

measure.
2In [4], classical and quantum particle statistics are rederived using information theoretic arguments.

1



2 Chapter 1 Introduction

ways, and increasingly, digital. The PCM system was historically patented in 1938 [6], used for military

communications systems in 1945 [7] and published in 1947 [8, 9]. Because PCM systems perform on ana-

logic signals a double discretization, in time (sampling) and amplitude (scalar quantization) they are also

referred to as A/D (Analog to Digital) converters. The main advantage of digital communication systems

is that, by introducing some loss (due to double discretization) in a controlled fashion, further loss can be

prevented during the transmission. The information is then transmitted by means of information elements,

the bits, resulting in a certain bitrate. Very generally, Source Coding deals with representing some infor-

mation by means of bits. If the original information can be exactly recovered from these bits, the coding is

called lossless, otherwise it is lossy. The branch of Information Theory which is dedicated to the problem

of characterizing the minimum rate required to represent a source up to a certain resolution level is called

Rate-Distortion Theory. Both lossy and lossless coding techniques will be of interest in this work.

The aim of the following introduction is to set the mathematical framework of this dissertation, and to re-

call some historical results. The particular topics of interest, and the main purposes of this work should be

underlined along the mathematical setting, and will be more precisely exposed at the end of the chapter.

1.1 About Shannon’s Mathematical Theory of Communication

The mathematical abstraction of a communication system as proposed by Shannon in [2] is represented by

Figure 1.1. In this abstraction, aninformationsourceproduces amessage, or a sequence of messages, which

may generally be continuous- or discrete- time and amplitude. Thetransmitteroperates on the message to

produce a signal suitable for transmission over the channel. Thischannelrepresents the physical medium

used to transmit the signal (wires, RF spectrum, fiber optical [10]...). Thereceiverattempts to recreate the

message from the received signal, and delivers this message to thedestination, which is the person or thing

to whom the message is intended.

INFORMATION

SIGNAL

TRANSMITTER

MESSAGE MESSAGE

SOURCE
NOISE

RECEIVER DESTINATIONSOURCE

SIGNAL
RECEIVED

Figure 1.1: Shannon’s schematic diagram of a general communication system.

One achievment of Shannon’s description is to represent the various elements involved in this descrip-

tion by mathematical entities, idealized from their physical counterparts. We should now present the defini-

tions and notations of important quantities, and briefly recall some important results, which will be relevant

to this dissertation.
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1.2 Definitions and Important Results

This short presentation aims only of introducing the results of the next section. Several properties and

interpretations regarding entropy, relative entropy and mutual information can for example be found in [3].

1.2.1 Information

Let i(n) be a stationary random process described by series of discrete independent and identically dis-

tributed (i.i.d.) random variables (r.v.s) with alphabetI. This source is called adiscrete memorylesssource.

We denote by

pi(ik) = Prfi(n) = ikg; (1.1)

the distribution of the several probabilities. Each outcomefi(n) = ikg contains an information

I(ik) = � log2 pi(ik): (1.2)

Since we choose a logarithm of base2 for the definition,I is expressed in bits per symbol. The lower the

probability, the higher the information: in some sense, being informed is being surprised.

1.2.2 Entropy

The discrete entropy ofi(n) is defined as the mathematical expectation of the r.v.I(ik),

H(i) = EI(ik) = �
X
ik2I

pi (ik) log2 pi(ik): (1.3)

The entropy may be interpreted as the average quantity of information delivered by an outcome ofi(n),

and measures the amount of uncertainty associated with the source.H(i) correponds also to the minimal

number of bits required to exactly describe the discrete memoryless sourcei(n). The entropy of a discrete

source can be shown to be positive or null, and upper bounded bylog2NI, whereNI is the number of

elements ofI. Hence, entropy is maximal (and equalslog2NI) if all the symbols are equiprobable, see e.g.

[11].

For a continuous real-valued r.v.i with p.d.f. pi , thedifferentialentropyh(i) of i is defined as

h(i) = �
Z +1

�1
pi(i) log2 pi(i)di: (1.4)

Historic references about the concept and the origin of entropy, the relationship between differential and

discrete entropy, and particular applications to coding of audio signals can be found in [12].

1.2.3 Entropy Rate

The previous definition can be generalized to the case ofN discrete r.v.s. Let us consider the vectori(n) =

[i(n) i(n+ 1) � � � i(n+ N � 1)]T , and define bypi(i1k; � � � ; iNk) the joint probability

pi (i1k; � � � ; iNk) = Prfi(n) = i1k; � � � ; i(n+ N � 1) = iNkg: (1.5)
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The entropy of this vector is defined as

H(i) = �
X

i1k���iNk
pi(i1k; � � � ; iNk) log2 pi(i1k � � � iNk): (1.6)

Theentropy rateH1(i) of the processi(n) is then the limit

H1(i) = lim
N!1

1

N
H(i): (1.7)

One can show that it is possible to build an uniquely decodable code to a source as long as the number of

bits per symbol is at least as high as the entropy rate of the source.

Also, (1.4) and (1.7) may be generalized to the case wherei(n) = [i(n) i(n+ 1) � � � i(n +N � 1)]T is

composed ofN continuous r.v.s. Fori having joint p.d.f.pi, the differential entropy ofi is defined as

h(i) = �
Z

pi(i) log2 pi(i)di; (1.8)

and the correspondingdifferential entropy rateof the continuous sourcei(n) as

h1(i) = lim
N!1

1

N
h(i): (1.9)

1.2.4 Mutual Information

Let i andj be two discrete r.v.s with respective alphabetsI andJ. The mutual informationI(i; j) is the

average reduction in uncertainty of an eventfi(n) = ikg due to the knowledge of an eventfj(n) = jkg,
and is defined by

I(i; j ) =
X
ik2I

X
jk2J

p(ik; jk) log2
pij(ik; jk)

pi(ik)pj(jk)
: (1.10)

The mutual information is nonnegative and corresponds to the relative entropy between the joint probability

and the product of the marginal probabilities.

1.2.5 Capacity

Suppose now that the values of processi(n) correspond to the input symbols of a channel, and that the

output symbolsfjkg 2 J depend only on the input symbolik at the same instant. For this so-calleddiscrete

and memorylesschannel, the capacityC is defined by

C = max
pi

I(i ; j ): (1.11)

The fundamental theorem for a discrete channel with noise ([2],Th.11) states that communication with

arbitrarily low error probability is possible if, and only if

H(x) � C: (1.12)

This theorem is sometimes referrred to as the “separation theorem” for stationary memoryless sources and

channel. Extensions to other sources and channels are reviewed in [13]. This theorem and the results of

[13] suggest that one could design practical methods to compress a source without any knowledge of the
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channel. Similarily, the design of a system aiming of communicating over a particular channel could be de-

signed without regard for the significance ofeach particular bit. For this reason, source and channel coding

have grown into separate fields with rather separate communities. Because of channel capacity variations

however, joint source-channel coding may improve the overall coding performance of real systems. Thus,

the optimality of designing separately source and channel coders is somehow idealistic, but leads however

to easier designs.

As stated as early as1984 in [14], digital source coding is by no means a new topic. One may however hope

that there is still room for improvement and innovation. A primary purpose of this work is indeed to show

that this is the case.

1.3 Source Coding : General Presentation

A source code is composed of two mappings: anencoderand adecoder, see Figure 1.2.

� 
�1
i i


 �
bitsx xq

Figure 1.2: General representation of a source code.

The encoder maps any vectorxk 2 RN to a finite string of bits, and the decoder maps any of these

strings of bits to an approximationxqk 2 RN . The encoder can always be factored as
 � �, where� is a

mapping fromRN to some discrete setI, and
 is an invertible mapping fromI to strings of bits. Operations

� and� are referred to as lossy encoder and decoder, and define aquantizer. The operation
 is called a

lossless, or entropy code.

The quality of a source code is assessed by measuring the approximationaccuracy ofxq with respect to

(w.r.t.) x, and the length of the description. The measure for the description length will be the expected

number of bits delivered by the encoder divided by the vector lengthN . This is calledthe rate in bits

per scalar sample. The measure of approximation accuracy will be the expected squared Euclidian norm

divided by the vector length

d(x; xq) =
1

N
Ekxk � xqkk2 =

1

N
Ekexkk2; (1.13)

where Ekexkk2 denotes the variances of the reconstruction error. The mean squared error (MSE) distortion

as defined in (1.13) is very conventional and usually leads to the easiest mathematical results. Source cod-

ing theory has however been developped for quite general distortion measures [15].

Concerning on the one hand the lossy component of the source code, also calledquantization stage,

eachxk 2 RN is mapped from a source alphabet to a reproduction codebookC = fxqigi2I � RN , where

I is an index set. Quantization operationQ is then realized by cascading the operation� and�. The lossy

encoder�: R! I is specified by a partition ofRN into partition cellsSi = fxk 2 RN j�(xk) = ig; i 2 I.
The reproduction decoder�: I ! RN is specified by the codebookC. If N = 1, the quantizer is called

scalar, and otherwisevectorquantizer. Most popular lossy coding techniques include (possibly predictive)

scalar and vector quantization, transform or subband coding, and combinations thereof. Those of them
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which are involved in the coding structures of interest in this thesis will be briefly described in section

1.5. Extensive literature abouteach of them exist however; for a comprehensive overview, see the excellent

tutorials [16] and [17].

On the other hand, the aim of the entropy coder is to assign a unique binary string called a codeword

to eachi 2 I. A trivial assignment consists of transmitting codewords which correspond to the binary

representation of each index. Since the codewords have equal lengths, this procedure is calledfixed-rate

coding. The codeword assignment may however be done in such a way that the average bitrate is lower

than in fixed-rate coding. The basic idea is to assign shorter codewords to the indexes whose cells are more

frequently used by the quantization process, and longer codewords for indexes which are less likely. Indeed,

lossless compression is achievable in this case only if the probabilities of selection of the quantization cells

are different. This coding scheme is then referred to asvariable ratecoding. Though lossless coders may

also exist as standalone coders, they are always required as parts of lossy coding schemes. Lossless coding

techniques are reviewed in some more details in the next section.

1.4 Lossless coding

1.4.1 Introduction

Lossless coding is also calleddata compaction, noiseless, invertible,orentropycoding. As discussed above,

lossless compression can be achieved for discrete sources emitting symbols in a finite alphabet by taking

advantage of the non equal probabilities of occurence of the symbols. The cost is firstly some encoding

delay allowing one to reliably estimate these probabilities. Secondly, if the average bitrate may be decreased

by using variable rate coding, the instantaneous (or on a short period of time) bitrate may be arbitrarily high,

which may cause buffer overflows. This means that applying lossless codes may result in data expansion

instead of compaction in the short run. Finally, variable rate coding may suffer from error propagation if

some bits are received by the decoder in error. The main advantage of lossless over lossy coding is indeed

to guarantee, assuming a noiseless channel, that the data will be exactly recovered. In many applications,

such as computer programming, bank statements, some medical applications...,nonperfect information

recovering is not acceptable. In some more particular applications, such as audio archiving and mixing,

lossless compression may also be desired. This kind of techniques will be investigated in the second part of

this thesis.

1.4.2 Entropy Codes

We now precise some properties and definitions about entropy coding. Let us consider a discrete random

variablei with alphabetI. The entropy coder assigns a unique binary string called a codeword to each

i 2 I (Figure 1.2). Since the codewords are unique, entropy codes are always invertible. A code is called

uniquely decodableif the output sequence
(i1); 
(i2); � � � ; 
(ik) corresponding to the input sequence

i1; � � � ; ik is one-to-one. Uniquely decodable codes can be applied to message sequences without adding

any “punctuation” sign to show where codewords begin and end. If no codeword is the prefix of any other

codeword, the code is called aprefixcode. Prefix codes are guaranteed to be uniquely decodable.
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The expected code length corresponding to the entropy code
 is then

L(
) = E [l(
(i))] =
X
ik2I

pi (ik)l(
(ik )); (1.14)

wherepi (ik)is the probability of the symbolik andl(
(ik)) is the length of the corresponding codeword.

The entropy code isoptimalif it is a prefix code that minimizesL(
). Huffman codes [18] are examples of

optimal entropy codes. The performance of an optimal code is bounded by

H(i) � L(
) < H(i) + 1; (1.15)

whereH is the discrete entropy defined in (1.3). More useful upper bounds may be found, e.g. [11, 19, 20].

Concerning the lower bound, analytical formulas which would describe the rate given by Huffman codes as

a function of the probabilities are unknown [16]. Approximating this rate by the entropy gives however a

useful though underestimated idea of the actual achievable rates.

Among most famous examples of lossless codes are the Morse code of1837 (where the binary represen-

tation is replaced by dots and dashes, and the codewords’ lengths are inversely proportional to the letters

relative frequencies; this code requires fewer bits than fixed-rate ascii), Huffman code (1952, used in Unix

compactutility), run-length codes (popularized by Golomb in the early1960’s, and used in the JPEG stan-

dard), Golomb codes which are type of Huffman codes, Lempel-Ziv(-Welch) codes (1977�78, used in Unix

compressutility), arithmetic codes, Rice code (Huffman code for Laplacian probability density functions,

used in many state-of-the-art lossless audio coders [21, 22, 23, 24]).

1.5 Lossy Coding

The main results of Lossy Coding or Quantization come historically from two complementary approaches:

the information theoretic approach of Shannon, also called rate-distortion theory orsource coding with a

fidelity criterion [2, 25], and thehigh resolution, or high rateor asymptotictheory, whose origin can be

found in [26, 27, 28].

1.5.1 Rate-Distortion Function

In many practical cases, noiseless coding of discrete sources is not possible. One wishes to describe the

performance of a system which allows one to compress the source by accepting some distortion. Consid-

ering a distortion measured(x; xq), the rate-distortionfunction [15] describes the lowest rate required to

represent a continuous sourcex (taking values in theN -dimensional Euclidean spaceRN) with distortion

no greater than some maximum distortionD

rx(D) = inf
d(x;xq)�D

1

N
I(x;xq); (1.16)

where the infimum of the normalized mutual information1N I(x;x
q) is taken over all joint distributions of

x andxq such thatd(x; xq) � D. Alternatively, one can define adistortion-rate functionwhich is the least

distortion with raterx or less. Forx having joint p.d.f.px and finite differential entropyh(x) theShannon

lower boundstates that for an MSE distortion measure

rx(D) � 1

N
h(x )� 1

2
log2(2�eD): (1.17)
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One important feature of the Shannon lower bound is that it easily generalizes to stationary sources. Let

x be a real stationary source, and letx denote the vector of the firstN samples ofx. The rate-distortion

function ofx is defined by

rx;1(D) = lim
N!1

rx(D) = lim
N!1

1

N
h(x ) � 1

2
log2(2�eD); (1.18)

and the limit is known to always exist [15]. Assuming a differential entropy rateh1(x) = lim
N!1

1

N
h(x ),

thegeneralized Shannon lower boundis

rx;1(D) � h1(x ) � 1

2
log2(2�eD): (1.19)

The performance of realizable quantizers as designed by high resolution quantization theory may then be

compared to these information theoretic results3. The quality of a quantizer, as defined in section 1.3,

is determined by its distortion and rate. We will limit this review by considering MSE distortion (1.13).

As for the rate corresponding to a particular distortion, it can be measured in a few ways. Associating a

particular entropy code
 to the quantizer gives avariable rate quantizer(�; �; 
), whose rate is given

by eq. (1.14), possibly divided by the lengthN in the vector case. If no particular code is specified, or

if binary representation is used to build the codewords, the quantizer is calledfixed-rate quantizer, whose

rate is hencelog2NI. The ideal case where the rate is measured by the entropyH(i) yields anentropy-

constrainedquantizer. The optimal performance of variable-rate quantization is at least as good as that of

fixed-rate quantization, and entropy-constrained quantization is better yet.

1.5.2 High Resolution Scalar Quantization

For most sources, it is impossible to analytically express the performance of optimal quantizers. The ap-

proximations obtained when it is assumed that the quantization is very fine are however reasonnably ac-

curate even at low to moderate rates [30, 31]. See [16, 17] and references therein for a comprehensive

overview of the main historical contributions to high rate quantization.

Let px denote the p.d.f. of a continuous scalar r.v.x . High resolution analysis is based on approximating

px on the intervalSi by its value at the midpoint. Assumingpx is smooth, this approximation is accu-

rate when allSi are short4. Optimizing a scalar quantizer turns into finding the optimal lengths for the

cells, depending on the p.d.f.. For large rate, the performance of optimal fixed-rate quantization (FRQ) is

approximately

Eex2k � 1

12

�Z +1

�1
p
1
3
x (x)dx

�3

2�2r; (1.20)

which is now called the Panter and Dite formula [28]. Optimal conditions for p.d.f. optimized quantizers

require that the quantization follows a nearest reconstruction level rule, and that these levels are the condi-

tional expectation of the source value given that it lies in the specified cell (also calledcentroid of the p.d.f.

in the interval). Lloyd [32, 33] and Max [34] independently derived methods to design a quantizer subject

to these conditions, which is therefore called aLloyd-Max quantizer. When FRQ is used the number of

cells 5 K, is related to the rate byK = 2r. Evaluating expression (1.20) for a Gaussian source gives, at
3The first paper to compare the performance of a specific quantizer to the Shannon lower bound was that of Koshelev in 1963 [29].
4These assumptions are known as Bennett’s assumptions [27].
5Once optimized, the cells are calledVoronoi regions.
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high rates,

dGaussian;Lloyd�Max �
p
3��2x
2K2

�
p
3�
2 �2x2

�2r:
(1.21)

For an entropy-constrained scalar quantizer, the partition cell should be reoptimized, and high resolution

analysis shows that it is optimal for eachSi to have equal length. Thus, a simpleuniform quantizerresults

in the best performance for high resolution, which is

dGaussian;ECUQ � �e

6
�2x2

�2r: (1.22)

This formula is known as the Gish and Pierce [35] high rate approximation of entropy coded uniform quan-

tization (ECUQ). Interestingly, optimal entropy constrained uniform quantization does however not result

in a uniform quantizer at low rates, but again on a p.d.f. optimized quantizer [36, 37].

In any case, the number of cells is countably infinite with variable-rate coding (VRQ). If fixed-rate cod-

ing (FRQ) is used with uniform quantization, the grid of the quantization levels covers a finite range of

amplitudes and the distortion is comprised of two factors. The first stems from the distortion occuring by

approximating any value inside the grid by the corresponding reconstruction level, and is called thegran-

ularity. The second contribution comes from the distortion occuring by approximating any value outside

the grid by the corresponding reconstruction level at the boundary of the grid, and it is calledoverload. For

bounded uniform quantization (BUQ), the optimal stepsize depends consequently on the p.d.f. of the source

and on the rate (see [14], p. 127, Table 4.1, for optimisation results w.r.t. several p.d.f.s).

Summarizing these results, the performance of a quantizer may be described by a distortion-rate function

of the form

d � c2�2r�2x; (1.23)

where�2x is the variance of the scalar source, andc is a coefficient that depends on the rate, on the p.d.f. of

the source, and on the type of quantization (fixed rate, variable rate or entropy constrained). It is important to

emphasize that the coefficientc of operational distortion-rate functions tends to a constant only at moderate

to high rates. The Shannon Lower bound is given by

dShannon = 2�2r�2x; (1.24)

The rate-distortion performance discussed above are plotted in Figure 1.3.

The distortion obtained with p.d.f. optimized FRQ (1.21) is worse by a factor of� 2:7 than that of the

Shannon lower bound, while the distortion of ECUQ (1.22) is�e
6 � 1:4 greater than the best achievable

distortion. Equivalently, for the same distortion level, FRQ requires an excess bitrate of� 0:72 bit/sample

as compared with the lower bound, while this excess bitrate is only� 0:25 bit/sample for ECUQ. The excess

bitrate of ECUQ is often quoted as the “quarter bit result”, and was first reported in [29], and rediscovered

by numerical evaluation [30] in the case of i.i.d. Gaussian sources. The (slightly) subsequent paper of

Gish and Pierce [35] brought then several important results. It demonstrated analytically the “quarter bit”

result of ECUQ of Gaussian sources, and showed that this performance could be attainable forany source

distribution. They also generalized the results from squared-error distortion to nondecreasing functions of

magnitude error. Important analytical results relating differential (1.4) to discrete entropy (1.3) can also be
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Figure 1.3: Distortion-rate functions of several scalar quantizers.

found in the same paper. A uniform quantizer scalar with infinitely many levels and small cells width�

has output entropy given approximately by6

H(xq) � h(x)� log2�: (1.25)

In the high resolution case, the entropy ofN successive outputs of a uniformly scalar quantized stationary

source is

H(xq) = H(xq1; x
q
2; � � � ; xqN ) � h(x1; x2; � � � ; xN )� log2�: (1.26)

Finally, they showed that the0:25 bit/sample result is also true for sources with memory, and noted that

when coding vectors, the performance could be improved in two dimensions by using hexagonal cells

(instead of the cubic cells induced by uniform quantization).

1.5.3 Transform Coding

The first occurence of transform coding in digital systems is attributed to Huang and Schultheiss [1]. A

previously introduced coding procedure aimed of transmitting linear combinations of time- and amplitude-

continuous signals instead of the original signals was introduced by Kramer and Matthews [39]. The “quan-

tization” operation corresponded in this case to transmitting a linear combination ofn < N signals instead

of the same number of original signals, which was found to be much more efficient for adequately cho-

sen transforms. The modern framework of transform coding introduced by Huang and Schultheiss and

including digitization is depicted in Figure 1.4.

6This result is due to R´enyi [38], and was generalized in [35] to nonuniform quantizers, and to vectors.
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Figure 1.4: Modular structure of a transform code [1].

The essence of transform coding is the modular structure provided by breaking the mapping� into two

steps, an invertible transformT producingtransform coefficientsyi, and the independent scalar quantization

of those coefficients. The corresponding serie of indexes are then compressed by an entropy code
, which

is usually itself composed ofN independent entropy coders. An approximationxq of x is then obtained

by reversing the operations at the decoder7. The quantizers indices are first recovered, from which the

decoder produces reconstructed transform signalsyqi . The final step usually usesU = T�1 to obtainxq.

The great advantage of transform codes comes from their complexity reduction: the time for computing

the transform is at most proportional toN2, whereas computing the optimal code is exponential inN .

Transform coding allows therefore large values ofN to be practical, at the cost of being suboptimal. It is

therefore aconstrainedcode, w.r.t. its particular structure.

Bit allocation

Coding (quantizing and entropy coding) each transform coefficient separately splits the total number of bits

among the transform coefficients. One should then cleverly choose the quantization fineness, and hence the

number of bits required to represent the resulting quantized sources. The formulation of the bit allocation

problem is simple: one is given a set of transform signals with variances Eey2i = di;T , and a set of scalar

quantizers with distortion-rate performance

di;T = fi(ri); (1.27)

whereri are the nonnegative (and possibly noninteger) bitrates of the componentsyi, andfi describes the

performance of the quantizer. The problem is to minimize the average distortion Ekeyk2T = 1
N

PN
i=1 di;T

subject to the constraint of a given maximum average rater = 1
N

PN
i=1 ri. If the average distortion can

be reduced by taking bits away from one component and giving them to another, the bit allocation is not

optimal. Applying this reasonning with infinitesimal changes in the component rates, a necessary condition

for an optimal bit allocation is that the slopes of eachfi at ri is equal to a common, constant value. The

problem becomes easy if the operational distortion-rate function is given by (1.23) and high rate is assumed

7The channel plays no role in the optimization and is assumed to cause no transmission error.
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(that is, Ekeyik2 � ci2�2ri�2yi , whereci is some performance factor, independent of the rate). If one

neglects further the fact that theri should be nonnegative8, the optimal bitrates are given by

ri = r +
1

2
log2

ci

(
NY
i=1

ci)
1
N

+
1

2
log2

�2yi 
NY
i=1

�2yi

! 1
N

; (1.28)

and the corresponding average distortion by

1

N
E jjeyjj2T = 2�2r

 
NY
i=1

ci�
2
yi

! 1
N

: (1.29)

If it turns out that some rates are negative, they are set to zero, and the remaining components have corre-

spondingly higher allocations.

With average rates ofr bits per component and Gaussian signals, the distortion-rate performance of the

quantizers may be approximated by (1.21) or (1.22), and the average distortion with optimal bit allocation

becomes

1

N
E jjeyjj2T = c2�2r

 
NY
i=1

�2yi

! 1
N

; (1.30)

wherec = �e
6 for ECUQ orc =

p
3�
2 for optimal FRQ.

An important property of commonly used (that is, orthogonal) transformations is that, if a noise (for example

quantization noise) is added to the signal in the transformed domain, then its power will be the same in the

transformed and in the signal domains. This property is sometimes referred to asunity noise gainproperty.

Thecoding gainGT for a transformationT which verifies unity noise gain property is then defined as the

factor by which the distortion is reduced because of the transform. Assuming high rate and optimal bit

allocation

GT =
Ekexk2I
Ekexk2T =

Ekexk2I
Ekeyk2T =

�
det diagfRxxg

� 1
N�

det diagfRyyg
� 1
N

; (1.31)

whereI is the identity matrix, and the notation Ekexk2T denotes the variance of the quantization error on

the vectorx, obtained for a transformationT .

Optimization of the transform

Now, the problem remains of optimizing the transform so that the distortion, resulting from the bit allocation

algorithm, is minimized. Firstly, among the possible choices of transforms, orthogonal transforms are

traditionally prefered because they avoid a possible noise amplification when coming back into the signal

8This is in fact implicitly assumed in the assumption of constantci .
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domain. Denoting by1N E jjexjj2T = 1
N

NX
i=1

�2exi = 1

N
trfRexexg, we have for orthogonal transforms

1
N E jjeyjj2? = 1

N tr fEey
k
eyT
k
g = 1

N tr fE(y
k
� yq

k
)(y

k
� yq

k
)T g

= 1
N tr fE(T (xk � xqk)(xk � xqk)

TTT )g
= 1

N
tr fTRexexTTg

= 1
N E jjexjj2?:

(1.32)

Secondly, considering (1.30) or (1.31), the choice of the transform is guided by minimizing the geometric

mean of the variances. Consider the covariance matrixRyy of the transform signals. SinceRyy is positive

semidefinite, it verifies Hadamard’s inequality [40],

NY
i=1

�2yi � detRyy: (1.33)

SincedetRyy = det(TRxxT
T ), this determinant becomesdetRxx for any orthogonal, and more generally

any unimodular transform. Thus, the product in (1.33) is at leastdetRxx, and the coding gain (1.31) of

unimodular transforms is at most [41]

G0 =

�
det diagfRxxg

detRxx

� 1
N

: (1.34)

1.5.4 Karhunen-Loève Transform

A Karhunen-Loève Transform (KLT) is a particular type of orthogonal transform that depends on the co-

variance of the source. An orthogonal matrixV represents a KLT ofx if V RxxV
T is a diagonal matrix.

This diagonal matrix is the covarianceRyy of y
k
= V xk. Thus, a KLT yields uncorrelated transform coef-

ficients. KLT is the most commonly used name for these transforms in signal processing, communication

and information theory, recognizing the works [42] and [43]. Among other names are Hotelling transform

[44] and principal component transform.

A KLT exists for any source because covariance matrices are symmetric, and symmetric matrices are or-

thogonally diagonalizable. The diagonal elements ofV RxxV
T are the eigenvalues ofRxx. Note that for

a given source with covariance matrixRxx, KLTs are not unique: any row ofV can be multiplied by�1
without changingRyy, and permuting the rows leavesRyy diagonal.

Let us consider a jointly Gaussian source, which is tranform coded as in Fig 1.4 withU = T�1. Since

the transform coefficients have the same normalized densities, the quantizer’s distortion-rate functions may

be described by a single functionf as Eey2i = di = �2yif(ri), i = 1; � � � ; N . Then for any bit allocation

(r1; r2; � � � ; rN ), there is a KLT that minimizes the distortion [45]. In particular, at high rates, the maximal

coding gain (1.34) is achieved by the KLT. Consequently, the KLT is often used as a benchmark in trans-

form coding.

However, if neither the Gaussian, nor theU = T�1 assumptions are valid, there are cases where the KLT is

not an optimal transform. The optimality of the KLT for transform coding of Gaussian sources is believed

to be a consequence of the fact that the KLT of a Gaussian vector yields independent transform coefficients.

The application of the KLT in transform coding of non-Gaussian sources is then justified using the intu-

ition that the KLT’s coefficient decorrelation is, for general sources, the best possible approximation to the
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desired coefficient independence. The successes and failures of this intuition are reviewed in [46]. Several

cases where the KLT is not optimal are described in [47]. Other recent works include [48, 49, 50]. A large

part of the present work deals with the performance of a new transform, namely the causal transform. The

proposed investigations are thus premiliminary, and the Gaussian assumption allows one to set a framework

in which analytical results can be derived. Therefore, we will not enter the details of the analyses related to

general sources; the KLT will be considered as the optimal transform in this thesis.

1.6 Thesis Themes and Overview

The thesis is comprised of two parts. The first one deals with lossy coding, and the second one with lossless

coding. A brief overview of the general framework of this thesis, and of each part is given in this section.

More detailed introductions to the specific frameworks considered for lossy and lossless coding can be

found at the beginning ofeach part; an abstract is provided at the beginning of each chapter.

The topic of causality in source coding is the essential link between the several chapters of this thesis.

Several causal decorrelating schemes will be, somewhat paradigmatically, investigated. In all the cases

where the considered causal coding scheme has the form of a (scalar valued) matricial transform, compar-

ison will be made with the Karhunen-Lo`eve transform. Inspiring from [19] and [20], this thesis could also

have been titled “Variations on a causal coding theme”; however, an effort was made so that the chapters

can be read independently. We tried to briefly but clearly recall the previously established background and

results, whenever it seemed necessary.

The informationconsidered in this thesis will be represented by vectorial signals (whose samples are

vectors), which compose a wide class of signals, among which scalar and multichannel signals. Multichan-

nel signals may be obtained as soon as scalar signals are, in the context of various applications, gathered

together. If these signals present some dependencies, such as audio signals for example, one may process

them jointly in order to achieve a more efficient compression.

The initial idea of developping coding techniques for audio signals9 motivated this choice of a vectorial

representation. Though some applications will be presented for this kind of signals, Gaussian source mod-

els is often assumed. Gaussian sources have indeed a particular status in information theory. Shannon [25]

showed that a Gaussian i.i.d. source has the worst rate-distortion function of any i.i.d. source with the

same variance, thereby showing that the Gaussian source is an extremum in a source coding sense. This

fact provided an approach torobust quantization: the resulting code might not be optimal for the actual

source, but would perform no worse than it would on the Gaussian source for which it was designed (see

e.g. [51]). Besides, advantage can be taken of the central limit theorem and of the known structure of an

optimal quantizer for a Gaussian random variable. A general source is in this case coded by first filtering

it to produce approximately Gaussian density, scalar quantizing the result, and then inverse filtering to re-

cover the quantized original [52]. We will not argue however that Gaussian assumption was intended to

provide either worst-case performance, nor methods to code, with the same performance as that obtained in

the Gaussian case, sources with arbitrary densities. The Gaussian source model was retained in this work

9The first results of this work were obtained in the framework of the french RNRT projectCOBASCA:COdage enBandeélargie

avec partageAdaptatif du débit entreSource etCAnal pour réseaux cellulaires de deuxi`eme et troisi`eme générations (UMTS).
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because it allows one to derive closed form expressions, to compare, and possibly to prove the optimality of

the considered coding schemes. In this sense, it provides a valuable framework for preliminary theoretical

investigations, such as those intended in this work.

1.6.1 Part One: Causal Lossy Coding

The first part deals mainly with transform coding. Transform coding theory may appear as rather old and

routine; a primary aim of this thesis is to show that valuable innovations are still possible. These innovations

regard not only the framework of the standard description of transform coding (by introducing a new causal

transform and showing its efficiency for a wide range of rates), but also in the framework of a related and

almost unexplored research areas, namely the problem ofbackward adaptationin transform coding.

The causal transform is introduced in chapter 2. It is called LDU transform, for “Lower-Diagonal-

Upper” factorization of the correlation matrix of the input vectorial source; the matrix is lower triangular

and unit diagonal, and its design is based on optimal prediction. Both theoretical analyses and empirical

evidence of its coding performance w.r.t. the KLT are demonstrated. The presented theoretical investiga-

tions apply to the classical high rate transform coding framework, but particular practical systems working

at moderate to low rates are also investigated.

Because it is based on optimal prediction, the LDU is, as the KLT, signal dependent. Adjusting the trans-

form to the generally varying changing covariance matrix of the source may result for practical systems in

a non acceptable bitrate overhead. A possible way to avoid this drawback is to adapt the transform based on

the decoded data, so that the encoder and the decoder adapt in unison without the explicit transmission of

any coding parameters. Among the questions of interest is that of knowing whether the backward adaptive

system will be suboptimal, in the rate-distortion sense, w.r.t. to a system designed with a perfect knowledge

of the source. This issue is addressed in the third and fourth chapters.

In a first step, the approach of chapter 3 makes the same assumptions as those of the classical transform

coding framework (optimal bit allocation procedure, high rate, Gaussian sources), and proposes an analysis

of the coding gain for such an idealized backward adaptive system. The approach consists in modelling the

behaviour of these systems by considering the effects of quantization and estimation noise as perturbation

terms on the ideal classical transform coding framework. The perturbation effects impacts both the bit as-

signment mechanism, and the transforms. The analyses are made in both the causal and unitary cases.

The previous approach assumes however an optimal bit assignment mechanism which may not be the case

for practical systems. Therefore, an analysis of practical algorithms is proposed in chapter 4, for which the

optimal bit allocation assumption is released, and replaced by a simple (equal stepsize) quantization rule.

Both constant and adaptive stepsizes are considered, though emphasis is put on algorithms using adaptive

stepsizes, in order to cope with possible variations of the energy of the sources.

These topics are followed by a generalization of the presented causal coding scheme to (matricial)

filtering in chapter 5. For vectorial sources with memory, instantaneous decorrelation such as that performed

by transforms such as KLT or LDU applied to vector samples is not optimal. Temporal redundancies may

remain, which will not be accounted for by scalar entropy coders.
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By considering blocks of vectors with infinite length, we show that the optimal decorrelating approach

is still lower triangular. The scalar coefficients of the LDU matrix are in this case replaced by prediction

filters. We show that this renders the coding procedure of Gaussian vectorial sources with memory optimal

(assuming high rate and filters of infinite length). This generalization of the LDU is called “generalized

Multiple-Input/Multiple Output (MIMO) prediction”. This approach includes, as special cases, previously

introduced MIMO decorrelation approaches, and turns out to be rich of both theoretical and practical con-

sequences10. A high rate analysis provides an optimal ordering in the decorrelation of the signals, and gives

insight about which particular decorrelation approach should be prefered to make the coding scheme the

most efficient.

A brief history of the preliminary analyses, and the framework which led to these results are then

presented in an appendix chapter.

1.6.2 Part Two: Causal Lossless Coding

The second part of this thesis presents and analyzes lossless coding techniques based on the causal decor-

relating approaches described in the chapters 2, 3 and 4. The analysis of the performance of the LDU

transform in a lossless coding framework was first motivated by our interest in pursuing the comparison of

its coding performance with the KLT, with the intuition that the LDU might, due to its simple triangular

structure, outperform in this framework its othogonal brethren. Also, multichannel lossless audio coding

has recently become a challenging field, and the results of chapter 5 may inherently be applied to lossless

coding of multichannel sources. Besides audio, the results presented in the second part may also be applied

to the field of image coding.

Basically, the structure of this second part resembles that of the first one. In the first two chapters, the LDU

causal transform is compared to orthogonal transforms, and in particular to the KLT, in a lossless transform

coding framework. The last chapter investigates the extention of the LDU transform, or generalized MIMO

prediction, to optimal lossless coding of vectorial signals.

An ubiquitous topic in the second part is that of integer-to-integer transforms, which received much

attention recently. The term comes the fact that both the inputs and the outputs of these transforms are

integer valued (or lie on a scaled integer lattice). These transforms are thus of interest in a lossless cod-

ing framework, where they can be applied to discrete-amplitude source, such as those resulting from some

quantization process. The corresponding systems will be denoted by “single-stage”, or “one-shot” loss-

less coders. The goal of the integer-to-integer transforms is to provide systems which present (almost) the

same compression performance as those obtained by vectors entropy coders, though using scalar entropy

codes. A particular emphasis will be put on the “almost” of the last sentence. Theoretical analyses will first

evaluate the suboptimality of realizable integer-to-integer structures followed by scalar entropy codes, w.r.t.

optimal vector entropy coding methods. The analyses of these structures (and those of the corresponding

bounds) will regard the integer-to-integer implementations of the KLT and of the LDU in chapter 6. In

chapter 8, we will investigate those of the MIMO decorrelation approaches described in chapter 5.

10Beyond the field of source coding, generalized MIMO prediction has also found a natural and usefull application to multiuser

detection [53].
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Besides these “one-shot” or “single-stage” approaches, another recurrent theme of this second part is

that of multiresolution lossless coding. These systems aim of providing a low resolution (lossy coded)

version of the signals in a first step; the error signals are transmitted in a second step. For these systems,

it appears interesting to know whether the multiresolution approach is suboptimal w.r.t. the corresponding

single-stage system. We will therefore analyze the bitrates dedicated to code the low resolution, and the

error signals, and compare the resulting overall bitrate to that obtained with single-stage coders. These

comparisons will be done for the LDU transform and the orthogonal transforms in chapter 7, and for the

classical and triangular MIMO predictors in chapter 8.
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Part I

Causal Lossy Coding

19





Overview of the First Part

Transform codes are popular because they provide an attractive compromise between computational com-

plexity and performance. As summarized in the introdution of this thesis, this technique has been widely

analyzed, and source coding systems which use transform codes are ubiquitous. Many transforms ex-

ist, which allow different trade-offs between the theoretical coding efficiency and more practical criteria.

Theoretical coding efficiency include decorrelation efficiency, or compaction gain. More practical criteria

include design or implementation complexity, or subjective performance related to the particular behaviour

of the transforms w.r.t the nature of the signals they are applied to. A pervasive use is made of orthogonal

transforms, since they guarantee that the quantization noise will not be amplified when coming back from

the transform to the signal domain. Among them, the Karhunen-Lo`eve transform has become a benchmark,

since it has been proven to be optimal for Gaussian sources [1, 54]. A recurent theme in this thesis is to

show that, w.r.t. different criteria, KLT’s performance may be approached, achieved, or even surpassed by

another transform, namely thecausaltransform.

� In chapter 2, we will introduce the proposed transform coding technique, which is based on optimal

prediction. The corresponding transform performs a Lower-Diagonal-Upper factorization of the co-

variance matrix of the vectorial source to be coded. It is not unitary but causal: the transform matrix is

unit diagonal and lower triangular. A theoretical analysis shows first that at high rates, it may achieve

the same peformance as the KLT. As a consequence of its non-orthogonality, we show that efficient

causal coding structures should be implemented in closed loop around the quantizers, as in DPCM

systems. As a consequence of the closed loop implementation, a noise feedback should increase the

resulting distortion at lower rates. The point is then to know quantitatively how the noise feedback

impacts the coding performance. We propose therefore theoretical analyses of the noise feedback. In

a first step, general quantizers, high rate and optimal bit assignment are assumed. In a second step,

the performance of practical systems using nearly optimal by allocation, (uniform quantization with

equal quantization stepsize, and entropy coding) are evaluated. Both theoretical analyses and numer-

ical results will show that the causal transform competes with the KLT at average bitrate budgets as

low as2:5 b/s. These results were presented in [55, 56].

As the KLT, the LDU is data dependent, and should thus be updated in case of changes in the source

statistics. In order to avoid transmitting coding parameters as side information, one may attempt to

adapt the transforms using decoded data only. This poses the problem ofbackward adaptation, or

adaptation without side-information, or on-line adaptationin transform coding. The feasibility and

performance analysis of this kind of coding schemes will be the topics of the following two chapters.

21
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� Chapter 3 presents a first attempt to model theoretically the performance of causal and unitary back-

ward adaptive coding schemes. The proposed approach will consist in analyzing the perturbation

effects w.r.t. to the ideal case of the classical transform coding framework, where the second or-

der statistics of the source are known. In order to make tractable analyses, several simplifying as-

sumptions are made, which are borrowed from the classical high rate transform coding framework.

Namely, we assume Gaussianity, same quantizers’rate-distortion law, and bit assignment rule of the

form (1.28), in which however the actual variances of the transform signals are not known. The

proposed modelaccounts then for perturbations occuring uppon both the bit assignment mechanism

and the transforms’ design. Three cases will be investigated: the coding schemes are perturbed by

quantization noise only in a first case, and by estimation noise only in a second case; finally, both

effects will be accounted for. Theroretical evaluations will be shown to describe correctly this kind

of systems. These results we presented in [57, 58, 59].

Our goal to provide a successful analysis of backward adaptive transform coding schemes seems

however somewhat incomplete at this point: practical systems may not verify the above assumptions.

This leads to the topics of chapter 4.

� In chapter 4, three practical backward adaptive transform coding schemes will be investigated for both

the causal and the unitary transforms. In these algorithms, the quantization stepsizes are the same for

all the transform components; the transforms are computed using estimates of the covariance matrices

based on quantized data. In a first step, constant (w.r.t. time) stepsize algorithms are implemented.

This case is of interest if the input source is stationary; otherwise, it may result in unacceptable

changes in the rate-distortionperformance. The point is to know whether the transforms will converge

or not to optimal transforms (designed with the knowledge of the statistics of the original source).

Empirical evidence will show that this is the case, even at low rates. In a second step, we propose a

theoretical analysis of two algorithms using adaptive stepsizes. The adaptation procedure is similar

to that used in classical adaptive scalar quantization. We model then the expected distortion obtained

for a given number of decoded vectors. Our results suggest convergence of both the stepsize and

the transforms, for both algorithms. In the case where the source is stationary, the algorithm using

a Sheppard’s correction on the second order moment estimates allows one to reach a target point of

the rate-distortion function of the system. This point is reached by the structure after a convergence

process, though the decoder hasa priori neither the knowledge of the stepsize to be used, nor that of

the statistics of the source. These results are presented in [60].

The causal transform studied in these first chapters proves efficient decorrelation ability. As the KLT

however, it accounts only for correlationswithineach data block. For vectorial sources whose vectors

are not independent, better coding efficiency can be expected from tranforms which account for

temporal redundancies as well. This is the topic of the last chapter of this first part, which generalizes

in this sense the causal approach investigated so far.

� We show in chapter 5 how the causal transform LDU can be extended to (matricial) filtering. In

this case, the optimal causal decorrelating scheme will be shown to correspond to a triangular pre-

diction matrix whose entries are optimal prediction filters. The diagonal filters are scalar intrasignal

prediction filters, and the off-diagonal predictors are Wiener filters performing the intersignal decor-

relation. By considering vectors of infinite size, one can get frequential expressions for the coding
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gains. We show that this decorrelating scheme leads to the notion ofgeneralizedMIMO (Multiple

Input Multiple Output) prediction, in which a certain degree of non causality may be allowed for the

off-diagonal prediction filters. Previously introduced MIMO decorrelation approaches are shown to

appear as special cases of the described decorrelation technique.

In the case of non causal intersignal filters, the optimal MIMO predictor is still triangular, and hence

“causal, in a wider sense. The notion of causality may be generalized: the causality between chan-

nels becomes processing the channels in a certain order. Some signals may be coded using the

coded/decoded versions of the “previous” signals. An interesting result is that if the quantization

noise feedback is taken into account, the triangular predictor is the more efficient. Moreover, the cod-

ing gain is maximized if the signals are decorrelated by order of decreasing variance. These results

were presented in [61].
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Chapter 2

Optimal Causal versus Unitary

Transform Coding

In a transform coding framework, we introduce the optimal (linear) decorrelating transform subject to the

constraint of causality. This transform is shown to correspond to a Lower-Diagonal-Upper (LDU) fac-

torization of the signal covariance matrixRxx. The LDU transform is compared to the unitary approach

(Karhunen-Loève Transform, KLT), which is optimal for Gaussian sources. The performance of the LDU

transform is first shown to be equivalent to that of the KLT at high rates. Moreover, it presents several

advantages w.r.t. its unitary counterpart, such as lower implementation and design complexities, and per-

fect reconstruction property. As in classical (A)DPCM, closed loop implementation of the causal coding

structure is shown to be preferable. This leads to a noise feedback effect, similar to that occuring in DPCM

systems. We present high resolution analysis of these effects on the distortion-rate function. The proposed

analyses consider firstly general transform coding systems for which the bit allocation is optimal, and sec-

ondly practical systems whose bit allocation is nearly optimal. For the latter system, deviations from high

rate assumptions arise approximately beyond3 b/s. The effects of the noise feedback in the causal case

become non negligible below approximately2 b/s. The theoretic evaluations are validated by numerical

results.
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2.1 Introduction

The unitary Karhunen-Lo`eve Transform is known to be the optimal transform for Gaussian1 sources [54]

This chapter analyzes the performance of the optimalcausaltransformation for Gaussian signals for vari-

able length coding at high and low bitrates .

Rather surprisingly regarding its excellent coding performance, this transform was derived only recently

(independently in [62, 63] [55], and [64]). In [62], the transform is namedPrediction based Lower trian-

gular Transform(PLT). The work [64] calls the transformSequential Vector Decorrelation Technique. In

[55], the causal decorrelation approach was named VDPCM because it generalizes scalar DPCM. The term

will not be retained here in order to avoid confusion with the technique presented in [65], which uses vector

quantization (see also section 5.1).

The causal transform is described in the second section, and the analogy with scalar DPCM is underlined, as

its coding performance depends on wether it is implemented in open or in closed loop around the quantiz-

ers. In the third part, the coding performance with negligible feedback is analyzed, and further comparisons

with the KLT are presented in section 2.4. Since the noise feedback arises in actual implementable causal

coding structures, a realistic analysis of the coding performance of this transform should evaluate what, in

terms of rate, does coarse quantization correspond to, and how the corresponding coding performance is

actually deteriorated. No such analyses were proposed in [62, 63] nor in [64]; this is the aim of the sections

2.5 and 2.6. Section 2.5 proposes an analysis based on high rate and optimal bit allocation assumptions,

and a practical system is investigated in section2.6. The last part summarizes the main results and draws

some conclusions.

2.2 Causal Transform Coding

2.2.1 Open Loop and Closed Loop Causal Transform Coding

Let us consider the coding scheme of figure 2.1. A matrix transformationL is applied to the vectorxk =

[x1;k � � �xN;k]T : y
k
= Lxk = xk � Lxk, whereLxk is the reference vector. The difference vector

y
k
= [y1;k � � � yN;k]T is then quantized using a setQ of (variable- or fixed- rate) scalar quantizersQi. The

outputxqk is thenyq
k
+ Lxk. This scheme may be considered as a generalization of the scalar (open loop)

DPCM coding scheme.

�
+ +

+

xk y
k

yq
k

xqk

Lxk

Q

Figure 2.1: Open loop causal transform coding (Q denotes a set of scalar quantizers).

1For non Gaussian sources, different transforms may yield better compression results, see e.g. [47, 49, 50].
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As in scalar DPCM, the reconstruction error vectorexk equals the quantization error vectorey
k

since

exk = xk � xqk = xk � (yq
k
+ Lxk) = xk � Lxk � yq

k
= y

k
� yq

k
= ey

k
: (2.1)

Note thatL behaves as the Identity matrix w.r.t. the noise vectorey
k

introduced in the transform domain. As

in the unitary case, the power of the quantization noise is thus the same in signal and transform domains2.

Since the constraint imposed here on the linear transformation is causality, the matrixL = I � L is strictly

lower triangular. The nonzero elements ofL represent the degrees of freedom of the transformation. The

causality refers to the ordering of the signalsxi which composex. This notion could be generalized by

working with the permuted components ofx andy, which givesPy = L Px or y = (PT LP)x, whereP is

a permutation matrix. This will be developped in chapter 5.

As in an open loop DPCM coding scheme however, the coding system represented by figure 2.1 suggests

that not only information concerning the prediction residual should be transmitted to the decoder, but also an

accurate version of every reference vector, which from a bitrate point of view is not realistic. If on the other

hand a reference vectorLxk is used at the encoder, and a differentLxqk at the decoder, the system would

suffer from quantization noise amplification, which may unacceptably decrease the coding performance, or

even make the prediction structure useless. The closed loop coding scheme of figure 2.2 will therefore be

prefered. In this case, the reference signalLxqk is based on the past quantized samples (available at both the

encoder and the decoder).

+ +
Q

xk y
k

yq
k

xqk

Lxqk
Lxqk

� +

Figure 2.2: Closed loop causal transform coding (Q denotes a set of scalar quantizers).

In this case, reconstruction and quantization errors are still equal, since

exk = xk � xqk = xk � (yq
k
+ Lxqk) = xk � Lxqk � yq

k
= y

k
� yq

k
= ey

k
: (2.2)

Two particular implementations of the closed loop causal transform will be reviewed in section 2.5.

In a first step (section 2.3), we neglect the quantization error on the reference signal. The coding perfor-

mance of a closed loop causal transform with non negligible feedback will then be described in section 2.5.

In any case, we will suppose an optimal bit assignment and make high resolution assumptions. A practi-

cal analysis at lower rates, in the case of a nearly optimal bit assignment is presented in the last section.

Moreover, one assumes jointly Gaussian r.v.sxi, whith known covariance matrixRxx .

2In the causal case however, the transform does not only conserve the Euclidian norm of the noise, but also the shape of its p.d.f..

This property will be used in chapter 8 in the framework of multiresolution lossless tranform coding.
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2.2.2 Problem statement

According to the so-called unity noise gain property (2.1), the coding gain for such a transformationL is

then

GL =
Ekexkk2I
Ekexkk2L =

Ekexkk2I
Ekey

k
k2L

; (2.3)

whereI is the Identity matrix (which corresponds to the absence of transformation), and the notation

Ekfxkk2L denotes the variance of the quantization error on the vectorx, obtained for the transformation

L. Similarly, the SNR3 obtained by usingL may be defined as

SNRL = 10 log10
Ekxkk2
Ekexkk2L = 10 log10

Ekxkk2
Ekey

k
k2L

= 10 log10
Ekxkk2
Eky

k
k2L

Eky
k
k2L

Ekey
k
k2L

(2.4)

We now set out to characterize the optimal transformationL and bit assignment which maximizes the

coding gain. For a given bit assignment, the optimal causal transformation is

L = argmax
L

GL = argmax
L

SNRL = argmin
L

Ekey
k
k2L: (2.5)

2.3 Optimal Causal Transform Coding with Negligible Feedback

In the following, the time index will be omitted in order to put emphasis on the index of the component

(subscripti). We assume in this section high resolution rate distortion function�2eyi = Ekeyik2 = c2�2ri�2yi
for all the quantizers. The coefficientc describes the quantizer performance; it is independent ofr at high

rates (e.g. �e6 for ECUQ, or
p
3�
2 for optimal FRQ, see section 1.5.2). For a givenL, the optimal bit

assignment minimizes Ekeyk2L =
NX
i=1

�2yic2
�2ri , subject to the constraint

NX
i=1

ri = Nr, wherer is the

average bitrate budget. The quantizersQi are assumed to introduce independent white noiseseyi on the

componentsyi, of variances�2eyi The result of this (Lagrangian) optimization yields (see section 1.5.3)

�2qi = �2eyi = c 2�2ri�2yi = c 2�2r
 

NY
i=1

�2yi

! 1
N

= �2q : (2.6)

The optimal quantization error variances�2qi are equal (independent ofi).

Concerning the optimization ofL, one should now minimize(
NY
i=1

�2yi)
1
N , where the�2yi depend on the rows

Li of L. The problem is hence separable, and minimizing(
NY
i=1

�2yi)
1
N with respect toL entails minimizing

�2yi with respect toLi;1:i�1. The componentsyi appear clearly as the prediction errors ofxi with respect

to the past values ofx, thex1:i�1, and the optimal coefficients�Li;1:i�1 as the optimal linear prediction

3Signal to (quantization) Noise Ratio
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coefficients. The linear causal transform which minimizes (2.5) is therefore of the form

L =

26666664
1

?
... 0

...
...

...

? � � � ? 1

37777775 ;

where the? represent optimal prediction coefficients. In other words,L is such that

LRxxL
T = Ryy = diagf�2y1 � � ��2yNg; (2.7)

where diagfag represent the diagonal matrix with diagonala. Since each prediction erroryi is orthogonal

to the subspaces generated by thex1:i�1, the transform coefficientsyi are orthogonal, andRyy is diagonal.

It follows that

Rxx = L�1RyyL
�T ; (2.8)

which represents the LDU factorization ofRxx. Since the covariance matrixRxx is positive definite, the

transformL always exists. Moreover, it is unique (see Appendix 2.B).

The distortion (2.6) under high rate and optimal bit allocation becomes

Ekeyk2L = c 2�2r
�
detRxx

� 1
N ; (2.9)

and referring to (2.3), the coding gain can be written as

G
(0)
L =

 
det
�

diagfRxxg
�

det
�

diagfLRxxLT g
�! 1

N

=

 
det
�

diagfRxxg
�

detRxx

! 1
N

=

 
det
�

diagfRxxg
�

det �

! 1
N

= G
(0)
V ;

(2.10)

where the superscript(0) refers to the ideal case where the quantizers have same and constant performance

factor c, the rate is sufficiently high and the bit assignment optimal. The notation diagfAg denotes the

diagonal matrix with same diagonal asA, V denotes a KLT ofRxx and� the corresponding matrix of

eigenvalues. The second and third equalities in equation (2.10) follow from the unimodularity property of

L andV : both the product of the eigenvalues and that of of the prediction error variances corresponding to

a covariance matrixRxx equal its determinant.

Summarizing, for an optimal bit allocation, the high rate coding gains of the KLT and the LDU are the same

without perturbation for three reasons : both transformations ensure that the power of the quantization error

is the same in the transform and in the signal domains, they are totally decorrelating transforms, and finally

they are unimodular. Moreover, this is the best coding gain achievable among all unimodular transform4.

4A proof, based on Hadamard’s inequality for symmetric positive semidefinite matrices may be found in [41].
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2.4 Further Comparisons between Unitary and Causal Approaches

2.4.1 Complexity of the Design of an LDU transform

The optimal prediction coefficients can be solved by using the Levinson algorithm [66]. For each recursion,

corresponding the a predictor of ordern, this algorithm requires approximately2n multiplications and a

similar amount of additions. This yields a design complexity of
NX
i=1

2n = 2
N (N + 1)

2
� N2.

2.4.2 Complexity of the Implementation of an LDU Transform

SinceN is a lower triangular and unit diagonal matrix, computingeach transform N-vectory
k

requires
N(N�1)

2 multiplications and additions, which is less than one half the complexity required by the KLT

(which requiresN2 multiplications andN (N � 1) additions) [67].

In the special case of AR(p) processes, the lower left corner ofL will contains zeros ifN > p + 1 (one

zeros will appear at the first entry of the(p+2)nd row, two zeros at the first two entries of the(p+3)th row,

etc). The total complexity will therefore be reduced by(N�p)(N�p�1)
2 multiplications and additions. For

an AR(1) process,N � 1 multiplications and additions remain. The complexity of the inverse transform is

indeed the same.

2.4.3 Quantization of the Coefficients

Suppose that we quantize the coefficients of the optimal causal and unitary transformsL andV , resulting

in transformsLq andV q. On the one hand, the quantized KLTV q will then loose its perfect reconstruction

property, sinceV qV qT will in general be different from the Identity matrix. The recovered vector is then

x̂k = V qTy
k
= V qTV qxk 6= xk. In the causal case on the other hand, the exact vectorxk can be recovered

however coarse the quantization, sincex̂k = y
k
+ Lqxk = xk � Lqxk + Lqxk = xk. This means

also that if the transformation coefficients are transmitted to the decoder, in a forward adaptive transform

coding framework for example, the unity noise gain property (sec. 1.5.3) Ekexkk2 = Ekey
k
k2 will not hold

anymore for the KLT.

2.5 Performance of a Closed Loop Causal Transform Coding Scheme

We first recall the results of the classical analysis regarding the noise feedback in closed loop DPCM coding

schemes [14]. In all the presented analyses, ECUQ is assumed. For this type of quantizers, the additive

quantization noise model is accurate for a wide range of rates (see 2.A). The operational distortion-rate

functions of the quantizers are then denoted bydi = c2�2ri�2yi , wherec generally depends onr. For

sufficiently high rates,c tends to�e=6 (� 3 b/s, see the numerical results in section 2.5.1) which is known

as the Gish and Pierce [35] approximation. Note that the analysis of noise feedback in DPCM does not

require ECUQ. Examples of DPCM systems using fixed-rate, p.d.f. optimized bounded uniform quantizers
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are presented in [14]. Efficient transform coding systems require however proper bit allocations; noninteger

rates such as those simply provided by ECUQ are therefore more usefull, in this framework, than those

obtained by fixed rate quantization. The analysis of noise feedback in scalar DPCM is then generalized to

the causal transform introduced above. A high resolution analysis assuming classical optimal bit allocation

is first exposed in 2.5.2. The analysis of a practical case is presented in 2.6.

2.5.1 Quantization Noise Feedback in scalar DPCM

Assume in a first step that we use a first order predictor, and the the prediction is not based on quantized

data, that is,yk = xk� bxk = xk� lxk�1. The reconstructed sample at the decoder is thenxqk = yqk+ bx0k =
yqk + lxqk�1.

+ +Q
xk yk yqk xqk

xqk

bxk


 
�1
+

� +
+

l

bx0k

l

Figure 2.3: Open loop scalar DPCM coding scheme.

If we assume the process to be a first order autoregressive process with normalized correlation coeffi-

cient�, the optimal predictorl equals�, and the variance of the optimal prediction error is�2y = �2x(1��2).
Denoting now byey = y � yq andex = x � xq the quantization and the reconstruction noise respectively,

we obtain

xqk = yqk + �xqk�1
= xk � �xk�1 � eyk + �xk�1 + �exk�1 = xk � exk (2.11)

from which we get

exk = eyk � �exk�1: (2.12)

The reconstruction error differs from the quantization error. From the previous expression, their respective

variances may be related by

Eex2k = Eey2k
1� �2

: (2.13)

Hence, what is gained in prediction is lost because the quantization noise is amplified at the decoder. The

distortion-rate function of the prediction error signal is then

dy(r) = Eey2k = c2�2r�2y; (2.14)

and that of the overall system is

Eex2k = c2�2r
�2y

1� �2
= c2�2r�2x; (2.15)
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which corresponds to a direct quantization and entropy coding of the original sourcex. In other words, the

prediction operation is strictly useless in this system. In order to avoid quantization noise amplification,

both the encoder and the decoder should use quantized data, since only quantized samples are available at

the decoder side. A closed loop scalar DPCM coding scheme is presented in figure 2.4.

+ +Q

+

xk yk yqk xqk

xqk

bxk


 
�1

xqk

+

� +
+

+
+

bxk

ll

Figure 2.4: Closed loop scalar DPCM coding scheme.

The power of the quantization noise for the signal and for the prediction residual are then equal since

Eex2k = E (xk � xqk)
2 = E (xk � (yqk + bxk))2 = E (yk + bxk � yqk � bxk)2 = E(yk � yqk)

2 = Eey2k:
(2.16)

Noise feedback analysis

As mentionned in [14], analytical evaluation of noise feedback can be found in the literature [68, 69].

An important result is that the quantization noise feedback has very little effect on the optimal value of

the prediction coefficient,however coarse the quantization. In the case of an AR(1) process, the optimal

predictorl equals�. Assuming that the quantization noiseey is white and decorrelated from the input of the

quantizer, the prediction error variance in the closed loop is then5

�02y = Ey2k = E(xk � �xqk�1)
2

= E([xk � �xk�1] + �eyk�1)2
� �2x(1� �2) + c2�2r�2�02y
� �2y + c2�2r�2�02y;

(2.17)

where�2y is the optimal prediction error variance obtained by using unquantized data. This leads to

�02y �
�2y

1� c2�2r�2
; (2.18)

which may be approximated as

�02y � �2y0(1 + c2�2r�2): (2.19)

The quantization noise of an ideal coding scheme without feedback�2q = c2�2r�2y is filtered by the energy

of the optimal predictor, which increases the prediction error variance and decreases thereby the coding

performance.

5As far as the variances are concerned, the susbscript0 will denote the presence of noise feedback in the rest of this chapter.
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To summarize this analysis, describing the operational distortion-rate function of an entropy coded scalar

quantizer by

dx(r) = c2�2r�2x; (2.20)

the distortion-rate function of an ideal DPCM coding scheme (neglecting noise feedback) would be

dy(r) = c2�2r�2y: (2.21)

The distortion-rate function of the DPCM coding scheme of figure 2.4 with noise feedback is evaluated by

d0y(r) � c2�2r�02y � c2�2r
�2y

1� c2�2r�2
; (2.22)

which from (2.19) and (2.21) may be further approximated as

d0y(r) � dy(r)
�
1 + c2�2r�2

�
= dy(r)

�
1 +

�2dy(r)

�2y

�
: (2.23)

Some Numerical Results

For entropy coded uniform scalar quantization (ECUQ) of a Gaussian sourcex, the Rényi’s relation of

differential to discrete entropy yields

ri = H(xqi ) �
1

2
log2 2�e�

2
x � log2�: (2.24)

Assuming sufficiently fine quantization with stepsize�, the distortion isdx � �2

12 [70], therefore

ri � 1

2
log2

2�e

12dx
) dx � �e

6
2�2ri�2xi ; (2.25)

from which we see thatc equals�e6 for sufficiently high rate. From figure 2.5, which compares the actual

performance coefficientc of an ECUQ to the high rate approximation, high rate means approximately3 b/s.

The distortion of ECUQ equals the Shannon lower bound at zero rate only, and is about twice this bound at

approximately1 b/s.

The comparison of the results given by the noise feedback analysis in DPCM, with the performance of

an actual system using ECUQ is shown in fig. 2.6 and 2.7, for an AR(1) process (� = 0:97).

In figure 2.6,

� (1) “High-Ratedx(r) of ECUQ” is the Gish and Pierce approximation (c = �e
6 ) of ECUQ for the

sourcex,

� (2) “Actual dx(r) of ECUQ” is the actual peformance of ECUQ for the sourcex,

� (3) “High ratedy(r) DPCM” is the Gish and Pierce approximation of expression (2.21),

� (4) “d0y(r) DPCM theor. feed.” is the theoretic evaluation (2.22) of DPCM with quanitzation noise

feedback,

� (5) “d0y(r) DPCM theor. feed.” is the approximation (2.23) of the previous expression,
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Figure 2.5: Comparison between actual value and high rate approximation of coefficientc for ECUQ.

� (6) “ Actual d0y(r) DPCM �” is the actual performance of a DPCM system using predictor� and

ECUQ of the prediction residual,

� (7) “ Actual d0y(r) DPCM �0” is the actual performance of a DPCM system using a predictor opti-

mized for the closed loop,

� (8) “ Actual dy(r) without feed.” is the actual rate distortion of the optimal prediction error signal

(expression (2.14)),

� (9) “ Actual dx(r) DPCM Open loop” is the actual distortion-rate function of the open loop system

(expression 2.15).

As can be noted from the curves(6) and(1), closed loop DPCM followed by entropy coding is, on the one

hand, advantageous w.r.t. direct quantization and entropy coding even at low rates such as0:5 b/s. On the

other hand, an open loop system is useless (curve(9)).

Comparing(6) and (8) allows one to precisely observe which perturbation in the distortion of DPCM is

caused by quantization noise (curve(8)may be seen as an hypothetic model of what would be the distortion

if there were no feedback). Comparing with(3), the effects of nonconstantc and of noise feedback become

visible for r less than� 3 b/s and increase fast when the rate decreases. These effects are well described

by the first order perturbation analysis (curve(5)) for rates higher than approximately1:5b/s, and even at

lower rates by the more accurate exp. (curve(4)).

Finally, as previously observed in [68, 69], quantization feedback has very little effect on the optimal value

of the prediction coefficient however coarse the quantization, and systems that use an optimized predictor
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�0 have almost the same performance (curve(7)) as a system designed with the optimal predictor without

feedback� (curve(6)).
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Figure 2.6: Comparison between theroetic and actual distortion-rate functions for Entropy Coded Uniform

Quantization (ECUQ), and DPCM with ECUQ

In fig. 2.7, similar observations can be made from the curves corresponding to the SNR.

2.5.2 Quantization Noise Feedback in a Closed loop Causal Transform Coding

Scheme

Let us now evaluate, for the causal transform, the perturbation caused by the quantization feeedback. In

order to compute the expression of the coding gain in this case, the analysis of this section will be based

on high resolution assumptions: all quantizers are assumed to have the same distortion-rate lawc2�2ri�02yi ,

with constant performance coefficientc = �e
6 ; �02yi are the actual prediction error variances obtained in

the presence of noise feedback. Furthermore, we assume an optimal bit assignment. In the case where the

reference vector is not based on the original signal but on its quantized version, the output vector becomes

y
k
= xk � Lxqk = xk � L(xk � exk) = Lxk + Ley

k
: (2.26)

The difference vectory
k

now not only contains the prediction errorLxk of xk, but also the quantization

errorey
k

filtered by the predictorL. Equivalent representations of the closed loop causal coding schemes are
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Figure 2.7: Comparison between actual and theoretic SNRs for DPCM

depicted in figures 2.8 and 2.9. In figure 2.9, the transform components are coded without reconstructing

the data, that is, by using the quantized whitened versionsyqi instead ofxqi to compute the prediction.

As in the DPCM analysis, we will denote by the superscript0 the quantities relative to the case of noise

feedback.

The optimization of the coding sheme is again comprised of two steps, optimal bit assignment and optimiza-

tion the transform. This transform will be denoted byL0 because it may be different from the transform

L designed for a system without feedback. We will see however that as in DPCM, the optimal predictor

should essentially vary.

As for the optimal bit assignment, it should again minimize the sum of the�02eyi . The variances of the

quantization noises are therefore

�02eyi = c2�2r(
NY
i=1

�02yi)
1
N = �02q ; (2.27)

and the autocorrelation matrix of the noise isR0eyey = �02qI. Comparing with (2.6), the variances of the

transform signals are increased because the reference vector is based on quantized data, and the quantization

noise components are therefore increased to�02q.

We shall now optimizeL0. The coding gain for an optimal bit allocation is then, as usual,

G
(1)
L0 =

Ekexkk2
Ekeykk02L0 =

 
det diagfRxxg
det diagfR0yyg

! 1
N

; (2.28)
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Figure 2.8: Closed loop causal transform coding sheme.

where notation(1), as opposed to(0) in (2.10), refers to noise feedback. The variances of the transform

signals(R0yy)ii = �02yi depend now onL0, and in order to optimizeL0, one should consider

min
L0

�
det
h

diagfR0yyg
i�

: (2.29)

This time,y
k
= xk � L0xqk = L0xk � L

0exk, and

R0yy = L0RxxL
0T + �02qL

0
L
0T

: (2.30)

SinceL0 = I � L
0
, L

0
L
0T

= L0L
0T � I + L

0
+ L

0T
, and since the prediction matrixL

0
is strictly lower

triangular, we get

diagf�02
q
L
0
L
0T g = diagfL(�02qI)LT � �02qIg; (2.31)

and it follows that

det
h

diagfR0yyg
i
= det

h
diagfL0(Rxx + �02qI)L

0T � �02qIg
i

(2.32)

This problem is again separable and corresponds, for the purpose of this analysis taking intoaccount the

first order of the perturbation, to the optimal prediction ofx perturbated by a white noise. Note that this

does not imply thatRxqxq = Rxx + �02qI (this would be the case for high resolution ECUQ, but not for

optimal FRQ, in which case the variance of the quantized signals are less than the original ones).

In order to optimizingL0, we should look for

min
L0i;1:i�1

L0i(Rxx + �02qI)L
0T
i : (2.33)
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Figure 2.9: Closed loop causal transform based on whitened quantized data.

For this problem, one can denote the resulting optimal prediction error variances�02q + �02yi where�02yi is

the variances required for the coding gain. These variances may further be written as�02yi = �2yi + ��2yi,

where�2yi is obviously the optimal prediction error variance without quantization noise feedback, and��2yi

denotes the contribution to the prediction error variance of the quantization noise on the previous samples .

The normal equations for (2.33) can hence be written as62666664
R1:i;1:i + �02qIi

3777775

2666664
L0i;i�1

...

L0i;1
1

3777775 =

2666664
0
...

0

�02q + �02yi

3777775 ;

wich leads to

�02yi + �02q = Ri;i + �02q � Ri;1:i�1(R1:i�1;1:i�1+ �02qIi)
�1R1:i�1;1: (2.34)

Under the high resolution assumption, the term�02qI is small in comparison withR1:i�1;1:i�1, and we get

the approximation up to first order of perturbation

�02yi � Ri;i � Ri;1:i�1R�11:i�1;1:i�1R1:i�1;i| {z }
=�2yi

+ �02q kR�11:i�1;1:i�1R1:i�1;1k2| {z }
=kLi;1:i�1k2=kLik2�1=(LL

T
)ii| {z }

��2yi

; (2.35)

6For notation simplicityR denotesRxx until eq. (2.35).
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where�2yi andL are non perturbed quantities.

Hence, we get

�02yi � (LRxxL
T + �02qLL

T
)ii

� (LRxxL
T + �2qLL

T
)ii

(2.36)

whereL andL are non perturbed quantities.

Suppose now that the transformL of section (2.3), optimized without feedback, is used to compute the

reference vectors in a closed loop coding scheme. Then the variance of the transform signals will also

be given by (2.36). This suggests that the optimal predictor design should not essentially vary, at least at

moderate to high rates.

Summarizing, the distortion (2.27) is

1
N

Ekeyk02
L0

� 1
N

Ekeyk02
L

� 1
N

NX
i=1

�e

6
2�2ri�02yi

� �e
6 2

�2r
 

NY
i=1

�02yi

! 1
N

:

(2.37)

Using (2.36), this equation may be rewritten as

1
N Ekeyk02

L0;L
� �e

6 2
�2r

�
det diagfLRxxL

T + �2qLL
Tg
� 1
N

� �e
6 2

�2r
 

NY
i=1

�2yi(1 + �2q
kLik2
�2yi

)

! 1
N

� �2q

 
1 +

�2q
N

NX
i=1

kLik2
�2yi

!
:

(2.38)

Referring to (2.28), this leads to the following expression for the coding gainG
(1)
L , taking into account the

perturbations up to first order

G
(1)
L � G

(1)
L0 �

0@ det
�

diagfRxxg
�

det
h

diagfLRxxLT + �2qLL
Tg
i
1A 1

N

� G
(0)
L

 
1� 1

N
�2q

NX
i=1

kLik2
�2yi

!
: (2.39)

with LRxxL
T = Ryy, �2q = c 2�2R(detRxx)

1
N , Ryy is the diagonal matrix of the non perturbated predic-

tion error variances, andL andL are also non perturbated quantities. This expression is established under

high resolution assumptions (small quantization noise variance w.r.t. signal variances, and performance

factorc is constant).

An equivalent and interesting expression ofG
(1)
L is (see Sec. 2.C)

G
(1)
L � G

(0)
L

 
1� �2q

N

NX
i=1

�
1

�i
� 1

�2yi

�!
(2.40)

whereG(0)L is the coding gain in the ideal case,f�ig are the eigenvalues of the autocorrelation matrix of

x, and�2q is the quantization noise in the ideal case, assumed to be white. Thus, maximizing the coding
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gain entails maximizing the sum of the inverses of the prediction error variances. Whereas the coding gain

in the ideal case is invariant by permutation, there is in the closed loop causal transform coding scheme an

optimal ordering of the components of thexi. It will be shown in chapter 5 that maximizingG(1) entails

decorrelating the signalsxi by order of decreasing variances.

2.6 Analysis of a Practical Case

A simple mean of realizing nearly optimal bit assignment in the case of ECUQ is to quantize the signals

with equal quantization stepsizes. This case allows one to check, for a practical transform coding system,

firstly in which range of average rates the LDU suffers from a non negligible noise feedback, and for which

rates it presents similar coding performances to those of the KLT; secondly if the previously exposed noise

analysis has some value in this practical case; thirdly if the claimed, and not proven yet, decorrelation

strategy (consisting in processing the signals by order of decreasing variances) is actually the best one.

2.6.1 Optimal Bit Assignment and Equal Quantization Stepsize

The classical high rate result of the optimal bit assignment states that, given a set of variances�2yi , the

quantization noise�2qi should be equal for all the components. The number of bits assigned to theith

component is then

ri = r +
1

2
log2

�2yi 
NY
i=1

�2yi

! 1
N

: (2.41)

Under high resolution assumption, the quantization noise resulting from quantization with stepsize�i is

uniformly distributed with variance�2qi =
�2
i

12 . A simple way of realizing equal distortion is therefore to

quantize all the components with an equal stepsize�. If the yqi are further entropy coded, the bitrateri is

given by

ri = H(yqi ) �
1

2
log2 2�e�

2
yi � log2�: (2.42)

It can then easily be checked that choosing

� =
p
2�e2�r(

NY
i=1

�2yi)
1
2N =

p
2�e2�r(

NY
i=1

�2yi)
1
2N (2.43)

corresponds to1N

NX
i=1

ri =
1

N

NX
i=1

H(yqi ) � r. At high rates, the corresponding distortion-rate function

is then �2

12 � �e
6 2

�2r(
NY
i=1

�2yi)
1
N : For a particular two-dimensional Gaussian source obtained by means

of a KLT, numerical simulations showed that optimal bit allocation and equal quantization stepsizes are

equivalent as long as the rate dedicated to each component is at least1 bit per sample7 [54].
7The corresponding average rate may be much higher.
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2.6.2 Distortion Analysis

For large quantization stepsizes (low rates), the relation of differential to discrete entropy as given by (2.42)

may not be accurate8, be there a noise feedback or not. Thus, in the case of transform signals obtained in a

closed loop system working at moderate to low rates, the average distortion

1

N
Ekeyk02 = 1

N

NX
i=1

d0i;L =
1

N

NX
i=1

c2�2ri�02yi (2.44)

may be different from the geometric mean (2.37). This analysis will be guided again by that of DPCM

systems. In order to describe the coding system implemented in closed loop, we will refer to perturbation

w.r.t. an open loop system. For this system, the distortion of each component is Eey2i = di;L = c2�2ri�2yi ,

where�2yi are the variances of the optimal prediction errors. The average distortion for the open loop system

in the transform domain is then

1

N
E jjey

i
jj2 = 1

N

NX
i=1

di;L
2 =

1

N

NX
i=1

c2�2ri�2yi; (2.45)

Figure 2.10 compares the operational distortion-rate function (2.45) obtained with equal quantization step-

size for signals of decreasing and increasing variances. The high rate and optimal bit allocation approxima-

tion �e
6 2

�2r(detRxx)
1
N is plotted in full line. It can be seen that even without noise feedback, the average

distortion (2.45) deviates noticeably from the high rate and optimal bit allocation approximations at rates

lower than approximately3 b/s.

For a closed loop causal transform system now, we assume that the covariance matrix of the quantization

noise is well approximated by�
2

12 I at moderate to high rates. Thus, the optimal transform is again given

by (2.33). From (2.35), the actual prediction error variances�0yi may still be approximated by expression

(2.36. Again, similar performance should be obtained for small perturbations by using either the optimal

transformL0 (minimizing (2.33)), or the transform designed without feedbackL. Using (2.36), the opera-

tional distortion-rate function of the transform signals with quantization noise feedback may be evaluated

as

d0i;L � �2

12

� c2�2ri�02yi

� c2�2ri(�2yi +
�2

12|{z}
d0i;L

(LLT )ii))

d0i;L(1� kLik2c2�2ri) � di;L

d0i;L � d0i;L
1� kLik2c2�2ri

(2.46)

8The discrepancy with the actual distortion is apparent at zero rate in (2.25).
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Figure 2.10: Distortion-rate functions of the optimal prediction error signals.

Hence,

1
N Ekeyk02

L
= 1

N

NX
i=1

c2�2ri�02yi

� 1
N

NX
i=1

di;L

1� kLik2c2�2ri

� 1
N

NX
i=1

di;L

1� kLik2 di;L�2yi

� 1
N

NX
i=1

di;L(1 + kLik2di;L
�2yi

):

(2.47)

At high rates, the distortionsdi;L tend to�e6 2
�2ri�2yi =

�e
6 2�2r(detRxx)

1
N = �2q , and the above distortion

tends to (2.38).

2.6.3 Numerical results

The data are real Gaussian i.i.d. vectors with covariance matrixR = HRAR1H
T . RAR1 is the covari-

ance matrix of an AR(1) process with parameter� = 0:9. H is a diagonal matrix whoseith entry is

(N � i+1)1=3,N = 3. The signalsxi are coded by order of either decreasing, or increasing variances. For

these two decorrelating strategies, sets of104 vectors were transformed using each of the two causal closed

loop algorithms depicted in fig. (2.8) (on the basis of reconstructed data) and (2.9) (quantized whitened
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data)9. The resulting transform signals where then quantized using the same stepsize�. For each compo-

nent, we measured the entropies of the discrete valued signalsyqi . The reconstructed vectors where then

used to compute the average distortion over the whole data set (of length104). For a given�, we repeated

this experiment ten times. Several values of� where investigated in order to cover a wide range of rates.

� In fig. 2.11 and 2.12, the distortion-rate functions of the closed loop causal transform are plotted for

signals of decreasing and increasing variances respectively (optimal transformL of eq. (2.8) is used)

– (1) “Theoretic with feedback” refers to the analytical evaluation (2.47) of a system with equal

stepsize,

– (2) “Actual with feedback” corresponds to the actual distortion-rate function of the resulting

closed loop TC system,

– (3) “Theoretic with Equal c and feedback” refers to the analytical evaluation (2.38) obtained for

an optimal bit assignment algorithm,

– (4) “High & Opt. bit alloc. approx” refers to the performance of a system without feedback,

constant quantizer performance factorc = �e
6 and optimal bit allocation, as given in (2.9).

It can be observed for both decorrelation strategies that

– The performance of actual systems(2) deviate from their high rate approximation(4) for rates

below approximately3 b/s.

– These performance are accurately described by the analysis (curve(1)) down to approximately

1 b/s.

– The analysis of section 2.5.2, which does not account for possible variations ofc w.r.t. the rate

underestimates the actual distortions (it was shown in fig. 2.10 that even without noise feedback,

the actual distortion in the transform domain with equal� is larger than (2.9)).

Comparing now the figures 2.11 and 2.12, it is clear that better performance are obtained by pro-

cessing the signals by order of decreasing variance, as suggested by the high rate analysis of section

2.5.2.

� In fig. 2.13 and 2.14, the actual distortion-rate performance for algorithms based either on recon-

structed, or on quantized and whitened data are compared for decreasing, and increasing variances

respectively. It can be seen that the two approaches yield essentially the same performance.

� In fig. 2.15 and 2.16, the actual distortion-rate performance for algorithms using either the causal

transform optimized without feedback (2.8), or the predictorL0 optimized as in (2.33) are compared

9Unless otherwise stated, the presented results are based on the algorithm using reconstructed data. The performances of both

algorithms are similar, see fig. 2.13 and 2.14
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for decreasing, and increasing variances respectively. It can be observed that even at low rates, the

two transforms yield comparable performance, however coarse the quantization. This result is similar

to that reported for DPCM [14].

� Finally, fig. 2.17 presents a comparison of systems using either no transform, or the KLT, or the LDU:

– (1) “Actual D without transform” refers to directly entropy coding thexi,

– (2) “High rate Approx D without transform” refers to the high rate (constantc and optimal bit

assignment) approximation of(1),

– (3) “Actual D LDU decreasing” refers to the actual distortion of the causal closed loop transform

coding scheme processing the signals by order of decreasing variances (predictorL is used),

– (4) “Actual D LDU increasing” as in(3) but with increasing variances (predictorL is used),

– (5) “ Actual D KLT increasing/decreasing” refers to the actual distortion of a system using the

KLT (since there is no noise feedback, the distortion is invariant by permutation),

– (6) “High rate and opt. bit alloc approx” refers to the performance of a system without feedback,

and with constant quantizer performance factor (2.9).

Note that the performance of the LDU is inferior to that of the KLT at low rates only (approximately

2 b/s). The LDU with either a decreasing- or increasing-variance decorrelation strategy is still advan-

tageous (w.r.t. direct entropy coding the signals) at all rates.
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Figure 2.11: Average distortionvsrate for the causal transform with equal quantization stepsize (decreasing
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Figure 2.12: Average distortionvsrate for the causal transform with equal quantization stepsize (increasing
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Figure 2.13: Comparison of actual distortion-rateperformance for algorithms based either on reconstructed,

or on quantized and whitened data (decreasing variances).
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Figure 2.14: Comparison of actual distortion-rateperformance for algorithms based either on reconstructed,

or on quantized and whitened data (decreasing variances).
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Figure 2.15: Comparison of actual distortion-rate performance for algorithms using either the transformL

orL0 (decreasing variances).
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Figure 2.16: Comparison of actual distortion-rate performance for algorithms using either the transformL

orL0 (increasing variances).
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2.7 Conclusions

The optimal decorrelating transform subject to the constraint of causality was shown to correspond to an

LDU factorization of the signal covariance matrixRxx. This transform was compared to the KLT and

shown to provide asymptocically (w.r.t. the rate) the same coding gain as its unitary counterpart. Besides

the equivalence of the coding gain at high rates, the optimal causal transform presents several advantages

w.r.t. KLT, such as lower implementation and design complexities, and a best behaviour w.r.t. the quantiza-

tion of the transform coefficients.

As in classical (A)DPCM, closed loop implementation of the causal coding structure was shown to be

preferable. A high resolution analysis of the noise feedback effect uppon the coding gain was proposed in

a first step. This analysis models these perturbation effects, assuming that they are small, and that the bits

are optimally allocated. In a second step, an analytical evaluation of a practical transform coding algorithm

was proposed. This transform coding scheme uses equal quantization stepsize, and entropy coded uniform

quantizers. For this algorithm, the deviation from high rate approximation are noticeable beyond approx-

imately3 b/s for both the KLT and the LDU. In the causal case, the effects of the noise feedback become

non negligible beyond approximately2 b/s, and are well described by the proposed analysis. Moreover,

decorrelating the signals by order of decreasing variances was shown empirically to be the best strategy.

Comparing finally the two approaches, the LDU is shown to compete with the KLT at rates higher than

approximately2 b/s.
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2.A Quantization noise model

The aim of this appendix is to provide some definitions and known results regarding unbounded uniform

quantization of Gaussian sources. In particular, section 2.A.2 shows that the additive noise model may

accurately describe the effects of quantization is this case, assuming sufficiently high rates.

2.A.1 Uniform Quantization

A quantizer can be viewed as a nonlinear mapping from the domain of continuous-amplitude inputs onto

one of a possible outputs levels. The analysis of errors introduced by this mapping can be approached

using stochastic methods. In this framework, the output of the quantizer is modeled as an infinite precision

input and additive noise. The additive noise is a random variable whose distribution is nonzero only over

an interval equal to the quantization stepsize. Widrow [71] showed that under the condition that the input

r.v. has a band-limited characteristic function, the quantization is uniformly distributed; this is frequently

refered to as thequantization theorem. For Gaussian inputs such as those considered in this work, this

band-limitedness is not verified; theoretic results exist however, which precisely describes the statistical

properties of the quantization noise and that of the reconstructed input [70, 72].

A roundoff quantizerof uniform step- (orgrain-) size� has a staircase input-output relation (see fig. 2.18).

��
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�

2�

: : :

��=2
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: : :
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xq

Figure 2.18: Input-output characteristic of an unbounded roundoff uniform quantizer.

At each sampling instantk, the inputxk, the quantized outputxqk, and the quantization errorexk are

related by

exk = xk � xqk; (2.48)
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wherexqk = n�, n 2Z.10

If we assume the inputx to be a continuous variable with p.d.f.fx(xk) and characteristic function

�x(u) = E(ejux); (2.49)

the p.d.f. of the quantization errorfex is [70]

fex(exk) = 1

�
+

1

�

X
n 6=0

�x

�
2�n

�

�
e
�2j�nexk

� if � �

2
� exk < �

2
; and 0 otherwise: (2.50)

If the characteristic function satisfies

�x(2�n=�) = 0 8 n 6= 0; (2.51)

the p.d.f. is uniform (that is, equals1� in the nontrivial interval). In this case,Eex = 0, and Eex2 = �2

12
.

2.A.2 Gaussian sources

For zero mean Gaussian signals, the condition (2.51) is not satisfied. In this case, the p.d.f. is of the form

fx(xk) =
1p
2�e

e
� x2k

2�2x ; (2.52)

where�2x is the variance of the input, the characteristic function is

�x(u) = E(e
u2�2x

2 ); (2.53)

and the p.d.f of the error is given by

fex(exk) = 1

�

"
1 + 2

1X
n=1

cos

�
2�nexk
�

�
e�

2�n2�2x
�2

#
if � �

2
� exk < �

2
; and 0 otherwise: (2.54)

The mean of the quantization error is still zero, but the variance becomes

Eex2 = �2

12

"
1 +

12

�2

1X
n=1

(�1)n
n2

e�
2�n2�2x

�2

#
: (2.55)

Figure 2.19 plots the actual variance (2.55) and the�2

12
approximation. It can be seen that even for

coarse quantization (� � 2�), the latter approximation is accurate. Figure 2.20 compares the actual cor-

respondence between rate and� (“Rényi’s correspondence” refers to that obtained assumingH(xq =

1
2 log2 2�e�

2
x � log2�)), the�2

12 approximation is accurate at rates as low as approximately1 b/s.

The variance of the quantized r.v.xq is given by

E(xq)2 = �2x + 4�2x

1X
k=1

(�1)ke�
2�k2�2x

�2 +
�2

12

"
1 +

12

�2

1X
k=1

(�1)k
k2

e�
2�k2�2x

�2

#
; (2.56)

10Thoughxq
k

is not an integer, it lies on scaled integer lattice, and is sometimes nevertheless calledintegerin the literature. This

slightly abusive term will be used in the second part of this thesis.
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Figure 2.19: Comparison between actual distortion and�2

12 approximation for unbounded uniform quanti-

zation of a Gaussian r.v.,�2x = 1.
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and the correlation between the input and the quantization error by

E(exx) = �2�2x
1X
k=1

(�1)ke�
2�k2�2x

�2 (2.57)

Figure 2.21 compares the actual variance E(xq)2 as given by (2.56) to the�
2

12 approximation. Again, the

approximation fits well the reality up to� � 1:5, which from fig. 2.19 corresponds to approximately1:5

b/s.
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Figure 2.21: Comparison between actual and theoretic�2xq for unbounded uniform quantization of a Gaus-

sian r.v.,�2x = 1.

In the case were jointly Gaussian zero mean r.v.sx1 andx2 with covarianceRxx are quantized with the

same stepsize�, the quantization errorsex1 andex2 verify

E(ex1ex2) = �2

�2

1X
l=1

1X
k=1

(�1)l+k
lk

e�
2�2

�2 (l2(Rxx)11+k
2(Rxx)22) sinh

�
4�2lk(Rxx)12

�2

�
: (2.58)

From the expression (22) of [72], applied to a roundoff quantizer, the correlation between quantized vari-

ables is given by

E(xq1x
q
2) = (Rxx)12(1 + �) + �; (2.59)

where

� = 2

"X
n1>0

(�1)n1e�
2n21�

2(Rxx)11
�2 +

X
n2>0

(�1)n2e�
2n22�

2(Rxx)22
�2

#
; (2.60)
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and

� =
X

n1;n2>0

(�1)n1+n2 �2

n1n2�2
e�

2�2(n1(Rxx)11+n2(Rxx)22)

�2 sinh

�
4�2(Rxx)12n1n2

�2

�
: (2.61)

Similar conclusions regarding the accuracy of the classical approximation of respectively (2.57), (2.59) and

(2.60), by respectively0,1, and0 can be drawn. Hence, for a Gaussian vector sourcex, uniformly quantized

with stepsize� we have from (2.55) and (2.58)

EexexT =
�2

12
I +A; A! 0 elementwise as �! 0: (2.62)

From (2.56), (2.60) and (2.61), we have

ExqxqT = Rxx +
�2

12
I +B; B ! 0 elementwise as �! 0: (2.63)

Moreover, the above numerical results and those of [70, 72] suggest that the elements ofA andB may be

negligible for� as large the standard deviations of the sources; this corresponds for entropy coded uniform

quantizers to rates as low as approximately1:5 b/s.

2.B Existence and unicity of the LDU factorization (2.8)

Lemma 1[73]: LetR be anN � N nonsingular matrix, whose all principle submatrices are nonsingular.

ThenR can be written as

R = L D U ; (2.64)

whereL (resp.U ) is a lower (resp. upper) triangular matrix with diagonal entries equal to1, andD is a

diagonal matrix. Moreover,L, D andU are unique.

Since the covariance matrixRxx is positive definite, all its principle submatrices are positive definite also,

and its LDU factorization (2.64) exists. Since nowRxx is symmetric, transposing (2.64) yields

Rxx = UT D LT ; (2.65)

whereUT (resp.LT ) is lower (resp. upper) triangular. Equation (2.65) represents then an LDU factorization

of Rxx which, from Lemma1, is unique. Hence,U = LT , which establishes the form of (2.8).

2.C Derivation of (2.40)

Let V denote a KLT ofRxx andV 0 a KLT of Rxx + �02qI.ThenV 0(Rxx + �02qI)V
0T = �0, a diagonal

matrix with i-th entry�0i = �i + �02q . Similarly, denote byL andL0 the lower matrices involved in the

LDU factorization ofRxx andRxx + �02qI. We have as in (2.8)LRxxL
T = Ryy, and, as in (2.33),

L0(Rxx + �02qI)L0
T = R0yy + �02qI, where(R0yy)ii = �02yi . As in (2.36), the variances�02yi may be written
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as�2yi +��2yi
, where��2yi

= �02qkLik2. Now, since both the causal and unitary transformsV 0 andL0 are

unimodular, we have

det(R0yy + �02qI) = det�0

NY
i=1

�2yi

 
1 +

�02q +��2yi

�2yi

!
=

 
NY
i=1

�i

!�
1 +

�02q
�i

�
 

NY
i=1

�2yi

!"
1 +

NX
i=1

�02q +��2yi

�2yi

#
�

 
NY
i=1

�i

!"
1 +

NX
i=1

�02q
�i

#
:

(2.66)

SinceL andV are also unimodular,
NY
i=1

�i =
NY
i=1

�2yi , and we get

NX
i=1

�02q +��2yi

�2yi
�

NX
i=1

�02q
�i

NX
i=1

��2yi

�2yi
� �02q

NX
i=1

�
1

�i
� 1

�2yi

�
� �2q

NX
i=1

�
1

�i
� 1

�2yi

� (2.67)

The required quantity for the distortion (2.38) and the coding gain (2.28) is the product

NY
i=1

�02yi =
NY
i=1

�2yi +��2yi

�
 

NY
i=1

�2yi

!�
1 +

��2yi
�2yi

�
�

 
NY
i=1

�2yi

!"
1 + �2q

NX
i=1

�
1

�i
� 1

�2yi

�#
:

(2.68)

The distortion (2.38) becomes

1
N Ekeyk02 = c2�2r

 
NY
i=1

�02yi

! 1
N

� c2�2r(detRxx)
1
N

"
1 +

�2q
N

NX
i=1

�
1

�i
� 1

�2yi

�#
:

(2.69)
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Now the coding gain (2.28) becomes

G
(1)
L =

0BBBB@
NY
i=1

�2xi

NY
i=1

�02yi

1CCCCA
1
N

�

0
BB@

NY
i=1

�2xi

1
CCA

1
N

0
BB@

NY
i=1

�2yi

1
CCA

1
N
2
6641+�2q

NX
i=1

�
1

�i
� 1

�2yi

�3775
1
N

�

0BBBB@
NY
i=1

�2xi

NY
i=1

�2yi

1CCCCA
1
N  

1� �2q
N

NX
i=1

�
1

�i
� 1

�2yi

�!
;

(2.70)

which with (2.10) yields (2.40).



Chapter 3

A High Resolution Analysis of Idealized

Backward Adaptive Coding Schemes

In a backward adaptive transform coding framework, we compare the optimal unitary approach (Karhunen-

Loève Transform, KLT) to the optimal causal approach (Lower-Diagonal-Upper, LDU). When the statistics

of the source are known, the previous chapter showed that both coding schemes present the same coding

gain at high rates. The purpose of this chapter is to analytically model the behavior of these two trans-

formations when the ideal transform coding scheme gets perturbed, that is, when only a perturbed value

Rxx+�R ofRxx is known at the encoder. This estimate is used to compute both the transforms and the bit

assignment. This case is of interest in backward adaptive transform coding schemes: it avoids transmitting

the updates of the signal-dependent transformations and bit assignment parameters as side information,

and thereby avoids the corresponding excess bitrate. In backwardadaptive structures,�R is due to two

noise sources : estimation noise (finite set of available data at the encoder) and quantization noise (quan-

tized data at the decoder). Furthermore, not only the transformation itself gets perturbed, but also the bit

assignment. In this framework, theoretical expressions for the coding gains in both unitary and causal cases

are derived, under several simplifying assumptions: high rate, Gaussianity of the signals to be quantized,

same operational rate-distortion function of the scalar quantizers, optimal bit assignment, and additive

uncorrelated white noise. Finally, simulations results are presented.

57
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3.1 Introduction

Backward adaptive coding schemes generally deal with non- or locally- stationary signals. In a transform

coding framework, sending the updates of the signal-dependent transformation and bit assignment as side

information may cause a considerable overhead for the overall bitrate. This problem is related to the general

problem ofuniversal lossy quantization. Universality corresponds here to the ability of a system which

has noa priori knowledge of the source, to achieve the same rate-distortion performance as a system

designed with that knowledge1. Very few works investigate the feasibility of universal transform codes in

the literature. The work [54] is closely related to ours and will be further discussed in chapter 4. Besides,

some techniques were proposed in [75, 76], which rely on so-calledtwo-stagescodes: the first stage codes

the identity of the code that will be used to code the data; the second stage codes the data with the previously

chosen code. In [76], a pair (KLT; bit allocation) is chosen among a codebook of transformations and bit

allocations pairs; the index of the chosen pair is sent as side-information to the decoder. This type of method

is universal in the sense that it allows one to code with the best transform and bit allocation any source

among a particular class. The methods investigated in the present are different in the sense that they do not

rely on “universal codebooks” of any kind. Instead of choosing among several precomputed transforms and

bit allocations, we desire the encoder and decoder to compute these parameters using previously decoded

data only. This approach is computationally more expensive, but does not require any side-information.

The backward adaptive transform coding scheme considered in the present work should therefore require

that neither the transformation nor the parameters of the bit assignment are transmitted to the decoder. We

assume consequently that the transform coding scheme is based onbRxx = Rxx + �R instead ofRxx.

Rxx is the unknown covariance matrix of a (possibly locally) stationary Gaussian vectorial processx, andbRxx is the corresponding estimate available at both the encoder and the decoder. In this case, the computed

transformation will bebT = T +�T , and the distortion will be proportional to the variances of the signals

transformed by means ofbT instead ofT , say�02yi . Moreover, the bitsri should be attributed on the basis

of estimates of the variances available at both encoder and decoder also. These estimates are( bT bRxx
bT )ii,

where(:)ii denotes theith diagonal element of(:), which yields

bri = r +
1

2
log2

( bT bRxx
bTT )ii

(
QN
i=1(

bT bRxx
bTT )ii) 1

N

: (3.1)

We obtain therefore the following measure of distortion for a transformationbT based onbRxx :

Ek~yk2bT = E
NX
i=1

c2�2bri�02yi = E
NX
i=1

c2

�2[r+ 1

2
log2

( bT bRxx
bTT )ii

(
QN

i=1(
bT bRxx

bTT )ii) 1
N

]

�02yi : (3.2)

1Different kind of universality for lossy coding, or with a fidelity criterion are defined in [74].
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where the expectation is w.r.t.�R in case it is non-deterministic2.

Several assumptions are implicitly made by the above description.

Firstly, we assume a Gaussian source model.

Secondly, the rate must be sufficiently high. The bit assignment mechanism (3.1) neglects the fact thatbri
can be noninteger and negative, which would happen for low values of the average bitrate budgetr; or, even

at higher values ofr, for too low values of some transform coefficientsyi.

Thirdly, the expression (3.2) assumes that the quantizers’ operational distortion-rate laws are of the form

c2�2ri�02yi , which assumes, besides high rates (independence ofc w.r.t. to ri) and significance of all

transform coefficient (they are assigned nonzerori), that all the transform signals have the same p.d.f.s.

For jointly Gaussian scalar sourcesxi composing the vectorial sourcex, this assumption is clearly true for

the transform signals obtained by means of a KLT. In the case of a causal transform however, this is not

rigorous even at high rates, because the prediction residualsyi contain a quantized component through the

closed loop prediction (Sec. 2.5.2). We shall therefore assume that this perturbation is small enough at high

rates for the shape of the p.d.f. of allyi to be accurately approximated by a Gaussian p.d.f..

Fourthly, we assume that the effects of quantization is to introduce a uncorrelated white noise with variance

c2�2bri�02yi .
Finally, in the case where estimation noise is involved, the vectors to be coded are assumed to be i.i.d. This

restricts the scope of our analysis, but may be the case if the sampling period of the scalar signals is high in

comparison with their typical correlation time.

The expected distortion (3.2) is thus a model subject to these assumptions, which make however analytical

derivations possible. The goal of this work is then to provide, and compare in this framework the distortions

and the corresponding coding gains for the KLT and the LDU, in three cases. In a first case (section 3.2),

�R is caused by a quantization noise: the coding scheme is based on the statistics of the quantized data.

In a second case,�R corresponds in section 3.3 to an estimation noise : the coding scheme is based on

an estimate ofRxx due to a finite amount ofK vectors : bRxx = 1
K

KX
i=1

xix
T
i . Finally, both influences

of quantization and estimation noise are analyzed in section 3.4. Numerical simulations are presented in

section 3.5; the last section discusses the results and draws some conclusions.

3.2 Quantization Effects on the Coding Gains

Suppose we compute the transformation on the basis of quantized data. The statistics of the quantized data

is therefore assumed to be perfectly known in this section. In other words, we assume that an infinite number

of quantized vectorsxqi is available at the decoder so thatRxqxq is known. Under the above assumptions,

2The sign= will be used, as in (3.2), along in the derivations though this equality is only correct asymptotically (w.r.t. to the rate)

and under the discussed assumptions; the sign� will be used when the original expression (3.2) will be replaced by its approximation

based on the dominant perturbation effects.



60 Chapter 3 A High Resolution Analysis of Idealized Backward Adaptive Coding Schemes

�R = E~x~xT = �2qI. Thus, the distortion (3.2) becomes

Ek~yk2bT;q =
NX
i=1

c2

�2[r + 1

2
log2

( bTRxqxq
bTT )ii

(
QN
i=1(

bTRxqxq
bTT )ii) 1

N

]

�02yi ; (3.3)

whereq refers to quantization. Expression (3.3) may now be evaluated forbT = I; bV andbL.

3.2.1 Identity Transformation

In this case, the number of bits attributed to the quantizerQi is

bri = r +
1

2
log2

(Rxqxq)ii

(
QN
i=1(Rxqxq )ii)

1
N

; (3.4)

and the variance�02yi are indeed(Rxx)ii. The distortion (3.3) becomes

Ek~yk2I;q =
NX
i=1

c2

�2[r+ 1

2
log2

(Rxqxq )ii

(
QN
i=1(Rxqxq)ii)

1
N

]

(Rxx)ii

=
NX
i=1

c2�2r
�
det diagfRxqxqg

� 1
N

(Rxx)ii
(Rxqxq )ii

:

(3.5)

The second equality comes from the fact that optimal bit assignment produces equal distortion oneach

component : suppose we compute the optimal bit assignment for an hypothetic signal with covariance

matrixRxqxq . Then we can write

NX
i=1

c2

�2[r+ 1

2
log2

(Rxqxq )ii

(
QN

i=1(Rxqxq )ii)
1
N

]

(Rxqxq)ii = Nc2�2r
�
det diagfRxqxqg

� 1
N = N�2q0 ; (3.6)

where all the termsc2
�2[r+ 1

2 log2
(Rxqxq )ii

(
QN
i=1(Rxqxq

)ii)
1
N

]

(Rxqxq)ii are equal to some�2q0 (each term equals the

arithmetic mean of the right hand side term in (3.6)). Replacingc2�2bri by�2q0=(Rxqxq )ii in the first equality

of (3.5) gives the second equality.

Now, by writingRxqxq = Rxx + �2qI in (3.5), one can check that

NX
i=1

(Rxx)ii
(Rxqxq)ii

= trf�I + �2q ( diagRxx)
�1��1g; (3.7)

where tr denotes the trace operator, and also

det
�

diagRxqxq
�
= det

�
diagRxx

�
det(I + �2q ( diagRxx)

�1): (3.8)

We obtain

Ek~yk2I;q = Ek~yk2I 1
N (det(I + �2q ( diagRxx)

�1))
1
N trf�I + �2q ( diagRxx)

�1��1g: (3.9)
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The distortion is slightly increased because the bits allocated on the basis of variances of quantized signals

are not the optimal ones. An approximation of (3.9) up to the second order of the perturbation gives

Ek~yk2I;q = c2�2r(det diagfRxxg)1=N (�N
i=1(

�2q
(Rxx)ii

))1=N
NX
i=1

(1 +
1

(Rxx)ii
)�1

� Ek~yk2I

241 + �4q
N2 (

N�1
2

NX
i=1

1

(Rxx)2ii
�

NX
i=1

X
j>i

1

(Rxx)ii(Rxx)jj
)

35 : (3.10)

3.2.2 KLT

As observed in [54] also, ifV denotes a KLT ofRxx, thenV (Rxx + �2qI)V
T = � + �2qI = �q, and

V is also a KLT ofRxx + �2qI. Thus, the perturbation term�2qI onRxx does not change the backward

adapted transformation:bV = V . The variances of the transformed signals remain unchanged:�02yi =

(V RxxV
T )ii = �i. However, the decoder can only estimate the variances(V RxqxqV

T )ii = �i + �2q , on

the basis of which are assigned the bitsbri,
bri = r +

1

2
log2

(V RxqxqV
T )ii

(
QN

i=1(V RxqxqV )ii)
1
N

: (3.11)

and the actual distortion becomes

Ek~yk2V;q =
NX
i=1

c2

�2[r + 1

2
log2

(V RxqxqV
T )ii

(
QN
i=1(V RxqxqV T )ii)

1
N

]

(V RxxV
T )ii

=
NX
i=1

c2�2r
�
det diagfV RxqxqV

Tg� 1
N

(V RxxV
T )ii

(V RxqxqV T )ii
:

(3.12)

SinceV RxxV
T andV RxqxqV

T are diagonal, one shows that

NX
i=1

(V RxxV
T )ii

(V RxqxqV T )ii
= trf

�
I + �2q (R

�1
xx )
��1

g = trf�I + �2q (�)
�1��1g: (3.13)

Also,

det
�
Rxqxq

�
= det

�
Rxx

�
det(I + �2q (R

�1
xx )): (3.14)

Finally, the distortion for the KLT with quantization noise is

Ek~yk2V;q = Ek~yk2V 1
N (det(I + �2q (�

�1)))
1
N trf�I + �2q (�

�1)
��1g: (3.15)

Again, the increase in distortion comes from the perturbation occuring uppon the bit allocation mechanism.

An expression approximating this distortion may be obtained by

Ek~yk2V;q = c2�2r(det diagfRxxg) 1
N

1
N

 
NY
i=1

(1 +
�2q
�i

)

! 1
N NX

i=1

 
1 +

�2q
�i

!�1
:

(3.16)
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By developping the product and the sum in (3.16), it can be checked that the terms proportional to�2q

vanish, so that 
NY
i=1

(1 +
�2q
�i

)

! 1
N NX

i=1

 
1 +

�2q
�i

!�1
� N +

N � 1

2N

X
i

�4q
�i
� 1

N

NX
i=1

X
j>i

�4q
�i�j

: (3.17)

This leads for to the following distortion

Ek~yk2V;q � Ek~yk2V

241 + �4q
N2

0@N�1
2

NX
i=1

1

�2i
�

NX
i=1

X
j>i

1

�i�j

1A35 (3.18)

Using (3.9) and (3.15), the corresponding expression for the coding gain in the unitary case with quantiza-

tion noise is

GV;q = G
(0)
TC

(det(I + �2q ( diagRxx)�1))
1
N tr f�I + �2q( diagRxx)�1

��1g
(det(I + �2q (�

�1)))
1
N tr f�I + �2q(�

�1)
��1g ; (3.19)

which, with (3.10) and (3.18), can be approximated as

GV;q � G
(0)
TC

241 + �4q
N2

0@N � 1

2

NX
i=1

(
1

(Rxx)2ii
� 1

(�i)2
)�

NX
i=1

X
j>i

(
1

(Rxx)ii(Rxx)jj
� 1

�i�j
)

1A35 :
(3.20)

The perturbation effect w.r.t. to the ideal case is only due to the perturbation uppon the bit assignment, and

appears to be weak (since it is proportional�4q ).

3.2.3 LDU

In the causal case, the coder computes a transformationbL = L0 such thatL0RxqxqL
0T = R0yy. R0yy is the

diagonal matrix of the estimated variances involved in the bit allocation (L0 andR0yy are both available to

the decoder). In this case, the difference vectory isx�L0xq. By the analysis of chapter 2, the quantization

noise is filtered by the rows ofL0, see Figure 2.

Note that in this case Ek~xk2L0;q still equals Ek~yk2L0;q, since~x = xq � x = yq + L0xq � x = ~y.

Regarding the estimates of the rates, they are computed by

bri = r +
1

2
log2

(L0RxqxqL
0T )ii

(
QN
i=1(L

0RxqxqL
0T )ii)

1
N

: (3.21)

It was shown in section 2.5 that the actual variances of the signalsyi obtained by means ofL0 and quantized

xI ; q may be approximated as(L0RxqxqL
0T � �2qI)ii (see (2.34)). Using (3.3), the distortion Ek~yk2L0;q is

then approximately given by

Ek~yk2L0;q = c2

�2[r + 1

2
log2

(L0RxqxqL
0T )ii

(
QN
i=1(L

0RxqxqL
0T )ii)

1
N

] NX
i=1

(L0RxqxqL
0T � �2qI)ii

�
NX
i=1

c2�2r
�
det diagfL0RxqxqL

0Tg
� 1
N

 
1� (�2qI)ii

(L0RxqxqL
0T )ii

!
:

(3.22)
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Figure 3.1: Backward adaptation of the causal transform.

Since the transformationL0 is unimodular, the determinant in the previous expression equals the determi-

nant in (3.14). The sum in (3.22) may be written as trf(I ��2q (L
0RxqxqL

0T )�1)g = trf(I � �2qR
0
yy
�1)g.

Thus (3.22) becomes

Ek~yk2L0;q = Ek~yk2L
1

N
(det(I + �2q (�

�1)))
1
N trf

�
I � �2q (R

0�1
yy )

�
g: (3.23)

The increase in distortion comes not only from the perturbation occuring on the bit allocation mechanism

but also from the filtering of the quantization noise. Up to the first order of perturbation, we obtain

Ek~yk2(L0;q = c2�2r(det diagfRxxg) 1
N

 
NY
i=1

(1 +
�2q
�i

)

! 1
N NX

i=1

 
1� �2q

1

(R0yy)ii

!

� Ek~yk2V
"
1 +

�2q
N

NX
i=1

�
1

�i
� 1

�2yi

�#
;

(3.24)

where the�2yi correspond to optimal prediction error variances in absence of quantization noise.

The corresponding expression for the coding gain is

GL0;q = G
(0)
TC

(det(I + �2q( diagfRxxg)�1)) 1
N trf�I + �2q ( diagfRxxg)�1

��1g
(det(I + �2q (�

�1))) 1
N trf

�
I � �2q(R

0�1
yy )

�
g

: (3.25)

Up to the first order of perturbation we get,

GL0;q � G
(0)
TC

"
1� �2q

N

NX
i=1

�
1

�i
� 1

�2yi

�#
: (3.26)

The approximated expression (3.26) shows that the perturbation effects of the bit assignment mechanism

are in the causal case negligible in comparison with those of the noise feedback; up to the first order of

perturbation, this gain is similar to the gain obtained in (2.40), which corresponds to the case of noise
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feedback only, but with optimal bit allocation assumption. As in chapter 2, an interesting consequence of

(3.26) is that the performance depends on the order in which the signals get decorrelated. It will be proved

in chapter 5 that we should decorrelate the signalsxi in order of decreasing variance if we wantGL0;q to be

maximized (see also Fig. 3.3 and 3.7 in the simulations section).

3.3 Estimation Noise

We analyze in this section the coding gains of a backward adaptive scheme based on an estimate of the

covariance matrixbRxx = 1
K

KX
i=1

xix
T
i . We assume independent identically distributed (i.i.d.) real vectors

xi. Thus, the first and second order statistics of�R are known: one can show that�R is a zero mean

Gaussian random variable, with (see section 3.B)

E vec(�R) (vec(�R))T � 2

K
Rxx 
 Rxx; (3.27)

where
 denotes the Kronecker product. Foreach realization of�R, the coder computes a transformationbT which diagonalizesbRxx : bT bRxx
bT = bRyy: The number of bits assigned to each component is therefore

bri = r +
1

2
log2

( bT bRxx
bTT )ii

(
QN
i=1(

bT bRxx
bTT )ii) 1

N

: (3.28)

Now, the actual variances of the signals obtained by applyingbT to x are ( bTRxx
bTT )ii. Note that in the

causal case,y = I � bLx = bLx, so thatR0yy = bLRxx
bLT . In the causal case, there is a qualitative difference

with the previous section, where the quantization noise was filtered by the predictors ofL0. Here, the

estimation noise does not perturb signals, but only transformations and bit assignments. The transformed

signals are Gaussian for the three transformations, and the resulting distortion by estimatingT andRxx by

means ofK vectors is

Ek~yk2bT;K = E
NX
i=1

c2

�2[r+ 1

2
log2

( bT bRxx
bTT )ii

(
QN
i=1(

bT bRxx
bTT )ii) 1

N

]

( bTRxx
bTT )ii: (3.29)

3.3.1 Identity Transformation

With bT = I, the resulting distortion is

Ek~yk2I;K = E
NX
i=1

c2

�2[r+ 1

2
log2

( bRxx)ii

(
QN

i=1(
bRxx)ii)

1
N

]

(Rxx)ii: (3.30)

Using a similar analysis as in the previous section , we obtain

Ek~yk2I;K = Ec2�2r
�
det diagfRxxg

� 1
N
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(1 +
(�R)ii
(Rxx)ii

)

! 1
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�
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��1
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0@1 + E N�1
2N2
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1
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X
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X
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(�R)ii
(Rxx)ii

(�R)jj
(Rxx)jj

1A (3.31)
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With (3.27), the second expectation in (3.31) may be written as

E
N � 1

2N2

NX
i=1

�
(�R)ii
(Rxx)ii

�2

� N � 1

2N2

NX
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2(Rxx)
2
ii

K(Rxx)
2
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=
N � 1

2N2

2N

K
=
N � 1

NK
; (3.32)

and the third expectation leads to

E 1
N2

X
i

X
j>i

(�R)ii
(Rxx)ii

(�R)jj
(Rxx)jj

� 2
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X
i

X
j>i
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2
ij

(Rxx)ii(Rxx)jj

� 2
KN2 k .

�
( diagfRxxg)1=2Rxx( diagfRxxg)1=2

� k2 (3.33)

where.(A) denotes the stritcly lower triangular matrix made with the strictly lower triangular part ofA. If

D denotes diagfRxxg, we obtain

E 1
N2

X
i

X
j>i

(�R)ii
(Rxx)ii

(�R)jj
(Rxx)jj

� 1
KN2

0B@kD� 1
2RxxD

� 1
2 k2 � k diagfD� 1

2RxxD
� 1

2 k2| {z }
N

1CA
� 1

KN2 ( tr fRxxD
�1RxxD

�1g � N ):

(3.34)

Finally, the expected distortion for Identity with estimation noise is, for sufficiently highK,

Ek~yk2I;K � Ek~yk2I
�
1 +

1

K
[1� 1

N2
trfRxx( diagfRxxg)�1Rxx( diagfRxxg)�1g]

�
: (3.35)

3.3.2 KLT

In the unitary case, the expected distortion is

Ek~yk2bV ;K = E
NX
i=1

c2

�2[r+ 1

2
log2

(bV bRxx
bV T )ii

(
QN

i=1(
bV bRxx

bV T )ii)
1
N

]

(bV Rxx
bV T )ii: (3.36)

Using an analysis similar to the previous subsection (see Sec. 3.C), the expected distortion for the KLT

when the transformation is based onK vectors becomes, under high resolution assumption

Ek~yk2bV ;K � Ek~yk2V
�
1 +

N � 1

K

�
1

2
+

1

N

��
: (3.37)

The corresponding coding gain is

GbV ;K =
Ek~yk2I;K
Ek~yk2bV ;K

� G
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�
1� 1

K

�
trfR( diagfRxxg)�1R( diagfRxxg)�1g
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N � 1

2
� 1

N

��
:

(3.38)

3.3.3 LDU

As stated in the introduction of this section, the expected distortion withbL computed withbRxx is

Ek~yk2bL;K = E
NX
i=1

c2

�2[r+ 1

2
log2

(bL bRxx
bLT )ii

(
QN

i=1(
bL bRxx

bLT )ii) 1
N

]

(bLRxx
bLT )ii

= Ec2�2r
�
det bV bRxx

bV � 1
N

NX
i=1

(bLRxx
bLT )ii

(bL bRxx
bLT )ii ;

(3.39)
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where we used a factorization similar to that used in (3.5). Now by the unimodularity propertybL, we can

write the determinant in (3.39) as

�
det bV bRxx

bV � 1
N

= det bRxx = det(Rxx) det(I + R�1xx�R); (3.40)

and sincebL diagonalizesbRxx, we can write the sum in (3.39) as

NX
i=1

(bLRxx
bLT )ii

(bL bRxx
bLT )ii = trf(I + R�1xx�R)

�1g: (3.41)

Now because both causal LDU and unitary KLT are decorrelating and unimodular transforms, it can be

checked that Ek~yk2bL;K = Ek~yk2bV ;K (comparing with the analysis in (3.65), the equality of the determinants

comes from the unimodularity of the transformationsbL and bV , and the equality of the traces comes from

their decorrelating property). The distortion and coding gain with estimation noise are then the same in the

causal and the unitary cases; they may be approximated by (3.37) and (3.38) respectively.

3.4 Quantization and Estimation Noise

We arrive now to the most general case of this comparison between causal and unitary approaches. In

presence of quantization and estimation noise, the bits should be attributed on the basis ofbRxqxq =

1
K

KX
i=1

xqix
qT
i : As in the previous section, we assume independent identically distributed real vectorsxi.

The estimated transform isbT , such thatbT bRxqxq
bTT is a diagonal matrix, which corresponds to the esti-

mated variances of the transformed signals. If we continue denoting by�02yi the actual variances of the

transformed signals (obtained by applyingbT to xk), the expected distortion (3.2), obtained withbT usingK

quantized vectors becomes

Ek~yk2bT;K;q = E
NX
i=1

c2

�2[r + 1

2
log2

( bT bRxqxq
bTT )ii

(
QN
i=1(

bT bRxqxq
bTT )ii) 1

N

]

�02yi ; (3.42)

where the subscriptsq andK refer to the presence of quantization and estimation noise. Equation (3.42)

must now be evaluated for Identity, KL and LDU transforms.
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3.4.1 Identity Transformation

In this case the transformed signalsyi are indeed still Gaussian. WithbT = I we obtain for (3.42), by

writingRxx = Rxqxq � �2qI,

Ek~yk2I;K;q = E
NX
i=1

c2

�2[r + 1

2
log2

( bRxqxq)ii

(
QN
i=1(

bRxqxq)ii)
1
N

]

(Rxqxq )ii

��2q E
NX
i=1

c2

�2[r+ 1

2
log2

( bRxqxq)ii

(
QN
i=1(

bRxqxq)ii)
1
N

]

:

(3.43)

The expected distortion for Identity transform with quantization and estimation noise may then (see sec.

3.D), for sufficiently high resolution and largeK, be written as

Ek~yk2I;K;q � Ek~yk2I
�
det(I + �2q ( diagfRxxg)�1)

�1=N
�
h
1 + 1

K

�
1� 1

N2 trfRxqxq ( diagRxqxq )�1Rxqxq ( diagRxqxq)�1g
�� �2q

N tr f( diagRxqxq )�1g
i
:

(3.44)

3.4.2 KLT

The expected distortion (3.2) with quantization and estimation noise becomes, in the unitary case,

Ek~yk2bV ;K;q = E
NX
i=1

c2

�2[r + 1

2
log2

(bV bRxqxq
bV T )ii

(
QN
i=1(

bV bRxqxq
bV T )ii)

1
N

]

(bV Rxx
bV T )ii: (3.45)

After some computation (see sec. 3.E), we find for the expected distortion in the unitary case, when the

transformation is based onK quantized vectors,

Ek~yk2bV ;K;q � Ek~yk2K
�
det(I + �2q (Rxx)

�1)
� 1
N

"
1 +

N � 1

K

�
1

2
+

1

N

�
� �2q

N
trf(Rxqxq)

�1g
#
;

(3.46)

for largeK and under high resolution assumption. The corresponding expression for the coding gain is

GbV ;K;q =
Ek~yk2I;K;q
Ek~yk2bV ;K;q

� G
(0)
TC

�
det(I + �2q ( diagfRxxg)�1)

�1=N�
det(I + �2q(Rxx)�1)
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h
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(1
2
+ 1

N
)� �2q

N
trf(Rxqxq)�1g

i :

(3.47)
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3.4.3 LDU

In the causal case, an estimatebL0 is computed, and the actual variances are�02yi = E (bL0Rxqxq
bL0T��2qI)ii.

Thus, computing (3.42) when the transformation is based onK quantized vectors (for highK and under

high resolution assumption) gives (see sec. 3.F)

Ek~yk2bL0;K;q = E
NX
i=1

c2

�2[r + 1

2
log2

(bL0 bRxqxq
bL0T )ii

(
QN
i=1(

bL0 bRxqxq
bL0T )ii)

1
N

]

(bL0Rxqxq
bL0T � �2qI)ii; (3.48)

which can be approximated as

Ek~yk2bL0;K;q = Ek~yk2L
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det(I + �2q (Rxx)
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�1=N "
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N � 1
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�
1
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+

1
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N
trf(R0yy)�1g

#
;

(3.49)

The corresponding expression for the coding gain in the causal case can then be estimated as

GbL0;K;q =
Ek~xk2I;K;q
Ek~yk2bL0;K;q

= G
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TC

�
det(I + �2q ( diagfRxxg)�1)

�1=N�
det(I + �2q(Rxx)�1)

�1=N
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N2 trfRxqxq( diagfRxxg)q�1Rxqxq ( diagfRxxg)q�1g
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i
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1 + N�1

K

�
1
2 +

1
N

�� �2q
N trf(L0RxqxqL

0T )�1g
i :

(3.50)

It can be checked that the expressions (3.50) and (3.47) tend to (3.19) and (3.25) respectively asK ! 1,

and both to (3.38) as�2q ! 0.

3.5 Simulations

For the simulations, we generated real Gaussian i.i.d. vectors with covariance matrixRxxj
= HjRAR1H

T
j ,

j = 1; 2. RAR1 denotes the covariance matrix of a first order autoregressive process with normalized cross

correlation coefficient�. Hj is a diagonal matrix whoseith entry isi1=3 for H1 (increasing variances), and

(N � i + 1)1=3 (decreasing variances) forH2. The goal of these numerical evaluations is to check if the

distortion as described in (3.2) corresponds to the either exact, either approximated theoretical expressions

which were derived in the three cases of quantization, estimation noise, and both. The following algorithms

were therefore used check our analytical results.

3.5.1 Quantization Noise

For several rates (from2 to 6 b/s), bit allocations and transforms (bT = I; L0 andV respectively) were

computed usingbRxx = Rxxj
+ �2qI, where�2q = c2�2r detRxxj

(that is, the distortion occuring in a high
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rate transform coding framework with optimal bit allocation). The choice of the constant is not relevant

because (3.2) is very general; we chosec = �e
6 . The bits to be allocated where then computed by (3.1),

with ( bT bRxx
bTT )ii = (Rxx)ii for the Identity tranform, and by (3.11) and (3.21) in the unitary and causal

cases respectively. The corresponding distortions where computed using (3.5), (3.12) and (3.22) respec-

tively, with variances�02yi = (Rxx)ii; (L
0RxqxqL

0T � �2qI)ii; and�i respectively. The resulting distortion

where then computed to measure the coding gains which were compared with the theoretical expressions.

� In Figure 3.2, the coding gain with quantization noise is plotted for KLT (upper curves, full line) and

LDU (lower curves, full line), for signals of decreasing variances, and with� = 0:9, N = 4. The

theoretical exact expressions are given by (3.19) and (3.25), the corresponding curves are dotted. The

theoretical approximated expressions are given by (3.20) and (3.26), and the corresponding curves

are dashed.

� Figure 3.3 shows the influence of the variance ordering in the decorrelation process. The upper curve

depicts the gain obtained with the causal approach by decorrelating the signals by decreasing order

of variance (Rxx2), and the lower curve by increasing order (Rxx1).

It is checked that the expressions (3.19) and (3.25) are actually exact; the approximated expressions (3.20)

and (3.26) match their exact counterparts above approximately2:5 b/s.

3.5.2 Estimation Noise

In this case, estimates of the covariance matrix of the data was computed usingK vectors by 1
K

KX
i=1

xix
T
i ,

K = N;N+1; � � � ; 103. For each estimatebRxx, the transformsbT = bV ; bL were computed so thatbT bRxx
bTT

is diagonal, and the bit allocations were computed using estimates of the variances( bT bRxx
bTT )ii. In order

to evaluate the expected distortion (3.29), the sum in (3.29) was considered as a random variable, whose

expectation was evaluated by Monte Carlo simulations. This was done for the Identity transform, in the

causal and in the unitary case. The ratio of the corresponding distortions are the “Observed Coding Gain”

in Figure 3.4. The corresponding theoretical expression is given by (3.38) (should be the same for the KLT

and LDU because both transforms are decorrelating and unimodular). The coding gains in presence of

estimation noise are compared in the figure forN = 4 and� = 0:9.

As expected, no difference can be noticed between the unitary and the causal case. Our calculations assumed

small perturbations; it can be observed that the model matches the actual coding gain after a few tens of

vectors.

3.5.3 Quantization and Estimation Noise

In this case, the quantized vectors were obtained for each rater by perturbing the sets of i.i.d. Gaus-

sian vector with uncorrelated white noise vectors with covariance matrix�2qI = c2�2r(detRxx)
1
N I. For
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each set of available quantized vectors, an estimate of the covariance matrix of the data was computed by

1
K

KX
i=1

xqix
q
i
T , K = N;N + 1; � � � ; 103. Again, for each estimatebRxqxq , the transformsbT = bV ; bL were

computed so thatbT bRxqxq
bTT is diagonal, and the bit allocations were computed using estimates of the vari-

ances( bT bRxqxq
bTT )ii. In order to evaluate the expected distortion (3.42), the sum in (3.42) was considered

as a random variable, whose expectation was evaluated by Monte Carlo simulations. This was done for the

Identity transform, in the causal and in the unitary case. The ratio of the corresponding distortions are the

“Observed Gains” of the following figures. The theoretical gains are given by (3.47) and (3.50).

� The coding gains in presence of estimation noise and quantization are compared for KLT and LDU

(signals of decreasing variances) in figure 3.5 (res. 3.6), forN = 8 (resp.N = 4), � = 0:9 and a

rate of3 bits per sample. The observed behaviors of the transformation corresponds quite well to the

theoretically predicted ones forK � a few tens.

� The influence of the ordering of the signals for the same parameters as above is plotted in Figure 3.7.

In the limit if largeK, the actual gains converge to the results obtained in the case where quantization noise

only is considered (the estimation noise vanishes). The proposed models match the actual convergence

behaviours in the causal and unitary cases after a few tens of decoded vectors. Finally, decorrelating the

signals by order of decreasing variance appears the best strategy.
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3.6 Discussion and Conclusions

This chapter has proposed an analytical model for the performance of causal and unitary backward adap-

tive transform coding schemes. The approach consisted in analyzing the effects of backward adaptation as

perturbation effects; these effects perturb the ideal high rate transform coding coding framework by per-

turbing both the transforms’ design and the bit assignment mechanism. The presented simulation results

have shown that the resulting analytical description of the systems is fairlyaccurate. In particular, exact

expression for the coding gain can be achieved as far as the quantization noise only is concerned. When

estimation noise is accounted for, the proposed analysis reliably estimates the distortions and the corre-

sponding coding gains after a few tens of decoded vectors.

The cost of the proposed analytical evaluation is the introduction of several simplifying assumptions. One

may argue that some, if not all the considered assumptions may not be verified in practical cases. These

objections are receivable: Gaussianity and independence of the source vectors may not correspond to real

world sources. The additive quantization model is overly simplistic, if not incorrect, for quantizers which

are not uniform. Finally, it is not clear how practical systems would actually realize the bit allocation pro-

cedure as assumed in (3.1).

These reflections led us to investigate further more particular, but practical backward adaptive systems.

Some of the assumptions above will be retained, but at least the practical bit allocation mechanism will be

that of realizable system. Chapter 2 showed that equal quantization stepsize quantizers followed by entropy

coding may undergo tractable theoretical evaluation; algorithms based on this technique are the topics of

the following chapter.
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3.A Statistics of�R: “one-shot” estimates

We are interested in deriving the second order statistics of�R = R� bR = R�xxT , and more precisely the

(i; j)th block of theN2 �N2 matrix E(vec�R)(vec�R)T , where E denotes mathematical expectation.

Assuming Gaussian i.i.d. vectorsx = [x1:::xN ]
T � (0; R), and writingR = [r1 r2:::rN ], this block may

be written as

E(vec�R)(vec�R)Tblock i;j = E(xix� ri)(xjx� rj)
T

= ExixxTxj � rir
T
j :

(3.51)

Now let us denote byv = [v1 v2:::vN ]T white i.i.d. vectors withv � (0; I), whereI is the identity matrix,

and byR
1
2 the (symmetric) square root ofR, R

1
2 = [r

1
2
1 � � � r

1
2
N ], wherer

1
2
j denotes thejth column ofR

1
2 .

Thenx may be seen as a “colored” version ofv, x = R
1
2 v, and the first term of eq. (3.51) may then be

writen as

ExixxTxj = Er
T
2
i vR

1
2 vvTR

1
2 vT r

1
2
j

= ER
1
2 r

T
2
i vvv

T vT r
1
2
j| {z }

A

R
1
2 : (3.52)

Let us consider the(m;n)th elementAm;n of A = r
T
2
i vvv

TvT r
1
2
j , which is

Am;n = Evmvn

 X
k

r
1
2
ikvk

! X
l

r
1
2
jlvl

!
= E

X
k
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2
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kvmvn| {z }

(a)

+ E
X
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X
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r
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2
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1
2
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1
2
ilr

1
2
jk

�
| {z }

(b)

(3.53)

wherer
1
2
ps denotes thesth element ofrp, and the summations run up toN .

We shall now inspect the different cases corresponding to the products involving thefvig.

� Casem = n

– Term (a) : all the terms involved in the summation are nonzero, and two cases should be

distinguished

� Casek = m: the corresponding term yields Er
1
2
ikr

1
2
jlv

2
kv

2
m = r

1
2
ikr

1
2
jl

� Casek 6= m : the corresponding term yields Er
1
2
ikr

1
2
jlv

4
m = 3r

1
2
ikr

1
2
jl.

Thus, the term(a) yields then in the casem = n

(a) =
NX
k=1

�
r
1
2
ikr

1
2
jk

�
+ 2r

1
2
imr

1
2
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= r
T
2
i r

1
2
j + ( diagfr 1

2
j r

T
2
i g)m;m + ( diagfr 1

2
i r

T
2
j g)m;m:

(3.54)

� Term(b) : all the terms are zero becausel 6= k and Ev3m = 0.
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� Casem 6= n

– Term (a) : all terms yield zero by taking expectation for the same reasons as in the previous

case

– Term(b) : two cases may be distinguished :

� Casem > n : Only the term for whichk = n andl = m is nonzero, which yields

Ev2mv
2
n

�
r
1
2
inr

1
2
jm + r

1
2
imr

1
2
jn

�
= r

1
2
inr

1
2
jm + r

1
2
imr

1
2
jn

=
�
.fr 1

2
j r

T
2
i g
�
m;n

+
�
.fr 1

2
i r

T
2
j g
�
m;n

;
(3.55)

where.f:g denotes the strictly lower triangular matrix obtained from the lower triangular

part off:g, and subscriptm;n refers to elementm;n.

� Casem < n : symmetrically as in the previous case, only the termk = m andl = n is

nonzero, which yields

r
1
2
inr

1
2
jm + r

1
2
imr

1
2
jn =

�
/fr 1

2
j r

T
2
i g
�
m;n

+
�
/fr 1

2
i r

T
2
j g
�
m;n

; (3.56)

where/f:g denotes the strictly upper triangular matrix obtained from the upper triangular

part off:g.

Using (3.54), (3.55) and (3.56), the expectation in eq. (3.52) may now be written as

ExixxTxj = ER
1
2

�
r
T
2
i rj

1
2I + r

1
2
j ri

T
2 + r

1
2
i rj

T
2

�
R

1
2

= rijR+ rjr
T
i + rir

T
j :

(3.57)

The(i; j)th block in eq. (3.51) is then

E(vec�R)(vec�R)Tblock i;j = rijR+ rjr
T
i

= (R
 R)block i;j + rjr
T
i

� 2(R
 R)block i;j;

(3.58)

where the approximation is valid for sufficiently highly correlated sources.

3.B Statistics of�R: case ofK vectors

Let �Ri be a particular “one-shot” estimate ofR = E [x1;k:::xN;k]
T [x1;k:::xN;k] by means of one vector,

�Ri = R� xix
T
i , and let�RK = R� 1

K

KX
i=1

xix
T
i =

1

K

KX
i=1

�Ri be the estimate of interest. Then

Evec�RK(vec�RK)T =
1

K2
E

KX
i=1

KX
j=1

vec�Ri(vec�Rj)
T ; (3.59)
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where since the�Ri are i.i.d., Evec�Ri(vec�Rj)T = ON2�N2 for i 6= j. Thus, using (3.58)

Evec�RK(vec�RK)T = 1
K2

KX
i=1

Evec�Ri(vec�Ri)
T

| {z }
�K2R
R

� 2R
R
K :

(3.60)

3.C Derivation of (3.37)

In the unitary case, the expected distortion is

Ek~yk2
(bV ;K)

= E
NX
i=1

c2
�2[r+ 1

2 log2
( bV bRxx bV T )ii

(
QN
i=1

( bV bRxx bV T )ii)
1
N

]

(bV Rxx
bV T )ii: (3.61)

Using the factbV bRxx
bV T is diagonal, we can write (3.61) as

Ek~yk2
(bV ;K)

= Ec2�2r
�
det bV bRxx

bV T
� 1
N

NX
i=1

(bV Rxx
bV T )ii

(bV bRxx
bV T )ii

: (3.62)

Because of the unimodularity of bV , the determinant in (3.62) may be written as

det bV bRxx
bV T = det(Rxx +�R)

= (detRxx) det(I +R�1xx�R):
(3.63)

The sum in (3.62) may be written as

NX
i=1

(bV Rxx
bV T )ii

(bV bRxx
bV T )ii

= tr f(bV bRxx
bV T )�1=2bV Rxx
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= tr fRxx
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= tr f(I + R�1xx�R)�1g:

(3.64)

Thus, (3.62) is equivalent to

Ek~yk2
(bV ;K)

= Ek~yk2V
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1
N E (det(I + R�1xx�R))

1
N trf

�
I + R�1xx�R

��1
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�
;

(3.65)

which also the distortion obtained in the causal case.

In order to compute the expectation of Ek~yk2
(bV ;K)

, let us develop (3.61) as

Ek~yk2
(bV ;K)

= Ec2�2r
�
det diagfbV Rxx

bV Tg
� 1
N

 
NY
i=1

(1 +
(bV�RbV T )ii

(bV Rxx
bV T )ii

)

! 1
N NX

i=1

 
1 +

(bV�RbV T )ii

(bV Rxx
bV T )ii

!�1
:

(3.66)
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The determinant in (3.66) may also be written as

det diagfbV Rxx
bV Tg =

NY
i=1

(�i + ��i)

= (
NY
i=1

�i)(
NY
i=1

1 +
��i
�i

)

� (
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�i)(1 +
NX
i=1

��i
�i

);

(3.67)

where�i ans��i are the diagonal elements of� and��, which is defined by

bV Rxx
bV T = �+ ��: (3.68)

Now (3.66) may then be approximated as
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(3.69)

Computation of the second expectation in (3.69).

Using the unitarity ofbV = V +�V , we have

diagf��g = diagf�V TRxx�V ��V T�V �g: (3.70)

The expectation of the diagonal elements of the first term in (3.70) is

E (�V TRxx�V )ii = tr E Rxx�Vi�V
T
i =

�i
K

X
j 6=i

�2j
(�j � �i)2

; (3.71)

where we have used the following classical result in perturbation theory of matrices [77], for sufficiently

highK

E �Vi�V
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X
j 6=i

�j
(�j � �i)2
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The expectation of the diagonal elements of the second term in (3.70) is

E (�V T�V �)ii = �i E(�V T
i �Vi) =

�2i
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X
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: (3.73)

Hence, we get from (3.70,3.71), and (3.73)
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X
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; (3.74)
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from which it is easy to show that
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2
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Computation of the third and fourth expectations in (3.69).

The perturbing term(bV�RbV T )ii
(bVRxx bV T )ii

may also be approximated as

(bV�RbV T )ii
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Thus,V�RV T = � � 1
K

NX
i=1

y
i
yT
i

: (V�RV T )ii is a real zero mean Gaussian random variable, corre-

sponding to the estimation error of� obtained with a covariance matrix computed withK vectors. Hence,

we have Evec(V �RV T )(vecV�RV T )T � 2�
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K

, whence
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(V RxxV T )jj
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ij
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= 0: (3.79)

Finally, the expected distortion for the KLT when the transformation is based onK vectors is, under high

resolution assumption
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: (3.80)

3.D Derivation of (3.44)

The first term of eq.(3.43) may be written as
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(3.81)
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The equality concerning the determinant comes from a factorization similar to (3.5). The expectations in

(3.81) are computed in the same manner as in section 3.2. Note however that in this case, the r.v.�R

corresponds to the estimation error ofRxx, which is not the covariance matrix of Gaussian r.v.s because of

the uniformly distributed quantization noiseqi perturbing thexi. Since this perturbation is small we assume

that�R can be considered as a zero mean r.v. with covariance matrix

Evec(�R) (vec(�R))T � 2

K
Rxqxq 
 Rxqxq : (3.82)

With (3.82), the second expectation in (3.81) may be approximated as
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and the third expectation as
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If Dq denotes diagfRxqxqg, we obtain
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The second term in (3.43) is small because of�2q , and we neglect the estimation errors in this term (estima-

tion errors being itself small for sufficiently highK), so that we make the approximation
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#
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Finally, using (3.81), (3.85) and (3.86), the expected distortion for Identity transform with quantization and

estimation noise may, for sufficiently high resolution andK, be written as
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i
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(3.87)
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3.E Derivation of (3.46)

By writing bV Rxx
bV T = bV Rxqxq

bV T � �2q
bV bV T = bV Rxqxq

bV T � �2qI in (3.45), we get
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Rewriting the last equality of eq.(3.88), we have
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Now, let b�q = bV Rxqxq
bV T = �q +��q = �+ �2qI +��q, and let�q�i be the diagonal elements of��q.

Then, the first term of (3.89) may be approximated as
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(3.90)

Using an analysis similar to (3.69) and using the same classical result in pertubation theory of matrices as

in the previous section [77], one can show that
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Also, the expectation of the second term in (3.90) may be computed as in (3.69). By using the first order

approximation
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and by writingV�RV T as �q � 1
K

NX
i=1

Y q
i Y

qT
i , the random variable(V�RV T )ii corresponds now

to the estimation error of�q obtained with a covariance matrix computed withK quantized vectors.

As in (3.82) however, this is again an approximation since theyqi are not Gaussian. Thus we assume
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Thus, using the unimodularity ofbT , the first term becomes
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The second term in (3.88) may approximated under the assumptions of high resolution and highK as
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(3.96)

Finally, the expected distortion for the KLT when the transformation is based onK quantized vectors is for

highK and under high resolution assumption
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3.F Derivation of (3.49)

The expression (3.48) can be developped as
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Now, let bRq
yy be bL0Rxqxq

bL0 = Rq
yy + �Rq

yy, whereRq
yy = L0RxqxqL

0T , and let�yq be the diagonal

elements of�Rq
yy. Then, the first term of (3.98) may be written as
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Using a similar analysis as in (3.69), one can show that
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Thus, using the unimodularity ofbL0, the first term may be approximated as

c2�2r(detRxqxq )
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(3.101)

The expectation of the second term in (3.98) can be computed as in (3.69) also. By using the approximation

(bL0�RbL0T )ii

(bLRxqxq
bL0T )ii

� (L0�RL
0T )ii

(L0RxqxqL
0T )ii

(3.102)

We can writeL0�RL
0T = Rq

yy� 1
K

NX
i=1

yq
i
yqT
i

: the random variable(L0�RL
0T )ii corresponds now to the

estimation error ofRq
yy obtained with a covariance matrix computed withK quantized vectors. Again, we
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make the approximation of Gaussianity foryqi . Thus we assume Evec(L0�RL
0T )(vec(L0�RL

0T ))T �
2Rqyy
Rqyy
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The second term in (3.98) may approximated under the assumptions of high resolution and highK as
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Finally, using the obtained expressions for the first and second terms of (3.98), the expected distortion for

the LDU when the transformation is based onK quantized vectors is for highK and under high resolution

assumption
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(bL0;K;q) � Ek~yk2L
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Chapter 4

Rate-Distortion Analysis of Practical

Backward Adaptive Transform Coding

Schemes

The main advantage of backward over forward adaptive coding schemes is to update the coding parameters

with the data available at the decoder, avoiding thereby any excess bitrate. The algorithms presented in this

chapter aims of evaluating the performance of practical backward adaptive transform coding schemes.

Their performance are analyzed in terms of rate and distortion, for the causal transform introduced in

chapter 2, and for the Karhunen-Lo`eve tranform. The optimal bit allocation rule, which somewhat limits,

from a practical viewpoint, the results of the previous chapter, is replaced here by a simple (equal stepsize)

quantization rule. In a first step, algorithms with constant stepsizes are considered: only the tranforms are

backward adaptive. In a second step, both the stepsize and the transforms rely on backward adaptation. In

this framework, the transform coding system is designed a priori to operate at a particular (target) rate-

distortion point. The question is to know whether the proposed algorithms will converge or not to this point.

For two algorithms, we evaluate the resulting expected distortion w.r.t. the number ofvectors available

at the decoder, as the distortion to which the systems converge. The rate is then measured by the0th

order entropy of the corresponding sequence of quantized data (asymptotically in the data length). A high

resolution analysis shows that for an algorithm using Sheppard’s correction on the second order moment

estimates, the performance of the system should converge to the target rate-distortion point. Without this

correction, the effects of backward adaptation tend to move the operational rate-distortion point of the

system from the target point by the same term for both transforms.

85



86 Chapter 4 Rate-Distortion Analysis of Practical Backward Adaptive Transform Coding Schemes

4.1 Introduction

For non- or locally- stationary data, the efficiency of transform coding relies on the updating of the coding

parameters according to the source statistics changes. Theseupdates aim to keep the performance of the

structure close to a predetermined rate-distortion trade-off. Classically, they are sent as side information

to the decoder, though this excess bitrate could be saved by using closed-loop, or backward adaptive algo-

rithms.

A first contribution of this work is a numerical evaluation of practical algorithms using equal and constant

(w.r.t. time) quantization stepsizes. Choosing a stepsize is equivalent to choose a target point of the rate-

distortion function of the source. If the source statictics do not change, the system may converge to the

target point, assuming that the transforms will converge to the optimal transforms (that is, designed witha

priori knowledge of the source). We will not try to prove convergence results in this first part, nor in the

rest of the paper. Instead, empirical evidence, or analytical evaluation based on small perturbations will be

proposed.

The first results for constant stepsize will provide empirical evidence that these systems converge. These

results are complementary to those established in [54], which regard the universality of the KLT in this

framework; also, the results of section 4.3 suggest the universality of the LDU at high rates. The sense

given touniversalityin this work is that of [54]: the ability of an adaptive system to provide, asymptotically

in the data length, the optimal rate-distortion performance for a given class of source, which in our case

is Gaussian. The drawback of using a constant is however that the rate may unacceptably vary in the case

where the statistics of the source change. The distortion is fixed, but may become unacceptable as well

w.r.t. to the energy of the source. As in adaptive predictive quantization, one may prefer algorithms relying

on updating not only the transforms, but also the quantization stepsizes.

We propose therefore in a second step to model the effects of the backward adaptation for two simple algo-

rithms using adaptive stepsizes, and for two different transforms, the unitary KLT and the causal LDU trans-

form. A transform coding scheme is in the ideal case designed to reach a target point of the rate-distortion

function of the source. This point (r0, D0,R) is characterized by the covariance matrixR, a target rater0

and the corresponding target distortionD0. Assuming now that we use some backward adapted algorithms,

an interesting question is to know if the coding performance will converge or not to the target rate-distortion

point, and if yes, how fast.

The theoretical comparison between causal and unitary approaches presented in the last chapter did not de-

scribe how practical backward adaptive transform algorithms would perform. This is the aim of the present

work, where we propose an analysis based on small perturbations. The investigated methods correspond

to actual, implementable algorithms, but again, we have to make several assumptions. We suppose that

the coding structure deals with a (possibly locally) stationary Gaussian source with covariance matrixR1,

whose vector samples are independent and identically distributed. The results regarding the rate are asymp-

1In order to simplify the notations,R will denote the covariance matrixRxx in this chapter.
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totic in the data length. Moreover, we assume that the entropy coder possessesN universal lossless codes

for theN transform coefficients streams.

The rest of the chapter is organized as follows. Section 4.2 reviews and formalizes some results from the

ideal coding schemes. Section 4.3 deals with constant stepsize algorithms. Section 4.4 states how both the

transformations and the quantization stepsize are adapted, for two different algorithms. Section 4.5 derives

the distortion analysis for the two proposed algorithms using adaptive stepsize; the problem of the rates is

investigated in section 4.6. Finally, the last section compares the proposed model with numerical results.

4.2 Framework and Background

4.2.1 Quantization Stepsize and Optimal Bit Assignment

Assuming an optimal bit assignment for some transform componentsyi, the distortion-rate function for the

vectorial signaly is at sufficiently high rates

E jj~yjj2T =
NX
i=1

�2qi = Nc2�2r(
NY
i=1

�2yi)
1=N = N�2q : (4.1)

The corresponding number of bits assigned to theith component is

ri = r +
1

2
log2

�2yi 
NY
i=1

�2yi

! 1
N

: (4.2)

Under high resolution assumption, the quantization noise resulting from quantization with stepsize�i is a

uniformly distributed random variable (r.v.), with variance�2qi =
�2
i

12 . A simple way of realizing the optimal

bit assignment is thus to quantize all the components with an equal stepsize�. If theyqi are entropy coded,

the bitrate is for Gaussian signals

ri = H(yqi ) �
1

2
log2 2�e�

2
yi
� log2�: (4.3)

It can then easily be checked that choosing

� =
p
2�e2�r(

NY
i=1

�2yi)
1
2N =

p
2�e2�r det( diagfTRT Tg) 1

2N (4.4)

yields 1
N

NX
i=1

ri =
1

N

NX
i=1

H(yqi ) � r. At high rates, the corresponding distortion-rate function is then2

D(r) � �2

12
� �e

6
2�2r det( diagfTRT Tg) 1

N : (4.5)

Relations (4.4) and (4.5) allow therefore to choose a target point (r,D,R) for the transform coding system.

Note that this strategy assumes the knowledge ofR.

2In order to simplify the notations,D, instead of Ek:k2, will denote the distortion in the rest of the chapter.



88 Chapter 4 Rate-Distortion Analysis of Practical Backward Adaptive Transform Coding Schemes

4.2.2 Optimal Transforms

In the unitary case, the optimal transform for Gaussian sources is a KLTV : V RV T = �, the variances of

the transform signals are the eigenvalues�i of R.

In the causal case,y
k
= Lxk = xk � Lxqk, whereLxqk is the reference vector. The outputxqk is yq

k
+ Lxqk.

If we neglect the fact that the prediction uses quantized data, it was shown in chapter 2 that the optimal

causalL in terms of coding gain is such thatL R LT = diagf�2y1; � � � ; �2yNg; wherediagfag represents a

diagonal matrix with diagonala. The componentsyi are the prediction errors ofxi with respect to the past

values ofx, thex1:i�1, and the optimal coefficients�Li;1:i�1 are the optimal prediction coefficients. For

both transforms, the high resolution distortion using ECUQ is then

D0(r) � �e

6
2�2r (detR)

1
N : (4.6)

From (4.4), this distortion corresponds to a quantization stepsize�0 given by

�0 =
p
2�e2�r(

NY
i=1

�2yi)
1
2N =

p
2�e2�r (detR)

1
2N (4.7)

4.3 Backward Adaptive Algorithms with Fixed Stepsize

From the previous section, assuming that the encoder has the knowledge of the covariance matrixR, it may

choose a target rate-distortion point for the system (r,D(r),R). For sufficiently high resolution, this point

is determined by choosing, for a given source, a stepsize�r =
p
2�e2�2r (detR)

1
2N . Two questions arise

regarding the ability of the backward system to converge to this point. Firstly, the decoder should havea

priori knowledge of the desired�r. Secondly, the estimated transforms should converge to the optimal

ones (so that the actual product of the variances�2yi is, after convergence, actuallydetR).

As far as�r is concerned, one shall assume that it is transmitted at the beginning of the coding process

as side-information to the decoder. In this sense, the scheme is not fully backward adaptive. The corre-

sponding excess bitrate is small and vanishes in the limits of the data length if the process is stationary;

but if the source is time-varying, this may cause a non negligible overhead. The question of the transform

convergence will be investigated after we have precisely described the coding algorithm.

Assuming that an estimate

bRK =
1

K

KX
i=1

xqix
qT
i (4.8)

of the covariance matrix is available at the decoder, the transformsbT = bV , bL can be computed so thatbT bR bTT is diagonal. We assume that the firstN vectors are sent with very high resolution to the decoder:

xqi � xi; i = 1; � � � ; N . This leads to the following backward adaptive algorithm:
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Algorithm [0 ]:

� Initialization:K = N .

� Step 1: An estimate of the covariance matrixbRK = 1
K

KX
i=1

xqix
q
i
T is available at both the encoder and the

decoder.

� Step 2: A transformbTK is computed such thatbTK bRK
bTTK is diagonal, wherebTK is either a KLT, either

an LDU factorization ofbRK.

�Step 3: These tranforms are used to transform and quantize the(K+1)th vector byyq
K+1

= [bVKxK+1]�r

in the unitary case, oryq
K+1

= [xK+1 � bLxqK+1]�r in the causal case, where[:]�r denotes uniform quan-

tization with stepsize�r.

� Step 4: Back to Step 1: the decoder computes then an estimate of the covariance matrixbRK+1 =

1
K+1

(
NX
i=1

xix
T
i +xqK+1x

qT
K+1), from which bTK+1 can be computed, used to code the(N +2)th vector, and

so on.

The corresponding block diagram is depicted in figure 4.1.
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K+1
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KxqK

xK+1 y
K+1

f
g
xqK+1

yq
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xqK

f
�1g bT�1
K

Figure 4.1: Backward adaptive transform coding system with fixed quantization stepsize�r.

For this algorithm, the question is to know whether the transforms will converge or not to the optimal

transforms. This algorithm was inspected in the unitary case in [54]; the following conclusions can be

drawn.

Assuming on the one hand that the effect of the quantization is to add a zero-mean signalz independent

of x with EzzT = �2

12 I, the expected covariance matrix ExqxqT isRxx +
�2

12 I. SinceRxx +
�2

12 I and

Rxx have the same eigenvectors, the transform converges to the correct transform, resulting in anuniversal

system. Universal means here that this performance approaches that of an ideal transform code designed

with a priori knowledge of the source distribution.

As detailed in section 2.A on the other hand, the difference betweenRxx andRxqxq is not precisely a scaled

Identity matrix. Moreover, the distribution ofxqi depends onbTi�1, which in turn depends on the whole
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sequencexqk=1:i. This interdependence renders the analysis of the convergence difficult. Some convergence

results are however proven in [54]. Assuming simplifying assumptions such as introducing dithering (whose

effect is to make the quantization noise precisely input-independent), or neglecting the stochastic aspect in

(4.8), theoretical proofs for the universality of such constrained systems can be established. For the general

system described by algorithm[0 ], it is nevertheless asserted in [54] that convergence should hold as well.

One of the aim of this section is to provide empirical evidence that the backward adaptive unitary system

actually works.

In the causal case, the same comments can be made regarding the complexity of the convergence analysis.

Assuming that Exqix
q
i
T converges toRxx +

�2

12 I, it is necessary that the decoder computesbLK such thatbLK(Rxx + �2

12 I)
bLTK is diagonal. From the expression (2.33) of chapter 2, this is precisely the optimal

strategy to compute the best causal transform optimized for a closed loop system, at moderate to high rates.

Note that equation (2.33) does not assume that the covariance matrix of the quantized data isRxqxq =

Rxx +
�2

12 I; instead, this expression expresses the fact that, when optimized for a closed loop system, the

optimal transform can be seen as the optimal prediction matrix for the signal perturbed by a white noise. In

the case where the only available estimate isRxx +
�2

12 I, computing the corresponding LDU factorization

of bRxqxq is equivalent to finding the correct prediction matrix. Thus, at least at moderate to high rates, the

causal system should be universal as well.

Figure 4.2 plots the actual rate-distortion functions obtained with algorithm[0 ], for the same source as

in 2.6.3 (decreasing variances). Sequences of104 vectors were backward adaptively transform coded as

described in algorithm[0 ], for several stepsizes�r. For each stepsize, the resulting distortion and entropy

were measured for the whole sequence; the experiment was repeated10 times. Comparing with figure

2.17, which plots the actual rate-distortion functions for transforms designed witha priori knowledge of

the statistics of the source, the similarity is apparent. In particular, the system converges even at low rates,

when the quantization noise is large.

An interesting question for this algorithm would be the following. Let us assume that the decoder stops

adapting the transforms after a certain amount ofK vectors. Then what would be the rate required to code

(asymptotically in the data length) the resulting source ? This question will not be addressed here, but an

analysis provided in chapter 6 deals with the same interrogation in the framework of lossless coding.

The algorithm[0 ] as described above suffers from a drawback when the source is not stationary but locally

stationary. Quantizing with the same�r may cause unacceptable changes in rate if the variances of thexi

vary w.r.t. the quantization stepsize; the distortion is fixed, but the SNR will vary as well.

To precise this, let us assume a piecewise stationary vector source, whose covariance matrixR1 changes to

R2 after a certain time. The encoder may have the knowledge ofR1; according to some rate-distortion

trade-off objective(r1; D1), it may choose consequently for the source a convenient stepsize�r1 =p
2�e2�r1(detR1)

1
2N . This stepsize should be transmitted to the decoder at the beginning of the back-

ward adaptive coding process. Assuming the stationarity period long enough for the process to converge,
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Figure 4.2: Distortion-rate functions for the KLT and the LDU using a backward adaptive algorithm with

constant quantization stepsize. N=3 and� = 0:9.

the system will then work at a point (D1 = �2
1

12 ,r1,R1) of the rate-distortion function ofR1. If now the

statistics of the source change (covariance matrixR2), the system working with stepsize�r1 will yield

after convergence the same distortionD1; the rate actually required to entropy code the source will become

r2 =
1

2
log2 2�e

(detR2)
1
N

�2
r1

= r1 +
1

2
log2

�
detR2

detR1

� 1
N

: (4.9)

Thus, the rate will change accordingly to the determinant of the covariance matrix of the source. Moreover,

the distortionD1 may be acceptable forR1, but not forR2 : consider a single scalar sourcex with vari-

ance�2x. The operational rate-distortion function of this uniformly quantized and entropy coded signal is

d = �2

12 = �e
6 2�2r�2x. If the variance of the source is time-varying, it is then more relevant to guarantee

the SNR�2x
d to be constant rather thand only. Thus, it seems interesting to find a solution which keeps the

relation of the distortion toR constant (or equivalently, which keeps the asymptotic rate constant); such a

coding scheme should therefore converge to the pointD2 =
�e
6 2

�2r1(detR2)
1
N .

Possible solutions to that problem exist for algorithms using a fixed stepsize. A more convenient stepsize

may for example be retransmitted to the decoderaccordingly to the source variations, but this results in

some overhead. This side information may be avoided if, after convergence of the process, both the en-

coder and the decoder change in unison the stepsize according to the new estimate ofR2; this solution

lengthen however the time by which the desired performance are achieved. One may therefore try to design
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algorithms which converge directly to the desired rate-distortion function point of the source, by keeping

the target rate constant. This is the aim of the next section, where both the quantization stepsize and the

transforms are backward adaptive.

4.4 Backward Adaptive Algorithms with Adaptive Stepsize

4.4.1 Framework

For a nonstationary input, the variances of the sources are time variable; the problem of (backward) adapt-

ing the quantization stepsize is very similar if the input is stationary, or locally stationary, with unknown

variance. The operation of an adaptive scalar quantizer is therefore of the general form�i = �b�2K, whereb�2K is the variance estimate at time instantK, and� is some constant [14]. We shall thus assume a sta-

tionary vector source with unkown covariance matrixR. This source is tranform coded in a backward

adaptive manner, and neither the encoder nor the decoder hasa prori knowledge ofR. The transforms and

the quantization stepsize will be adapted periodically in unison at the encoder and at the decoder; no side

information is therefore required to transmit any coding parameters. The onlya priori information shared

by the encoder and the decoder is the target rater0 at which the system should work. Assuming suffi-

ciently high resolution, the goal is then for the system to converge to the rate-distortion point (r0,D0,R):

D0(r0) =
�e
6 2

�2r0(detR)
1
N , which is for this transform coded source the best achievable rate-distortion

point at rater0.

We now propose two algorithms updatingT and� by means of the data available at the decoder only. In

addition to the assumptions expressed in the Introduction, the firstN vectors are assumed to be quantized

with very high resolution and sent (without being transformed) to the decoder.

Algorithm [1 ]:

� Initialization:K = N .

� Step 1: An estimate of the covariance matrixbRK = 1
K

KX
i=1

xqix
qT
i is available at both the encoder and the

decoder.

� Step 2: A transformbTK is computed such thatbTK bRK
bTTK is diagonal, wherebTK is either a KLT, either a

LDU factorization ofbRK , and a stepsizeb�[1 ]
K is computed by

b�[1 ]
K =

p
2�e2�r0 det( bTK bRK

bTTK) 1
2N : (4.10)

�Step 3: These parameters are used to transform and quantize the(K+1)th vector byyq
K+1

= [bVKxN+1]b�[1 ]
K

in the unitary case, oryq
K+1

= [xK+1�bLxqK+1]b�[1 ]
K

in the causal case, where[:]� denotes uniform quantiza-

tion with stepsize�. The expected distortion for the(K + 1)th vector is thenD[1 ](K + 1) = E b�[1 ]2

K =12.

� Step 4: Back to Step 1: the decoder computes then an estimate of the covariance matrixbRK+1 =

1
K+1 (

NX
i=1

xix
T
i +xqK+1x

qT
K+1), from which bTK+1 andb�K+1 can be computed, used to code the(N +2)th
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vector, and so on.

Algorithm [2 ]:

A simple improvement to the previous algorithm can be made by using the results regarding uniform quan-

tization of Gaussian sources evocated above. For Gaussian vectorsy
K

, quantized with the same (constant)

stepsize�, it can be shown (see 2.A) that

Eyq
i
yqT
i

= Ryqyq = R+
�2

12
I +B; where B ! 0 elementwise as �! 0: (4.11)

In the previous algorithm now, if the stepsize converges to some stepsize�1(T ), one may expect that the

estimate of the covariance matrix converges to some matrix close toR+�2
1(T )
12 I. The numerical evaluations

of the previous section indicate convergence even for large quantization stepsizes. A better estimate ofR

may therefore be computed after a certain amount of vectors, sayN1, by substracting
b�2
K

12 I to the current

estimate ofR. This correction on the estimate of the second order moment of the data by their quantized

version is usually referred to as Sheppard’s correction [72]. Except from this difference concerningbR, the

steps of algorithm[2 ] are the same as in algorithm[1 ].

The corresponding block diagram of these two algorithms is depicted in figure 4.3.
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Figure 4.3: Backward adaptive transform coding system with adaptive quantization stepsize.

4.4.2 Proposed Analysis

The convergence analysis for these algorithms will seek to determine if the corresponding distortions con-

verge or not to the target rater0 and distortionD0. Moreover, we will try to model the behaviour of the

distortionvsK. The proposed analysis will retain only first order perturbation; therefore, it does not claim

to establish rigorous convergence proofs.

Two preliminary steps required to analyze the distortion are detailed in the rest of this section. First, we

should precisely evaluate the respective contribution of the estimation and quantization noises for the es-

timates of the covariance matrix. This lead to a handful of perturbation terms. Second, we precise the
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relationship between the distortion of interest and these perturbation terms.

The estimate of the covariance matrix for the second algorithm can be expressed as

bR[2 ]
K = 1

K (
NX
i=1

xix
T
i +

N1X
i=N+1

x
[1 ]q
i x

[1 ]qT

i +
KX

i=N1+1

x
[2 ]q
i x

[2 ]qT

i )�
b�[2 ]2

K�1
12

I

= 1
K

0@NR+
N1X

i=N+1

(R+D[1 ](i)I) +
KX

i=N1+1

(R+D[2 ](i)I)

1A
+ 1
K

0@ NX
i=1

�R
(1)
i +

N1X
i=N+1

�R
q[1 ](1)
i +

KX
i=N1+1

�R
q[2 ](1)
i

1A �
b�[2 ]2

K�1
12

I

(4.12)

whereD[1;2](i) denotes the distortion obtained for theith vector, and where we used the following notation:

- superscript[j] refers to algorithm[j],

- superscriptq refers to quantization,

- superscript(1) refers to estimation noise occuring by estimating a covariance matrixR by the estimate

xix
T
i = bR(1) = R+�R(1),

- subscriptK refers to the total number of vectors available at the decoder (except indeed fromxi, which

denotes theith vector).

The corresponding estimate for the first algorithmbR[1 ]
K can also be computed from (4.12), where in this

case the underlined terms vanish.

By writing
b�[2 ]2

K�1

12 = D[2 ](K) + �D[2 ](K), the estimate (4.12) can also be written asbR[2 ]
K = R+ �R

[2 ]
K ,

with

�R[2 ]
K =

"
1

K

 
N1X

i=N+1

D[1 ](i) +
KX

i=N1+1

D[2 ](i)

!
�D[2 ](K)

#
I| {z }

�R
[2 ]
K;det

+
1

K

 
NX
i=1

�R(1)
i +

N1X
i=N+1

�Rq[1 ](1)
i +

KX
i=N1+1

�Rq[2 ](1)
i

!
� �D[2 ](K);| {z }

�RK;sto

(4.13)

where�R[2 ]
K;det is a deterministic diagonal matrix, and�R[2 ]

K;sto is a stochastic matrix. The update of the

transform (to simplify the notations, the subscript[2 ] will be omitted for bT [2 ]
K ) is then computed so thatbTK bR[2 ]

K
bTTK is diagonal, and the updated stepsizeb�[2 ]

K =
p
2�e2�r0det

�bTK bR[2 ]
K
bTTK� 1

2N

is used to quantize

the(K+1)th transform vector. For sufficiently small stepsizes, the expected distortion is then

D[2 ](K + 1) � E
b�[2 ]2

K

12
� �e

6
2�2r0 det( bTK bR[2 ]

K
bTTK )

1
N ; (4.14)

The corresponding distortionD[1 ](K + 1) for algorithm[1 ] can be computed by simplifying inD[2 ](K + 1)

the vanishing terms ofbR[2 ], see (4.12).

Using the unimodularity property of the transforms and considering�R
[2 ]
K in (4.13) as a perturbation term
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upponR, one should compute in both unitary and causal cases ( tr denotes the trace operator, see the

derivation in appendix (4.A))

D[2 ](K + 1) � �e

6
2�2r0(det bR[2 ]

K )
1
N

� D0[1+
1
N E trf�R[2 ]

K R�1g+ 1
2N2 E( tr f�R[2 ]

K R�1g)2� 1
2N E trf�R[2 ]

K R�1�R[2 ]
K R�1];

(4.15)

The corresponding distortion for algorithm[1 ] can be computed fromD[2 ] by inspecting the vanishing

terms in�R[2 ]
K through (4.12).

4.5 Distortion Analysis

In order to compute the three expectations in (4.15), we can describe the r.v.s involved in (4.13) as follows.

The elementary termsf�R(1)
i g corresponds to ”one-shot” estimates ofR based on a single observation.

Since the vectorsxK are i.i.d., so is�R(1)
i . The elementary termsf�Rq[1 ;2](1)

i g correspond to ”one-shot”

estimates ofR + E(b�[1 ;2 ]2

i�1 =12)I which, from (4.11), can be approximated asR + D[1 ;2 ](i)I. These

terms are indeed not identically distributed. They are neither independent since�Rq[1 ;2 ](1)
i depends onb�[1 ;2 ]

i�1 , which depends onbR[1 ;2 ]
i�1 , which in turn depends on�Rq[1 ;2](1)

i . However, we assume that this

is the case, since this dependence concerns only the noise part of the quantized vectors. Because of the

quantization noise, the vectorsxqK are not strictly Gaussian; for sufficiently high resolution, we assume that

this is however the case.

The following result (see appendix (3.A)) is now necessary to establish (4.15)3. Let �R(1)
l = Rl = xix

T
i

be the (symmetric) estimate of someRl = [rl1 :::rlN ] by means of one real zero mean Gaussian vectorxi,

with Exix
T
i = Rl. Then it can be shown that�R(1)

l is a zero mean r.v., and that among theN2 blocks of

E vec�R(1)
l vecT�R(1)

l , the(i; j)th block

(E vec�R(1)
l vecT�R(1)

l )block(i;j) = (Rl 
Rl)block(i;j) + rlj r
T
li ; (4.16)

where
 denotes the Kronecker product. If nowRl = R+DlI, with I denotes Identity andDl a scalar the

previous expression may, for correlated sources, be approximated as

E vec�R(1)
l vecT�R(1)

l � 2Rl 
Rl � 2 [R
R +Dl(R
 I + I 
R)] : (4.17)

The first term of (4.15) may be written as

1
N E trf�R[2 ]

K R�1g = 1
N

0B@ tr f�R[2 ]
K;detR

�1g+ E trf�R[2 ]
K;stoR

�1g| {z }
0

1CA
� 1

N

�
1
K�tot �D[2 ](K)

�
trfR�1g;

(4.18)

3The derivations involved in the computations of (4.15) are only outlined in this section; the details are reported in sec. 4.B
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with �tot =
N1X

i=N+1

D[1 ](i) +
KX

i=N1+1

D[2 ](i). The second term leads to

1
2N2 E( trf�R[2 ]

K R�1g)2 = 1
2N2 E( tr fR�1

2�R
[2 ]
K R�

1
2 g)2

� 1
2N2 (vecTR�

1
2 )(R�

1
2 
 I) E vec�R[2 ]

K vecT�R[2 ]
K| {z }

vec�R[2 ]
K;detvecT�R[2 ]

K;det+!!Evec�R[2 ]
K;stovecT�R[2 ]

K;sto

(R�
1
2 
 I)vecR�

1
2

(4.19)

where the term corresponding to the deterministic part can be computed using the fact that�R[2 ]
K;det is

diagonal. The stochastic term in (4.19) generates,according to (4.13), four terms, which can be computed

using (4.17). The second term in (4.15) leads finally to

1

2N2
E( tr f�R[2 ]

K R�1g)2 � 1

KN
+ trfR�1g( 2�tot

K2N2
) +

�
trfR�1g�2
2N2

"�
�tot
K

�D[2 ](K)

�2
#
;

(4.20)

where for the purpose of this first order analysis, only the dominating terms have been retained. Concerning

the third term of (4.15), letG beR�
1
2�R[2 ]

K R�
1
2 . Then we have vecG = (R�

1
2 
 R�

1
2 )vec�R[2 ]

K , and

we get

� 1
2NE tr f�R[2 ]

K R�1�R[2 ]
K R�1 = E � 1

2N trfGGg
= � 1

2N E trfvecGvecTGg
= � 1

2N E trf(R�1
2 
R� 1

2 )E vec�R[2 ]
K vecT�R[2 ]

K (R�
1
2 
R� 1

2)g
(4.21)

where again, the arising terms can be computed using (4.17).

Finally, the distortion occuring with the second algorithm can be approximated by the recursive expression

D[2 ](K+1)�D0

"
1+

1

K
(
1

N
�N ) + trfR�1g

 
1

N

"
1

K

 
N1X

i=N+1

D[1 ](i) +
KX

i=N1+1

D[2 ](i)

!
�D[2 ](K)

#!#
:

(4.22)

Inspecting the vanishing terms in (4.12), we obtain then the following recursive expression for the algorithm

without correction

D[1 ](K + 1) � D0

"
1 +

1

K
(
1

N
� N ) +

trfR�1g
KN

 
KX

i=N+1

D[1 ](i)

!#
: (4.23)

On the one hand, the recursive expression (4.22) shows that the algorithm based on the Sheppard’s correc-

tion should, asK !1, converge to the target distortionD0,

D[2 ]
1 � E

�
[2 ]2

1
12

� D0; (4.24)

The corresponding stesize should converge to

E�[2 ]
1 � �0 �

p
2�e(detR)

1
2N : (4.25)
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On the other hand, the model provided by (4.23) does not converge toD0 but to someD[1 ]
1 > D0, which

can easily be computed as

D[1 ]
1 � E

�
[1 ]2

1
12

� D0

1�D0
tr fR�1g

N

: (4.26)

Accordingly, the quantization stepsize should converge to

�[1 ]
1 � (12D[1 ]

1 )
1
2 � 2

 p
3D0

1�D0
tr fR�1g

N

! 1
2

: (4.27)

Note that at low rates, the convergence of�
[2 ]
1 to�0 does not guaranteeD[2 ]

1 to be axactlyD0 because the

quantizer’s rate-distortion performance factor deviate from�e
6 .

4.6 Rate Analysis

This section analyzes the bitrate required to entropy code the transform signals asK ! 1. These results

are therefore asymptotic in the data length.

4.6.1 Algorithm with Sheppard’s correction

For the algorithm using the correction on the second order moment estimate, the rate is

r
[2 ]
(T ) = 1

N

NX
i=1

H(yqi )

� 1
2N

NX
i=1

log2 2�e�
2
yi;1 � log2�0

� r0 +
1
2N log2

NY
i=1

�2yi;1

detR
;

(4.28)

where�2yi;1 are the variances of the transform signals obtained by using the transform based on the asymp-

totic estimatebR[2 ]
1 , which in this case isR. Thus, the estimated KLT and LDU should converge to the

optimal transforms. The variances of the transform signals in the unitary case are then�i and

r
[2 ]
(V ) = r0: (4.29)

In the causal case, one shouldaccount for the fact that the reference signal is computed by means quantized

data. The actual prediction error variances�
02
yi are greater than the optimal ones�2yi due to a quantization

noise feedback similar to that occuring in DPCM, and from (2.69), are approximately given by

NY
i=1

�02yi � det(R)

 
1 +D0(r)

NX
i=1

(
1

�i
� 1

�2yi
)

!
: (4.30)
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This traduces, for a given distortion, by an increase in rate approximately given by

r
[2 ]
(L) � r0 +

D0

2N ln 2

NX
i=1

�
1

�i
� 1

�2i

�
: (4.31)

As a conclusion, though the target distortion is reached in both cases, the unitary approach yields to lowest

asymptotic rate because of the noise feedback occuring in the causal approach. From the analysis of chapter

2 section 2.5.2 however, these effects are noticeable at low rates only; for moderate to high target rates

r
[2 ]
(L) � r

[2 ]
(V ) = r0: (4.32)

4.6.2 Algorithm without Sheppard’s correction

For the algorithm[1 ] now, one should compute

r
[1 ]
(T ) =

1

N

NX
i=1

H(yqi ) �
1

2N

NX
i=1

log2 2�e�
2
yi;1�log2�1 (4.33)

where, this time, the�2yi;1 are the variances of the transform signals obtained by using the transform based

on the asymptotic estimatebR[1 ]
1 � R + �2

1

12 I. In the unitary case, since a KLT ofR is also a KLT of

R+ �2
1

12 I, the�2yi;1 should again be equal to the�i. Using (4.26), we obtain

r
[1 ]
(V ) � r0 � D0

2N ln 2
trfR�1g: (4.34)

In the causal case, the noise feedback in (4.30) involves this time�1 = 12D1=2
1 , and computing (4.33)

yields

r
[1 ]
(L) � r

[2 ]
(L) �

D0

2N ln 2
trfR�1g: (4.35)

Thus, the effect of not using the Sheppard correction in the backward adaptive algorithms is, for both

transforms, to deplace the actual rate-distortionpoint (r0��r0,D0+�D0,R) from the target point (r0,D0,R)

by a rate

�r0 � D0

2N ln 2
tr fR�1g (4.36)

and from (4.26), by a distortion

�D0 � D2
0 trfR�1g=N: (4.37)

From (4.36) and (4.37), these mismatches vanish in the limit of high resolution systems (small target dis-

tortion/high target rates). Thus, the effects of the Sheppard’s correction become undetectable in the limit of

high rates, in which case the behaviour of the algorithms[1 ] and[2 ] become equivalent.
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4.7 Numerical Results

For the simulations, the data are real Gaussian i.i.d. vectors with covariance matrixR = HRAR1H
T .

RAR1 is the covariance matrix of an AR(1) process with� = 0:9. H is a diagonal matrix whoseith entry is

(N � i+ 1)1=3,N = 3. The target rate is3 b/s. Algorithms[1 ] and[2 ] were then implemented as detailed

in section 4.4. For each estimatebR[1 ;2 ], the corresponding stepsizeb�[1 ;2 ] was computed as in (4.10), and

the distortion was estimated byb�[1;2]2

12 . This experiment was repeated200 times.

� Figure 4.4 plots the averaged observed distortions for the KLT and the LDU versusK for algorith

[1 ] (without Sheppard’s correction). The theoretical model is given by (4.23), and the theoretic

asymptotic distortion by (4.26). As commented in the text, this distortion should be the same for both

transforms, because it close to Eb�[1 ]2

12 , and this adaptive stepsize, as computed by (4.10), is the same

for the KLT and the LDU, because they are unimodular. The target distortion is given by (4.6).

It can be observed that the estimated distortion converges to theoretical limit (4.26). The excess in

distortion is due to the convergence of the stepsize to�1, as given by (4.27), instead of to(12D0)
1
2 .

� Similar results are shown in figure 4.5 for the algorithm[2 ], where the Sheppard’s correction is

applied afterN1 = 60 vectors. The discontinuity is caused by the substraction ofb�[1 ]2

N1
=12 I from

the estimatebR[1 ]
N1

; this decreases the determinant ofbR[1 ]
N1

, and b�[2 ]2

N1+1 is consequently smaller thanb�[1 ]2

N1
. The theoretical model forD[2 ] vs K is given by (4.22). Discontinuity appears clearly after

N1 vectors.

� Figures 4.6 and 4.7 plot the results for the two algorithms for a target rate ofr0 = 4 b/s. It can

be observed that the behaviour of the two algorithms is similar because the resolution is sufficiently

high (the mismatch�D0 becomes negligible). At higher rates, the stepsizes converge to�0 and

the distortions toD0 for both algorithms. Comparing fig 4.7 and 4.5, the discontinuity due to the

Sheppard’s correction is decreased, because this correction vanishes in the limit of small distortions.

� Finally, the convergence of the two algorithms at a lower rate (2:3 b/s) is presented in figure 4.8 and

4.9 respectively. It can be observed that
b�[1;2]2

12 does not converge exactly to the theoretical bounds. A

this rate and beyond, the high resolution approximations assumed in the theoretical analyses become

less accurate. The largest mismatch for both algorithms occurs for the LDU; for this transform, the

noise feedback makes the quantization noise and the input the most correlated at low rates, so that the

perturbation deviates from a scaled diagonal identity. Moreover, the actual distortion may be different

from b�[1;2]2

12 for both transforms.

Summarizing these results, the proposed analysis of the convergence behaviour of E
b�[1;2]2

K

12 match ade-

quatly the actual convergence behaviour for rates higher than approximately2:5 bits per sample.
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Figure 4.4: Distortions for algorithm[1 ] vsK, r0 = 3 b/s.
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Figure 4.5: Distortions for algorithm[2 ] vsK, r0 = 3 b/s.
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4.8 Conclusions

Summarizing the framework, for sufficiently high rate, a particular point of the rate-distortion of a source

with given covariance is chosen by fixing either the desired rate, or distortion. For transform coders using

ECUQ, this is equivalent to choose a particular quantization stepsize. In backward adaptive transform cod-

ing, the decoder hasa priori no knowledge about the statistics of the source. Thus, the tracking without

side information must depend only on the previously decoded data.

Numerical results show that backward adaptive systems designed with a constant stepsize should converge

to the target rate-distortion point for both the unitary and the causal approaches. In the latter case, the

effects of the noise feedback caused by the closed loop implementation are noticeable at low rates only

(below approximately2 b/s).

Systems with fixed stepsizes may however result in uncontrolable variations of the actual rate-distortion

performance if the source statistics change. These variations may be accounted for by using algorithms

for which both the quantization stepsize and the transform are backward adaptive. In order to model the

statistical behaviour of these systems, we assumed a stationary Gaussian vectorial source, whose covari-

ance matrix is unknown. We showed that an algorithm using a Sheppard’s correction on the estimate of

the covariance matrix allows one to reach the target rate-distortion point; without this correction, there is a

mismatch between the actual and the target rate-distortion performance of the system. These mismatches

vanish for high resolution systems (small distortion/high rates). The proposed models matchaccurately the

convergence process for both algorithms and transforms at rates higher than approximately2:5 b/s.
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4.A Perturbation of the determinant (4.15)

To simplify the notations, let us denote byj:j the determinantdet(:), letA be a square nonsingular matrix

with elementsfaijg, and bA = A+ �A, where�A is a perturbation matrix whose elementsf�aijg are small

in comparison with thefaijg. In a first step, we computejA+ �Aj and take then care of the exponent
1
N .

One should now computejA+ �Aj which by the Taylor theorem may be approximated as

jA+ �Aj � jAj+ trf(�A)T @jAj
@A

g+ 1

2

X
i;j

�aij trf @2jAj
@aij@A

�ATg: (4.38)

The following properties [78] are now necessary to compute the second and third terms of (4.38). Denoting

byAij the cofactor ofaij,

(a) @jAj
@aij

= Aij

(b) @ ln jAj
@A

= (AT )�1 = 1
jAj

@jAj
@A

(c) AT (AT )�1 = I ) @AT

@aij
(AT )�1 +AT @(AT )�1

@aij
= 0) @(AT )�1

@aij
= �(AT )�1 @A

T

@aij
(AT )�1

(4.39)

The second term of expression (4.38) may now, using prop.(b), be written as

tr f(@A)T @jAj
@A

g = trf@AT jAj(AT )�1g: (4.40)

To compute the third term of (4.38), let us rewrite

@
@aij

�
@jAj
@A

�
= @(jAj(AT )�1)

@aij

=
@jAj
@aij| {z }
Aij

(AT )�1 + jAj@(A
T )�1

@aij| {z }
�(AT )�1 @AT

@aij
(AT )�1

= Aij(AT )�1 � jAj(AT )�1 @A
T

@aij
(AT )�1:

(4.41)

The third term be then be written as

1
2

X
i;j

�aij trf @2jAj
@aij@A

�ATg = 1
2

X
i;j

�aij trfAij(A
T )�1�ATg� 1
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X
i;j

�aij trfjAj(AT)�1
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2

X
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X
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X
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�aij(A
T )�1i;j trf(AT )�1�ATg � jAj

2
trf(AT )�1�AT (AT )�1�ATg

= jAj
2

�
trf�AA�1g�2 � jAj

2 trf�A(A)�1�A(A)�1g:
(4.42)

Hence, eq. (4.38) may be approximated as

jA+ �Aj � jAj

0BB@1 + tr f�AA�1g| {z }
�

+
1

2

�
( trf�AA�1g)2 � trf�A(A)�1�A(A)�1g�| {z }

�

1CCA : (4.43)
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Denoting by� and� the underbraced terms of (4.38), we obtain now forjA+ �Aj 1N

jA+ �Aj 1N � jAj 1N �1 + 1
N (�+ �) + 1

2N ( 1
N � 1)(�+ �)2

�
� jAj 1N �1 + 1

N�+ 1
N � + 1�N

2N2 (�2 + 2�� + �2)
�
;

(4.44)

where we neglect the terms�� and�2 for which�A is involved at a power superior than2. We obtain

jA+ �Aj 1N � jAj 1N
�
h
1+ 1

N trf�AA�1g+( 1
2N )

�
( tr f�AA�1g)2� trf�A(A)�1�A(A)�1g�+ 1�N

2N2

�
trf�AA�1g�2i

� jAj 1N
h
1 + 1

N
f tr �AA�1g+ 1

2N2

�
tr f�AA�1g�2 � 1

2N
trf�AA�1�AA�1g

i
:

(4.45)

SettingA = R, �A = �R
[2 ]
K , and taking expectation of (4.45) establishes the expression (4.11).

4.B Derivation of (4.22)

The three terms involving expectations in (4.15) will be computed separately. The following properties will

be used, see for example [78]:

(A
 B)(C 
D) = AC 
BD; (4.46)

tr fABg = vecT (BT )vec(A); (4.47)

tr fABCg = vecT (AT )(C 
 I)vec(B); (4.48)

trfA
 Bg = trfAg trfBg; (4.49)

vec(ABC) = (CT 
 A)vec(B) = (I 
 AB)vecC: (4.50)

� First term of (4.15): Using the definition of�RK;det and�RK;sto of (4.13) and the statistics of the

”one-shot” estimates of section 3.A, this term becomes

1
N E trf�R[2 ]

K R�1g = 1
N

0B@ trf�R[2 ]
K;detR

�1g+ E trf�R[2 ]
K;stoR

�1g| {z }
0

1CA
� 1

N

�
1
K
�tot �D[2 ](K)

�
trfR�1g;

(4.51)

with �tot =
N1X

i=N+1

D[1 ](i) +
KX

i=N1+1

D[2 ](i).



106 Chapter 4 Rate-Distortion Analysis of Practical Backward Adaptive Transform Coding Schemes

� Second term of (4.15): This is

1
2N2 E ( trf�R[2 ]

K R�1g)2 = 1
2N2 E ( trfR�1

2�R
[2 ]
K R�

1
2 g)2

� 1
2N2 (vecTR�

1
2 )(R�

1
2 
 I)E vec�R[2 ]

K vecT�R[2 ]
K| {z }

E
�

vec�R[2 ]
K;det + vec�R[2 ]

K;sto

��
vecT�R[2 ]

K;det+ vecT�R[2 ]
K;sto

�
vec�R[2 ]

K;detvecT�R[2 ]
K;det| {z }

a1

+0 + 0 + E vec�R[2 ]
K;stovecT�R[2 ]

K;sto| {z }
b1

(R�
1
2 
 I)vecR�

1
2

(4.52)

We first compute separately the terms nameda1 andb1.

– Terma1: Since�R[2 ]
K;det is a diagonal matrix, its contribution is the square of that involved in

the first term of (4.51), weighted by12N2 instead of 1N .

– Termb1: Assuming small perturbation due to quantization and estimation noise, expanding the

term�R
[2 ]
K;sto gives, considering the estimates�R[it1;2];q as independent

b1 = E vec�R[2 ]
K;stovecT�R[2 ]

K;sto

� 1
2N2

0BBBB@
NX
i=1

vec�R(1)
i vecT�R(1)

i| {z }
a

+
N1X

i=N+1

vec�Rq[1 ](1)
i vecT�Rq[1 ](1)

i| {z }
b

+
KX

i=N1+1

vec�Rq[2 ](1)
i vecT�Rq[2 ](1)

i| {z }
c

1CCCCA ;

(4.53)

where the term E(�D[2 ]
K I)2vec(I)(vecI)T is neglected for the purpose if this first order pertur-

bation analysis, at high resolution, and assuming sufficiently highK. Applying now the result

(4.17) to the one shot estimates of their corresponding matrices yields

a =
NX
i=1

vec�R(1)
i vecT�R(1)

i

� 2NR
R

b =

N1X
i=N+1

vec�Rq[1 ](1)
i vecT�Rq[1 ](1)

i

� 2(N1 � N )R
R+ 2
N1X

i=N+1

D
[1 ]
i (R
 I + I 
R)

c =
KX

i=N1+1

vec�Rq[2 ](1)
i vecT�Rq[2 ](1)

i

� 2(K �N1)R
 R+ 2
KX

i=N+1+1

D
[2 ]
i (R 
 I + I 
 R)

(4.54)

Hence

1

K2
(a+ b+ c) � 1

K2

242KR
 R| {z }
A

+

0@R
 I| {z }
B

+ I 
 R| {z }
C

1A (2�tot)

35 ; (4.55)
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and using the underbraced termsA, B andC, the termb1 may be written as

b1 � 1

2K2N2
(vecTR�

1
2 )(R�

1
2 
 I)(A +B +C)(R�

1
2 
 I)vecR�

1
2 : (4.56)

� Contribution ofA

2K
2K2N2 (vecTR�

1
2 ) (R�

1
2 
 I) (R 
R)(R�

1
2 
 I)| {z }

R�
1
2 
R| {z }

I
R

vecR�
1
2

= 1
KN2 vecTR�

1
2 (I 
R)vecR�

1
2

= 1
KN2 trfR� 1

2RR�
1
2 g

= 1
KN

(4.57)

� Contribution ofB

2�tot
2K2N2 vecTR�

1
2 (R�

1
2 
 I)(R 
 I)(R�

1
2 
 I)vec(R�

1
2 )

= �tot
K2N2 vecTR�

1
2 IN2vec(R�

1
2

= �tot
K2N2 trfR�1g;

(4.58)

whereIN2 denotes theN � N Identity matrix.

� Contribution ofC

�tot
K2N2 vecTR�

1
2 (R�

1
2 
 I)(I 
R)(R�

1
2 
 I)vec(R�

1
2 )

= �tot
K2N2 trfR�1g;

(4.59)

which is the same contribution asB.

The termb1 may thus be approximated as

b1 � 1

KN

�
1 +

2�tot trfR�1g
N

�
: (4.60)

Grouping the termsa1 andb1 yields

1

2N2
E( tr f�R[2 ]

K R�1g)2 � 1

KN
+ trfR�1g( 2�tot

K2N2
) +

�
trfR�1g�2
2N2

"�
�tot
K

�D[2 ](K)

�2
#
;

(4.61)

which is the expression (4.20).
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� Third term of (4.15): LetG beR�
1
2�R

[2 ]
K R�

1
2 . Then we have vecG = (R�

1
2 
 R�

1
2 )vec�R[2 ]

K ,

and we get

� 1
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Etrf�R[2 ]
K R�1�R[2 ]

K R�1g = E � 1
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2 
R�
1
2 )a2(R

� 1
2 
 R�

1
2 )g

� 1
2N

E trf(R� 1
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2 )b2(R

� 1
2 
 R�

1
2 )g:

(4.62)

The contribution of these terms is computed separately:

– Contribution of the first term in (4.62)

� 1
2N E trf(R� 1

2 
 R�
1
2 )a2(R�

1
2 
R�

1
2 )

� 1
2N ( 1

K�tot �D
[2 ]
K )2 trf(R� 1

2 
 R�
1
2 )(R�

1
2 
 R�

1
2 )| {z }

tr fR�1
R�1g�( tr fR�1g)2

g: (4.63)

– Contribution of the second term in (4.62)

� 1
2N E trf(R� 1

2 
R�
1
2 )b2(R�

1
2 
R�

1
2 )

= � 1
2N trf(R� 1

2 
 R�
1
2 ) 1

K2 [A + (B + C)2�tot] (R�
1
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 R�

1
2 )g;

(4.64)

where the termsA, B andC have been define in (4.55). Their respective contribution are

A : � 1
NK trf(R� 1

2 
 R�
1
2 )(R
 R)(R�

1
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 R�

1
2 )g=� 1

NK tr f(R
R)�
1
2 (R
 R)

1
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IN2

g=�N
K ;

B : � 1
NK2�tot trf(R� 1
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R�
1
2 )(R
 I)(R�

1
2 
R�

1
2 )| {z }

tr fI
R�1=N trR�1g

g = ��tot trR�1

K2 ;

C : � 1
NK2�tot tr f(R�1

2 
R�
1
2 )(I 
 R)(R�

1
2 
R�

1
2 )g = ��tot trR�1

K2 :

(4.65)

By regrouping the contributions of the terms in (4.63) and (4.65) we get for the third term in (4.15)

� 1

2N
E trf�R[2 ]

K R�1�R[2 ]
K R�1� N

K
� 2�tot trfR�1g

K2
� ( trfR�1g)2

2N

�
(
1

K
�tot �D

[2 ]
K )2

�
:

(4.66)

Grouping finally the terms of (4.51), (4.61) and (4.66), and by retaining only the first order perturbation

terms (linear inD) yields the distortion (4.22).



Chapter 5

Generalized MIMO Prediction

For vectorial sources presenting memory, we show in this chapter that the optimal causal decorrelating

scheme can be described by means of a prediction matrix whose entries are optimal prediction filters. This

decorrelating procedure leads to the notion of “generalized MIMO prediction”, in which a certain degree of

non causality may be allowed for the off-diagonal prediction filters. In the case of non causal intersignal fil-

ters, the optimal MIMO predictor is still lower triangular, and hence “causal”, in a wider sense. The notion

of causality is generalized in the sense that causality between channels becomes processing the channels

in a certain order. We then show that two previously introduced transformations, in the context of subband

coding, appear as special cases of this generalized MIMO prediction. As the previously described causal

LDU transform, realistic coding implementations of the latter two approaches should involve closed loop

structures for the prediction. We show that though these approaches are equivalent in the limit of high rates,

triangular MIMO prediction may be more efficient than its classical counterpart. In this case, we show that

the optimal ordering of the scalar signals (w.r.t. the coding performance at high rate) corresponds to the

case where they get decorrelated by order of decreasing variance. Finally, we present some applications of

these results to wideband speech coding.

109
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5.1 Introduction

In the transform coding framework, previous chapters showed that the optimal causal transform is a lower

triangular and unit diagonal matrix, which corresponds to a (Lower-Diagonal-Upper) factorization of the

autocorrelation matrix of the signal. The rows of this matrix are optimal prediction filters for the corre-

sponding component of the vector to be coded, and the transformed coefficients are the optimal prediction

errors. As in classical (A)DPCM, the prediction should be implemented in closed loop around the quantiz-

ers, that is, using the previously quantized samples. As in (A)DPCM also, we showed that a quantization

noise feedback occurs for which closed form expressions can be obtained. In this chapter, we apply this

causal decorrelation approach to the optimal coding of vectorial signals, as for example those obtained by

subband filtering stereo, or multichannel audio signals. In this case, the vectorial sourcex may present both

temporal redundancies (between the samplesxk at different time instants) and spatial redundancies (be-

tween the scalar sourcesxi). Thus, instantaneous decorrelation such as that performed by a decorrelating

matrix (KLT or LDU) is not optimal, even for Gaussian sources; further decorrelation may be achieved by

exploiting the temporal correlation structure of the vectorial source. Optimal coding of vectorial signals will

refers to decorrelating strategies which remove both spatial and temporal dependencies; the source model

is Gaussian. As in the analysis of chapter 2, the coding gainGT will be the criterion of merit which allows

one to evaluate the coding performance of a transformationT . It corresponds to the factor by which the

distortion is reduced because ofT ,

GT =
Ekexk2I
Ekeyk2T : (5.1)

For the causal decorrelating approach introduced at the begining of this thesis, the analysis of the coding

is again made for two cases: neglecting the effects of the noise feedback in a first step, and accounting for

them in a second step.

By considering vectors of infinite size, we show in section 5.2 that one can get frequential expressions for

the coding gains. In this case, the optimal causal decorrelating scheme can be described by means of a

prediction matrix whose entries are optimal prediction filters. The diagonal filters are scalar intrasignal

prediction filters. The off-diagonal predictors are Wiener filters performing the intersignal decorrelation.

This decorrelating procedure leads in section 5.3 to the notion of ”generalized MIMO prediction”, in which

a certain degree of non causality may be allowed for the off-diagonal prediction filters. In the case of

non causal intersignal filters, the optimal MIMO predictor is still lower triangular, and hence“causal”, in a

wider sense. The notion of causality is generalized : the causality between channels becomes processing the

channels in a certain order. Some signals may be coded using the coded/decoded versions of the “previous”

signals. We also show in section 5.3 that two previously introduced decorrelation approaches are actually

special cases of this so-called generalized MIMO prediction.

An interesting (and empiricial) result of chapter 2 is that if the quantization noise feedback is taken into

account, the efficiency of the interband decorrelation depends on the order in which the decorrelation be-

tween the signals is processed. We present in the fourth section of this chapter a new theorem concerning
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the optimal ordering of the signals for a triangular“causal” MIMO predictor, namely the ordering which

minimizes the quantization noise feedback.

The fifth part of this chapter deals with optimal triangular MIMO prediction with finite prediction orders.

Despite the non causality in the classical sense of this approach, the optimal triangular MIMO prediction

is well suited for frame based audio coding, which allows a certain degree of non causality in the coding

procedure. When FIR filters are used to perform the intersignal decorrelation, we will show that the optimal

positioning of a finite number of taps is fairly straightforward.

An application of the proposed coding procedure is presented in the framework of wideband speech coding

in section 5.5. Finally, the last section summarizes the results of this chapter and draws some conclusions.

5.2 Optimal Causal Coding of Vectorial Signals

Let us consider a Gaussian vector sourcex with covariance matrixRxx. Each sample vectorxk of x may be

transformed by means of an optimal causal transformL, and the resulting transformyi components scalar

quantized and further entropy coded. In this framework, the optimal causal transform is of the form

L =

26666664
1

?
... 0

...
...

...

? � � � ? 1

37777775 ;

where the? represent optimal prediction coefficients. In other words,L is such that

LRxxL
T = Ryy = diagf�2y1 � � ��2yNg; (5.2)

wherediagfag represent the diagonal matrix with diagonala. Since each prediction erroryi is orthogonal

to the subspaces generated by thex1:i�1, the transform coefficientsyi are orthogonal, andRyy is diagonal.

It follows that

Rxx = L�1RyyL
�T ; (5.3)

which represents the LDU factorization ofRxx.

5.2.1 Case of Negligible Feedback

Let us now consider the case in which each vectorXk to be coded is composed of a succession of samples

of a stationary vectorial signalxk = [x1;k � � �xM;k]T , Xk = [xT0 xT1 � � �xTk ]T . The transform vector

Y k = LXk = [yT
0
yT
1
� � �yT

k
]T with y

k
= [y1;k � � �yM;k]

T . For these vectorial signals, it is interesting to

consider the limiting case in which the dimensionk goes to infinity. In this case, the optimal transformL

will lead to a signaly
k
, asymptotically stationary too, sinceL will become block Toeplitz (with blocks of
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sizeM �M ). In this case, the coding gain (5.1) becomes

G
(0)
L = lim

k!1

 
det
�

diag(RXkXk
)
�

det
�

diag(LRXkXk
LT )

�! 1
Mk

=

 
det
�

diag(Rxkxk
)
�

det[ diag(Ry
k
y
k
)]

! 1
M

=

0BBBB@
MY
i=1

�2xi

MY
i=1

�2yi

1CCCCA
1
M

(5.4)

whereyi;k is the optimal prediction error of infinite order ofxi;k, based on
�
x1:N;�1:k�1; x1:i�1;k

	
1.

We shall continue to denote byLi (now of infinite dimension) the vector of the corresponding prediction

coefficients.

There exists a frequency domain expression for
MY
i=1

�2yi. Sincey is a totally decorrelated signal, its power

spectral density matrix can be written as

Syy(f) = Ryy = diagf�2y1 ; : : : ; �2yMg: (5.5)

If we now describe the prediction operation in the frequency domain, the prediction error should be written

asY (f) = L(f)X (f), whereY (f) andX(f) denote the Fourier transforms ofy
k

andxk. TheM �M

matrixL(f) denotes the Fourier transform of the prediction error filter. Hence we have

Syy = L(f)Sxx(f)L
H (�f); (5.6)

whereH denotes the Hermitian transposition, andLH(�f) = LT (f) since we consider real signals. Thus,

we can write

MY
i=1

�2yi = e

R 1
2
� 1

2

ln[det(Syy(f))]df

= e

R 1
2
� 1

2

fln[det(Sxx(f))]+2 ln[det(L(f))]gdf

= e

R 1
2
� 1

2

ln[det(Sxx(f))] df

(5.7)

where we used the following property (due to the monic and causal diagonal prediction filters, see Appendix

5.A) Z 1
2

� 1
2

lndet[L(f)] df = 0: (5.8)

The coding gain with negligible feedback (or infinite resolution) is thus

G
(0)
L =

0BBBB@
MY
i=1

�2xi

e

R 1
2
� 1
2

ln[det(Sxx(f))] df

1CCCCA
1
M

: (5.9)

1The notationxi:j;k:K denotes the set of samples of the componentsxi; xi+1 � � �xj�1; xj of x at instantsk; k+1 � � �K�1; K.



5.3 Linear Prediction of Subband Signals 113

5.2.2 Noise Feedback Effects on the Coding Gain

If we now consider the effects of the quantization in the closed loop an analysis similar to that of 2.5.2 can

be made. The gainG(1)
L can then be expressed as

G
(1)
L � lim

k!1

 
det[ diag(RXkXk

)]

det[ diag(LRXkXk
LT + �2qLL

T
)]

! 1
Mk

�

0BBBB@
MY
i=1

�2xi

MY
i=1

[�2yi + �2q (kLik2 � 1)]

1CCCCA
1
M

; (5.10)

which leads to

G
(1)
L � G

(0)
L

 
1� �2q

1

M

MX
i=1

kLik2 � 1

�2yi

!
; (5.11)

whereL and�2yi refer to non perturbed quantities.

As in the ideal case, one can derive an expression forG
(1)
L in the frequency domain. Under the high resolu-

tion assumption, the quantization errors are decorrelated. Hence we can writeSeyey(f) asdiagf�2ey1; : : : ; �2eyMg,
or, equivalently, as�2q IM , in the case of an optimal bit assignment. Using a similar analysis as in section

2.5.2, the coding gain taking into account the perturbation effects up to first order may be written as (see

5.B)

G
(1)
L � G

(0)
L

"
1 +

�2q
M

 
�
Z 1

2

� 1
2

tr
�
S�1xx (f)

�
df +

MX
i=1

1

�2yi

!#
(5.12)

where, comparing with equation (5.11), the term
R 1

2

� 1
2

tr fS�1xx (f)gdf corresponds to
MX
i=1

kLik2
�2yi

. Thus,

maximizingG(1)L entails maximizing the sum of the inverses of the prediction error variances. This

results was obtained in the transform coding framework of chapter 2 also. Empirical evidence was given

that maximizingG(1)L entails processing the signals by order of decreasing variance. This will be proven

in section 5.4.

5.3 Linear Prediction of Subband Signals

In the case of subband coding, in which the componentsxi of the vectorial signalx correspond to the

subband signals, we will now show that two previously introduced transformations for maximizing the

coding gain are special cases of a causal unit diagonal transformation. Moreover, the equivalence of these

transforms in the ideal case (consideringG
(0)
TC) is a consequence of the LDU nature of the optimal transfor-

mation.

5.3.1 Subband Coding

Subband coding schemes decompose a source data stream into a number of subsignals,each having a

passband equal to a fraction of the bandwidth of the original signal, and the subsignals collectively cover
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the entire bandwidth of the original signal. Because a reduction in bandwidth of these subsignals, they are

typically downsampled so that an efficient representation of the original source data may be obtained. A

bit allocation procedure is then performed that assigns a bit rate to each subsignal subject to an overall bit

rate constraint, and finally each subsignal is encodedindependentlyof the other subsignals. Many subband

systems use filterbanks, whose filters are designed to satisfy a perfect reconstruction property, see e.g. [79].

In the example of figure 5.1, the subband signals obtained from downsampling and filtering some process

x are further independently coded. Perfect reconstruction is assumed in absence of quantization.

#M Q0

z�1

Q1

z�1

#M

#M

z�1

...

z�1

...
...

x

x̂

"M

"M

"M

R(Z)E(Z)

x0

x1

xM
QM

Figure 5.1: Polyphase representation of a filter bank.

Several results exist which describe the coding efficiency of this structure. For ideal filters with equal

bandwidth (non overlapping brickwall frequency responses), the coding gain is asymptotically the same,

w.r.t. the number of subbands, as that of transform coding2. This is not the case of other subband decom-

positions, which may be suboptimal even for infinite number of subbands (e.g. [80]). Various performance

comparisons with TC and DPCM, and applications to images and audio coding may be found in [79, 14, 11].

5.3.2 Linear Prediction of Subband Signals

If now a prediction stage is applied to the subband signals before quantization, a question of interest is to

know whether, for realizable filterbanks, this structure is optimal (in the sense that it totally decorrelates the

input).

For finite prediction order on the one hand, the subband approach has been shown to be more efficient in the

sense that it minimizes the combined prediction errors of the subbands w.r.t. that of the fullband for a given

order3. This was shown in [81] for Gaussian signals and ideal analysis and synthesis filters. Similarly, for

Gaussian AR sources, thepth-order entropy of the combined subbands is lower for subband signals than

2Note that the coding gain may decrease by increasing this number for subband coding, whereas this is not the case for TC [79].
3In this sense, the resultingp� th order is called ”super-optimal” [81].
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that of the fullband signal, for any finitep. These results are confirmed for lossless coding of audio signals,

QMF banks, finite linear prediction order and context based non linear prediction in [82]. (Interestingly,

the problem of attributing the optimal orderpi subject to the constraint that
NX
i=1

= p resembles that of

allocating the bits for a tranform coder, because the prediction error variances are non increasing variances

of the prediction order, just as the distortions with the bits.)

For optimal prediction on the other hand, Fischer showed in [83] that, except for special cases4, inde-

pendently coding the subbandsxi instead of the fullband signalx is, from a rate distortion viewpoint,

suboptimal. The analysis assumes realizable perfect reconstruction QMF filters [84], and wide sense sta-

tionary Gaussian processes. The result is drawn from the high resolution rate-distortion function of the

system, which depends on the variances of the subband signals, which in turn can be analytically derived

from the power spectrum densitiesSxixi(f) obtained for the particular considered filters. The geometric

mean of these variances is greater than the prediction error of the fullband signal because some interchannel

correlation remain, which can not be further removed. Two approaches aimed of totally decorrelating the

subband signals in order to maximize the coding gain where then proposed.

5.3.3 Two Causal Decorrelation Approaches Compared

On the one hand, Maison and Vanderdorpe [85] introduced in the classical subband coding scheme a ma-

tricial filtering transformationT (z), which transforms the vectorial signalxk = [x1;k:::xM;k]T into the

vectorial signaly
k
= T (q)xk (whereq is the unit delay operator). This approach corresponds to the causal

MIMO prediction :T (z) =
1X
k=0

Tkz
�k, whereT0 is lower triangular and unit diagonal. The MIMO predic-

tor is assumed to be of infinite order. In order to keep the structure causal, each sample of the subbandi is

predicted by means of the past samples of all subbands, and by means of the present samples of lower index

only. In the caseM = 2, the MIMO predictor is made of two intraband scalar predictors and two interband

scalar predictors. It was shown in [85] that such a transformation leads to an optimal coding gainG
(0)
TC,

because the components of the resulting process are totally decorrelated. For AR(p) and finite prediction

order, this approach may also outperform fullband prediction for some orders smaller thanp [86].

On the other hand, Wong used the following triangular transform [87]: in the caseM = 2,

T (z) =

24 1 0

0 T22(z)

3524 1 0

W21(z) 1

3524 T11(z) 0

0 1

35

=

24 T11(z) 0

T22(z)W21(z)T11(z) T22(z)

35 :

(5.13)

4e.g.if the filters ofE(z) are ideal (brickwall), or if the p.s.d.Sxx(f) is symmetric aboutf = 1
4

in the case of two subbands.
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The scalar prediction error filterT11(z) whitensx1;k and yieldsy1;k, W21(z) is a (noncausal) Wiener

filter estimatingx2;k from y1;k, andT22(z) whitens the resulting error signal to yieldy2;k. This transform

hence uses only one interband predictorW21(z) . The loss in degrees of freedom due to the loss of one

interband predictor (T12 in Maison and Vandendorpe’s transformation) is balanced by the non causality

of this remaining unique interband predictor. Using a similar analysis as in [83], Wong showed that the

suboptimality due to the non ideal subband filters vanishes, or equivalently, that the subband redundancy is

removed from the coding procedure, assuming high rate and Gaussianity for all the signals to be quantized.

We will now show that these two transformations can both be expressed as lower triangular unit diagonal

transforms, simply by reorganizing the samples in the vector to be coded. Let us write these transformations

in the case of two subbands, and for a finite frame of signal :

� In Maison and Vandendorpe’s approach,LXk can be witten as

L1Xk =

2
66666666666666666664

1

?
.. . 0

...
.. .

. . .

? � � � ? 1

? � � � � � � ? 1

...
... ?

.. .
...

...
...

.. .
. ..

? � � � � � � ? ? � � � ? 1

3
77777777777777777775

2
666666666666666666666664

x1;0

x2;0

��

x1;1

x2;1

��

...

��

x1;k

x2;k

3
777777777777777777777775

=

2
666666666666666666666664

y1;0

y2;0

��

y1;1

y2;1

��

...

��

y1;k

y2;k

3
777777777777777777777775

= Y k

� In Wong’s approach,LPXk can be written as

L2PXk =

2
66666666666666666664

1

?
. . . 0

...
. . .

. ..

? � � � ? 1

? � � � � � � ? 1

...
... ?

. ..
...

...
...

. ..
.. .

? � � � � � � ? ? � � � ? 1

3
77777777777777777775

2
6666666666666666666664

x1;0

x1;1

...

x1;k

��

x2;0

x2;1

...

x2;k

3
7777777777777777777775

=

2
6666666666666666666664

y1;0

y1;1

...

y1;k

��

y2;0

y2;1

...

y2;k

3
7777777777777777777775

= PY k

whereP is a permutation matrix. Hence, by reorganizing the vectorial signal inside the vectorsXk

andY k, the transformation is again lower triangular and unit diagonal.
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� Let us note that Maison and Vandendorpe’s approach can also be described by the following trans-

formation

LPXk =

2
66666666666666666664

1 0

?
. . . 0 ?

. . . 0

...
. . .

. ..
...

. . .
.. .

? � � � ? 1 ? � � � ? 0

? 1

...
. . . 0 ?

. . . 0

...
. . .

. ..
...

.. .

? � � � � � � ? ? � � � ? 1

3
77777777777777777775

2
6666666666666666666664

x1;0

x1;1

...

x1;k

��

x2;0

x2;1

...

x2;k

3
7777777777777777777775

=

2
6666666666666666666664

y1;0

y1;1

...

y1;k

��

y2;0

y2;1

...

y2;k

3
7777777777777777777775

= PY k:

The degrees of freedom corresponding to the triangular block (1,2) in Wong’s approach have been

transfered to the upper triangular block (2,1) in Maison and Vandendorpe’s approach.

To precise this, let us consider a first causal transformY 1 = L1X with RY 1Y 1
= L1RX1X1

LT1 =

D1. Consider now another causal transformationPY 2 = L2 PX or Y 2 = PT L2 PX with RY 2Y 2
=

(PT L2P)RXX (PT L2 P)T = D2. Then

det(D2) = det(RXX ) = det(D1) (5.14)

The product of the variances of the subband signal is constant, no matter which causal transform we use, and

as in chapter 2, the coding gainG(0)
TC is indeed invariant by permutation. Each permutation leads to another

causal decorrelation of the components of one vector. For a stationary vectorial signalx, this means that

there exists more that one way to decorrelate the scalar signals which compose this signal. The examples

of Wong, and Maison and Vandendorpe present in fact (forM = 2) two extreme cases of an infinity of

variants, which are parametrized by the degree of (non) causality (in the classical sense) of the interband

predictor(s).

5.3.4 Influence of the Noise Feedback

Let us now compare the approaches of Wong, and Maison and Vandendorpe in the presence of quantization.

Prediction should be based on quantized data, which from section 5.2.2, perturbs the coding gain5. The

expression (5.11) shows that in order to maximize the gainG
(1)
L , one should maximize the sum of the

inverses of the optimal prediction error variances,
MX
i=1

1

�2yi
. Consider the caseM = 2: let us assume,

without loss of generality, that the variances�2xi composing the vectorial signal are placed in decreasing

order. In this case, one should minimize�2y2 . This variance will be minimized if the largest number of

5In order to simulate a realistic source coding framework, one numerical result based on quantized data was presented in [86];

Wong [87] explicitly made the assumption that the power spectrum densities of the input of the crossband predictor and that of the

corresponding unquantized signal are equal.
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samples are used to predictx2;k. The triangular approach of Wong should therefore be the best one, since it

will lead to a smaller variance for�2y2 . This difference between the two transformations appears only when

the prediction is based on a quantized signal, but this is the way in which such decorrelating transforms will

be implemented6. The following section deals with the generalN case.

5.4 Optimal Ordering of the Subsignals for Closed Loop Triangular

MIMO Prediction

Very few results, except from [88, 89], seem to concern an optimal ordering w.r.t. to the order of the decorre-

lation in prediction. These problems were presented in the framework of lossy [89] and lossless [88] coding

of multispectral images; they are however different from those of investigated in our work. In [88, 89], one

signal, orband(images of the same spectral band) is chosen as the best predictor (anchorband) for the other

signals. This choice of a single anchor band is due to the constraints on the algorithmic complexity, which

must be kept low in order to facilitate on-board implementation of the coding sheme in the spacecraft. In a

second version of the algorithms proposed in these works,each previously compressed/decompressed band

may be chosen as a possible predictor for the bands remaining to be coded, which poses the problem of

an optimal ordering; computationnaly efficient solutions are then found using graphs theory. In the present

work now, each remaining signal may be coded byall the previously coded/decoded signals.

ComparingG(1)
L in (5.11) with the infinite resolution case (5.9), the different variances produced by the

different decorrelation approaches induce now different sums. Hence, the coding gainG
(1)
TC depends on

a carefull choice of the decorrelation procedure. In the caseM = 2, maximizing the coding gain entails

making the variances as different as possible. Thus, the subsignal of greater variance should be processed

first, and all the degrees of freedom of the interband decorrelator should be used to decrease the variance

of the subsignal of lower variance. The triangular MIMO predictor is in this case superior to the classical

MIMO predictor, sinceW12 defined above is the most efficient interband predictor. Now forM > 2, the

following theorem holds.

Theorem:Optimal ordering of the subsignals for triangular MIMO prediction . The optimal order-

ing of the subsignals in a stationaryvectorial signal for maximizing the high-resolution coding gainG(1)
TC

of vectorial DPCM with triangular MIMO prediction is obtained by processing the signals in order of de-

creasing variance.

To show the theorem, consider a recursive argument. First of all, the theorem is clearly true for the case

of two channels. Now considern� 1 channels that we have ordered in order of decreasing variance. When

we add anth channel, the question is in which position it should be put w.r.t. the other channels. Assume

in a first scenario that we put the channel in a position such that alln channels are in order of decreasing

6Another improvement due to Wong’s approach appears when the filters are forced to have a finite length, see section 5.5.
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variance. Assume in a second scenario that we insert thenth channel at another position. Then we can

evolve from the first to the second scenario by a sequence of permutations of two consecutive channels.

In one such permutation operation, assume that the channels involved in the permutation are in positionsi

andi+ 1. Then the channels1; : : : ; i� 1 are unaffected in the triangular MIMO prediction approach. The

channelsi+2; : : : ; n are also unaffected by the order in which channelsi andi+1 are put since in any case

they get orthogonalized w.r.t. the signals in those channels. So the only effect of the permutation between

channelsi andi + 1 is on the prediction error variances of those channelsi andi + 1. In other words we

are reduced to the two channel case, in which case we know that we should put the channels in order of

decreasing variance. So, as we move from scenario one to scenario two by a succession of permutations of

two consecutive channels, we decrease the coding gain in each permutation. Hence, the optimal ordering is

in order of decreasing variance.

The (closed loop) triangular MIMO predictor can be seen as a generalization to the vectorial case of the

classical (scalar) ADPCM coding technique, see figure 5.2.
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Figure 5.2: Encoder of the triangular MIMO predictor (“Vectorial DPCM”) forM = 2. The bitstreamsi1

andi2 are transmitted to the decoder. Prediction ofx2 is non causal w.r.txq1 (throughL21(z)), and causal

w.r.t. xq2 (throughL22(z)).

In [55], this technique was therefore named ”VDPCM”, for vectorial DPCM. A possible confusion may
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however arise withpredictive quantization[65], which uses vector prediction and vector quantization. We

will therefore not retain this term in this thesis. The original VDPCM technique was first introduced by

Cuperman and Gersho in [90], and was referred to as “vector DPCM”in [91], and as “differential vector

quantization” (DVQ) in [92]. The coding technique introduced in the present work is different from these

approaches because scalar, instead of vector quantizers are used to quantize the prediction residuals. More-

over, practical implementation of this scheme suggests closed loop implementation of the prediction, which

in turn suggests a sequential (instead of block) procedure.

5.5 Optimal Triangular MIMO Prediction

with Finite Prediction Orders

So far we have assumed that all filters involved are of infinite length. In the classical MIMO linear predic-

tion, a finite number of prediction coefficients is typically used in a way that is a straightforward extension

from the scalar case. Namely, the MIMO prediction order is limited to a finite order, resulting in a desired

number of prediction coefficients (from the point of view of complexity or performance or both). In the

triangular predictor case, it is more straightforward to assign a finite number of coefficients in an optimal

fashion. The diagonal terms in the MIMO prediction filter correspond to classical scalar predictors, so

the number of assigned coefficients will simply determine the prediction order as usual. However, for the

non-causal off-diagonal terms, the filters are Wiener filters of unconstrained structure, except that we wish

to use a finite number of taps. The problem then becomes the optimal positioning of those taps. In what

follows, we shall assume that the diagonal scalar predictors are of sufficient order for the whitened versions

of the signals to be considered as effectively white. In that case, the design of the off-diagonal terms in a

row of the MIMO prediction filter corresponds to an issue of estimating a signalx on the basis of uncor-

related variablesyi. Due to the uncorrelatedness of theyi, the estimation in terms of theyi decouples and

the contribution of eachyi can be considered separately. In particular, the variance of the estimation error

becomes

r~x~x = rxx �
X
i

(rxyi)
2

ryiyi
(5.15)

whererxy is the correlation. So, those variablesyi should be used for which the ratio
(rxyi)

2

ryiyi
is the largest.

Within a subset of theyi that are samples of a certain whitened signal,ryiyi is independent ofi due to

stationarity and hence it suffices to use those samplesyi for which jrxyij is largest. The optimal positioning

of a finite number of taps in the off-diagonal filters is therefore fairly straightforward.
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5.6 MIMO Prediction of Audio Signals in the Frequency Domain

The several channels of a multichannel audio data stream may be stronlgy dependent, especially for record-

ings of an audio scene by multpiple microphones. For these audio signals, it has been experimentaly proved

that coding schemes which remove the interchannel redundancy can considerably increase the coding ef-

ficiency [93]. This redundancy may be removed either in the temporal or in the frequency domain. In the

latter case, the transform coefficients may be obtained by means of DFT, DCT, etc, applied to blocks of

N samples of the scalar signalsxi;k:k+N�1. In this case, the transform coefficients belonging to the same

channel are (almost) uncorrelated7. Thus, the interchannel redundancy removal can be performed by means

of a decorrelating transfom (such as KLT or LDU) at each frequency band. Such an approach was proposed

in [93, 95], where the frequency decorrelation was performed via KLTs, and added as a post processing

stage in the core of a perceptual MPEG audio codec. This approach is attractive because it avoids the prob-

lem of finding the delay to which the channel are the most correlated8. For this reason, better compression

was achieved by decorrelating the channels in the frequency than in the temporal domain in [95].

We will not pursue further this approach here; we should however note that, in the particular case of per-

ceptual audio coders, the interchannel decorrelation performed in the temporal domain by means of Wiener

filters should be carefully designed. The bitrate reduction caused by the decorrelation at low frequencies

may be compensated by an excess bitrate due to the noise introduced by the predictors at higher frequencies;

this may make the components at these frequencies more greedy in bits for the corresponding quantization

noise to be maintained under the perceptual masking threshold [97].

5.7 Applications to Wideband Speech Coding

In the third generation mobile networks, the encoded signal band in wideband speech coders is 7kHz instead

of the usual 3.4kHz. One way to construct such a coder is to filter and split the input signal into two

subbands, which allows one to use an existing narrowband coder for the lowest subband (x1;k, see figure

5.3.
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Figure 5.3: Triangular MIMO prediction applied to WideBand Speech Coding.

7This is only asymptotically true in the framelengthN ; see [94] for bounds on the coding gain of the DFT.
8Negligible instantaneous correlation exist in stereo signals, even in those generated by the recording of the same sonore source

[96].
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MIMO prediction may be applied in such a scheme to decorrelate the subband componentsx1;k and

x2;k. In the case of an optimal bit assignment, Wong’s strategy described above should be applied: since

the higher subband has on the average a lower variance than the lower subband, this approach should be

the best decorrelating predictive transform. Note that, despite the non causality in the classical sense of this

approach, it is well suited for frame based speech coding9, which allows a certain degree of non causality.

Actually, one can code one frame of signal in the lower subband and then code one frame in the higher

subband.

Another special case is when the bit assignment is fixed, and when all the bits are used to code the lower

subband. In this case, the quantization noises introduced by the quantization of the signalsy1;k andy2;k are

�2ey1 = c2�2R�2y1 = ��2y1, with�� 1, and�2ey2 = �2y2 . The coding gain is

GL =
Ek ~xkk2I

��2y1 + �2y2
(5.16)

In this case again, the term��2y1 being small compared to�2y2 , one has to minimize�2y2 , and Wong’s

approach is more efficient. Informal listening tests we performed (using several GSM AMR narrowband

codecs) have confirmed the perceptual gain over narrowband coding, introduced by the interband prediction.

The prediction of the higher subband is done on the basis of the decoded version of the lower subband. The

length of the frames was200 samples in the subsampled domain, and the interband Wiener filter comprised

of 21 taps (symmetric around the 0 lag). The filters were either the 32-taps QMF of Jain et al. [98], or the

32-taps CQF of Smith et al. [99]. The encoded lower subband is transmitted (R1 = 2R;R2 = 0) along with

the coefficients of the crossband predictor (for which we assumed perfect quantization in these results). The

decoder produces, by way of higher subband, only its predicted version on the basis of the decoded lower

subband. The improvement in perceptual quality is nevertheless significant. Some overhead is required in

transmitting the prediction filterW21(z), since backward adaptation is indeed made impossible in this case

(there is no genuine highpass subband to predict).

This technique is closely connected to the problem ofbandwidth expansion, for which the goal is the

generation at the decoder of an acceptableupper subband subject to the constraint that no rate should be

dedicated to its coding. The only available information about the high frequency band is therefore the

quantized lower subband -assuming that significant statistical dependencies (or mutual information) exist

between the two bands. In [100], a lower bound on the mean log spectral distortion (mLSD) of the spectral

envelope in the missing frequency band as achievable by any memoryless bandwidth expansion algorithm

is presented. The mLSD is first related to the mutual information shared between sets of parameters (the

more the mutual information the less the mLSD). This information is then estimated for long term speech

sequences, and for usual coding paramaters (LP̧C correlations coefficients,...). The minimal corresponding

mLSD is evaluated at roughly3 dB in the missing frequency band10. This paper provides also a detailed

list of references about this interesting problem, including non memoryless techniques.

9such as that considered here, which uses GSM-AMR NB codecs
10As a rule of thumb, a “sufficient” WB speech quality corresponds usually to1 dB on the average of thetotal band
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5.8 Conclusions

For vectorial sources with memory, we showed in this chapter that the optimal causal decorrelating scheme

can be described by means of a prediction matrix whose entries are optimal prediction filters. The diagonal

filters are scalar intrasignal prediction filters. The off-diagonal predictors are Wiener filters performing the

intersignal decorrelation. This decorrelating procedure led to the notion of “generalized MIMO prediction”,

in which a certain degree of non causality may be allowed for the off-diagonal prediction filters. In the case

of non causal intersignal filters, the optimal MIMO predictor is still lower triangular, and hence“causal”, in

a wider sense. The notion of causality was generalized in the sense that causality between channels becomes

processing the channels in a certain order. Some signals may be coded using the coded/decoded versions

of the “previous” signals. We showed that two previously introduced transformations, in the context of

subband coding, appear as special cases of the generalized MIMO prediction. As the previously described

causal LDU transform, realistic coding implementations of the latter two approaches should involve closed

loop structures for the prediction. We showed that though these approaches are equivalent in the limit of

high rates, triangular MIMO prediction may be more efficient than its classical counterpart. This triangular

predictor appears as an extention of the classical scalar (A)DPCM to the vector case. In this case, we showed

that the optimal ordering of the scalar signals (w.r.t. the coding performance at high rate) corresponds to the

case where they get decorrelated by order of decreasing variances. In the case where FIR filters are used

to perform the prediction, the triangular predictor was shown to benefit from a simple optimal positioning

of the taps for the off-diagonal filters. Finally, we presented some applications of these results to wideband

speech coding.
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5.A Derivation of (5.8)

The determinant of the lower triangular and unit diagonal prediction matrixL(f) may be written as

detL(f) =
MY
i=1

Lii(f); (5.17)

from which we obtain

R 1
2

� 1
2
lndet[L(f)] df =

MX
i=1

Z 1
2

� 1
2

lnLii(f)df

=
MX
i=1

Qi(f):

(5.18)

It is now shown that any of theM previous integralsQi(f) is zero. The idea of the proof is to show that

these sums do not depend on the coefficients of the prediction filters, and in particular, they may be set to0

without affecting the result.

SinceLii(z) =
1X
k=0

Lii;kz
�k are prediction filters, they have causal and stable inversesBii =

1X
k=0

Bii;kz
�k.

Thus we have

@Qi(z)
@Lii;k

=
H @Lii(z)=@Lii;k

Lii(z)
dz
z

=
H
z�kBii(z)

dz
z

=
H
z�k

1X
j=0

Bii;jz
�j dz

z

=
1X
j=0

Bii;j

I
z�(k+j)

dz

z

=
1X
j=0

Bii;j�0;j+k

= Bii;0

= 1:

(5.19)

Hence,Qi(z) does not depend on the strictly causal coefficientsLii;k, and is therefore equal to that obtained

with Lii(z) = 1, which is zero.

5.B Derivation of (5.12)

Similarly to section 2.C, we consider the optimal decorrelation ofRXkXk
+ �2qIkM . Then we have

lim
k!1

�
det
h

diagfL0(RXkXk
+ �2q IkM )L

0T g
i� 1

k

=
MY
i=1

(�2yi +��2yi + �2q );

=
MY
i=1

�2yi

 
1 +

��2yi + �2q
�2yi

! (5.20)
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where��2yi correspond, as in 2.35, to the increase in prediction due to the noise feedback (w.r.t. to the opti-

mal prediction error variances�2yi), andIkM is thekM �kM Identity matrix. SinceL0 totally decorrelates

RXq
k
Xq
k
, we have

MY
i=1

�2yi

 
1 +

��2yi + �2q
�2yi

!
= e

R 1
2
� 1
2

ln[det(Sxx (f)+S~y~y(f))]df

� e

R 1
2
� 1
2

ln[det(Sxx (f))]df �
1 +

R 1
2
1
2

tr
�
S�1xx (f)Seyey(f)

�
df
�

�
 

MY
i=1

�2yi

! 
1 +

MX
i=1

��2yi + �2q
�2yi

! (5.21)

where tr denotes the trace operator. Now, the required quantity for the coding gain is

MY
i=1

�2i =
MY
i=1

(�2yi +��2yi)

�
 

MY
i=1

�2yi

! 
1 +

MX
i=1

��2yi
�2yi

!
;

(5.22)

which from (5.21) may be written as 
MY
i=1

�2yi

! 
1 +

MX
i=1

��2yi
�2yi

!
� e
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(5.23)

SettingSeyey(f) = �2qI, we obtain for the coding gainG(1)
TC

G
(1)
TC =

0BBBB@
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�2xi
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�2i

1CCCCA
1
M
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"
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�
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M

 
� R 1
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�
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�
df +

MX
i=1

1

�2yi

!#
;

(5.24)

which is the desired expression.
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Brief History of this work:

Analysis-by-Synthesis Structures

The results of the presented work find their origin in the french RNRT projectCOBASCA11, which aimed

of providing source and (joint source-) channel coding algorithms for wideband audio signals ([50Hz �
7kHz]) in the framework of UMTS. Our personal contribution to this project concerned mainly source

coding, for which we followed two axis of research. The first axis lies beyond the scope of the present

framework, and will only be briefly summarized. The description of the second axis may however be rele-

vant for the reader interested in the topics of this thesis; it is shown how existing source coding techniques,

industrial constraints and scientific objectives together led to the causal coding framework described along

these pages.

Joint Optimization of Formant and Pitch Predictors

Low bit rate speech coding makes a pervasive use of linear prediction. The GSM AMR codecs standardized

by ETSI for narrowband speech coding are based on CELP algorithms. As most source codecs, decorrela-

tion is performed (by means of linear prediction) before entropy coding. Due to the particular structure of

speech waveforms, the prediction is comprised of two stages: a short term predictor (STP) removes short

terms correlations (formantsdue to the vocal tract), and a long term predictor (LTP) deals with more distant

correlations due to the excitation of the vocal cords (pitch). Though the coding algorithms of CELP coders

may be very elaborated, theyseparatelyestimate these predictors. The depicted correlations are however

not independent, and a sequential approach for linear prediction is not optimal. We proposed therefore a

method allowing one to jointly estimating STP and LTP, using an iterative algorithm. In order to establish

the efficiency of this joint optimization, an analysis-by-synthesis -like criterion was proposed. An estimate

of the original signal is computed filtering the excitation (white noise) by means of the jointly estimated

predictors; this signal is then compared to the original which is a synthetic stationary signal whose optimal

STP and LTP are perfectly known. The results show that a joint optimization clearly improves the decor-

11COdage enBandeélargie avec partageAdaptatif du débit entreSource etCAnal pour réseaux cellulaires de deuxi`eme et troisi`eme

générations (UMTS), http://www.telecom.gouv.fr/rnrt/pcobasca.html.
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relation efficiency. Moreover, both the complexity of the proposed method, and the number of iterations

required by the iterative algorithm to converge to the optimum estimates are fairly low. Details about this

work may be found in [101, 102].

Analysis-by-Synthesis Coding of Wideband Speech

The second axis regarding wideband coding of speech was based on the idea of using an existing (stan-

dardized) narrowband coder; this approach was attractive because it would indeed greatly simplify the

optimization work concerning the coding of the lower (and most important) subband[50Hz� 4kHz]. The

remaining problem was that of designing a convenient filter bank. Besides traditional constraints such as

delay and passband selectivity, preliminary results showed that the quality of the codecs of the GSM AMR-

NB rapidly decreases beyond3:4kHz. Moreover, this frequency may be within the frequency area where

symmetric two channel filterbanks overlap for8kHz original signals (aliasing may be accounted for by the

relation of analysis to synthesis filters, but reappears because of the quantization). Finally, the human hear

is particularly sensitive in this frequency region. These facts suggested the use of an analysis-by-synthesis

technique, which had proven usefull results by the past in speech coding12. An attractive structure was

therefore that of figure 5.4, based on the Laplacian Pyramid [103] (in the figures of this chapter,Qi may

denote any codec). The input signal is wideband ([50Hz � 7kHz]). The filtersH0; G1;H
0
1; G, andG00

should now be optimized subject to the constraint of minimizing the variance of the reconstruction error

E(x � xr)
2. First, we need one branch to be a genuine lowpass subband, which fixes consequentlyH0.

Second, by writing explicitly the polyphase components [104] of the signals and those of the filters (e.g.,

Xe(z) andXo(z) denote respectively the even and odd components of the input signal, and similarly for

the filters and the reconstructed signal), we may obtain more insight about the role plaid by the other filters.

The polyphase analysis leads to13

Xe
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(5.25)

Considering the analysis-by-synthesis branchG H 0
1 in fig. 5.4 (b), ne may denote byF 0 the filter equivalent

to the cascade

F 0 = GeH
0e
1 +GoH

0o
1 : (5.26)

This relation expresses the influence of one branch uppon the other, see figure 5.5.

12CELP coders aree.g. well known analysis-by-synthesis coders: the excitation signal is selected among several candidates of a

codebookby synthesizing the reconstructedspeech (through the inverses of the LTP and STP), and by choosing the most representative

w.r.t. to a weighted distortion measure.
13dependence inz is omitted for notation simplicity.
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Comparing these representations with figure 5.4 (a), this figure shows in particular that the analysis-

by-synthesis filterbank may be linked to a classical filterbank, where respectivelyG00 � F 0(z2)G1 and

H0
1 � F 0(z2)H0 would be identified to respectivelyG0 orH1 QMF- or CQF- like filters. Focusing then on

the role of the filterG, it should be designed in order to minimize the variance of the input of the quantizer

Q2, as shown by the substractive branch of Figure 5.4, (b). This branch allows one to optimize the whole

structure through the optimization of the filterF 0 (figure 5.6), which corresponds to the cascadeG �H 0
1.

Suppose we fixH0; G
0
0;H

0
1 andG1 as those of a classical filterbank (fig. 5.4, (a)). The remaining degrees

of freedom are then the coefficients of the transfer function ofG, which may be written as

Ge = Ge
0Fw1

Go = Go
0Fw2 :

(5.27)

Using the expression (5.26) relating the components ofF 0 to the analysis and synthesis filters, we obtain

F 0 = He
1G

e
0Fw1 +Ho

1G
o
0Fw2 ; (5.28)

where the componentsFw1 andFw2 of some filterF are the remaining degrees of freedom of the system.

Thus, they correspond to adaptive Wiener filters aimed of modeling one subband signal on the basis of

the other. This lead to the alternative representation of figure 5.7, where a crossband predictor should be

designed to minimize the variance at the input of the second quantizer, which makes the subbands ideally

decorrelated. The adaptive part of the whole structure is concentrated into this single filter; the other analysis

and synthesis filters are those of a classical, and possibly separately optimized filterbank. The positioning

ofF w.r.t. to the quantizerQ1 is therefore a consequence of the desired analysis-by-synthesis configuration.

This is the structure described by Wong in his 1997’s paper [87].

The decorrelation matrix resulting from this approach was expressed in 5.13. The link with the causal

LDU transform was then straightforward, since a triangular matricial transform whose rows are optimal

prediction filters (with increasing prediction orders) of the input signal diagonalizes the covariance matrix

of these data; this renders the structure optimal in the classical high rate transform coding framework. The

analysis-by-synthesis constraint led then to the closed loop implementation described in the first chapters

of this thesis.
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Part II

Causal Lossless Coding
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Overview of the Second Part

The second part of this thesis presents and analyzes lossless coding techniques based on the causal decor-

relating approaches (LDU transform and generalized MIMO prediction) described in the first chapters.

This overview is organized in four parts. The first one sets the stage; it presents the coding structures and

the related problem which will be investigated. Basically, these structures involve integer-to-integer trans-

forms, and multi-stage lossless coding. The second part presents a brief overview of state-of-the-art coding

techniques and issues in lossless coding of multichannel audio, which is a natural field of application for

the proposed coding procedures. The third part presents in more details the framework of multiresolution

coding. Finally, the last part details in more depth the particular contents of each chapter.

Framework and Coding Structures Analyzed in this Part

Integer-to-Integer transforms

Lossless coding schemes may exist as stand-alone encoders, but they are also part of the core of lossy

encoders, in order to improve its compression efficiency; this is the goal of the entropy coding techniques

described in the introduction of this thesis. Let us consider now the coding scheme depicted in figure 5.8,

which uses a decorrelating transformationT .

In a first step, a very high resolution (amplitude-continuous) vectorial sourcexc is quantized using a

lossy source codec, represented by the boxQ (Q may represent the discretization realized by any lossy

codec,e.g. independent uniform scalar quantizers, independent ADPCM or MPEG audio codecs...). Once

the quantization has been performed, one is left with a discrete-valued vector sourcex. The problem is then

to transmit efficiently (w.r.t. the bitrate and the complexity) the vectorsxk to the decoder. An efficient en-

tropy coding procedure is vector entropy coding; it is known to be asymptotically optimal w.r.t. to the block

length, but requires to estimate the joint probability distributions of the vectors. Such a coding procedure

is consequently very complex and not well suited to signals which present long term correlations14 (such

as high quality audio signals sampled at44:1kHz). In this case, the set of streamsfxig obtained from the

14For vector sources with memory, the problem is even more acute since joint probability distributions of vectorsof vectorsshould

be estimated.
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Figure 5.8: Transform based lossless coding scheme embedded in a lossy codec.

lossy encoder is preferably entropy coded usingN scalar entropy coders
i15. However, the scalar sources

xi are generally neither memoryless, nor independent, which makes the single-letter entropy coding subop-

timal. One may therefore apply after the quantization stage a lossless transformationT in order to reduce

the intra- and inter- signal correlations, and thereby, the bitrate. Indeed, the signal should not incur further

degradation:T must be invertible. Both the inputs and the outputs ofT are discrete valued; therefore,T is

called an integer-to-integer transform.

Summarizing this framework, the integer-to-integer approach divides the coding procedure into two steps:

a transformT is firstly applied to each block in the aim of decorrelation; the transform components are

secondly scalar entropy coded, which keeps the complexity reasonnably low. The vectorial signalx gives

rise toN transform signalsyi from which the decoder is able to losslessly recover the original signal. This

approach will be referred to as “one-shot”, or “single-stage” lossless coding.

For a given transformT , and a given sourcex we will consider two scenarios: scenario 1, whereT is used,

and scenario 2, where it is not. In both cases, the structure will useN scalar entropy coders
i as in figure

5.8. We will then investigate the following questions. Firstly, what is the maximum achievable bitrate re-

duction over scenario 2? Secondly, what is the actual bitrate reduction operated by using the transformT?

In chapter 6,T will be based on two decorrelating transforms: the KLT and the LDU. In chapter 8,T will

be based on the MIMO decorrelating approaches discussed in chapter 5, which account for both intra- and

inter-signal correlations.

15For example, popular codes in audio include Huffman and Golomb-Rice codes.
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Multi-Stage Lossless Coding

Besides this “one-shot” compression approach, a different lossless coding procedure consists in lossy cod-

ing the sourcex in a first step, producing thereby a first streams ofN “low resolution” signalsyqi . In a

second step, the error signale is separately encoded, which results in the two-stage structure of figure 5.9.
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Figure 5.9: Classical two-stage lossless transform coding.fQg denotes uniform scalar quantizers,f
ig and

f
0ig scalar entropy coders, and[:]1 rounding operators.

The advantage of this scheme (e.g. in the case of variable transmission bandwidth, or internet browsing)

is that an approximative version of the signal of interest can be quickly obtained, independently of the error

signals. The original signal can eventually be recovered by adding the error signals. Depending on the

stepsizes offQg, the rate dedicated to code the low resolution versionxq of x can be regulated; this permits

for this signal lower rates than in a single-stage lossless coder, at the cost of introducing some distortion.

This coding scheme is widely used in lossless coding of audio signals, see e.g. [21, 24], and of images

[105, 106]. A comparison of the compression efficiency of standard orthogonal tranforms to that of the

causal one appears therefore interesting. In particular, it is interesting to know wether using a two-stage

lossless transform coding scheme is suboptimal w.r.t. to the single-stage approach explained above. These

questions are addressed in chapter 7 for the two-stage approaches based on LDU and orthogonal transforms,

and in chapter 8 for two- andM -stages structures based on MIMO predictors. We present now an overview

of lossless multichannel audio, for which the considered coding schemes may be useful. Then, the concept

of coding a source by means of multiple resolution levels will be described more precisely. It has a long

history in source coding.
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Lossless Multichannel Audio Coding

In the last decades,little attention has been paid to lossless audio coding, mainly because it provides lower

compression ratios than lossy coding. Many modern applications suggest however the use of a powerfull

lossless audio coding technique. In applications where coding is not subject to stringent bitrate constraints,

as for Digital Versatile Disks (DVD), lossless coding obviously appears as the best technique. Some appli-

cations of very high fidelity music distribution over the internet could also provide lossy compressed audio

clips in a first step (allowing the music lover to browse and select the desired clip in a reasonnable time),

and then provide losslessly compressed audio signals in a second step. Such systems are calledscalable16

systems, and will be the topics of chapters 7 and 8. For archiving and mixing applications, lossless compres-

sion avoids signal degradation when successively encoded/decoded with lossy encoders [107]. It can also

be observed that an increasing number of companies now provide products for lossless audio compression

[108]. A complementary survey to that of [107], reviewing free competitive lossless codecs, can be found in

[109]. In the particular case of MPEG-4, MPEG members are now discussing issues in considering lossless

audio coding as an extention to the MPEG-4 standard [110].

An important issue for which lossless audio coding schemes shouldaccount is the multichannel aspect

of recent audio technologies. Starting from the monophonic and stereophonic technologies, new systems

(mainly due to the film industry and home entertainments systems) such as quadraphonic, 5.1 and 10.2

channels are now available. An efficient coding procedure aimed of storage, or transmission of these sig-

nals should benefit (sub)channel correlations.

Multichannel audio sources can be roughly classified into three categories : signals used for broadcasting,

where the channels can be totally different one from another (e.g. different audio programs in each channel,

or the same program in different languages), film soundtracks (typically the format of 5.1 channels) which

present a high correlation between certain channels, and finally multichannel audio sources resulting from

a recording of the same scene by multiple microphones (in this case, there is indeed a great advantage to be

taken from the structure of the multichannel audio signal) [93].

In most state of the art lossless (and lossy) audio codecs however, interchannels correlations are not fully

exploited; these systems often only compute sums and differences. This assertion should be contrasted by

the recent works in [93] and [21], where KLT and adaptive prediction are respectively used to remove inter-

and intra-channel redundancies. The former was evocated in chapter 6; the latter will be described more

extensively in chapter 8.

Besides purely lossless systems, interesting alternatives are lossy/lossless coders. These systems either

switch from lossy to lossless algorithms, or provide a lossy version of the signal first, and the complemen-

tary error signal in a later stage, resulting in multiresolution systems.

16The termprogressiveis more frequent in image coding.
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Multiresolution Coding

The principle of multiresolution coding is that only an incremental increase in rate over the current trans-

mitted rate results in an improvement in the source representation17. Depending on the available resources

(transmission bandwidth, capacity storage), the scheme may be lossy or lossless, and provides an SNR

scalability.

Let us consider coding methods designed to operate at fractional rates of an overall rate. The question

whether this system is suboptimal in the rate-distortion sense w.r.t. the same system designed for the over-

all rate has been fist addressed from the rate-distortion theory viewpoint by Koshelev [112] who called it

divisibility, Equitz and Cover [113] under the heading ofsuccessive refinement information. It is shown that

successive refinement in the rate-distortion (r(D)) optimal sense is not always possible, and that a sufficient

and necessary condition is that the individual encodings (or representations) be expressible as a Markov

chain. More recently, this result was reinterpreted by Rimoldi [114] and extended from memoryless to

more general sources in [50]. We will restrict the rate-distortion considerations of this second part by

focusing on the operational multiresolution compression performance obtained by particular multiresolu-

tion (or multi-stage) coders only; these performance will be compared with the corresponding one-shot (or

single-stage) lossless coders.

Progressive coding has become important in image and audio coding, since in a network environment, dif-

ferent users may have different access capabilities, such as different bandwidth, CPU power, etc, and may

access the sources at different levels of quality. In such circumstances, a coder that can provide a coded

sequence in a progressive way has an advantage. Progressive coding is also designated as scalability, mul-

tiresolution, layered or embedded coding, information divisibility, or successive approximation. Because it

has become ubiquitous in practical coding systems, it is difficult to exhaustively present the several related

techniques. Two basic approaches can however be distinguished:spectral selection, andsuccessive approx-

imationor refinement, which will be investigated in this work.

Spectral selection uses the signal representation obtained by means of a transform or a subband coder. Since

for many signals (e.g. images or long term speech) most activity is concentrated in the low frequency area,

an acceptable representation may be obtained by means of the corresponding (or, more generally, by the

most significant) coefficients only18. This approach is for example used in MPEG audio codecs, where

the significance of the transform coefficients19 is computed w.r.t. to apsychoacoustic mask. This is aldo

somewhat in the spirit of the AMR-WB codec where the high frequency band[6:4 � 7]kHz, which is

not perceptually critically relevant, is discarded from the transmission20 [116, 117]. As for images, many

17This contrasts with the Multiple Description framework, where the division of the overall rate is aimed of ensuring anacceptable

quality in case of channel impairments [111].
18TheSignificance maplocates for example the significative transform coefficients on a grid, and is transmitted as side information

in the JPEG standard.
19In layers 1 and 2 of MPEG1, these coefficients are obtained by means of QMF; In layer 3, also calledMP3, and MPEG2-AAC,

by means of MDCT [115].
20A bandlimited white noise is instead spectrally shaped at the decoder, according to the formant structure of the lower frequencies.
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approaches exist, including e.g. the prioritized DCT method [118], and lossless approaches based on Lapla-

cian Pyramid [103] such as [119, 105, 80], on subband coding with QMF [120], antialiasing filters [121],

or wavelets [122, 123].

Another powerfull progressive coding scheme is successive approximation. In contrast to spectral selection,

which generates minimum distortion for the selected coefficients but discards all the other coefficients, suc-

cessive refinement produces relatively constant distortion for all the coefficients.Embedded coding systems

have the feature that bit rate reductions can be performed at any point along the communication network.

They imply a block of bits within which is embedded a subblock, which is itself sufficient for producing a

decoded signal of sufficient quality, although full quality is achieved only upon receiving the entire block.

References about early systems may be found in [14]. PCM is for example a naturally embedded system

(least significant bits are simply discarded first), but DPCM is not. In order to cope with possible degra-

dations of the reconstructed signal, a tractable approach is to decrease the precision in the feedback loop:

in this case, only thecorebits (as opposed toenhancementbits) of the value of each quantized sample are

used in the prediction. Other approaches are based on adaptively allocating the bits among the quantizer

of the prediction residual and the quantizer for the reconstruction error [124, 125]. CCITT Recomandation

G.727 describes embedded (A)DPCM algorithms using5,4,3 and2 core bits [126, 127]. A both bit rate and

bandwidth scalable CELP coder is standardized in MPEG4 [128]. Besides, combination of (A)DPCM and

spectral selection with Laplacian pyramid was studied in [129], and with filterbanks for lossy speech cod-

ing [130]. In images, examples of coders which use successive refinements (based on DWT) are the EZW

(Embedded Zero Tree) algorithms of [131, 132]. Context information is used in successive refinement of

image coding in [133, 134], and more recently in [135].

A two-stage lossless coder, including a previously standardized MPEG codec in the lossy stage was pro-

posed in [136], and extended to multiple bit rates in [137]. Spectral selection and successive refinement

may also be combined, as in [138]. A comparison between the performance of these various techniques can

be found in [139, 140] and [141].

Proposed Analyses

The following topics will be investigated in this second part.

� Chapter 6 deals with single-stage transform coding. In the case whereT of fig. 5.8 is based on

decorrelating matrices such as KLT or LDU, the relation ofxc to y is similar to that obtained with

transform coding, except that quantization and transform stages arereversed. The transformed signals

must be discrete since they are further entropy coded. Therefore, integer-to-integer implementations

of transforms traditionally used in the context of transform coding may be useful in such a scheme.

This chapter will compare the compression performance of the KLT and the LDU in this framework.

From a rate-distortion point of view, the question of whether integer-to-integer transforms are, as

efficient as their continuous counterparts was addressed recently in [41]. Let us Assume that the
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quantization stageQ is comprised of uniform scalar quantizers with the same stepsize�. We will

refer to the following coding schemes:

– (1 ) scalar quantization of thexci followed by scalar entropy coders,

– (2 ) scalar quantization of thexci followed by integer-to-integer decorrelating (single-stage loss-

less transform coding), transform and scalar entropy coders,

– (3 ) continuous decorrelating transform followed by scalar quantization and scalar entropy

coders (transform coding),

– (4 ) quantization of thexci followed by vector entropy coders.

The results of [41] show that, for Gaussian vectors, the performance of the schemes(2 ), (3 ), and

(4 ) are equivalent in the limits of small stepsizes. This is equivalent to neglecting the integer-to-

integer constraint on the transformation of scheme(2 ). The purpose of this chapter is to evaluate

the bitrate reduction actually operated by scheme(2 ) w.r.t. scheme(1 ), when this constraint is

accounted for. This bitrate reduction is defined as alossless coding gain. We will show how the gains

of schemes(3 ) and(4 ) represent an upper bound for that of(2 ) in terms lossless coding gain; this

bound will be linked to the mutual information shared by thexi. For a given quantization stage (fixed

distortion level), the suboptimality of(2 ) will be expressed in terms of excess bitrate. This inherent

suboptimality of integer-to-integer transforms will then be compared for the LDU and the KLT. The

LDU will be shown to outperform the KLT in this case, because of its triangular structure. Finally, the

adaptivity of the considered single-stage lossless transform coding systems will be investigated. This

part is somewhat in the spirit of the analyses of chapter 5. We will consider systems whose integer-

to-integer transforms are computed in a backward adaptive manner, by means of an estimate of the

covariance matrix based onK decoded vectors. In this case, the lossless transforms converge to the

optimal transforms asK tends to infinity. For a fixed number of vectorsK, we will try to evaluate,

for both transforms, which bitrate reduction (w.r.t. scheme(1 )) is achieved by the corresponding

transform. These results are presented in [142]. After the analysis of these single-stage coding

schemes, we will move on to two-stages structures based on the KLT and LDU transforms.

� In chapter 7, the integer-to-integer implementation of the two transforms will be further investigated

in the framework of figure 5.8. For a fixed preliminary quantization stage (and for sufficiently high

resolution), we will analyze the bitrate required to entropy code the low resolution and the error sig-

nals. The resulting overall bitrate will be compared to that obtained with the single-stage structures

of the previous chapter. We will show that while orthogonal transform tend to “gaussianize” the error

signals, the LDU benefits from keeping them uniform. As a consequence, the orthogonal transforms,

including the KLT, will be shown to be approximately0:25 b/s/ch suboptimal w.r.t. their causal coun-

terpart. Finally, we will underline several other practical coding advantages of the LDU, such as the

ability of switching easily from a single- to a multi-stage structure, or that of allowing one to quantize
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with different resolution levels the different channels. These results are presented in [143].

As at the end of chapter 4, we will then generalize the results regarding the causal approach by con-

sidering infinite vectors of vector samples, in the frameworks of the single- and multi-stage lossless

structures described so far.

� The last chapter deals with optimal lossless coding of vectorial signals. The coding structure inves-

tigated in a first step is similar to that of scheme(2 ), or fig. 5.8, where the transformT will be

a particular prediction matrixL(z) of the generalized MIMO prediction framework. Similarly to

chapter 6, the corresponding compression performance will be compared to the optimal compression

performance, as achievable by any lossless coding technique. The particular cases of the classical and

the triangular MIMO predictors will be investigated, and shown to present equivalent performance.

In a second step, we will generalize the coding scheme of fig. 5.9 by introducing ADPCM loops,

whose quantizers allow one to choose the respective bitrates for both the error and the low resolution

signals. For these two-stages structures, we will compare, similarly to chap. 7, the overall bitrate

delivered by the multiresolution structure to that of the corresponding “one-shot” approach. These

two-stages structures will be shown to be slightly suboptimal because of the noise feedback created

in ADPCM loops. Finally, the two-stage structure will be generalized toM stages; a strategy will be

proposed so that the delivered bitrates approach some predetermined target rates. These results are

presented in [144].



Chapter 6

Causal versus Unitary Single-Stage

Lossless Transform Coding

In single-stage lossless transform coding, integer-to-integer transforms are used to decorrelateN discrete

scalar sources intoN transform components. These integer-to-integer implementations involve a cascade

of triangular matrices and rounding operations. In [41], the optimality of the integer-to-integer implemen-

tation of the Karhunen-Lo`eve Transform (KLT) was established in the limit of negligible round off errors.

This chapter presents a similar single-stage, or “one-shot” lossless coding procedure based on the causal

LDU transform. We define in a first step thelossless codinggain for a transformation as the number of

bitrate reduction operated by the corresponding lossless coding scheme over a system using no transform.

This gain is linked to the mutual information between the random variables (r.v.s) to be coded. In a sec-

ond step, the effects of the integer-to-integer constraint (round off errors) on the coding gain are analyzed

for both the unitary and causal approaches. A third step focuses on the effects of estimation noise on the

coding gain: in this case, the transforms are based on a estimatebRxqxq of the covariance matrix of the

quantized signalsRxqxq . In any case, the LDU-based approach is shown to yield the highest coding gain.

The theoretical analyses are confirmed by numerical results.
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6.1 Introduction

Let us consider the three coding schemes of figure 6.1, simplified from figure 5.8. In all cases, continuous

sourcesxi are quantized using unbounded uniform scalar quantizers with stepsizes�i (quantization stage

Q, def. (7.1)). In the first scheme(1 ), the resulting discrete valued scalar sourcesxqi
1 are directly entropy

coded using a set of independent scalar entropy coders
i (codewordsii with lengthslii are transmitted to

the decoder).
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Figure 6.1: Coding schemes considered in this chapter.(1 )Direct entropy coding of thexqi (2 ) Introduction

of a lossless transform after quantization and(3 ) Classical transform coding scheme.

As stated in the introduction of this second part, sources of interestxi may generally present dependen-

cies , and so do indeed their quantized versions. Thus, in order to avoid to code any redundancy, one may

apply a transformT qint, which maps integers to integers, before entropy coding (coding scheme(2 )). The

1In this chapter, superscriptq will denote quantization in order to emphasize the fact that the sourcesx
q
i andyqi are, up to a scaling

factor, integer valued. Subscriptint refers to integer-integer implementation of the corresponding transform.
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resulting discrete scalar sourcesyqi are further entropy coded (codewordsi0i with lengthsli0i are transmitted).

The transformT qint is chosen to be invertible so that the decoder can losslessly decode the dataxqi . Com-

paring with the classical transform coding framework(3 ), quantization and transformation are reversed.

We will refer to the coding scheme(2 ), which fromN quantized values producesN discrete transform

components, assingle-stageor one-shotlossless coder.

Because the classical transform coding framework(3 ) is very similar to the coding scheme(2 ) in the sense

thatT qint is aimed of producing decorrelated transform components, integer-to-integer transforms approx-

imating continuous transformsT have received much attention in theliterature2. In [41], the framework

presented in(2 ) was first introduced as an alternative to transform coding. It is shown that uniform quanti-

zation followed by KLT based integer-to-integer mapping and separately encoding of the transform sources

is asymptotically (in the limit of high rate, or small�i) as efficient as vector entropy coding the sourcesxqi

of scheme(1 ), or scalar entropy coding the componentsyqi of scheme(3 ).

Before these theoretical results, many papers had devised one-to-one integer mapping approaches for sim-

ple transforms, such as the S transform [145], the TS transform [146], the S+P [147] and the generalized S

transform [148]. The method called “lifting scheme”, introduced by Sweldens in [149], was implemented

for integer mappings of wavelet transforms in [150] and generalized in [151, 152] and [153]. An integer-to-

integer implementation of the DFT is described in [154]. Integer mappings based on lifting steps of (8 point)

DCT is exposed in [155], using previous factorizations published by Chen [156] and Loeffler [157]3. All

these systems are widely used in the framework of lossless image compression. Integer-to-integer tranforms

applied to audio coding were compared [21]; the work [159] presents results concerning integer-to integer

DWTs to lossless sound compression. Recent work presents general results concerning the factorization

(and therefore the integer-to-integer, or “reversible” implementation) of general real-valued transforms, in-

cluding existence conditions and factorization algorithms [160].

Previous attempts to characterize the performance of integer-to-integer transforms [41, 160] were to find

an upper bound for the error induced by a mapping, that is, a bound forkT qint(xq) � Txqk1. In [41], it

was shown that for2 � 2 unimodular matrices with non-zero coefficients (e.g. the KLT), positioned after a

quantization stage using equal stepsizes�, this bound is

kT qint(xq) � Txqk1 � (1 +K)
�

2
; (6.1)

wherekxk1 = max
i
jxij, andK is a strictly positive value depending on the coefficients ofT . This

shows thatT qint precisely approximatesT for small stepsizes, and the performance ofT qint andT were

proved to be equivalent in the limit of high rate. In this work, we try to go a step further into the analysis

of the performance ofT qint by evaluating, in terms of loss in compression, or excess rate, this inherent

suboptimality.

First, it may seem natural to define alossless coding gain, which corresponds to the gain, in bits per

2Note that we are not interested in buildinginteger arithmetictransforms. The computations are stilldone with floating points

numbers, but the result is guaranteed to be integer and invertibility is preserved.
3According to [151], the cases of the DFT and the DCT were previously solved by Hong in [158].
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sample, obtained by entropy coding the outputsyqi of an integer-to-integer transform (scheme(2 )) w.r.t. to

that required to entropy code thexqi of scheme(1 ). This gain may be thus defined as

GT =
1

N

NX
k=1

Eklik � Ekli0k =
1

N

NX
i=1

H(xqi )�H(yqi ); (6.2)

where Ek denotes the expectation over the indexes, andH denotes discrete entropy.

An obvious question is then: given a vectorial sourcexq , obtained fromx by uniform quantization (�i),

what is the maximum bitrate reduction obtained by using scheme(2 ) instead of(1 ) ? The corresponding

gainGmax, derived in section 5.1, will then represent an upper bound to the performance of any integer-to-

integer transform.

Instead of bounding the errorskT qint(xq) � Txqk1 for both the KLT and the LDU, we will then seek to

express in terms of excess rate (or in terms of coding gain reduction w.r.t.Gmax), the respective integer-

to-integer constraints incured by the two transforms. This approach seems natural since minimizing the

average bitrate is the most relevant issue in the design of lossless coding systems.

Note that transforms optimized such that the outputs have similar distributions were also presented in [41],

allowing one to entropy code these outputs with the same Huffman table, resulting in complexity and mem-

ory savings. Further complexity reduction was achieved for Gaussian sources in [161] by using Golomb-

Rice instead of Huffman coding. The present work focuses more on the performance of the transformations

than on the entropy codes, and their corresponding complexity. The rates of the corresponding transform

components will be measured by the discrete entropy, or by those obtained by (multiple-table-based) Huff-

man coding.

Finally, adaptativity will also be considered, that is, the problem of describing how fast a single-stage com-

pressor which hasa priori no knowledge about the optimal transform, and whose adaptation is based on the

causal past, converges to the optimal performance.

In order to carry a tractable analysis, we will assume a stationary memoryless Gaussian source model,

x � N(0; Rxx). Moreover, the resolution will be assumed to be sufficiently high, and the p.d.f.s of the

signals to be quantized smooth enough, so that quantization with stepsize�i yields uniformly distributed

errors (over[��i

2 ; �i

2 ]), and distortion�
2
i

12 . We will use the R´enyi’s relation of differential to discrete

entropy for uniformly scalar quantized sources with stepsize�i [38]

H(xqi ) � h(xi) � log2�i: (6.3)

and the similar relation for the N-vectorial source [35, 162]

H(xq) +
NX
i=1

log2�i ! h(x) as �i ! 0 ; i = 1; :::; N: (6.4)

In the next section, we derive the expression of the ideal lossless coding gain. The third part compares the

causal LDU and unitary KLT approaches to this bound for single-stage lossless coding based on approxi-

mation of linear transforms. The fourth section is dedicated to estimation noise and derives the coding gains
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of the two approaches when the transformations are based on an estimate of the covariance matrix. Finally,

the fifth section presents some numerical results.

6.2 Maximum Coding Gain and Mutual Information

6.2.1 Maximum Lossless Coding Gain

The amount of informationH(xq) about a vectorial sourcexq conveyed to the decoder is the same in any

lossless coding scheme, either integer-to-integer transform or not. However, a lossless transform coding

scheme takes advantage from a non- (or less) redundant repartition of this information among the several

signalsyqi . Assume that these components are made independent by an ideal transformTint. Consider the

Venn diagram of figure 6.2. The entropyH(xq) is represented forN = 2. In diagram (a), the information

conveyed to the decoder isH(xq1) + H(xq2) > H(xq); in diagram (b), whereyq1 andyq2 are independent,

the vectorial source is represented byH(yq1) + H(yq2) = H(xq). This intuitively shows that the mutual

information between the variables chosen to represent the source should be minimized.

(a) (b)

H(xq)

H(xq1)

I(xq1;x
q
2)

H(yq1)

H(yq2)

H(xq1jx
q
2)

H(xq)

H(xq2jx
q
1)

H(xq2)

Figure 6.2: Entropy and mutual information

Assume that such a transformationTint exists. If the transform is invertible, the entropy of the vectorial

sourcexq remains unchanged [3], thus the overall bitrate required to independently code theyqi is

NX
i=1

H(yqi ) = H(yq) = H(xq); (6.5)

which is also the minimum bitrate required to losslessly encode the vectorial sourcexq. These signalsyqi

will then be more suitably scalar entropy coded than thexqi . For a Gaussian random variablexi, the dif-

ferential entropyh(xi) equals12 log2 2�e�
2
xi

. It can be easily shown that for sufficiently small quantization
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stepsizes�i, subsisting (6.4) in (6.5) yield

H(xq) =
1

2
log2

(2�e)N detRxx

NY
i=1

�2
i

; (6.6)

whereRxx = E x xT . The maximum coding gain is then

Gmax = 1
N

NX
i=1

H(xqi )�H(xq)

= 1
N

NX
i=1

h(xi) � h(x)

= 1
2N log2

detdiagfRxxg
detRxx

= 1
2 log2G

(0)
TC ;

(6.7)

where diagfRg denotes the diagonal matrix with same diagonal asfRg, andG0
TC is the high rate transform

coding gain (2.10).

The gainGmax is ideal because it corresponds in the Gaussian case to an optimal linear decorrelating

transform placed before the quantizers: by writing detRxx =
NY
i=1

�2yi =
NY
i=1

�i (where�2yi and�i are

respectively the optimal prediction error variance ofxi based onx1:i�1, and the eigenvalues ofRxx), we

can write equation (6.6) as

H(xq) =
NX
i=1

1

2
log2 2�e�

2
yi � log2�i

=
NX
i=1

1

2
log2 2�e�i � log2�i;

(6.8)

which shows that the entropy of the vectorxq may be written as the sum of the entropies ofN independent

r.v.s of variances�2yi (or �i), quantized with quantization stepsizes�i. Thus, if we apply a KLT or an

LDU to the sourcex before quantization, and then quantize the tranformed signals with stepsizes�i , the

minimum bitrate required to entropy code these transformed signals is given by (6.8). Hence, the gain (6.7)

would be obtained by a classical transform coding scheme(3 ).

Another interesting figure in lossless coding is the ratio of the bitrate reduction operated by the lossless

coder divided by the bitrate obtained without compression. Thiscompression ratioCmax is defined as

Cmax =
Gmax

NX
i=1

1

N
H(xqi )

(6.9)

As will be illustrated in the next section, the performance of realizable lossless coding schemes based on

approximations of linear transforms must be expected to be lower than the expression (6.7): since the

transform is placed after the quantizers and just before scalar entropy coders, its output should be discrete

valued, which is not the case for optimal linear decorrelating transforms. Thus, rounding operations are

necessary; they will induce an entropy increase in the transform signals.
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6.2.2 Coding Gains and Mutual Information

A relation of the ideal lossless coding gain (6.7) to the mutual information between quantized r.v.sxqi can

be obtained as follows.

Let us consider a set ofi � 1 quantized scalar sourcesxqj , j = 1:::i� 1. Assume we wish to code anith

sourcexqi , which is not independent from thei�1 others. Intuitively, the best strategy would be to code the

only information contained in theith r.v. which is not shared with thei�1 previous variables (cf figure 6.2).

The mutual informationI(xqi ;x
q
1:i�1) allows one to evaluate, loosely speaking, how much information is

useless in each r.v., given the knowledge of the other ones. It represents the amount of information that the

r.v. xqi shares with thei � 1 others (i.e., the vectorxq1:i�1), and is defined by

I(xqi ;x
q
1:i�1) = H(xqi ) +H(xq1:i�1)�H(xqi ; x

q
1:i�1) = H(xqi ) +H(xq1:i�1)�H(xq1:i): (6.10)

By writing the expressions of the mutual information betweenxqi andxq1:i�1 for i = 2; :::; N , we obtain

I(xq2;x
q
1) = H(xq2) +H(xq1) �H(xq1:2)

I(xq3;x
q
1:2) = H(xq3) +H(xq1:2) �H(xq1:3)

...

I(xqN�1;x
q
1:N�2) = H(xqN�1) +H(xq1:N�2)�H(xq1:N�1)

I(xqN ;x
q
1:N�1) = H(xqN ) +H(xq1:N�1)�H(xq1:N ):

(6.11)

Then by summing and averaging the previous expressions, we get

1
N

NX
i=2

I(xqi ;x
q
1:i�1) = 1

N

NX
i=1

H(xqi ) �H(xq)

= 1
N

NX
i=1

h(x)� h(x)

= Gmax:

(6.12)

Thus, the maximum bitrate reduction using a lossless transform coding scheme corresponds to the average

mutual information shared between each new random variable to be coded and the previous ones. Equiv-

alently, by (6.7), this illustrates why TC is advantageous. By optimally dividing the informationh(x)

between the transform componentsyi, TC provides w.r.t. to scheme(1 ) of figure 6.1 a gainG0
TC for the

same rate, or a gainGmax in rate for the same distortion. This shows that under high rate assumption and

for variable-rate coding, optimal decorrelating transforms such as LDU or KLT may not be optimal for non

Gaussian sources since independence, rather than decorrelation, is seeked for [49]4.

Note also from (6.12) that quantizing does not change mutual information, which is correct if the R´enyi’s

relation (6.3) is valid (small�i). This means that the compression ratioCmax (eq. 6.9) should increase

when the reference rate1N

NX
i=1

H(xqi ) decreases (see section 6.5).

4For fixed-rate coding, there are sources for which even a transform that yields independent components may be suboptimal [46].
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6.3 Integer-to-Integer Transforms

We considerN quantized scalar signalsxqi , which are quantized versions ofxi to the nearest multiple of

�i (denoted by[:]�i), and takes values in the set

�iZ: xqi;k = [xq1;k; x
q
2;k; :::; x

q
n;k]

T = [[x1;k]�1 ; [x2;k]�2 ; :::; [xn;k]�N ]
T
:

An integer-to-integer transform5 T qint: �1Z� �2Z:::� �NZ! �1Z� �2Z:::� �NZassociates to

each quantizedN -vectorxqi;k anN -vectoryq
i;k

= Txqi;k whose componentsyqi are quantized to the same

resolution�i as the correspondingxqi . The transformation is chosen to be invertible so that the decoder can

losslessly compute the original data byxqi;k = T�1yq
i;k

. Since the aim of the transformT qint is to make the

transform signals independent, it can be designed to approximate linear decorrelating transforms such as the

LDU or the KLT, which are optimal for Gaussian signals in the classical transform coding case. Although

both integer-to-integer implementations tend to the maximum gain of expression (6.7) in the limit of small

quantization stepsizes, a quantifiable loss in performance occurs in practical coding situations. This loss is

evaluated in the following.

6.3.1 Integer-to-Integer implementation of the LDU

In a first step, the linear transformLq = I�Lq is optimized to decorrelate the quantized dataxqi . Similarly

as in chapter 2, we look formin
Lqi;1:i�1

Lqi (Rxqxq )L
qT
i , which leads to the normal equations

2666664
Rxqxq1:i;1:i

3777775

2666664
Lqi;i�1

...

Lqi;1

1

3777775 =

2666664
0
...

0

�2y0i

3777775 ;

where�2y0i is the optimal prediction error variance corresponding to the optimal (continuous valued) predic-

tion errory0i;k = xqi;k�Lqi;1:i�1xq1:i�1;k = xqi;k�bxqi;q. The optimal transform vector is theny0
k
= xqk�Lqxq,

and the optimal transformLq corresponds in this case to the LDU factorization of the covariance matrix

of quantized dataRxqxq = Lq�1Ry0y0L
q�T . The second step is to design an approximationLqint of Lq

which allows one to keep the transform structure lossless. This can easily be realized by rounding offeach

estimatebxqi;q of xqi;k. Each transform coefficient is then computed by

yqi;k = xqi;k � [bxqi;k]�i = xqi;k � [Lqi;1:i�1x
q
1:i�1;k]�i ; (6.13)

see figure 6.3.

Let us denote byLqi the matrix whose non zeros off diagonal elements correspond to theith optimal

5“Integer-to-integer” has be retained in the literature to specify that the transforms are on an integer (but scaled) lattice .
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L
q
N;N�1 L

q
N;N�1

: : :
i01 i01yq1

i02

x1

xN

x2

: : :

: : :

: : :

xq1

xq2

xqN i0N

: : :

i02yqn

yq2
+

bxq2

: : :

i02 +

...
: : :

cxqN

+

xq1

xq2

+

+

+

yq2

yqN

yq1

: : :

: : :

: : :

xqN

+

bxq2

�

�

...
: : :

+

cxqN

+

�1

�2

�N

L
q
2;1

�2

L
q
N;1

�N

L
qN
int


�11


1


2


�11


�12


�12

L
q2
int

L
q
2;1

�2

L
q
N;1 L

q
N;2

�N

L
q�12

int L
q�1N
int

L
q
N;2

+

Figure 6.3: Lossless implementation of the LDU transform. An optimal prediction matrixLq is first com-

puted; the transform coefficientsyqi are obtained by rounding off and substracting the corresponging esti-

matesbxqi .

predictor6

Lqi = I � L
qi

=

266666666666666666664

1

0
... 0

...
...

...

0 � � � 0
...

Lqi;1 � � � � � � Lqi;i�1 1

0 � � � � � � � � � 0
...

...
...

...

0 � � � � � � � � � 0 1

377777777777777777775

: (6.14)

Then a lossless implementationLqiint of Lqi is obtained byyq
k
= Lqiint(x

q
k) = I � [L

qi
xqk]�i . The inverse

operation is simplyxqk = L
q�1
i
int (y

q
k
) = I + [L

qi
xqk]�i .

Now, the global transform vectoryq
k

can be computed using a cascade ofN �1 elementary transforms, that

6This kind of matrix (calledSERM, Single-row Elementary Reversible Matrix [160]) appears in many lossless factorizations.
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are represented in figure 6.3.

yq
k

=

�
Lq2

h
Lq3 : : : [LqN xqk]�N

: : :
i
�3

�
�2

= Lq2int (L
q3
int:::(L

qN
int (x

q
k)))

= Lqint(x
q
k):

(6.15)

At the decoder, the inversion is realized by

xqk = Lq
�1

int (y
q
k
)

= L
q�1
N
int (L

q�1
N�1

int :::(L
q�1
2
int (yq

k
))):

(6.16)

Since the sourcexqi is discrete, we can write the transform components as

yqi;k = xqi;k �
hbxqi;ki

�i

=
h
xqi;k � bxqi;ki

�i

=
h
y0i;k
i
�i

:

(6.17)

This leads to the equivalent representation ofLqint of figure 6.4, whereLqint corresponds to the cascade

L
q

with a quantization stageQ0 composed ofN � 1 quantizers. Comparing with eq. (6.1), this shows in

particular that forN = 2, kLqint(xq) � Lxqk1 � �
2
< kV q

int(x
q) � V xqk1, meaning that the maximum

error is less in the causal than in the unitary case, but this does not give much insight about how the rates

are increased.
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Figure 6.4: Equivalent implementation of the integer-to-integer LDU transform.

We should here underline the similarity between the integer-to-integer implementation of the LDU and

the lossless matrixing described in [163], or the decorrelation approach applied to lossless image coding

[121]. In these works however, the diagonalizing aspect of the transform (and thus its optimality for Gaus-

sian signals in the case of negligible perturbation effects) was not established. Moreover, the perturbation

effects due to the rounding operations (next section) and estimation noise (section 6.4) are not, to our knowl-

edge, analyzed in their published related work.

In order to analyze the effects of the rounding operations, (quantization[:]�i of thebxqi;k) uppon the coding
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gain, we approximate the entropyH(yqi ) of the variablesyqi byh(y0i)� log2�i, which assumes a quantiza-

tion noise uniformly distributed over[��i

2 ;
�i

2 ]. The continuous r.v.sy0i are not strictly Gaussian since each

y0i is a linear combination ofi Gaussian r.v.s andi� 1 uniform r.v.s . Since the p.d.f. of a sum of uniformly

distributed r.v.s tends quickly to a Gaussian p.d.f., we assume that this is the case, and this entropy may be

evaluated as

H(yqi ) �
1

2
log2 2�e�

2
y0i
� log2�i; (6.18)

where�2y0i is the actual variance of theith transform signal. Note that in the integer-to-integer implementa-

tion of the LDU, the first scalar signal remains unchanged, and onlyN�1 rounding operations are involved

in the lossless transformation. The bitrate required to entropy code the discrete r.v.syqi is then

1
N

NX
i=1

H(yqi ) � 1
N

 
1
2 log2(2�e)�

2
x1 � log2�1 +

NX
i=2

1

2
log2(2�e)�

2
y0i
� log2�i

!
: (6.19)

The lossless coding gain for the integer-to-integer LDU may then be written as

GLqint
= 1

N

NX
i=1

H(xqi ) �H(yqi )

� 1
2N log2

NY
i=2

�2xi

NY
i=2

�2y0i

� 1

2N
log2

det diagfRxxg

�2x1

NY
i=2

�2y0i

;
(6.20)

The last equality shows thatGLqint
is indeed inferior toGmax since the denominator involves the optimal

prediction error variances obtained fromRxqxq = Rxx +D (whereD is the diagonal matrix of the distor-

tions,Dii � �2
i=12), instead ofRxx.

Moreover, sinceLq diagonalizesRxqxq , we have
NY
i=1

�2y0i
= detRxqxq , where�2y01 = �2

xq1
. Using the last

equality, the coding gainGLqint
may alternatively be approximated as

GLqint
� 1

2
log2

detdiagfRxxg
�
�2
x
q
1
��2

1
12

� NY
i=1

�2y0i

� 1
2
log2

detdiagfRxxg
detRxqxq

+ 1
2
log2(1 +

�2
1

12�2
x
q
1

)

� 1
2 log2

detdiagfRxxg
detRxqxq

+
�2
1

24 ln 2�2x1

GLqint
� Gmax � 1

2N ln 2 trfDR�1xx g+ �2
1

24 ln 2�2x1
;

(6.21)

which clearly expresses the loss due to the lossless constraint w.r.t. the optimal performance. This last

expression shows that one should position the most coarsely quantized signal (highest�i

�xi
) in first position

in order to maximizeGLqint
(see section 6.5.1). Moreover, one can check thatGLqint

tends toGmax as
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�i ! 0, i = 1; :::; N , which means that the transform is optimal in terms of lossless coding gains in the

case of negligible rounding effects.

6.3.2 Integer-to-Integer implementation of the KLT

As far as the KLT is concerned, the integer-to-integer approximation is based on the factorization of a

unimodular matrix cascaded with roundings ensuring the inversibility of the global transform. In [41], this

transform was shown to be equivalent to the original KLT for arbitrarily small�i. The loss in compression

due to the rounding operations is evaluated here in theN = 2 case.

Let us denote byV q a KLT of Rxqxq . Then we have

�q = V qRxqxqV
qT ; (6.22)

and we denote by�qi the variances of the (real-valued) transform signals.

We recall now the construction of the integer-to-integer transform based onV q. As any unimodular trans-

form with nonzero coefficients,V q can be factored into three unit diagonal triangular matrices with unit

diagonal as

V q =

24 a b

c d

35 = V q
1 V q

2 V q
3 ;

V q
1 =

24 1 a�1
c

0 1

35 ; V q
2 =

24 1 0

c 1

35 ; V q
3 =

24 1 d�1
c

0 1

35 :

(6.23)

The transform vectory
k

is then losslessly obtained by using the three-step integer-to-integer transformV q
int

yq
k
= V q

intx
q
k =

26666666666666664
V q
1

2666666664
V q
2

2664V q
3 x

q
k| {z }

y1
k

3775
�1| {z }

y2
k

3777777775
�2| {z }

y3
k

37777777777777775
�1

: (6.24)

Since the matrices are triangular, their inverses are simply computed by changing the signs of the off-

diagonal elements.

One can analyze the effects of the roundings ateach step. Denoting by�i;j the error caused by rounding the

ith component of the vectoryj
k
, it can easily be shown that the final (discrete valued) transform vectoryq

k
is

obtained by

yq
k
=

24 y1;k

y2;k

35 =

24 �xq1 + d�1
c xq2 + �1;1 +

a�1
c (cxq1 + c�1;1 + dxq2 + �2;2)

�
�1

[cxq1 + c�1;1 + dxq2]�2

35 : (6.25)
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Assuming small quantization stepsizes (ensuring the independence of the quantization noises�i;j), and

Gaussianity for the transformed signals, the discrete entropy of each transformed random variable may be

approximated as

H(yq1) � 1
2 log2 2�e(�

q
1 +

a2�2
1

12
+

(a � 1)2

c

�2
1

12| {z }
�
0q
1 =�q1+e1

)� log2�1

H(yq2) � 1
2 log2 2�e(�

q
2 +

c2�2
1

12| {z }
�
0q
2 =�q2+e2

)� log2�2:

(6.26)

Thus,yqi may be seen as a continuous r.v. of variance�
0q
i = �qi + ei, quantized with stepsize�i. The

termsei are the increase in the variance of the transform signals due to the rounding operations. The

corresponding expression for the lossless coding gain in theN = 2 case is then

GV q
int

= 1
N

2X
i=1

H(xqi ) �H(yqi )

= 1
2N log2

2Y
i=1

�2xi

2Y
i=1

�
0q
i

;

(6.27)

Comparing with the gain obtained for the lossless implementation of the LDU (6.20) we haveGV q;int <

GLq;int (this comes from the following series of inequalities
2Y
i=1

�
0q
i >

2Y
i=1

�qi =
2Y
i=1

�2y0i
> �2xi�

2
y02

). Thus

the gain for the integer-to-integer KLT is clearly inferior to that of the integer-to-integer LDU for theN = 2

case. Indeed, only one rounding is used in the LDU case forN = 2, whereas three roundings are necessary

to losslessly implement the KLT. In the generalN case, the triangular structure of the prediction matrix

allows one to implement the lossless causal transform usingN � 1 rounding operations (see (6.15)), which

is most probably less than the number required in the unitary case, where the transform matrix has not a

triangular structure7.

An alternative expression ofGV q
int

may be obtained by approximating the following product under high

resolution assumption

2Y
i=1

�
0q
i =

2Y
i=1

�qi

�
1 +

ei
�qi

�
�

2Y
i=1

�qi

 
1 +

2X
i=1

ei
�qi

!
: (6.28)

7By [160], Th.4, Corol.6, anN � N orthogonal transform may be factorized asN + 1 SERM (and a permutation matrix) of the

form (6.14)
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We get

GV q
int

� 1
2 log2

det diagfRxxg
detRxqxq

� 1
2N log2

 
1 +

2X
i=1

ei
�qi

!

� 1
2 log2

det diagfRxxg
detRxqxq

� 1
2N ln 2

2X
i=1

ei
�qi

GV q
int

� Gmax � 1
2N ln 2

 
trfDR�1xx g+

2X
i=1

ei
�qi

!
:

(6.29)

As (6.27), this expression holds forN = 2, since the perturbation terms on the variancesei in (6.26)

have been analytically derived in this case only. However, the effects of the rounding can be similarly

evaluated for a generalN , and the expressions (6.27), (6.29) would hold more generally by plugging in the

correspondingei. Finally, as expected,GV q
int

tends toGmax as�i tends to0, i = 1; :::; N .

6.4 Adaptive Systems: Effects of the Estimation Noise

In the vein of chapters 3 and 4, the following analysis focuses on the lossless coding gains of an adaptive

scheme based on an estimate of the covariance matrix

bRxqxq = Rxqxq +�R =
1

K

KX
k=1

xqkx
qT
k ; (6.30)

whereK is the number of previously decoded vector available at the decoder. We suppose independent

identically distributed Gaussian real vectorsxqk (again, the r.v.s are not strictly Gaussian because of the

contribution of the uniform quantization noise; this contribution is however small for a high resolution

quantization). In this case, the first and second order statistics of�R may be analytically evaluated (see

sections 3.A and 3.B):(�R)ii may, for sufficiently largeK, be approximated as a zero mean Gaussian

random variable with covariance matrix such that E vec(�R) (vec(�R))T � 2
K
Rxqxq 
 Rxqxq , where


denotes the Kronecker product. Foreach realization of�R, the coder computes a in a first step the linear

transformationbT ( bT = bLq or bV q) which diagonalizesbRxqxq : bT bRxqxq
bT = b�. Then, by using the lossless

factorizations of the previous sections, the encoder computes the corresponding integer-to-integer transformbTint. The coding gainGbTint(K) is then the expected bitrate reduction w.r.t. to a scheme without transform,

for a transform based onK vectors. Equivalently, this is the expected gain obtained for a scheme which

stops adapting the transform afterK vectors, asympotically in the data length. We assume that the entropy

coder possessesN universal lossless codes for theN transform coefficients streams.

6.4.1 Coding Gain for the integer-to-integer LDU

The coding gain is in the causal case

GbLqint(K) =
NX
i=1

H(xqi ) �H(yqi ;K); (6.31)
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where only the entropiesH(yqi ;K) of the discrete variablesyqi , obtained by applyingbLqint toxq , depend on

K. Since the variance of the first variableyq1 is not affected by the transformation, we have

H(yq1;K) = H(xq1) =
1

2
log2(2�e)�

2
x1 � log2�1: (6.32)

Concerning theN � 1 remaining r.v.syqi , they may be seen as r.v.s obtained by applyingLq to xq , and

then by quantizing the continuous valued result with stepsize�i. Thus, by denoting(cLqRxqxq
cLq)ii =

(Ry0y0)ii +�(Ry0y0)ii, we obtain

H(yqi ;K) = E 1
2 log2(2�e)(

cLqRxqxq
cLq)ii � log2�i

= E 1
2 log2

�
2�e(Ry0y0)ii

�
1 +

�(Ry0y0 )ii

(Ry0y0 )ii

��
� log2�i

� 1
2 log2 2�e(Ry0y0)ii � log2�i +

1
2 ln 2 E

�(Ry0y0 )ii

(Ry0y0 )ii
:

(6.33)

Therefore,

NX
i=1

H(yqi ;K) = 1
2 log2(2�e)�

2
x1 � log2�1 +

NX
i=2

1

2
log2(2�e)

N�1�2y0i

� log2�i +
NX
i=2

1

2 ln2
E

�(Ry0y0)ii

(Ry0y0 )ii
:

(6.34)

Comparing with the bitrate required to code theyqi when the transformation is not perturbed (6.19), the last

term corresponds to an excess bitrate due to estimation noise. Using the fact that E�(Ry0y0)11 = 0, this

term may be written as

NX
i=2

1

2 ln2
E

�(Ry0y0)ii

(Ry0y0 )ii
=

1

2 ln2
E

NX
i=1

�(Ry0y0)ii

(Ry0y0 )ii
� N (N � 1)

4 ln2K
: (6.35)

Finally, the lossless coding gain for an integer-to-integer implementation of the LDU when the transform is

based onK observed vectors may be approximated as

GbLqint(K) = 1
N

NX
i=1

H(xqi )�H(yqi ;K)

� GLqint
� N�1

4 ln 2K :

(6.36)

for largeK and under high resolution assumption.

6.4.2 Lossless Coding Gain for the integer-to-integer KLT

In this case, one has to compute the difference

GbV q
int

(K) =
1

N

NX
i=1

H(xqi ) �H(yqi ;K); (6.37)

where only the entropiesH(yqi ;K) of the discrete variablesyqi , obtained by applyingbV q
int toxq, depend on

K.
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Using a similar analysis, the lossless coding gain with estimation noise for the integer-to-integer KLT may

be approximated as

GbV q
int

(K) � 1
2 log2

det diagfRxxg
detRxqxq

� 1
2 ln 2

NX
i=1

ei
�qi
� N (N � 1)

4 ln2K

� GV q
int
� N�1

4 ln 2K ;

(6.38)

under high resolution assumption and for sufficiently highK. As in section 6.3.2, this expression holds for

N = 2 (in which case we have derived analytically the gainGV q
int

), but would hold more generally with

the correspondingGV q
int

.

6.5 Numerical Examples

In the first part of this section, we compare the lossless coding gains obtained for the integer-to-integer

implementations of the LDU and the KLT for N=2. Then simulations results for higher values ofN are

presented in the case of the LDU. The second part of this section describes the effects of estimation noise

on the coding gains. We used either entropy or Huffman coded uniform scalar quantizers, and real Gaussian

i.i.d. vectors.

6.5.1 Lossless Coding Gains without Estimation Noise

In order to check the theoretical results we generated real Gaussian vectors of covariance matrixRxx (co-

variance matrix of a first order autoregressive process with normalized correlation coefficient� = 0:9).

The number of vectors wasN0 = 104. The vectors were quantized using the same normalized quantiza-

tion stepsize�i

�xi
. For several values of��x , the optimal decorrelating transformationsLq andV q were

computed using the covariance matrixR(N0)
xqxq of the whole data set, that is,R(N0)

xqxq = 1
N0

N0X
i=1

xqix
qT

i . The

integer-to-integer transformsLqint andV q
int, based on the transformsLq andV q were implemented and

used to compute the transformed datayq
i
. We repeated this experiment ten times and averaged the different

obtained gains.

Results forN = 2.

The theoretical maximum coding gain is related to the mutual information between the unquantized vari-

ables as expressed in (6.12). The theoretical gains for LDU and KLT are then given by (6.21) and (6.29)

respectively. The observed lossless coding gains were then computed in three different ways. Firstly, by

computing the0th order entropies of the discrete transform signals. Secondly by measuring the average

length obtained with Huffman codes. Under high resolution assumption the R´enyi relation asumes a one

to one correspondence between the discrete entropy and the variances of the transform signals through the
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relations (6.18) for the LDU and (6.26) for the KLT. Thus finally, a third way is to measure the actual

variances of the transform signals before quantization (�2y0i
and�q

0

i for the KLT). This allows one to check

if the analysis concerning the variances is accurate. In this case, the observed gains are obtained by com-

puting (6.21) and (6.29) with the measured variances of the transform signals. These gains are denoted by

“Observed Gain Transform Var.” These gains are plotted in figure 6.5 versus�
�x

. For high resolution (small

values of��x ), there is a good match between the observed gains and the analytical expressions. In particu-

lar, it can be seen from the estimates of the gains based on the actual variances and on the entropies, that the

assumptions of Gaussianity and of high resolution are fairly precise for values of�
�

less than approximately

0:8. The bitrate reduction obtained by using integer-to-integer transforms is not negligible, even forN = 2.

Figure 6.6 illustrates the compression ratio of the two analyzed integer-to-integer transform. The maxi-

mum achievable compression ratioCmax is given by (6.9). Basing our observations on the rates obtained

with Huffman codes, a compression ratio of11% can be operated for�
�x

= 0:1 by using any of the two

integer-to-integer transformations analyzed in this work. For�
�x

= 0:51, the compression ratio is16% for

the integer-to-integer implementation of the LDU, and14% for the integer-to-integer implementation of the

KLT. (For higher values ofN , higher compression ratios can be achived). Also, note that high compression

ratios are still achievable in the case of coarse quantization.

Considering again figure 6.5, the rounding effects due to the lossless implementation of the transforms in-

deed can be seen to increase as the quantization gets more coarse. The observed coding gains based on

the estimates of the variances of the transformed signals correspond well to the predicted ones until a ratio
�
�x

� 1. When the quantization becomes even more coarse, the quantization noises are not independent

anymore, and the mutual information between the quantized variablesxqi is superior to the theoretical one.

Figure 6.7 shows the normalized correlation coefficients of the quantization noise versus the normalized cor-

relation coefficient of the variablesx1 andx2 for several quantization stepsizes. It indicates that for most

of quantization situations, the hypothesis of independence of the quantization noises is reasonnable. When

the correlation is not negligible, the transforms take more advantage of the information shared between the

quantized variables, and the gains may become superior to the predicted ones. The curves obtained for

N = 2 are well matched by the theoretical analysis for�
�x

lower than approximately0:8. They show that

a noticeable part of the bitrate may be saved by using an integer-to-integer transform. Finally, the lossless

implementation of the LDU provides better performance than that of the KLT.

Position of the first signal

Figure 6.8 shows the codings gains obtained for the integer-to-integer LDU applied to scalar sources of unit

variance, versus their correlation coefficient�. In the first case, denoted by “1” in the legend, the first signal

x1 is quantized with stepsize�1 = 0:1 and the second signalx2 with stepsize�1 = 1. In the second case,

denoted by “2” in the legend, the stepsizes are1 for x1 and0:1 for x2. The curves show, as expected, that

the most coarsely quantized signal must be placed in first place in order to maximize the lossless coding

gain.
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Results forN > 2.

The coding gains (estimates based on measured variances and Huffman codes) obtained for the integer-

to-integer LDU withN = 5;� = 0:51 andN = 5;� = 0:21 are presented in figures 6.9 and 6.10

respectively. In this case, the data were composed of real Gaussian i.i.d. vectors with covariance matrix

R = HRxxH
T . Rxx is the covariance matrix of a first order autoregressive process with normalized

correlation coefficient�. H is a diagonal matrix whose ith entry is(i)2=3 (increasing variances, ranging

from 1 to 8:56). Hence, the coarseness of the quantization decreases asi increases. It can be seen that

the observed gains match well the predicted ones. Figure 6.11 (resp. 6.12) compares the compression

ratio (resp. the lossless coding gain) versusN for several values of�
�

for the LDU. Note that whereas the

theoretical coding gain does not depend on the quantization (the mutual information is theoretically the same

between unquantized and quantized r.v.s by 6.12), the compression ratio (percentage of the bitrate reduction

caused by the transform w.r.t. to the overall bitrate of the uncompressed data) does. For fine quantization,

the maximum compression ratio is relatively low, but may be achieved by an integer-to-integer transform

because the effects of the roundings are not too strong. When the quantization becomes more coarse, better

compression may be achieved, but on the other hand, the integer-to-integer constraint moves the actual

performance of the transfom away from the the optimal performance. However, it appears from this figure

that is always advantageous to use an integer-to-integer transform, even in cases of coarse quantization.

6.5.2 Coding Gains with Estimation Noise

In the first experiment,N = 2. The coding gains with estimation noise are plotted in figure 6.13. The

normalized quantization stepsize is��x = 0:51. The coding gainGmax refers to the mutual information

given by (6.12). The theoretical gains for LDU and KLT are given by (6.36) and (6.38) respectively (gains

referred to as “G(K) Transform Asymptotic”). The observed coding gains are either based on the estimates

of the variances of the transform signals (gains referred to as “G(K) observed variances”), or based on the

actual gain computed by Huffman coding. In this case, a Huffman code is designed for the signals obtained

with integer-to-integer transforms based on an estimate of the covariance matrix of quantized databRxqxq

with K vectors. The theoretical curves correspond well to the observed ones for the observed gains based

on variances estimates forK � a few tens. Huffman based and variance based observed gains reach90%

of their maximal value forK � 10 decoded vectors. That is, regarding the results obtained with Huffman

codes,90% of an optimal compression of16% can be achieved forK � 10 in the case of the integer-to-

integer LDU. In the case of the integer-to-integer KLT,90% of a compression of14% can be achieved for

a comparable estimation noise.

Finally, figures 6.14 (resp. 6.15) plot the lossless coding gain with estimation noise versus K forN = 5

and� = 0:51 (resp.� = 0:21). Theoretical and observed gains correspond well forK � a few tens.
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Figure 6.13: Lossless coding gains with estimation noise versus K forN = 2. �
�x

= 0:51.
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Figure 6.14: Lossless coding gains with estimation noise versus K for N=5.� = 0:51.
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Figure 6.15: Lossless coding gains with estimation noise versus K for N=5.� = 0:21.

6.6 Conclusions

For single-stage lossless coding, where the components to be coded are decorrelated by means of integer-

to-integer transforms, an upper bound for the lossless coding gain has been described in term of mutual

information. The performances of the KLT and the LDU have been described using high resolution approx-

imations, and compared with the maximum achievable coding gain for both fixed and adaptive systems.

Various numerical results were then presented. These results indicate that the theoretical analyses regard-

ing the perturbations caused by the lossless constraint, and the estimation noise are fairly accurate as far

as the entropies are concerned. The compression performance obtained with Huffman codes are slightly

lower than those predicted for both approaches. Moreover, these results show that in any case, the causal

transform leads to better compression ratios than its unitary counterpart. Moreover, an interesting side re-

sult is that the most coarsely quantized signal should, in the causal case, be placed in first position for the

compression to be the most efficient.



Chapter 7

On the Suboptimality of Orthogonal

Transforms for Lossless Transform

Coding

The analysis of the previous chapter showed that the integer-to-integer implementation of the Karhunen-

Loève transform leads to lower compression performance than its causal counterpart. We pursue this

analysis in the framework of a multi-stage lossless transform coding scheme, which yields a lossy coded

signal, and an error signal. This scheme allows one to choose the respective bitrates of both complementary

signals, depending for example on the bandwidthof the transmission link. We show that the causal approach

presents several advantages w.r.t. its orthogonal counterparts. For orthogonal transforms, the price paid

for the multiresolution approach is a bitrate penalty of0:25 bit per sample. This excess bitrate is due to a

“gaussianization effect” of the transforms [21]. Firstly, we show under the assumptions of smooth p.d.f.s

for the sources, and of high resolution for the lossy coded signal, that the causal approach allows one to

code the data (almost) without causing any excess bitrate as compared with a single-stage coder. Secondly,

the approach based on the causal transform allows one to easily switch between a single- or a multi-stage

compressor. Thirdly, in the framework of interchannel redundancy removal, this approach allows one to

easily fix the distortion and rate for both the low resolution and the error signal of each channel, by using

different stepsizes in the quantization stage. Any of the channels may, as a particular case, be chosen to

be directly losslessly coded. Finally, a side advantage of the causal approach is that entropy coding of

the error signal is made very simple since for odd quantization stepsizes, the discrete error sources are

uniformly distributed, so that the optimal codewords have the same length, and fixed rate coding is optimal.

167
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7.1 Introduction

Consider a discrete vectorial sourcex whose samples arexk. This source may for example be composed

of N scalar signalsxi, in which casexk = [x1;k � � �xN;k]T , or by the samples of the same scalar source, in

which casexk = [xk xk�1 � � �xk�N+1]T . In the framework of a two-stage lossless transform coder each

block of signalxk undergoes first a transform, the decorrelated componentsy
k

are then quantized by means

of uniform scalar quantizers, and further entropy coded, see figure 7.1. The corresponding bitrate will be

denoted byrLR(y).
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Figure 7.1: Classical two-stage lossless transform coding.fQg denotes uniform scalar quantizers,f
ig and

f
0ig scalar entropy coders, and[:]1 rounding operators.

By inverting the transform and taking the integer part of the resulting reconstructed valuex0, the error

signale can be generated by substraction :e = x�xq, and further entropy coded. The correspnding bitrate

will be denoted byr(e). The decoder generates thenxq in the same way, and recoversx by x = xq + e.

Note that the rounding operations are necessary: sinceT is a linear transform,x0 = T�1yq is generally not

integer valued.

In this framework, we compare in this chapter the compression performance of orthogonal transforms (e.g.

DCT, DFT, DST, DHT), as analyzed in [21], to that of the causal transform. A generalization of the two-

stage structure to M stages is analyzed for the causal transform in chapter 8.

Let us now denote byr1�shot(x) the bitrate dedicated to entropy code the sourcex with a single-stage

lossless coder. The main question addressed here stands in the following: Is there, in terms of rate, a cost

by using any multiresolution approach ? Or in other words, will the overall bitraterLR(y) + r(e) be larger

thanr1�shot(x), and if yes, by how much ? The analyses of the next sections will show that the causal

transform outperforms orthogonal ones because it avoids the bitrate penalty of0:25 bit per sample reported
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in [21], resulting in an optimal system (w.r.t. a single stage coder). Moreover, the causal approach presents

several practical important coding features which orthogonal transforms do not share. In the following, the

KLT will be used as a benchmark for orthogonal transforms, but as will be underlined, the conclusions of

thes analyses can be generalized to other orthogonal transforms.

The rest of the chapter is organized as follows. Section 7.2 states the main assumptions, definitions and

notations of this work, and recalls the main characteristics of the causal transform and some results about

the “one-shot” compression. Section 7.3 describes the proposed two-stage coding structures and analyzes

the statistics of the error signals. Section 7.4 is dedicated to the analysis of the bitrates in the case of

Gaussian signals and section 7.5 comments the case of non-Gaussian probability density functions (p.d.f.s).

Section 7.6 considers the particular case where lossless transform coding is used to remove intrachannel

redundancies, and the last section presents some numerical results.

7.2 Single-Stage Structure

Consider a vectorial sourcex, which is obtained by some discretization (quantization) process from a

continuous-amplitude sourcexc (for notation convenience, the time indexk will be omitted). In the rest of

this chapter, we assume very high resolution (x is integer valued, and�2xi � 1), smooth p.d.f.s for the r.v.s

to be coded, and high resolution quantization of the lossy signal (�i � �2yi).

The rounded value obtained fromxci and denoted by[xci ]1 is then defined by

[xci ]1 = round(xci ) = n; n 2Z; if � n

2
� xci <

n

2
: (7.1)

Similarly, a uniform quantizer with non unity stepsize� associates then toxci a quantized value[xci ]�. In

the case wherexc is a vector,[xc]� will denote quantization of each componentxci .

In order to compute the different rates, we will use the R´enyi’s relation of differential to discrete entropy

[38]:

H(xi) + log2�! h(xci) as �! 0; (7.2)

whereH denotes the discrete entropy of the discrete sourcexi, obtained by uniform quantization with step-

size� from the continuous amplitude sourcexci with differential entropyh. For vectors, a similar relation

can be derived, see [35, 162]1.

We now recall some results of the previous chapters concerning single-stage compression of a vectorial

sourcex by means of integer-to-integer transforms.

7.2.1 Lossless Implementation of the Transforms

In the causal case the vectorx is decorrelated by means of a lower triangular transformL. The transform

vectory isLx = x� Lx, whereLx is the reference vector. The componentsyi are the prediction errors of

1Gish and Pierce gave an outline of the proof in [35]; Csisz´ar generalized the result in [162].
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xi with respect to the past values ofx, thefx1:i�1g, and the optimal coefficients�Li;1:i�1 are the optimal

prediction coefficients. It follows thatRxx = L�1RyyL
�T , which represents the LDU factorization of

Rxx. In the unitary case,Rxx = V �1�V �T , where� is the diagonal matrix of the eigenvalues ofRxx. In

both cases,detRyy = detRxx, since both tranforms are unimodular.

However, since the resulting componentsyi are generally not integer, such a transform cannot be used for

lossless coding. A lossless implementation of the LDU transform is depicted in figure 7.2.
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Figure 7.2: Lossless “one-shot” implementation of the LDU Transform.

In this case, the transform signals are obtained by

yi;k = xi;k � [bxi;k]1 = xi;k � [Li;1:i�1x1:i�1;k]1; (7.3)

wherebxi;k is the estimate ofxi;k based on the previous samples ofxk. The signalsyi are then entropy

coded (bitstreamsfi0jg). At the decoder, each componentxi is losslessly recovered byxi = yi + [bxi;k]1.

7.2.2 Orthogonal Case

Many lossless implementations of orthogonal transforms have been studied recently, see for example [41,

164, 165]. Concerning the KLT, the integer-to-integer approximation of the optimal linear orthogonal decor-

relating transform is based on the factorization of the unimodular matrix into a product of triangular matri-

ces, cascaded with rounding operations ensuring the invertibility of the global transform [41].

Because of its triangular structure, the LDU transform is naturally well suited for factorizations involving

lifting steps and roundings. This is not the case for noninteger-valued orthogonal transforms, in which case

the number of rounding operations decreases the coding performance. It was shown in [142] that for single-

stage coders, the best linear decorrelating orthogonal transform is slightly less efficient than the causal one.
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For other transforms such as DCT, DFT, etc, the compression performance will most probably be still worse,

since they are square matrices with non-integer coefficients also, and their decorrelation efficiency is less

than that of the KLT. In the next section, orthogonal and causal approaches are compared for a two-stage

structure.

7.3 Two-Stage Structure

7.3.1 Orthogonal Transforms

As stated in the introduction, the vectorial sourcex can be losslessly coded by means of a two-stage struc-

ture, yielding a low resolution versionxq , and an error signale.

In the case of orthogonal transforms (KLT, DCT,...), the coding scheme is represented by figure 5.9. The

error signal may be written ase = x� xq = [x� x
0q ]1 = [T�1q]1. Thus, eachei is a discretized mixture

of N random variables (r.v.s), which, as shown by high resolution quantization theory, are uniform if�

is small in comparison with the variances�2yi of the signalsyi, and if their p.d.f.s are smooth. Since the

convolution ofN uniform r.v.s tends quickly to a Gaussian, the error signalsei may be approximated as

continuous Gaussian r.v.s with variances�2

12 , discretized with stepsize unity. The minimum distortion is

now obtained by setting� = 1, resulting in a distortion of�
2+1
12 = 1

6 on each component. Thus, this

scheme does not offer the simple mean of switching from the two-stage to the “one-shot” coder by only

setting the quantization stepsizes to1.

Since theei are nearly Gaussian, the probability that an error occurs for a general� can be approximated

with the error function [21]:

P (ei 6= 0) = P (jeij � 1

2
) � 1� erf(

r
3

2

1

�
): (7.4)

For� = 1, this leads toP (ei 6= 0) � 0:08, which means that one out of twelve samples should be corrected

at the decoder to ensure the losslessness. The question of the rate dedicated to codee is examined in the

next section.

7.3.2 Causal Transform

The two-stage causal structure may be described by the figure hereafter.

The transform signals are computed by substracting the optimal estimate ofxi based on the pastquan-

tizedsamplesxq1:i�1, and by quantizing with some stepsize�i the resulting error prediction, which leads

to yqi . The reason for computing the prediction by means of quantized data is that we are interested in a

low resolution signal which can be computedindependentlyof the error signals. Thus, only the available

xqi at the decoder should be used to compute the remainingxqj ; j > i. As will be commented in the rate

analysis, prediction based on quantized data is slightly less efficient than that based on original data, though
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Figure 7.3: Encoder of the two-stage lossless coding Structure in the causal case.

this difference will be shown to be negligible in most of the cases. Each error signal is thus computed by

ei = xi � xqi = xi � [yqi + Li;1:i�1x
q
1:i�1]1 = [xi � Li;1:i�1x

q
1:i�1 � yqi ]1 = [yi � yqi ]1: (7.5)

Thus, the errorsei are now the discretized versions of the quantization errors in the transform domain.

Assuming smooth p.d.f.s and high resolution (�i � �2yi), three cases should be considered in order to

derive the statistics of the errorsei 2.

Firstly, if � = 1, it can be checked that fixing all stepsizes to1 yields a single-stage lossless coding scheme

of figure 7.2. We have noted in the previous section that a similar equivalence is not possible in the case of

orthogonal transforms.

If now �i is an odd integer greater than1, the rounding definition (7.1) yields equally likely errors (with

probabilitiespoi =
1
�i

), and belonging tof��i�1
2

; ��i�1
2

+ 1; :::; �i�1
2
g.

If finally �i is even, all the errors are equally likely except��i

2 , which, in virtue of (7.1), and assuming

thatP (xqi > 0) = P (xqi < 0), are twice less likely than the other ones (for example,+�i

2 occurs only for

positive values ofxqi ). Thus, regarding the probabilitiespei of the errors obtained with even�, the values

2The p.d.f. should not change much within each quantization bin, otherwise the p.d.f.s of the errors may be far from the uniform

distribution. Numerical simulations show that this is a reasonable assumption for Gaussian sources.
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0;�1:::� �i

2 � 1 are equally likely with probabilities1
�i

, and��i

2
have probabilities 1

2�i
. These remarks

suggest that the errors will be nonzero with the same probability for even and odd�, which is given by

P (ei 6= 0) = P (jeij � 1

2
) = 1� 1

�i
8�i: (7.6)

The difference between the cases of even and odd� is illustrated in figure 7.4. For the partionning induced

by the round off quantizers with� = 6, the errors�3 are twice less likely than0;�1;�2. For� = 5, all

the cells are equivalent, which makes the errors equally likely.

or
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Figure 7.4: Probability of errors induced by the rounding operator (7.1), for even and odd�.

Figure 7.5-a) plots the observed and theoretic probabilities of error in the orthogonal case and in the

causal case as given by (7.4) and(7.6) (for these simulations, all the quantization stepsizes are equal, see

details in section 7.7).

As a conclusion, the causal transform allows one, on the one hand, to switch easily between either a single,
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or a two-stage structure, by simply fixing the stepsizes to1. Moreover, the stepsizes�i may in general be

different, allowing one to choose a possibly different rate-distortion trade-off foreach signalxqi . Also, any

channelxi can be chosen in the causal case to be directly losslessly coded, by setting the corresponding

�i to 1. On the other hand, the KLT does not benefit from these advantages because of the mixing effect

of the quantization errors in the signal domain. As shown in figure 7.5, the probability that an error occurs

is higher in the causal case than in the orthogonal case as soon as� > 1. The next section will show

however that this does not preclude that the rate associated to the error signal is higher in the causal than in

the orthogonal case.

7.4 Analysis of the Rates

In this section we assume jointly Gaussian signals for which closed form expression for the rates can be

obtained; the case of non-Gaussian p.d.f.s will be discussed in section 7.6. Moreover, we assume for

simplicity that all the quantization stepsizes are equal in both causal and unitary cases (though this is not

necessary for the LDU transform, as stated in section 7.3).

7.4.1 Low Resolution Versions

For the two transformations, one should compute

rLRT =
1

N

NX
i=1

H(yi; T ) � 1

N

NX
i=1

h(�2yi ; T )� log2�; (7.7)

whereT denotes either the causal or the unitary transform. For both transforms, the transform signals are

Gaussian. The variances�2yi are in the orthogonal case the eigenvalues�i of Rxx, so that

rLRV �
1

N

NX
i=1

�
1

2
log2 2�e�i � log2�

�
� 1

2
log2 2�e(detRxx)

1
N � log2�: (7.8)

In the causal case, the variances of the transform signals�2yi are not exactly the optimal prediction error

variances�2
y0i

of orderi � 1 based onx1:i�1, because the prediction is computed by means of quantized

samples. One shows that (see result (2.36) with�2 = �2

12
) �2yi � �2

y0i
+ �2

12
(LL

T
)ii: As in DPCM, the

prediction error variances are increased due to a quantization noise feedback.Using (2.68), we obtain

rLRL = 1
N

NX
i=1

H(yi; L)

� 1
N

NX
i=1

�
1

2
log2 2�e�

2
yi
� log2�

�

� 1
2 log2 2�e

 
NY
i=1

�2y0i

! 1
N
"
1 + �2

12N

NX
i=1

(LL
T
)ii

#
� log2�

� 1
2 log2 2�e(detRxx)

1
N + �2

24N ln 2

NX
i=1

 
1

�i
� 1

�2
y0i

!
� log2�:

(7.9)



7.5 Intrachannel Redundancy Removal 175

Thus, for the same distortion�
2+1
12 on each componentxqi , the bitrate required to entropy code the low

resolution version obtained by means of the causal transform should require an excess bitrate in comparison

with the KLT. Simulations in section 7.7 show however that this excess bitrate is negligible in many practical

coding situations.

7.4.2 Error Signals

Regarding now the raterT dedicated to the error signals, one can compute the discrete entropies of the

signalsei by using the error analysis of section 7.3.

In the unitary case, eachei can be seen as a discretized Gaussian r.v. with variance�2

12 . Thus, the bitrate

rV = 1
N

PN
i=1H(ei; V ) can be written as [21]

rV � 1

N

NX
i=1

1

2
log2 2�e

�2

12
= log2�+

1

2
log2

�e

6
;| {z }

�0:25 bit

(7.10)

We find in (7.10) the well known difference between Gaussian and uniform entropies [29] of� 0:25 bit.3.

In the causal case we obtain, depending on the parity of�

rL;even = �
NX
i=1

pei log2 p
e
i � �(�� 1)

1

�
log2

1

�
� 2

�
1

2�
log2

1

2�

�
� log2�+

1

�
;

rL;odd = �
NX
i=1

poi log2 p
o
i � ��

�
1

�
log2

1

�

�
� log2�:

(7.11)

Comparing (7.10) and (7.11), the approximately0:25 bit/sample excess rate of orthogonal transforms w.r.t.

single-stage lossless coding vanishes in the causal case. Moreover, in the case of odd�, the error are

uniformly distributed, which means that no compression is required for the bitrate to reach the entropy of

the sourcesei, and the optimal coding procedure is simply consists in transmitting the binary representation

of the valuesei.

7.5 Intrachannel Redundancy Removal

The coding schemes presented in figures 7.2 and 7.3 can indeed be used to remove intrachannel redun-

dancies, in which case frequential expression can be obtained. In this case, each data block isxk =

[xk xk�1 � � �xk�N+1]
T . Again, we assume a Gaussian p.d.f. and equal quantization stepsize� for the

quantizersfQg. By letting the block length grow to infinity, and using the asymptotic distribution of

Toeplitz matrices [166],

lim
k!1

det(Rxx)
1
N = lim

k!1
e

1
N log

QN
i=1 �i = e

R 1
2
� 1

2

lnSxx(f)df
; (7.12)

3This (often called “quarter bit”) result was first reported by Koshelev in [29], rediscovered by numerical simulations by Goblick

and Holsinger [30] and derived analytically by Gish and Pierce [35].



176 Chapter 7 On the Suboptimality of Orthogonal Transforms for Lossless Transform Coding

whereSxx(f) denotes the power spectral density ofx, we get for the bitrates of the low resolution signals

rLRV � 1
2 log2 2�e e

R 1
2
� 1
2

ln Sxx(f)df � log2�;

rLRL � rLRV + �2

24 ln 2

"R 1
2

� 1
2
S�1xx (f)df � e

� R 1
2
� 1
2

lnSxx (f)df

#
; (7.13)

The bitrates corresponding to the error signals (7.10) and (7.11) remain unchanged.

7.6 Case of Non-Gaussian p.d.f.s

Regarding the low resolution signals, non-Gaussian p.d.f.s of thexi may lead to non-Gaussian p.d.f.s for the

yi
4. Since the relation of the differential entropies to the variances of the transform signals will be different

from that of Gaussian r.v.s, the ratesrLRV andrLRL will differ from equation (7.8) and (7.9). However,

since a Gaussian r.v. maximizes the differential entropy for a given variance, one may expect that the actual

rates will be lower than those of equation (7.8) and (7.9), obtained in the Gaussian case.

As for the error signals, the analyses of the previous sections are still valid under the same assumptions

of smooth p.d.f.s and high resolution. The quantization errors in the transform domain are still uniform,

leading, in the signal domain, to nearly Gaussian errors in the orthogonal case, and to nearly uniformly

distributed errors in the causal case. Thus the causal approach avoids the0:25 bit suboptimality of the

orthogonal transforms regardless of the p.d.f.s of the sources.

7.7 Numerical Results

For the simulations, we generated105 real Gaussian i.i.d. vectors with covariance matrixRxx = HRAR1H
T .

RAR1 is the covariance matrix of an AR(1) process with� = 0:9 and variance105. H is a diagonal matrix

whoseith entry is(N�i+1)1=3,N = 3. The data are rounded with even or odd�. A “one-shot” approach

requires� 9:8 b/s to losslessly code these data.

Figure 7.5-b) compares the theoretic (expression (7.8) for the KLT, and (7.9) for the LDU) and observed

entropies for the low resolution signals. Note that the excess rate in the causal case (cf equation (7.9)) is

negligible as long asrLRL is greater than roughly3 bits/sample, which is one third of the overall bitrate. The

first set of figures deals with odd�. Figure 7.6-a) compares the theoretic (expressions (7.10) and (7.11))

and observed entropies for the error signals. Figure 7.6-b) compares the theoretic and observed overall rates

for the two-stage coders in both approaches, showing that the best orthogonal approach is nearly0:25 bit

suboptimal w.r.t. its causal counterpart in most cases.

In the case of even�, similar results are obtained in figures 7.7 and 7.8. Note the excess rate term (1
� ) which

appears inrL;even of equation (7.11) for low values of�. As shown in figures 7.8a and 7.8b, choosing the

4e.g., if x = Az is a rotated version of somez = [z1 � � � zN ]T , wherezi are independent and uniformly distributed, then the KLT

V will be V = A�1, andy will equalz.
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Figure 7.5: Case of odd�: a) Error probability and b) Entropies of low resolution versions.

causal approach is preferable if one desires to transmit a lossy signal whose rate is less than approximately

7:8 bits per sample.

Finally, these results are confirmed by figures 7.9, 7.10 and 7.11, where the rates are the actual rates obtained

by Huffman coding the different signals.

7.8 Conclusions

The causal LDU transform has been shown to present several advantages over orthogonal transforms in

the framework of multi-stage lossless transform coding. Firstly, under the assumption of smooth p.d.f.s for

the sources, and of high resolution for the lossy coded signal, the causal approach allows one to code the

data (almost, that is, neglecting the noise-feedback term in (7.9) and (7.13)) without causing any excess

bitrate as compared with a single-stage coder. Secondly, the approach based on the causal transform allows

one to easily switch between the single-stage compressor described in chapter 6 or a multi-stage lossless

coder. Thirdly, in the framework of interchannel redundancy removal, this approach allows one to easily fix

the distortion and rate for both the low resolution and the error signal of each channel, by using different

stepsizes in the quantization stage. Any of the channels may, as a particular case, be chosen to be directly

losslessly coded. Finally, a side advantage of the causal approach is that entropy coding of the error signal is

made very simple, since for odd quantization stepsizes, the discrete error sources are uniformly distributed,

so that the optimal codewords have the same length, and fixed rate coding is optimal.

Indeed, better compression performance may be obtained by removing intra- in addition to inter-channel

redundancies if the vectorial sourcex presents memory. The next chapter presents the extention of the

previous results in this case.
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Figure 7.6: Case of odd�: a) Entropies for error signals and b) Overall entropies.
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Figure 7.8: Case of even�: a) Entropies of the error signals and b) Overall entropies.
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Figure 7.10: Rates obtained by Huffman coding for error signals: a) Odd� and b) Even�.
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Chapter 8

Multistage Integer-to-Integer MIMO

Prediction

This chapter investigates lossless coding procedures based on the “generalized MIMO prediction” as ana-

lyzed in chapter 5, and on the single- and multi-stage lossless coders of chapters 6 and 7. The considered

coding schemes are applied to discrete vectorial sources with memory. In this case, both intra- and inter-

channel redundancies are removed by lossless prediction. The resulting signals are scalar entropy coded.

For Gaussian sources discretized with uniform scalar quantizersQi, we establish first the expression of the

maximal bitrate reduction as achievable by any lossless coding technique. This bound corresponds to the

performance of optimal vector entropy codes. We compare then the performance of the described integer-

to-integer MIMO prediction lossless coding schemes to this bound. Theses schemes are suboptimal because

of the lossless constraint imposed to the transformations, which vanishes in the limit of small distortions

introduced by the quantizersQi. The proposed coders may be used either as compressors, or as a scalable

lossless coder. In the latter case, a multistage version of the lossless coder based on triangular MIMO pre-

dictor is proposed. (A)DPCM lossless prediction loops are introduced which allow one to transmit the data

by means of substreams, which represent different “resolution” levels. This multiresolution approach is

slightly suboptimal in comparison with a single-stage compression approach because of the noise feedback

created in the (A)DPCM loops. We propose a strategy to fix the stepsizes of the quantizers of these loops so

that the delivered rates approach some predetermined target rates.

181
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8.1 Introduction

8.1.1 Lossless Coding

Let us consider a continuous-amplitudeGaussian vectorial sourcexc. In a first step, this source is quantized,

resulting in a sourcex1. As xc, the sourcex may present both temporal and spatial dependencies.

Once some rate-distortion trade-off has been chosen, the distortion is fixed. By the noiseless coding theorem

of Shannon, the minimum bitrater0 required to code the discrete-amplitude sourcex corresponds to its

entropy rate. The aim of lossless coding is to design a coding procedure whose actual bitrate will be as

small as possible, and, if possible, will reachr0. Indeed, it is known that entropy coders which assign

adequate codewords to blocks of samplesxk, according to the joint probability of these vectors, can reach

r0. The complexity of these vector entropy coders may, however, be prohibitive. Thus, an interesting

question is that of designing a coding procedure which is performant in terms of rates, though maintaining

a reasonnable complexity, by using scalar entropy coders. This problem was investigated in chapter 6,

where we analyzed the performances of lossless transforms (based on the KLT and on the LDU), followed

by scalar entropy coders. The first topic of the present chapter is to analyze the performance of similar

coding schemes where the transformT (z) corresponds this time to the decorrelation approaches of the

MIMO prediction framework. The corresponding single-stage lossless structure is recalled in figure 8.1.
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Figure 8.1: Lossless coding scheme considered in this chapter.

Assume in a first scenario that the componentsxi;k of the vectorsxk in figure 8.1 are directly scalar

entropy coded (entropy coders
i), resulting in a bitraterscal(x). Assume in a second scenario that a

reversible transformationT (z), aimed of removing intra- and inter-channel dependencies, is applied to

1The subscriptq will be dropped for discrete sourcesxi andyi , and will be later dedicated for the DPCM quantized signals in the

multistage structure of 8.5.
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xk before scalar entropy coding, resulting in a bitraterscal(y). As in chapter 6, one may define for this

transform a lossless coding gain expressed in bits per sample as

GT (z) = rscal(x)� rscal(y): (8.1)

As in chapter 6 also, one may expect thatGT (z) is upper bounded by someGMax = rscal(x) � r0. The

general expression ofGMax for Gaussian sources with memory will be derived in section 8.2. This gain

will be compared to the lossless coding gain of integer-to-integer implementations of totally decorrelating

MIMO predictors in section 8.3.

After the analysis of these “one-shot” lossless structures, the fourth part will turn to two-stages multichannel

prediction structures, in the spirit of those described in chapter 7. The bitrates for both the low resolution and

the error signals will be first evaluated; the overall bitrate will then be compared to that of the corresponding

“one-shot” lossless coders. The two-stage structure will be extended toM stages in section 8.5. Finally,

some numerical results will be presented in section 8.6.

8.2 Entropy Rates and Maximum Lossless Coding Gain

The aim of this section is to establish the maximum bitrate reduction, or lossless coding gain, as achievable

by any lossless coding method overrscal(x). We first derive the minimal rater0(x) required to represent

the discrete-amplitude,N -dimensional sourcex, obtained fromxc by some discretization process (figure

8.1). We will then express the bitraterscal(x).

By the noiseless coding theorem of Shannon, the minimal bitrate required to represent the sourcex is

minfrg = r0(x) + � bits per sample; (8.2)

wherer0(x) denotes the entropy rate, and� is a positive value which can be made arbitrarily close to zero

by means of optimal vector entropy coders. We assume thatx is an uniformly quantized version ofxc

with stepsizes�i. Let the samples ofx be collected in a vectorXk = [x1:::xk]
T and denote byXc

k the

corresponding vector of samples forxc. The entropy rater0(x) is defined by the limit

r0(x) = lim
k!1

1

Nk
H(Xk): (8.3)

Now, for any continuous-amplitudesourcexci uniformly quantized with stepsize�i, the differential entropy

h(xci ) can be related to the discrete entropyH(xi) by the Rényi’s relation [38]

H(xi) + log2�i ! h(xci ) as �i ! 0: (8.4)

This result can be extended to theNk-vectorXk [35, 162], leading to

r0(x) � lim
k!1

1

Nk
h(Xc

k) +
1

N

NX
i=1

log2�i: (8.5)
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Expressing the differential entropy of the multivariate normal distribution (see, e.g., [3] pp. 230) we obtain

r0(x) � lim
k!1

1

2
log2 2�e

�
detRXc

k
Xc
k

� 1
Nk +

1

N

NX
i=1

log2�i; (8.6)

Using the result (5.7), the minimum bitrate required to code the sourcex can be expressed as

r0(x) � 1

2
log2 2�e

 
e

1
N

R 1
2
� 1

2

ln detSxcxc (f)
df

!
+

1

N

NX
i=1

log2�i: (8.7)

whereSxcxc (f) is the power spectral density of the vectorial processxc.

As mentioned previously, this bitrate can be achieved by optimal vector entropy coding. If now we use

scalar entropy coders to code thexi, the bitrate is that of expression (6.7)

rscal(x) � 1

2
log2 2�e

�
det( diagfRxcxcg)

�1
N � 1

N

NX
i=1

log2�i: (8.8)

Finally, the maximum lossless coding gain corresponding to the bitrate reduction achieved by vector over

scalar entropy coders is

GMax = rscal(x)� r0(x)

� 1
2N log2

det diagfRxcxcg
e
R 1=2
�1=2 ln detSxcxc (f)df

� 1
2 log2G

(0)
L :

(8.9)

whereG(0)
L is the optimal coding gain (5.9) obtained in chapter 5, corresponding to an optimal decorrela-

tion of the sourcebeforethe quantization stage. This expression generalizes (6.7), which links similarly the

coding gains of the classical and lossless transform coding frameworks. Note that for uniform quantization,

GMax does not depend on the stepsizes (assuming they are sufficiently small), but on the spatial and tempo-

ral dependencies of the continuous amplitude sourcesxci only. Also, (6.7) is indeed a special case of (8.9),

since for memoryless sources,Sxcxc (f) becomesRxcxc , ande
R 1=2
�1=2 ln detSxcxc (f)df reduces todetRxcxc .

The next section investigates the coding gain of actual transforms based on MIMO prediction, followed by

scalar entropy coders.

8.3 “One-Shot” Integer-to-Integer Multichannel Prediction

We first present the general structures corresponding to “one-shot” integer-to-integer multichannel predic-

tion. The corresponding coding gain will then be computed, and compared toGMax of (8.9).

8.3.1 Triangular MIMO prediction

The causal decorrelation approaches presented in chapter 6 are easily adapted to lossless coding by intro-

ducing round off quantizers, similarly to those presented in figure 6.3. The choice of a particular structure

of the generalized MIMO prediction framework depends then on the degrees of non causality which are
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attributed to the intersignals filters. As in the lossy coding case, particular structures are the triangular, and

the classical lossless MIMO predictors.

The application of the triangular MIMO predictor to lossless coding is depicted in figure (8.2) for a two

dimensional vector source.
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Figure 8.2: “One-shot” integer-to-integer triangular multichannel prediction forN = 2.

The entries of the lower triangular MIMO prediction matrixL(z) (which may be written asI � L(z),

whereI is the identity matrix) areLij(z). Lij(z), i 6= j are Wiener filters, andLii(z) are optimal causal

linear prediction filters. The rounding operations denoted by�i (high resolution is assumed) ensure the

losslessness of the structure: eachbxi is quantized to the same multiple of�i asxi. Theyi are obtained

by yi = xi � [bxi]�i , and further (independently) entropy coded. At the decoder, thexi are recovered by

yi + bxi.
Any lossless MIMO predictor can be written asLqint(z) = I � L

q

int(z). In the triangular case, only the

diagonal entries of figure 8.3 are causal. In the classical MIMO prediction case,L
q

int is striclty causal. A

generic block diagram of the “generalized” MIMO predictor is presented in figure 8.3.

8.3.2 Case of Finite Prediction Orders

An application of the classical MIMO prediction to lossless audio coding has been recently presented in

[167]. In this case, FIR filters are used to remove inter- and intra-channel correlations of stereo and mul-

tichannel audio signals (16 b/s, 48kHz). The orders of these filters are adaptatively chosen (on a frame
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Figure 8.3: Equivalent block diagram of the “one-shot” integer-to-integer multichannel predictors.

basis of1024 samples) among a set of possible orders (30 for the intra-signal filters and10 for the (causal)

intersignal filters). Those orders are retained which minimize the bitrate. Finding the optimal order com-

binations results in a great complexity, even for stereo signals. Strategies are thus proposed to reduce this

complexity. The orders of the intrasignal filtersLii(z) are determined by using Levinson algorithms. Once

these orders are fixed, the best order for the causal crossband predictorLii(z); i 6= j is evaluated. Further

complexity reduction can be achieved by increasing all the orders simultaneously. After the optimization

procedure, the coefficients are quantized with12 bits each, and transmitted to the decoder. The results

show that appreciable bitrate reduction may be achieved by these techniques. They are also interesting in

the sense that they show how the compression efficiency depends on a carefull compromise of the orders

w.r.t. the complexity, and the quantization accuracy. A success of the structure relies on the decorrelation

efficiency, which in turn relies on positioning judiciously the taps of the filters. As discussed in chapter 5,

the triangular MIMO lossless predictor may be useful in this framework, since the intersignal filters are not

restricted to be causal, and some non causality may be allowed in frame-based coding schemes.

8.3.3 Coding gain

We can define the gainGL(z) for the lossless implementation of a transformL(z) as the differencerscal(x)�
rscal;L(z)(y), whererscal(x) was defined in (8.8), andrscal;L(z)(y) is the actual bitrate required to scalar

entropy code the decorrelated transform componentsyi. This gain may be written as

GL(z) = rscal(x)� rscal;L(z)(y) =
1

N

NX
i=1

H(xi)� 1

N

NX
i=1

H(yi): (8.10)

We shall now investigate the effects of the rounding operations on the compression performance. Let us

denote byy0i;k the optimal prediction error obtained by applyingL(z) to x (that is, without the rounding

operations ensuring the losslessness). Then theyi;k can be related to they0i;k by

y
k

= xk � [L(q)xk]�i

= [xk � L(q)xk]�i = [y0
k
]�i ;

(8.11)
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where[y0]�i denotes quantization with stepsize�i of theith component ofy0, and the notation(q) denotes

the unit delay operator. Thus,yi;k may be seen as the optimal prediction errory0i;k quantized with the same

stepsize asxi;k. Sincey0 is a totally decorrelated process, we have from (5.7)

NY
i=1

�2y0i
= detRy0y0 = e

R 1
2
� 1

2

ln[det(Sxx(f))] df
: (8.12)

The bitraterscal;L(z)(y) may then be written as

rscal;L(z)(y) = 1
N

NX
i=1

h(y0i )�
1

N

NX
i=1

log2�i

� 1
2
log2 2�e

�
e

1
N

R 1=2
�1=2

ln detSxx(f)df
�
� 1

N

NX
i=1

log2�i;

(8.13)

which is the generalization of the rate of the one-shot coder expressed in (6.19).

Using (8.8), (8.10) and (8.13), we get the following expression of the gain :

GL(z) � 1

2N
log2

det diagfRxcxcg
e
R 1=2
�1=2 ln detSxx(f)df

: (8.14)

In the case of equal�i = �VHR, expression (8.14) may be approximated, similarly to (6.21), by

GL(z) � 1

2N
log2

det diagfRxcxcg
e
R 1=2
�1=2 ln detSxcxcdf| {z }
GMax

� �2
VHR

24N ln 2

 Z 1=2

�1=2
trf S�1xcxc (f)gdf

!
| {z }

Excess bitrate due to the lossless constraint

; (8.15)

where tr stands for the trace operator.

This gain is achieved by any optimal decorrelating approach. Thus, in the case of very high resolution,

vector entropy coders performance can be approached by an optimal MIMO lossless prediction followed

by scalar entropy coders. Comparing with the lossless implementation of the LDU in figure 6.4 of chapter

6, note that the quantization stageQ0 involvesN quantizers instead ofN � 1, because of the presence in

MIMO prediction of the intrasignal prediction filterL11(z). This renders the excess bitrate caused by the

lossless constraint the same for all decorrelation approaches.

8.4 Two-Stage MIMO prediction

8.4.1 Structure

We will now investigate the compression performance of multiresolution approaches based on the decor-

relating transformL(z). For these approaches, a uniform quantizerQ1 is introduced in the (A)DPCM

prediction loops, whose effect is to reduce the entropy of the transform signalsyqi . These signals represent

low resolution versions of the transform signalsyi described in the previous section. The error signalsei,

i = 1; :::; N , are then generated by substraction, and separately entropy coded. Note that the transform sig-

nals are computed by substracting the optimal estimate ofxi based on the pastquantizedsamplesxqi , and
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by quantizing with stepsize�i the resulting error prediction2. Thus, only the availablexqi at the decoder

should be used to compute the remainingxqj ; j > i. A two-stage structure based on the triangular MIMO

predictor is depicted in figure 8.4, forN = 2.
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Figure 8.4: Two-stage encoder of the scalable lossless multichannel triangular predictor, forN = 2. The

bitrates forfi11:Ng andfi21:Ng are fixed by the quantizerQ1.

This structure resembles the embedded DPCM coders of [124, 127], evocated in the introduction to the

second part of this thesis. In these schemes, the predictions are also based oncorebits (lossy versionsxqi ),

and may be seen as lossless, multichannel, and possibly noncausal version of these algorithms. The overall

bitrate is the averagerLR of the bitrates corresponding to the low resolution substreamsfi1kg, k = 1; :::; N ,

plus the average�r of the rates corresponding tofi2kg, k = 1; :::; N (substreams of the error signals). In

order to simplify the derivations, we assume in this section that the�i corresponding to the preliminary

quantization stage are all equal,�i = �VHR. Moreover, we assume w.l.g. that the variances�2xi are large

2The prediction is computedby means of quantizeddata because we are interested in a low resolution signal which can be computed

independentlyof the error signals.
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in comparison with1, and that�VHR = 1. Thus,xi are integer valued, andH(xi) � h(xci ) � log2�i �
h(xci ), andSxx(f) � Sxcxc (f). This is equivalent to neglecting the effects of�VHR w.r.t. those of�Q1 .

The stepsize�Q1 is generally much larger than1: for example, if one wishes to divide by2 the0th order

entropy of an integer-valued source with variance104, the corresponding�Q1 is� 20� �VHR = 1.

8.4.2 Analysis of the Rates

We shall now analyze the bitrate dedicated to the low resolution versionrLR = 1
N

NX
i=1

H(yqi ). Considering

the figure 8.4, eachyi;k is the optimal prediction ofxi;k based on the past quantized value ofxi, and on all

the quantized components ofxj, for all j < i. (For the classical MIMO predictor, the correspondingyi;k

are based on the past and current quantized samplesxq1:i�1;�1:k, and on all the past samplesxqi;�1:k�1).

Assuming that theyi are Gaussian, we have

rLR=
1

N

NX
i=1

H(yqi ) �
1

2N
log2(2�e)

N
NY
i=1

�2yi �
1

N

NX
i=1

log2�Q1 : (8.16)

We now use the result (5.23) from chapter 5. We applyL(z) to decorrelate the vectorial sourcex in closed

loop around quantizers with stepsize�, that is, by computing the predictions by means of quantized data

of x. The resulting vectorial process isy. Then the variances of the processy can be approximately related

to the variances�2
y0i

of y0 (eq. (8.12), fig. 8.3), and toSxcxc (f) by

NY
i=1

�2yi �
NY
i=1

�2y0i

 
1 +

�2
Q

12

"Z 1
2

� 1
2

trS�1xcxc (f)df �
NX
i=1

1

�2
y0i

#!
: (8.17)

Applying (8.17) to (8.16) yields

rLR � 1
2
log2 2�e

1
N

R 1
2
� 1
2

ln detSxcxc

 
1+

�2
Q1

24N ln 2

"R 1=2
�1=2 trS�1xcxc (f)df �

NX
i=1

1

�2
y0i

#!
� log2�Q1

� rscal;L(z)(y)

0BBBB@1 +
�2
Q1

24N ln 2

"Z 1=2

�1=2
tr S�1xcxc (f)df �

NX
i=1

1

�2
y0i

#
| {z }

Factor Excess bitrate due to noise feedback

1CCCCA � log2�Q1| {z }
Bitrate reduction due to Q1

;

(8.18)

Minimizing this excess bitrate entails maximizing
NX
i=1

1

�2
y0i

. From the theorem of chapter 5, this in turn en-

tails processing the signals in order of decreasing variance. Moreover, this excess bitrate will be minimized

by the lossless triangular MIMO predictor.

Now, the bitrater dedicated to the error signals, corresponds to the entropies of the r.v.sei = xi � xqi ,

which were calculated in chapter 7, eq. (7.11). Thus, depending on the parity of�Q1 , we obtain

reven � log2�Q1 +
1

�Q1
;

rodd � log2�Q1 :
(8.19)
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8.5 Mutistage Integer-to-Integer Multichannel Prediction

Finally, one may elaborate multiresolution structures based onM two-stage lossless coders. These schemes

allow one to split the rate obtained by a one-shot coderrscal;L(z)(y) into M + 1 substreams with rates

ri; i = 1; � � � ;M+1. These rates are controled by the stepsizes of�Qi of each two-stage block, see figure

8.5. For the stagesi > 2, the predictors become useless if the error signals are white.
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Figure 8.5: Multistage structure of the lossless multichannel (triangular) prediction scalable encoder for

N = 2. The bitrates of the substreams are determined by the quantizersQi.

Suppose we dispose of partially- or un-compressed datax. Suppose we wish to transmit the data by

means ofM + 1 substreams corresponding to different resolution levels with imposed ratesRi (
M+1X
i=1

Ri �
rscal;L(z)(y)). How should we choose the stepsizes�Qk of theM uniform quantizers ?

For the sake of simplicity, we will neglect the term corresponding to the noise feedback in (8.18), and

assume odd, and sufficiently large stepsizes�Qi.

In a first step, the minimum bitraterscal;L(z)(y) (8.13) is obtained by compressing the data with some

one-shot lossless coder. Now, the two-stage structure of figure 8.4 will yield a first substream with rate

r1 = rLR � rscal;L(z)(y) � log2�Q1 ; (8.20)

and a complementary susbstream with rater � log2�Q1 . If we use a second stage, the previous error
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signal with rater will be divided into two substreams with ratesr2 � log2
�Q1
�Q2

, andr2 � log2�Q2 . Thus,

a structure usingM stages will yield a first substream with rater1 given by (8.20),M � 1 complementary

substreams with rates

rj � log2
�Qj�1

�Qj

; j = 2; 3:::M; (8.21)

and a last substream with raterM+1 � log2�QM .

It can easily be checked that the constraintr1 � R1 imposes�Q1 � [2rscal;L(z)(y)�R1 ]1. Similarly, the

constraintsrk � Rk impose�Qk � [�Qk�12
�Rk ]1, for k = 2; :::M . Thus, the stepsizes�k of theM

uniform quantizers should be determined by the simple rule of thumb

�Qk �

2666642
rscal;L(z)(y)�

kX
i=1

Ri

377775
1

; k = 1; :::;M: (8.22)

8.6 Numerical Results

Some numerical results regarding the strategy (8.22) are presented in this section. We implemented the

structure of figure 8.5 for the multiresolution coding of a two dimensional memoryless vector source. In

this case, the temporal decorrelation becomes useless, and each two-stage block reduces to the structure

presented in figure 7.3, where the�i are equal, and determined, for each block, by the rule (8.22). The

covariance matrix of the source wasR = HRAR1H
T with diagonal elements1:6 � 104, and104. Each

vector was quantized with stepsize�VHR = 1. The resulting theoretical bitrate for the corresponding

single-stage coderrscal;L(z)(y) is given by 8.13. We chose to compress this source by means of three

substreams with ratesR1, andR2 = R3. For different target combinations, the stepsizes�Q1 and�Q2

were fixed according to (8.22) (with the restriction to beodd). The resulting rates were measured either by

the entropy (fig. 8.6), or by the average rate obtained by Huffman codes (fig. 8.7), for sequences of length

5� 104. The raterscal(x), obtained without compression, is plotted in full line. The correspondence of the

stepsizes for each combination of target rates is given in the table below.

Combination 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

�Q1 1 1 1 1 3 3 3 5 5 7 9 9 13 15 19 23 27 35 43

�Q2 1 1 1 1 3 3 3 3 3 3 3 3 3 5 5 5 5 7 7

It can be observed that the bitrates actually delivered by the multiresolution structure match approximately

the target ones when the stepsizes become large w.r.t.�VHR = 1 (cases where the rate of the low resolution

version is decreased by more than20% w.r.t. the rate of the single-stage structure).
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8.7 Conclusions

This chapter dealt with optimal lossless coding of vectorial signals. The coding structures investigated in a

first step involved single-stage structures using prediction matricesL(z) of the generalized MIMO predic-

tion framework. The corresponding compression performance were compared to the optimal compression

performance. The particular cases of the classical and the triangular MIMO predictors were investigated,

and shown to present equivalent performance. In a second step, we investigated the performance of two-

stage structures where ADPCM loops were introduced. The quantizers of these loops allow one to choose

the respective bitrates for both the error and the low resolution signals. For these two-stages structures,

the overall bitrate delivered by the multiresolution structure was compared to that of the corresponding

“one-shot” approach. These two-stages structures were shown to be slightly suboptimal because of the

noise feedback created in ADPCM loops. Finally, we showed that the two-stage structure could easily be

extended toM stages. A strategy was proposed so that the delivered bitrates approach some predetermined

target rates. This strategy is efficient if the rate of the low resolution signal is sufficiently decreased w.r.t.

the overall rate.
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Figure 8.6: Actual entropies delivered by the multistage structurevsseveral combinations of target rates.
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Chapter 9

Conclusions

This thesis has presented various coding structures derived from a general causal framework. As far as

the origin of these results is concerned, one may recall that this framework is issued from an analysis-by-

synthesis structure based on a Laplacian Pyramid.

The performances of the corresponding coding systems were analyzed in both the lossy and the lossless

coding frameworks. In the following, we summarize the main results of the thesis, and outline then open

problems and further works.

In a transform coding framework firstly, we showed that the proposed causal transform performs a

Lower-Diagonal-Upper factorization of the covariance matrix of the vectorial source to be coded. It is not

unitary but causal, and is based on optimal prediction. A theoretical analysis showed that in the limit of

high rates, this transform achieves the same performance as the KLT, which is the optimal transform for

Gaussian sources. As a consequence of its non-orthogonality, we showed that efficient causal coding struc-

tures should be implemented in closed loop around the quantizers, as in DPCM systems. We proposed a

general analysis of the corresponding noise feedback for both systems working at high rates, and for partic-

ular systems using entropy coded uniform quantizers with equal quantization stepsizes. For these systems,

we showed that the causal transform competes with the KLT at average bitrate budgets higher than2:5 b/s.

As the KLT, the LDU is data dependent, and should thus be updated in case of changes in the source statis-

tics. This led us secondly to turn our investigations to backward adaptive transform coding systems. The

first attempt to model theoretically the performances of the causal and unitary transforms in this context

consisted in analyzing the corresponding perturbation effects w.r.t. to the classical transform coding frame-

195
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work. In order to make tractable analyses, several simplifyingassumptions were made. The proposed model

match accurately the corresponding idealized coding systems. We turned then to three practical backward

adaptive transform coding schemes, including fixed and adaptive stepsizes. The proposed analyses suggest

that the corresponding algorithms are universal in the sense that the transforms converge to the optimal

transforms for sources among a given class. In the case where both the stepsizes and the transforms are

adaptive, the algorithm using a Sheppard’s correction on the second order moment estimates converge to

the target stepsize, and thus, to the target distortion at high rates. The proposed models match the actual

convergence process for rates higher than approximately2:5 b/s.

We then considered optimal coding of vectorial signals. We showed in this case that the optimal causal

decorrelating scheme could still be described by a triangular prediction matrix whose entries are optimal

prediction filters. The diagonal filters are scalar intrasignal prediction filters, and the off-diagonal predic-

tors are Wiener filters performing the intersignal decorrelation. This decorrelating scheme led to the notion

of “generalized” MIMO prediction, in which a certain degree of non causality may be allowed for the

off-diagonal prediction filters. Previously introduced MIMO decorrelation approaches were shown to be

special cases of this description, namely the classical, and the triangular MIMO predictors. For the latter,

the “ causality” between channels becomes processing the channels in a certain order; some signals may be

coded using the coded/decoded versions of the “previous” signals. We then showed that if the quantization

noise feedback is taken into account, the optimal strategy is to decorrelate the signals by order of decreasing

variance. Moreover, the triangular predictor was shown to be the most efficient predictor.

The second part of this thesis analyzed the performances of causal approaches in a lossless coding

framework. Our results regard integer-to-integer transforms, and multiresolution structures.

For single-stage structures, the bitrate reduction operated by a lossless coding scheme was defined as a

lossless coding gain. An upper bound for this gain was expressed in terms of mutual information shared

by the random variables to be coded. The inherent suboptimality of integer-to-integer transforms was then

compared for the LDU and the KLT. Finally, adaptive single-stage lossless transform coding systems were

investigated. For a fixed number of vectorsK, we evaluated, for both the causal and the unitary cases ,

the bitrate reduction that could be achieved by the corresponding estimated transform. We showed that for

single-stage systems, the respective performances of the LDUvs those of the KLT are reversed w.r.t. the

classical transform coding case. The integer-to-integer KLT achieves the same compression as that of the

lossless LDU in the limit of high rates only. At lower rates, the KLT’s compression performances are more

deteriorated by the integer-to-integer constraint than those of the LDU, because the KLT is not triangular.

We then studied two-stage structures based on the KLT and on the LDU transform. For a fixed preliminary

quantization stage (and for a sufficiently high resolution), we analyzed the bitrate required to entropy code

the corresponding low resolution and error signals. The resulting overall bitrate was compared to that ob-

tained with the corresponding single-stage structure. We showed that while orthogonal transforms tend to

“gaussianize” the error signals, the LDU benefits from keeping them uniform. As a consequence, the or-
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thogonal transforms, including the KLT, were shown to be approximately0:25 b/s/ch suboptimal w.r.t. their

causal counterpart. Finally, we underlined several other practical coding advantages of the LDU, namely

the ability of switching easily from a single- to a multi-stage structure, and that of allowing one to represent

the different channels with different resolution levels. Moreover, we showed that the errors in the causal

case can be made equally likely, which makes the entropy coding very straightforward.

Finally, we applied our results about optimal coding of vectorial signals to the frameworks of the single- and

multi-stage lossless structures described so far. The coding structures investigated in a first step involved

single-stage structures using prediction matricesL(z) of the generalized MIMO prediction framework. The

corresponding compression performances were compared to the optimal compression performances, as

achievable by any lossless coding technique. The particular cases of the classical and the triangular MIMO

predictors were investigated, and shown to present equivalent performances. In a second step, we inves-

tigated the performances of two-stage structures where (A)DPCM loops were introduced. The quantizers

of these loops allow one to choose the respective bitrates for both the error and the low resolution signals.

For these two-stages structures, the overall bitrate delivered by the multiresolution structure was compared

to that of the corresponding “one-shot” approach. These two-stage structures were shown to be slightly

suboptimal because of the noise feedback created in the (A)DPCM loops. Finally, we showed that the two-

stage structure could easily be extended to a larger number of stages. In that case, a simple method was

proposed so that the delivered bitrates approach some predetermined target rates. This method is efficient

if the rate of the low resolution signal is sufficiently decreased w.r.t. the overall rate.

As can be seen from the summary of these results, various coding techniques appeared in the scope

of the proposed investigations1, including transform coding, subband coding, integer-to-integer transforms,

multiresolution coding, and combinations thereof. The choice of such a wide scope is of double value. On

the one hand, this choice was necessary to describe the versatile forms of the causal coding approach. On

the other hand, this choice led us to let for further work some interesting topics, which were only evoked,

or taken up in passing throughout the developments . Some of the presented analyses were focused on a

statistical modeling of the coding performances of particular causal systems; these systems may, however,

be further elaborated for the purposes of particular applications,e.g. audio coding. In particular, it seems

interesting to investigate the performances of the backward adaptive LDU or the triangular MIMO predictor

for multichannel audio sources, with appropriate and possibly time-varying adaptation windows. As for the

triangular MIMO predictor, the coding efficiency will also rely on a careful positioning of the taps of

the crossband filters. The degrees of noncausality allowed to these filters should be optimized w.r.t. the

framelength, or w.r.t. some reconstruction delay between the different channels for a sample-by-sample

coding scheme. Besides, perceptual considerations, which were not mentionned throughout the thesis, may

be accounted for by introducing noise shaping filters, as in classical scalar (A)DPCM. This technique would

regard both the lossy encoder of the triangular predictor, and the low resolution signal of the corresponding

1In addition to source coding, the generalized MIMO prediction have interesting applications in multiuser detection [53].
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lossless multi-stage encoder.

The proposed bandwidth expansion operated by the Wiener filters may also be improved by optimizing the

analysis filters (on which depend the information shared by the subbands), and by carefully optimizing the

number of coefficients of the filters transmitted to the decoder.

Finally, one may attempt to extend the presented theoretical results established in the Gaussian case to

different sources. One may consider Gaussian mixture models, which allow to model sources with arbitrary

probability density functions.
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10.1 Introduction

La nécéssité de “comprimer” les signaux num´eriques trouve son origine dans les moyens limit´es dont dis-

posent les communications num´eriques : la compression permet d’´economiser la bande passante des canaux

sans-fil ou internet; elle permet aussi d’´economiser l’espace m´emoire en ce qui concerne leur stockage.

D’une façon générale, le codage de source consiste `a mettre au point des techniques permettant, suivant

l’application visée, de d´eterminer le meilleur compromis entre la qualit´e avec laquelle les informations

seront repr´esentées, et la ressource, ou le d´ebit, qui sera n´ecessaire pour d´ecrire la repr´esentation choisie.

Selon que l’information initiale peut ˆetre partiellement, ou parfaitement reproduite apr`es l’opération de

codage, on parle de codage avec, ou sans perte. Cette th`ese présente diverses techniques, et l’´evaluation de

leur efficacité, pour ces deux types de codage.

L’ informationconsidérée dans cette th`ese sera repr´esentée par des signaux vectoriels, qui forment une large

classe de signaux, incluant par exemple les signaux scalaires ou les signaux multicanaux. Ces derniers peu-

ventêtre construits d`es que plusieurs signaux scalaires sont, pour des applications diverses, regroup´es. Dès

lors que les signaux scalaires individuels pr´esentent des d´ependances, comme certains signaux audio par

exemple, il y a un int´erêt à les traiter conjointement, en vue d’une compression plus efficace.

L’id ée initiale de d´evelopper des techniques adapt´ees aux signaux audio1 a motivé ce choix d’une repr´esen-

tation vectorielle. Bien que quelques applications soient pr´esentées pour ce type de signaux, l’hypoth`ese

de signaux gaussiens est souvent retenue. Les sources Gaussiennes ont un statut particulier en th´eorie de

l’information. Shannon [25] a montr´e qu’une source Gaussienne ind´ependante et identiquement distribu´ee

(i.i.d.) possède la fonction d´ebit-distorsion la plus d´efavorable, comparativement `a n’importe quelle source

i.i.d. de même variance, montrant par l`a que les Gaussiennes constituent un extremum du point de vue

du codage de source. Historiquement, ce constat a fourni les ´eléments pour ´elaborer des techniques de

quantification robuste[51]. Par ailleurs, pour une source de densit´e de probabilit´e arbitraire, on peut utiliser

avantageusement le th´eorème de la limite centrale et un code construit pour une Gaussienne [52]. Toutefois,

on ne prétend pas utiliser ici le mod`ele de source Gaussienne pour fournir des approches de quantification

robuste ou des m´ethodes de codage de sources arbitraires par pr´efiltrage et quantificateurs Gaussiens. Cette

hypothèse permet surtout d’obtenir des r´esultats analytiques relatifs sch´emas de codage consid´erés, de les

comparer et de prouver, le cas ´echéant, leur optimalit´e. Dans ce sens, elle fournit un cadre de travail adapt´e

aux investigations th´eoriques pr´eliminaires associ´ees aux sch´emas de codage pr´esentés.

Nous inspirant de [19] et [20], cette th`ese aurait aussi pu ˆetre intitulée “Variations on a causal coding

theme”: le thème de lacausalité dans le codage de source est le lien essentiel entre les chapitres de cette

thèse2. Plusieurs sch´emas de codage causaux sont pr´esentés et analys´es au long du document. Dans tous

les cas o`u le schéma de codage comprend une transformation matricielle (`a coefficients scalaires) causale,

1Les premiers r´esultats de ce travail ont ´eté obtenus dans le cadre du projet RNRTCOBASCA: COdage en Bande ´elargie avec

partage Adaptatif du d´ebit entre Source et CAnal pour R´eseaux cellulaires de deuxi`eme et troisi`eme générations (UMTS).
2Nous avons n´eanmoins essay´e de faire en sorte que les chapitres puissent ˆetre lus indépendamment, et avons repris, quand cela

semblait nécéssaire, les r´esultats pr´ecédemment ´etablis.
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nous en comparons les performances avec le sch´emaéquivalent bas´e sur une transformation optimale pour

les sources gaussiennes, la transformation de Karhunen-Lo`eve [42, 43] ( Karhunen-Lo`eve Transform, KLT).

Cette thèse comprend deux parties. La premi`ere traite du codage avec pertes (ou compression), et

la deuxième du codage sans pertes (ou compaction). Chaque partie comporte une introduction d´etaillée

présentant la probl´ematique et la trame des divers d´eveloppements. Un r´esumé est présenté au début de

chaque chapitre.

Après un chapitre d’introduction, rappelant les principaux concepts et d´efinitions de th´eorie de l’information

nécéssaires au codage de source, la premi`ere partie de cette th`ese concerne le codage par transform´ee (CT).

Le CT peut apparaˆıtre, d’un point de vue th´eorique comme pratique, comme une technique parfaitement

maı̂trisée et aboutie. Un des buts de cette partie est de montrer que des innovations majeures sont en-

core possibles dans ce domaine. Dans le cadre du CT standard tout d’abord, ces innovations concernent

l’introduction d’une transformation qui n’est pas unitaire mais causale, et qui pr´esente des performances

comparables `a celle de la KLT. Par la suite, les apports th´eoriques de cette premi`ere partie concernent un

domaine presque totalement inexplor´e, celui du codage par transform´ee en boucle ferm´ee, ou “en ligne”,

ou encore sans ”side-information”.

Dans la fin de cette premi`ere partie, la transformation matricielle causale est g´enéralisée au cas o`u les co-

efficients de la matrice de transformation triangulaire sont des filtres pr´edicteurs (pr´ediction MIMO, Multi

Input Multi Output, triangulaire). Cette g´enéralisation d´ebouche sur la pr´ediction MIMO dite “généralisée”,

pour indiquer que la pr´ediction MIMO classique et la pr´ediction MIMO triangulaire constituent deux cas

particuliers, parmi une infinit´e, d’une même approche totalement d´ecorrélatrice, et “causale” dans un sens

plus large. Un bref historique des principaux r´esultats est pr´esenté en fin de partie.

La seconde partie de cette th`ese présente et analyse des techniques de codage causales et sans pertes,

dérivées des structures pr´esentées dans la premi`ere partie.

Les thèmes de cette partie sont premi`erement les transformations d’entiers `a entiers, qui peuvent ˆetre vue

comme une analogie “sans pertes” (et non lin´eaires) du codage par transform´ee, et qui ont ´eté récemment

l’objet de nombreux travaux. Dans ce cadre, la transformation causale pr´esente aussi une alternative in-

téressante aux transformations habituellement utilis´ees (unitaires). Le deuxi`eme thème récurrent dans cette

seconde partie est le codage multir´esolutionqui permet, en augmentant le d´ebit apportéà un premier codage

grossier d’une source, d’en am´eliorer la représentation. Par ailleurs, le codage sans pertes de signaux audio

multicanaux est actuellement un terrain de recherches actives, et les r´esultats propos´es s’appliquent na-

turellementà ce domaine. Enfin, les r´esultats et les structures pr´esentées peuvent ˆetre appliqu´es au codage

de l’imageégalement.

La structure de cette seconde partie ressemble `a celle de la premi`ere: les deux premiers chapitres couvrent

des techniques li´eesà des transformations matricielles `a coefficients scalaires; la derni`ere partie g´enéralise

ces derniers r´esultats dans le cas o`u la transformation d´ecorrélante est sans perte, et bas´ee sur un filtrage

matriciel causal de type MIMO g´enéralisé.
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10.2 Premìere Partie: Codage Causal avec Pertes

10.2.1 Introduction

Le codage par transform´ee est populaire parce qu’il permet un compromis attratif entre la complexit´e et les

performances. Cette technique est largement analys´ee et comment´ee dans la litt´erature, et les syst`emes de

codage de source qui utilisent ce genre de code sont innombrables. Il existe de nombreuses transformations,

qui présentent des compromis diff´erents entre l’efficacit´e théorique et des crit`eres d’utilisation pratiques.

Par efficacité théorique, on entend la capacit´e de décorrélation, et de compaction; des crit`eres pratiques sont

la complexité de calcul et d’impl´ementation de la transformation, ou des crit`eres subjectifs li´es au comporte-

ment de la transformation par rapport `a la nature des signaux auxquels elle est appliqu´ee. Le monopole du

codage par transform´ee est d´etenu par les transformations orthogonales, parce qu’elles garantissent que le

bruit de quantification n’est pas amplifi´e quand on passe du domaine transform´e (vecteursy) au domaine

signal (vecteursx). Parmi ces transformations, la transformation de Karhunen-Lo`eve (KLT, Karhunen-

Loève Transform) [1, 54] est traditionnellement utilis´ees comme parangon, parce qu’elle est optimale pour

des sources Gaussiennes, quel que soit le type de quantificateurs scalaires utilis´es. Un des th`emes récurrents

de cette premi`ere partie est de montrer que, relativement `a différents critères, les performances de la KLT

peuventêtre égalées par (au moins) une autre transformation, la transformation triangulaire causale dite

LDU (Lower-Diagonal-Upper, r´ealisant une factorisation triangulaire de la matrice de covarianceRxx du

signal source).

10.2.2 Codage par Transformation Causale de Type LDU

Dans le second chapitre de cette th`ese, nous d´erivons la transformation causale optimale3, dans le cadre du

codage par transform´ee classique (hypoth`eses d’allocation optimale de bits, et de performances d´ebit/distorsion

constantes par rapport au d´ebit pour les quantificateurs). De fa¸con similaire au codage MICD (DPCM), cette

transformation donne lieu `a deux structures, dites en “boucle ouverte”, ou en “boucle ferm´ee”. Commepour

le codage MICD, cette derni`ere est plus r´ealiste d’un point de vue pratique; un des sch´emaséquivalent est

représenté figure 10.1.

+ +
Q

xk y
k

yq
k

xqk

Lxqk
Lxqk

� +

Figure 10.1: Codage par transformation causale en boucle ferm´ee (Q dénote un ensemble quantificateurs

scalaires).

3Le choix de cette contrainte decausalité, imposée sur la transformation, d´ecoule d’une approche de type analyse par synth`ese

adoptée comme axe de recherche initial, voir (10.2.6).
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Notons que les erreurs de reconstructionexk et de quantificationey
k

sont les mˆemes, puisque

exk = xk � xqk = xk � (yq
k
+ Lxqk) = xk � Lxqk � yq

k
= y

k
� yq

k
= ey

k
: (10.1)

Ainsi, la conservation de l’erreur de quantification n’est pas seulement vraie en norme euclidienne,

comme dans le cas unitaire, mais pour le vecteur d’erreur lui-mˆeme.

Dans un premier temps, on optimise cette transformation afin de minimiser l’erreur de reconstruction en

négligeant le fait que le vecteur de r´eférenceLxqk soit construità partir de donn´ees quantifi´ees (hypoth`ese

de résolution infinie). On obtient une transformation de la forme

L =

26666664
1

?
... 0

...
...

...

? � � � ? 1

37777775 ;

où les? représentent les coefficients de pr´ediction optimaux. En d’autres termes,L est telle que

LRxxL
T = Ryy = diagf�2y1 � � ��2yNg; (10.2)

où diagfag représente une matrice diagonale, de diagonalea. Comme chaque erreur de pr´edictionyi est

orthogonale aux sous-espaces g´enérés par lesx1:i�1, les coefficients transform´esyi sont orthogonaux, et

Ryy est diagonale. Il suit

Rxx = L�1RyyL
�T ; (10.3)

qui représente la d´ecomposition LDU deRxx. On montre que puisque la matriceRxx est définie positive,

cette transformation existe toujours.

On montre ensuite que le gain de codage correspondantG
(0)
L , qui représente le facteur par lequel la distor-

sion est diminu´ee grâceà la transformation, est le mˆeme que celui de la KLT (dans les deux cas, la distorsion

est proportionnelle `a detRyy; la KLT et la LDU étant unimodulaires,detRyy = detRxx dans les deux

cas).

Dans un deuxi`eme temps, nous proposons des analyses des effets du bruit de quantification sur le gain

de codage. R´eoptimisant la transformation sous les hypoth`eses classiques du CT d’abord, et menant une

analyse des perturbations au premier ordre, nous obtenons comme expression pour le gain de codage

G
(1)
L =

Ekexkk2
Ekeykk2L � G

(0)
L

 
1� 1

N
�2q

NX
i=1

kLik2
�2yi

!
; (10.4)

où la notation(1) dénote la pr´esence du bruit de quantification sur le vecteur de r´eférence,N est la dimension

du vecteur,�2q est la variance du bruit de quantification dans le cas id´eal, et�i sont les valeurs propres de

Rxx.

Finalement, nous analysons un syst`eme de CT pratique qui utilise des quantificateurs scalaires uniformes
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suivis d’un codage entropique (Entropy Coded Uniform Quantizers, ECUQ). Ces quantificateurs pr´esentent

l’avantage de r´ealiser simplement une allocation de bits proche de l’optimalit´e, en choisissant des pas de

quantificationégaux. Dans ce cas, les r´esultats th´eoriques et num´eriques montrent que la KLT et la LDU

présentent des performances ´egales pour des d´ebits aussi bas que2:5 b/s. Ces r´esultats ont ´eté présentésà

[55, 56].

Comme la KLT, la LDU dépend des donn´ees et devrait donc ˆetre continûment adapt´ee aux changements de

statistique de la source. Afin d’´eviter le surcroˆıt de débit associ´e à la transmission des param`etres de codage

au décodeur, on peut chercher `a adapter ces sch´emas sur la base des donn´ees précédemment quantifi´ees.

Ceci pose le probl`eme d’adaptation “en ligne” pour le CT. La faisabilit´e et l’évaluation des performances

du CT “en ligne” est l’objet des deux chapitres suivants.

10.2.3 Analyse Haute Ŕesolution de Sch́emas Id́ealiśes de Codage par Transforḿee

“en ligne”

Une première contribution `a la modélisation théorique de sch´emas CT adapt´es “en ligne” consiste `a anal-

yser la perturbation par rapport au cas id´eal où la matrice de covariance est connue au d´ecodeur. Afin

de mener les calculs `a leurs termes, nous r´eintroduisons les hypoth`eses simplificatrices du CT classique

opérantà haute r´esolution. Les sch´emas consid´erés nécéssitent donc que ni la transformation (KLT ou

LDU), ni les param`etres de l’allocation de bits ne soient transmis au d´ecodeur. Nous supposons par con-

séquent que ces sch´emas sont bas´es sur un estim´e bR = Rxx + �R de la matrice de covariance inconnue

Rxx. Rxx correspond `a un processus vectoriel Gaussienx (éventuellement localement) stationnaire.bR est

l’estimé correspondant, disponible au codeur et au d´ecodeur. Dans ce cas, le processus de codage utilise

une transformationbT = T +�T (oùT est la transformation calcul´ee au moyen deRxx), et la distorsion est

proportionnelle aux variances�02yi des signaux transform´es au moyen debT au lieu deT . De plus, les bitsbri
sont attribués au moyen des estim´es des variances disponibles au d´ecodeur, not´ees( bT bR bT )ii, où (:)ii dénote

le ièmeélément diagonal de(:). Les résultats de cette allocation de bits “en ligne” sont par cons´equent

bri = r +
1

2
log2

( bT bR bTT )ii
(
QN
i=1(

bT bR bTT )ii) 1
N

: (10.5)

Nous obtenons alors la mesure de distorsion suivante, pour un sch´ema bas´e surbR, utilisant une transforma-

tion bT :

Ek~yk2bT = E
NX
i=1

c2�2bri�02yi = E
NX
i=1

c2

�2[r+ 1

2
log2

( bT bR bTT )ii
(
QN

i=1(
bT bRbTT )ii) 1

N

]

�02yi ; (10.6)

où l’espérance E correspond aux cas o`u�R est non d´eterministe.

Le but de ce travail est de fournir les expressions des distorsions correspondantes pour la KLT et la LDU,

et de les comparer. Ces calculs sont faits dans trois cas.

Dans un premier cas,�R est créé par le bruit de quantification: le sch´ema de codage est bas´e sur les statis-

tiques des donn´ees quantifi´ees (bR = Rxqxq ). Dans un second cas,�R correspond `a un bruit d’estimation:
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le système est bas´e sur un estim´e deRxx construit au moyen deK vecteurs:bR = 1
K

PK
i=1 xix

T
i . Finale-

ment, les deux bruits sont trait´es ensemble:bR = 1
K

PK
i=1 x

q
ix

qT
i .

Calculant dans chacun de ces trois cas la distorsion obtenue pour une transformation Identit´e (absence de

transformation), puis pour la KLT et la LDU, nous obtenons des expressions analytiques pour le gain de

codage.

Dans le cas o`u seul le bruit d’estimation est pris en compte, on montre quel les gains de codage sont les

mêmes pour la KLT et la LDU. Dans le cas o`u les bruit de quantification et d’estimation sont pris en compte

conjointement, on obtient pour la LDU

GbL0;K;q =
Ek~xk2I;K;q
Ek~yk2bL0;K;q

� G
(0)
TC

�
det(I + �2q ( diagfRxxg)�1)

�1=N�
det(I + �2q (Rxx)�1)

�1=N
�

h
1 + 1

K

�
1� 1

N2 trfRxqxq( diagfRxxg)q�1Rxqxq ( diagfRxxg)q�1g
�� �2q

N tr f( diagRxqxq )
�1g
i

h
1 + N�1

K

�
1
2 +

1
N

�� �2q
N

trf(L0RxqxqL
0T )�1g

i :

(10.7)

Cette expression (bas´ee sur un calcul des perturbations au premier ordre, et supposant le nombre de vecteurs

K suffisamment grand) permet de d´ecrire quantitativement les influences respectives du bruit de quantifi-

cation (termes enq et�2q ), du bruit d’estimation (termes enK), et leur influence conjointe (termes crois´es).

Comparant `a l’expression correspondante pour la KLT, on montre ainsi que le bruit de quantification li´e

à l’utilisation de vecteurs de r´eférences quantifi´es décroı̂t à bas d´ebit les performances de la LDU rela-

tivementà celles de la KLT. Les calculs th´eoriques de ce chapitre sont ensuite valid´es par des simulations

numériques. Ces r´esultats sont pr´esentés dans [57, 58, 59].

Notre but initial de pr´esenter une analyse pr´ecise et compl`ete de syst`emes de CT adaptatifs “en ligne” nous

a semblé toutefois partiellement inachev´e à ce stade. En effet, les hypoth`eses simplificatrices retenues pour

les calculs (principalement le m´ecanisme d’allocation optimale de bit) peuvent ne pas ˆetre réalistes pour

des syst`emes concrets. Ceci nous a men´e aux développements du chapitre 4.

10.2.4 Analyse D́ebit-Distorsion de Sch́emas Concrets de Codage par Transforḿee

Adaptatifs “en ligne”

Nousétudions dans ce chapitre, trois sch´emas concrets de CT “en ligne” bas´es sur la KLT et la LDU. Dans

ces algorithmes, les quantificateurs scalaires sont de type ECUQ, et les pas de quantification sont les mˆemes

pour chaque composante transform´ee. Les transformations sont calcul´ees sur la base des estim´es des matri-

ces de covariance obtenues `a partir des donn´ees précédemment quantifi´ees.

Dans un premier temps, des algorithmes `a pas de quantification constant (relativement au temps) sont im-

plémentés. Ce cas pr´esente un int´erêt pour des sources stationnaires; autrement, de tels algorithmes peuvent

occasionner des variations inacceptables de d´ebit. Pour ces algorithmes, la question est de savoir si les trans-

formations vont converger ou non vers les transformations “optimales” (i.e. les transformations calcul´ees

avec une connaissance parfaite des statistiques de la source). Nous montrons empiriquement que c’est le
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cas pour la LDU comme pour la KLT, mˆemeà très bas d´ebit.

Dans un deuxi`eme temps, nous proposons d’´evaluer analytiquement le comportement de deux algorithmes

à pas de quantification adaptatifs, permettant au syst`eme de produire un d´ebit relativement constant. Pour ce

problème, nous supposons que la source est un processus vectoriel (de dimension N) stationnaire (´eventuelle-

ment par morceaux), de matrice de covarianceR, inconnue du d´ecodeur. La question est de savoir si le

système CT adaptatif “en ligne” va converger vers un syst`eme créé avec la connaissance deR, i.e. vers un

système produisant un d´ebitr0, et une distorsionD0 = c2�2r0(detR)
1
N . La procédure d’adaptation du pas

de quantification est simple, et similaire `a celle utilisée classiquement dans des sch´emas de quantification

scalaire adaptative. Ces algorithmes sont les suivants:

Algorithme[1 ]:

� Initialisation:K = N .

� Etape 1: Un estim´e de la matrice covariancebRK = 1
K

KX
i=1

xqix
qT
i est disponible au codeur et au d´ecodeur.

� Etape 2: Une transformationbTK est calculée de telle sorte quebTK bRK
bTTK soit diagonale;bTK est soit une

KLT, soit une factorisation LDU debRK. Un pas de quantificationb�[1 ]
K est calculé par

b�[1 ]
K =

p
2�e2�r0 det( bTK bRK

bTTK) 1
2N : (10.8)

� Etape 3: Ces param`etres sont utilis´es pour transformer et quantifier le(K + 1)ème vecteur par:yq
K+1

=

[bVKxN+1]b�[1 ]
K

dans le cas unitaire, et paryq
K+1

= [xK+1 � bLxqK+1]b�[1 ]
K

dans le cas causal ([:]� dénote

la quantification uniforme de pas�). L’espérance de la distorsion pour le(K + 1)ème vecteur est alors

D[1 ](K + 1) = E b�[1 ]2

K =12.

� Etape 4: Retour `a l’Etape 1: le d´ecodeur calcule un estim´e de la matrice de covariancebRK+1 =

1
K+1 (

NX
i=1

xqix
qT
i + xqK+1x

qT
K+1), à partir duquelbTK+1 et b�K+1 peuventêtre calculés, utilisés pour coder

le (N + 2)ème vecteur, etc...

Algorithme[2 ]:

Une amélioration simple `a l’algorithme précédent peut ˆetre apport´ee en utilisant des r´esultats concernant la

quantification uniforme de sources Gaussiennes. Pour des vecteurs Gaussiensy
i
, quantifiés avec le mˆeme

pas de quantification�, on montre que Eyq
i
yqT
i

= Ryqyq = R+ �2

12 I+B; oùB ! 0 élément par ´elément

quand�! 0: Dans l’algorithme[2 ], si le pas de quantification converge vers un certain pas (suffisamment

petit)�1(T ), l’estimé de la matrice de covariance converge alors vers une matrice proche deR+ �2
1(T )
12 I.

Lesévaluations num´eriques de la premi`ere partie de ce chapitre ont sugg´eré la convergence des estim´es bR
versR + �2

12 I, même pour des pas de quantification de l’ordre de l’´ecart-type des sources scalaires. Par

conséquent, un estim´e plus précis debR peut être obtenu en soustrayant
b�2
K

12 I à l’estimé actuel apr`es un

certain nombreN1 de vecteurs cod´es/décodés. Cette correction sur l’estimation des moments de second

ordre d’une source au moyen de sa version quantifi´ee est parfois appel´ee “correction de Sheppard”. A part

cette différence sur l’estim´e bR intervenant apr`esN1 vecteurs, les ´etapes de l’agorithme[2 ] sont les mˆemes

que celles de l’agorithme[1 ].
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Nous modélisons ensuite l’esp´erance de la distorsion obtenue pour chaque algorithme, pour un nombre

donnéK de vecteurs d´ecodés, et obtenons les expressions r´ecursives suivantes

D
[2 ]
(K+1)�D0

"
1+

1

K
(
1

N
� N ) + tr fR�1g

 
1

N

"
1

K

 
N1X
i=N+1

D
[1 ]
(i)+

KX
i=N1+1

D
[2 ]
(i)

!
�D[2 ]

(K)

#!#
; (10.9)

D
[1 ]
(K+1) � D0

"
1 +

1

K
(
1

N
� N ) +

trfR�1g
KN

 
KX

i=N+1

D
[1 ]
(i)

!#
: (10.10)

Par cons´equent, nous montrons que siD0 est la distorsion cible, choisie pour un d´ebit r0 et une source de

covarianceR, l’algorithme utilisant la correction de Sheppard converge vers le point(r0; D0, �0) choisi.

Si cette correction n’est pas appliqu´ee, le syst`eme CT adaptatif converge vers une distorsion plus grande

D0 + �D0, et un débit plus petitr0 � �r0:

8>><>>:
D

[2 ]
1 � D0

�[2 ]
1 � �0

r[2 ] � r0

; et

8>>>>>>>>><>>>>>>>>>:

D
[1 ]
1 � D0 +

�D0z }| {
D2

0

trR�1

N
�

[1 ]
1 � �0(1 + �0

trR�1

24N )

r[1 ] � r0 � D0

2N ln 2
trfR�1g| {z }

�r0

:

Les résultats num´eriques confirment les assertions th´eoriques. En particulier, le syst`eme utilisant la correc-

tion de Sheppard converge vers le point(r0; D0;�0) cible choisi au d´ecodeur, bien que le d´ecodeur n’aita

priori aucune connaissance du pas de quantification `a utiliser, ni des statistiques de la source `a coder. Ces

résultats sont pr´esentés dans [60].

La transformation causale ´etudiée dans ces premiers chapitres poss`ede des propri´etés de d´ecorrélation op-

timales. Comme la KLT toutefois, la transformation causale telle que d´ecrite jusqu’à présent ne prend en

compte que les corr´elationsà l’intérieur de chaque bloc (d´ependancesspatiales). Pour des sources vecto-

rielles dont les ´echantillons vectoriels ne sont pas ind´ependants, une efficacit´e de codage sup´erieure peut

être obtenue en prenant en compte les d´ependancestemporelles. La description et l’étude de la transforma-

tion causale dans ce cadre est l’objet du chapitre suivant.

10.2.5 Pŕediction MIMO (Multiple Input Multiple Output, multi-entr ées multi-

sorties) Généralisée

Nous montrons d’abord dans ce chapitre comment la transformation causale LDU peut ˆetre étendue au

filtrage matriciel. Nous supposons que les ´echantillonsxk (de taillesM � 1) sont collectés dans un “super-

vecteur”Xk = [xT0 xT1 � � �xTk ]T , et considérons le cas limite o`u k ! 1: dans ce cas, la matriceL peut

être décrite par une matriceL(z) (de tailleM �M ) :
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� PourXk décrit précédemment, la matriceL(z) correspond `a la prédiction MIMO classique. Pour

M = 2,

L(z)=

24 L11(z) L12(z)

L21(z) L22(z)

35 =
1X
k=0

Lkz
�k avec L0 =

24 1 0

l21 1

35 ;
afin de conserver la structure temporellement causale.

� En organisant diff´eremment les ´echantillons au sein deXk, nous obtenons la pr´ediction MIMO tri-

angulaire

L(z)=

24 1 0

0 L22(z)

3524 1 0

W21(z) 1

3524 L11(z) 0

0 1

35=
24 L11(z) 0

L22W21L11 L22(z)

35 ; (10.11)

où W21 est un filtre de Wiener. Comparant la pr´ediction MIMO classique `a sa contrepartie triangulaire,

les degrés de libert´e deL12 sont transf´eréesà la partie anticausale deL21. Les filtres diagonaux sont des

filtres scalaires de pr´edictions (intrasignaux), et les filtres non diagnaux sont des filtres de Wiener r´ealisant

une décorrélation intersignaux. Nous montrons que la pr´ediction MIMO classique et la pr´ediction MIMO

triangulaire sont deux cas particuliers d’une infinit´e de mani`eres de d´ecorréler les signaux vectoriels via

Gram-Schmidt. Ces diff´erentes approches sont caract´erisées par le degr´e d’anticausalit´e dédié aux filtres

non diagonaux, et peuvent ˆetre vues comme des pr´edictions MIMO classiques appliqu´eesà des signaux

vectorielsx0k = [x1;k x2;k+d1 :::xM;k+d1+:::+dM�1 ]
T , où lesdi sont des d´elais. Nous montrons alors que

la prédiction MIMO triangulaire est aussi“causale”, mais dans un sens plus large:

� elle correspond au cas extrˆeme où les délaisdi !1, i = 1; :::;M � 1,

� pour la matrice de pr´ediction triangulaire,

- la notion de causalit´e reste inchang´e pour les pr´edicteurs diagonaux (SISO, Single-Input Single-

Output),

- les filtres non diagonaux sont des filtres de Wiener entre des signaux scalaires,

- la causalité entre les canaux correspond `a l’ordre dans les signaux scalaires sont d´ecorrélés.

Par cons´equent, certains signaux peuvent ˆetre codés en utilisant les versions cod´ees/décodées des “pr´ecé-

dents” signaux. Ainsi, la pr´ediction MIMO triangulaire, cas particulier d’une pr´ediction MIMO généralisée,

apparaˆıt comme une g´enéralisation au cas vectoriel de la technique (A)DPCM.

Une question int´eressante est alors l’´etude des gains de codage pour ces approches d´ecorrélatrices causales.

En considérant des vecteurs de taille infinie, on obtient des expressions fr´equentielles pour le gain de codage.

Pour les mˆemes raisons que dans le cas de la LDU, une impl´ementation r´ealiste de ces syst`emes devrait ˆetre

faite en boucle ferm´ee. Par cons´equent, l’analyse th´eorique propos´ee comporte encore deux ´etapes.

Dans un premier temps, on n´eglige le fait que la pr´ediction soit faite en utilisant des donn´ees quantifi´ees

(hypothèse de r´esolution infinie). Dans ce cas, on montre que toutes les approches de la pr´ediction MIMO
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généralisée (notamment classique et triangulaire) sont ´equivalentes, et que le gain de codage associ´e est

G(0) =

0@ QM
i=1 �

2
xi

e

R 1
2
� 1

2

ln[det(Sxx(f))] df

1A
1
M

; (10.12)

où Sxx(f) est la matrice de densit´e spectrale du processusx.

Pour des syst`emes en boucle ferm´ee utilisant des donn´ees quantifi´eesà haute r´esolution dans un deuxi`eme

temps, on montre que le gain de codage est

G(1)(L) � G(0)

"
1 +

�2q
M

 
�
Z 1

2

� 1
2

tr
�
S�1xx (f)

�
df +

MX
i=1

1

�2yi

!#
; (10.13)

où �2q est la variance de l’erreur de quantification dans le cas id´eal (résolution infinie), et o`u les�2yi sont les

variances de pr´ediction optimales.

Ainsi, pour une résolution infinie, toutes les approches d´ecorrélation sont ´equivalentes (G(0)), alors que pour

une haute r´esolution, maximiserG(1)(L) équivautà maximiser
PM

i=1
1
�2yi

. Nous proposons un th´eorème

pour ce probl`eme, qui montre que l’ordre optimal dans la d´ecorrélation pour le pr´edicteur triangulaire est

de décorréler les signaux par ordre de variance d´ecroissante.

Le cas de filtres `a réponses impulsionnelles finies (RIFs), ainsi que celui d’une d´ecorrélation opérée dans le

domaine fréquentiel sont ensuite abord´es. Finalement, une application directe de ces r´esultats est propos´ee

pour le codage de la parole large bande. Ces r´esultats, ainsi qu’une d´emonstration audio ont ´eté présentésà

[61].

10.2.6 Origines des Pŕećedents Ŕesultats: Structures Analyse par Synth̀ese

Les résultats du travail pr´esenté dans cette th`ese trouvent leur origine dans le projet RNRTCOBASCA4,

dont le butétait de fournir des algorithmes de codage conjoint source-canal pour des signaux audios large

bande ([50Hz � 7kHz]) dans le contexte d’ UMTS. Nous avons pour cela suivis deux axes de recherche.

Le premier concerne l’optimisation conjointe des pr´edicteurs linéairesà court et long terme pour des sig-

naux de parole; ce sujet sort n´eanmoins du cadre de cette th`ese (les r´esultats associ´es sont report´es dans

[101, 102]). Il nous a cependant sembl´e intéressant de fournir un descriptif du second axe de recherche,

parce qu’il montre comment des techniques de codage existantes, des contraintes industrielles, et des ob-

jectifs scientifiques ont conjointement men´eà l’ensemble de techniques causales de codage pr´esentées dans

cette thèse.

4COdage enBandeélargie avec partageAdaptatif du débit entreSource etCAnal pour réseaux cellulaires de deuxi`eme et troisi`eme

générations (UMTS), http://www.telecom.gouv.fr/rnrt/pcobasca.html.
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10.3 Deuxìeme Partie: Codage Causal sans Pertes

La seconde partie de cette th`ese présente et analyse des techniques de codage causales sans pertes bas´ees

sur les approches d´ecorrélantes (de type LDU et MIMO g´enéralisée) décrites dans la premi`ere partie. Nous

présentons d’abord les principales probl´ematiques de cette partie. Sommairement, les structures de codage

étudiées mettent en oeuvre des transformations non lin´eaires, les transformations d’entiers `a entiers, et

abordent le probl`eme du codage multir´esolution.

Transformations d’Entiers à Entiers

Les schémas de codage sans pertes peuvent exister comme des codeurs `a part entière (codeurs “entropiques”,

par exemple de type Huffman), ou bien ˆetre inclus dans la structure de codeurs avec pertes, afin d’en

améliorer les performances. Consid´erons dans ce cas le sch´ema de la figure 10.2, qui utilise une transfor-

mation transformationT .
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...... ... ...
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Figure 10.2: Sch´ema de codage sans pertes emboˆıté dans un codeur avec pertes.

Dans un premier temps, une source vectorielle `a très haute r´esolutionxc (amplitude continue) est quan-

tifi ée au moyen d’un codeur avec pertes repr´esenté par le blocQ (Q peut représenter la discr´etisation en

amplitude réalisée par des quantificateurs ind´ependants de type PCM, des structures de type ADPCM, des

codecs MPEG, etc...). Une fois cette discr´etisation réalisée, le problème est de transmettre efficacement la

source discr`etex ou, en d’autres termes, de minimiser le d´ebit associ´e à la représentation de cette source.

Une méthode de codage entropique optimale est un codage entropique vectoriel, qui assigne des mots de

codeà des vecteurs. Cependant, cette m´ethode requiert de calculer la distribution de probabilit´e conjointe

des vecteurs sources; elle est par cons´equent complexe, mal adapt´eeà des signaux pr´esentant des corr´ela-
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tionsà long terme5, et peu utilisée en pratique. Dans ce cas, on pr´efère coder l’ensemble des fluxxi parN

codeurs entropiques scalaires (ind´ependants)
i 6. Bien sûr, ce type de codage entropique scalaire est sub-

optimal parce que les sourcesxi ne sont pas ind´ependantes, et que les flux s´eparément transmis comportent

des redondances; il est n´eanmoins largement moins complexe. Une fa¸con de pallier `a cette suboptimalit´e

est d’appliquer, apr`es l’étage de quantification et avant le codage entropique, une transformationT sans

pertes, ou r´eversible, qui rend ces flux ind´ependants (ou au moins d´ecorrélés). Les redondances intersig-

nauxétant réduites, le d´ebit total nécéssaire `a la représentation des sources ainsi transform´ees s’en trouve

réduitégalement. La transformationT s’appuyant sur un ensemble discret, et produisant un autre ensemble

discret, elle est non lin´eaire, et appel´ee transformation d’entiers `a entiers.

Pour résumer, une approche de codage utlisant une transformation d’entiers `a entiers s´epare la proc´edure de

codage entropique en deux ´etapes: premi`erement la transformation inversible est appliqu´eeà chaque bloc

quantifié dans un but de d´ecorrélation; deuxièmement, les coefficients transform´es sont ind´ependamment

codés, ce qui assure une complexit´e totale relativement faible. Du signal vectorielx on passe au signaly, à

partir duquel le d´ecodeur peut retrouver exactement le signalx. Cette approche sera aussi appel´ee codage

sans pertes “mono´etage” ou “monor´esolution”.

Pour une transformationT et une sourcex données, nous allons consid´erer deux sc´enarios: le sc´enario 1,

où T est utilisée, et le sc´enario2, où elle ne l’est pas. Dans les deux cas, la structure de codage utiliseN

codeurs entropiques scalaires. Les questions suivantes se posent alors: quelle est la r´eduction maximale de

débit que le sch´ema 2 peut op´erer relativement au sch´ema 1, et quelle serait alors la transformation corre-

spondante ? Deuxi`emement, quelle est la r´eduction de d´ebit réellement op´erée par des transformationsT

concrètes ? Dans le chapitre 6, ces transformationsT concrètes sont bas´ees sur les impl´ementations entiers

à entiers de la KLT et de la LDU. Dans le chapitre 8,T est bas´ee sur les approches de MIMO g´enéralisée.

Codage sans Pertes Multirésolution

Parallèlementà cette approche monor´esolution, une approche de codage sans pertes diff´erente consiste

à coder avec pertes la sourcex dans un premier temps, produisant par l`a un premier flux deN signaux

scalaires “basse r´esolution”yqi . Dans un second temps, le signal d’erreur est encod´e séparément, ce qui

donne la structure `a deuxétages de la figure 10.3.

L’avantage de ce type de sch´emas est qu’une version approximative de la source peut ˆetre disponible

rapidemment, ind´ependamment du signal d’erreur (e.g. dans le cas o`u la capacit´e du lien de transmission

varie, sur internet par exemple). Le signal original peut ˆetre reconstruit ult´erieurement en ajoutant le sig-

nal d’erreur. Si l’on suppose quefQg est compos´e de quantificateurs scalaires, le d´ebit du signal basse

résolutionxq dex peutêtre contrôlé simplement par les pas de quantification correspondants. Ceci per-

met d’obtenir un signal bas d´ebit, au coˆut d’une certaine distorsion. Ce type de sch´emas est utilis´e dans

5Pour des sources vectorielles avec m´emoire, le probl`eme est plus aig¨u puisqu’elle nécéssite d’estimer la probabilit´e conjointe de

vecteursde vecteurs.
6Par exemple, des codes populaires en audio sont les codes de Huffman et de Golomb-Rice.
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des codeurs de signaux audio sans pertes [21, 24], et d’images [105, 106]. Par cons´equent, une comparai-

son de l’efficacité de compaction entre les transformations orthogonales traditionnelles et la transformation

causale semble int´eressante. Par ailleurs, une question d’int´erêt est celle de savoir si un sch´ema de codage

multirésolution sans pertes est sous optimal par rapport `a l’approche monor´esolution décrite plus haut. Ces

questions sont trait´ees dans le chapitre 7 pour des approches `a deuxétages bas´ees sur la LDU ou sur les

transformations orthogonales, et dans le chapitre 8 pour des structures `a 2 et M étages bas´ees sur des

prédicteurs MIMO.

10.3.1 Codage par Transforḿee sans Pertes: Cas Causal, Unitaire, et́Etude de

Syst̀emes “en ligne”

Le chapitre 6 adresse le probl`eme du CT sans pertes mono´etage. Dans le cas o`u T de la figure 10.2 est

basé sur des matrices d´ecorrélantes de type KLT ou LDU, la relation dexc ày est similaireà celle existant

dans le CT classique, sauf que les op´erations de quantification et de transformations apparaissenten ordre

inverse; de plus, les signaux transform´es doivent ˆetreà amplitude discr`ete puisqu’ils sont par la suite cod´es

entropiquement. La question de savoir si les transformations d’entiers `a entiers sont, d’un point de vue

débit/distorsion, aussi efficaces que leurs contreparties lin´eaires a ´eté adress´ee récemment [41]. Supposons

que l’étage de quantificationQ soit compos´e deN quantificateurs uniformes de mˆeme pas�, et considérons

les schémas de codage suivants:

� (1 ) quantification scalaire desxci suivie deN codeurs entropiques scalaires,
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� (2 ) quantification scalaire desxci suivie d’une transformation d’entiers `a entiers et deN codeurs

entropiques scalaires (Q et CT sans pertes),

� (3 ) transformation d´ecorrélante linéaire suivie d’une quantification scalaire, suivie deN codeurs

entropiques scalaires (CT),

� (4 ) quantification scalaire desxci suivie d’un codage entropique vectoriel.

Les résultats de [41] montrent que, pour des vecteurs Gaussiens i.i.d., les performances des sch´emas(2 ),

(3 ), et(4 ) sontéquivalentes dans la limite de petits pas de quantification�. Cette analyse revient `a négliger

la contrainte d’entiers `a entiers sur les transformations du cas(2 ). En effet, ces transformations doivent

produire des coefficients discrets; elles ne sont pas lin´eaires et ne peuvent qu’approximer leur contrepartie

linéaire. Le but de ce chapitre est d’´evaluer la sous-optimalit´e liéeà ces non-lin´earités. Le critère choisi

pour cette ´evaluation est ungain de codage sans pertes, défini comme la r´eduction de d´ebit opérée par le

schéma(2 ) par rapport au sch´ema(1 ) (en bit paréchantillon).

Nous montrons d’abord que les gains des sch´emas(3 ) et (4 ) représentent un limite sup´erieure au gain du

schéma(2 ). Le débit minimum nécéssaire au codage sans pertes de signaux sans m´emoire est l’entropie

discrète. Pour des signaux Gaussiens, nous utilisons la relation de R´enyi [38]

H(xqi ) �
1

2
log2 2�e�

2
xi
� log2�i: (10.14)

Le gain de codage sans pertes maximal, obtenu pour un codage vectoriel et pour une source sans m´emoire,

est alors donn´e par

Gmax =
1

2N
log2

det diagfRxxg
detRxx

=
1

N

NX
i=2

I(xi;x1:i�1)| {z }
Information mutuelle

(10.15)

Cette expression montre que pour des signaux Gaussiens, la r´eduction de d´ebit opérée par le sch´ema(4 )

sur le sch´ema(1 ) correspond `a la moyenne des informations mutuelles entre chaque nouvelle variablexqi

du vecteurxq et les variables pr´ecédemment cod´eesxq1:i�1. Elle permet aussi de donner une interpr´etation

du gain de codage traditionnel en termes de l’information mutuelle.

Nous comparons ensuite `a cette limite les gains r´eellement op´erés par les impl´ementations sans pertes de la

LDU et de la KLT, pour un niveau de distorsion fix´e (Q fixé). Nous montrons d’abord que l’impl´ementation

entiersà entiers de la LDU peut ˆetre obtenue tr`es simplement grˆaceà sa structure triangulaire. Le gain sans

pertes associ´e à la LDU est donn´e par

GLqint
� Gmax � 1

2N ln 2

�
trfR�1xxDg �

�2
1

12�2x1

�
: (10.16)

Une cons´equence int´eressante de ce r´esultat est que la version la plus grossi`erement quantifi´ee (�i

�2xi
) doit

être placée en premi`ere position pour maximiser le gain (minimiser le d´ebit).

En ce qui concerne la KLT, nous suivons la factorisation donn´ee par Goyal pour obtenir la transformation

d’entiersà entiers associ´ee. Dans le casN = 2 par exemple, siV q est une KLT de la source `a coder, on la
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factorise commeV q=

24 a b

c d

35= V q
1 V q

2 V q
3 ; V q

1 =

24 1 a�1
c

0 1

35 ; V q
2 =

24 1 0

c 1

35 ; V q
3 =

24 1 d�1
c

0 1

35 :
La transformation recherch´eeV q

int est alors obtenue en intercalant des op´erations de quantification�i après

chaque matriceV q
i . Analysant les effets li´es aux non lin´earités introduites par les�i sous l’hypothèse de

haute résolution, on montre que le gain de codage est strictement inf´erieur dans le cas de la KLT par rapport

au cas causal:GV q
int

< GLqint
. L’approche causale m`eneà une réduction de d´ebit plus importante que

l’approche unitaire, ce qui est une cons´equence de sa structure triangulaire.

Finalement, l’adaptativit´e de syst`emes sans pertes monor´esolution “en ligne” est ´etudiée: nous consid´erons

des syst`emes pour lesquels les transformations d’entiers `a entiers sont calcul´ees sur la base des donn´ees

précédemment re¸cues au d´ecodeur uniquement, c’est `a dire au moyen d’un estim´e de la matrice de co-

variance de typebR = 1
K

KX
i=1

xqix
qT
i . Dans ce cas, les transformations convergent vers les transformations

“optimales” (bas´ees surR) seulement quand le nombre de vecteursK tend vers l’infini. La question est ici:

quelle est la r´eduction de d´ebit moyenneGbTint(K) apportée par une transformationbTint calculée avecbR
basé surK vecteurs ? Nous calculons pour ce probl`eme un mod`ele statistique de vecteurs Gaussiens i.i.d. :

E vec(�R) (vec(�R))T � 2

K
Rxqxq 
 Rxqxq ; (10.17)

et obtenons, pourK suffisamment grand, des gains en fonction deK donnés par

GbLqint(K) = 1
N

PN
i=1H(xqi )� EH(yqi ;K)

� GLqint
� N�1

4 ln 2K :
(10.18)

GbV q
int

(K) � GV q
int
� N�1

4 ln 2K : (10.19)

Les résultats analytiques de ce chapitre sont ensuite compar´esà des résultats num´eriques obtenus en impl´e-

mentant les syst`emesétudiés. Ces travaux sont pr´esentés dans [142].

Après l’analyse de syst`emes monor´esolution, la suite de cette partie se tourne vers des syst`emes de codage

sans pertes `a deux niveaux de r´esolution bas´es sur la KLT et de la LDU.

10.3.2 Sur la Sous-Optimalit́e des Transformations Orthogonales pour le Codage

par Transform ée sans Pertes

Dans le chapitre 7, nous nous int´eressons au sch´ema classique du CT sans pertes `a deux niveaux de r´esolu-

tion de la figure 10.3. Pour un ´etage de quantification fix´e età haute r´esolution, nous analysons les d´ebits

rLR et r nécéssaires pour coder respectivement la version basse r´esolution et le signal d’erreur. Le d´ebit

total rLR + r est compar´e à celui obtenu pour le codeur monor´esolution correspondant (bas´e soit sur la

KLT, soit sur la LDU).

Pour la KLT, le sch´ema est celui de la figure 5.8; les statistiques des signaux d’erreurs pour une source

Gaussienne ont ´eté analys´es dans [21]. Pour le sch´ema bas´e sur la LDU, le sch´ema correspondant est

diff érentà cause de la structure de pr´ediction en boucle ferm´ee, et est repr´esenté par la figure ci dessous.
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Figure 10.4: Encodeur du CT sans pertes `a deux niveaux de r´esolution dans le cas causal.

Menant une analyse similaire `a celle de [21], nous montrons qu’alors que les transformations orthog-

onales tendent `a “gaussianniser” le signal d’erreur, la transformation causale les laisse approximativement

uniformes7. Les probabilités qu’unéchantillon du signal d’erreurei soit non nul sont donn´ees par

Cas unitaire : P (ei 6= 0) = P (jeij � 1

2
) � 1� erf(

r
3

2

1

�
): (10.20)

Cas causal : P (ei 6= 0) = P (jeij � 1

2
) = 1� 1

�i
8�i (10.21)

(dans le cas unitaire, les pas des quantificateurs sont tous ´egaux pour contrˆoler la distorsion totale; ce n’est

pas nécéssaire dans le cas causal). Calculant l’entropie discr`ete associ´eeà ces distributions de probabilit´es,

nous obtenons dans le cas causal

Signal basse resolution : rLRLDU � rLRKLT + �2

24N ln 2

NX
i=1

 
1

�i
� 1

�2
y0i

!
:

Signal d0erreur : rLDU � rKLT � 1

2
log2

�e

6
;| {z }

�0:25 bit 8�

(10.22)

7Elles sont strictement uniformes si les�i sont impairs.
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Nous montrons ainsi que dans le cas causal, le d´ebit total est le mˆeme que dans le cas de codeur monor´e-

solution, au terme �2

24N ln 2

NX
i=1

 
1

�i
� 1

�2
y0i

!
près, qui vient du fait que la pr´ediction est faite sur la base

du signal basse r´esolution au lieu du signal original. Ce terme est n´eanmoins n´egligeable dans la grande

majorité de situations pratiques de codage. Les d´ebits pour les versions basse r´esolution sont donc sen-

siblement les mˆemes dans les deux cas. A l’oppos´e, les débits des signaux d’ erreur diff`erent dans le cas

orthogonal et causal d’environ0:25 bit/éch., qui correspond `a la différence entre les entropies d’une variable

aléatoire (v.a.) Gaussienne et d’une v.a. uniforme de mˆemes variances. En conclusions, le d´ebit total dans

le cas causal est le mˆeme que dans le cas monor´esolution, et il est environ0:25 bit/éch. inférieurà celui

obtenu pour la KLT.

De plus, nous soulignons que le sch´ema causal `a deux niveaux de r´esolution présente des avantages pra-

tiques très intéressants par rapport au sch´ema classique de la figure 10.2. Premi`erement, ce sch´ema of-

fre la possibilité de passer instantan´ement d’un sch´ema mono- `a un sch´ema bi-résolution en fixant tous

les pas de quantification `a 1; ceci n’est pas possible dans le cas orthogonal (pour� = 1 dans (10.20),

P (ei 6= 0) � 1
12). Deuxièmement, un ou plusieurs canauxxi peuventêtre codés en monor´esolution, et les

autres en multir´esolution. Finalement, le codage entropique du signal d’erreur devient tr`es simple dans le

cas causal, puisque la distribution ´etant dans certains cas exactement uniforme, transmettre la repr´esentation

binaire des ´echantillons est optimal. Ces travaux sont pr´esentés dans [143].

Commeà la fin du chapitre 4, nous g´enéralisons les r´esultats obtenus dans le d´ebut de cette deuxi`eme par-

tie en consid´erant des sources avec m´emoire, et en appliquant la LDU `a des vecteurs de vecteurs de taille

arbitrairement grande, dans les contextes mono- et multi-r´esolution décrits ci-dessus.

10.3.3 Pŕediction MIMO d’Entiers- à-Entiers Mono- et Multir ésolution

Ce dernier chapitre traite du codage sans pertes “optimal” (minimisant le d´ebit) pour les signaux vectoriels.

La structure de codage etudi´ee tout d’abord est celle du sch´ema(2 ), ou encore de la figure 10.2, o`u la

transformationT est une impl´ementation entiers `a entiers d’un des pr´edicteurs MIMO décrits au chapitre 6.

Premièrement, on cherche `a exprimer la r´eduction de d´ebit maximale relativement au sch´ema(1 ), pour une

sourcex avec mémoire. Nous supposons quex est une version uniform´ement quantifi´ee dexc avec des pas

�i, et que les ´echantillons dex sont collectés dans un vecteurXk = [x1:::xk]
T . Par le théorème de codage

sans bruit d’une source discr`ete, le débit minimum associ´e à la représentation dex est le débit entropique

r0(x) de cette source,

r0(x) = lim
k!1

1

Nk
H(Xk): (10.23)

Exprimant ce d´ebit pour une source Gaussienne, on obtient la r´eduction de d´ebit maximaleGMax qu’il est

possible d’op´erer sur le sch´ema(1 ),

GMax=rscal(x)� r0(x)� 1

2M
log2

det diagfRxcxcg
e
R 1=2
�1=2

ln detSxcxc (f)df
: (10.24)
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Cette réduction est possible avec un codage entropique vectoriel, asymptotiquement dans la longueur des

vecteurs. La complexit´e de cette m´ethode la rend toutefois irr´ealiste pour une approche pratique. Nous

montrons par la suite que ses performances peuvent n´eanmoins ˆetre approch´ees par des pr´edicteurs MIMO

sans pertes.

Nous consid´erons ensuite les gains de codage sans pertes associ´es aux pr´edicteurs MIMO, et pr´esentons les

structures de codage associ´ees. Nous montrons que pour toutes les approches d´ecorrélantes du contexte de

prédiction MIMO généralisée, l’implémentation entiers `a entiers correspondante produit un gain

GL(z) � 1

2M
log2

det diagfRxcxcg
e
R 1=2
�1=2 ln detSxcxcdf| {z }
GMax

� �2

24M ln 2

 Z 1=2

�1=2
tr S�1xcxc(f)df

!
| {z }
Exces de debit: contrainte sans pertes

; (10.25)

De même qu’au chapitre 6, les non-lin´earités liéesà la contrainte entiers `a entiers se manifestent comme

un excès de d´ebit (diminution du gain) par rapport `a la méthode de codage id´eale. Elles deviennent n´ean-

moins négligeables `a haute r´esolution (�! 0).

Dans un second temps, nous g´enéralisons le sch´ema TCà deux niveaux de r´esolution de la figure 10.4 au

cas du filtrage. Les d´ebits des signaux basses r´esolutions et des signaux d’erreurs sont contrˆolés par des

quantificateurs de pas ´egaux�Q1 . Nous comparons alors le d´ebit total produit par la structure obtenue au

débit de la structure monor´esolution présentée au d´ebut de ce chapitre. Nous obtenons, pour les d´ebits des

signaux basse r´esolutionrLR, et les signaux d’erreurrL8>>>><>>>>:
rLR � rone�shot(y)(1+

�2
Q1

24M ln 2

"Z 1=2

�1=2
trS�1xcxc (f)df �

MX
i=1

1

�2
y0i

#
| {z }

Facteur d0excs de dbit

) � log2�Q1| {z }
Reduction de debit

;

rL � log2�Q1

(10.26)

oùM est la dimension du signal vectoriel, etrone�shot(y) est le débit total de la structure monor´esolution.

Ainsi, cette structure est l´egèrement sous-optimale relativement `a une approche monor´esolutionà cause de

retour de bruit lié à la structure de pr´ediction en boucle ferm´ee.

Finalement, cette structure `a deuxétages est g´enéralisée au cas deM étages. Dans ce cas, les d´ebits

associés aux différentes r´esolutions sont contrˆolés par des quantificateurs de pas�Qk . Nous proposons la

règle suivante pour calculer les�Qk afin que les d´ebitsrk de chaque r´esolution approchent des d´ebits cibles

Rk prédéterminés:

�Qk �

2666642
rscal;L(z)(y)�

kX
i=1

Ri

377775
1

; k = 1; :::;M: (10.27)

Des exemples num´eriquesévaluant la qualit´e de cette m´ethode sont finalement pr´esentés. Ces travaux sont

présentés dans [144].
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10.4 Conclusions

Cette thèse propose diverses techniques de codage avec et sans pertes pour les signaux vectoriels. Ces

techniques sont pr´esentées comme les divers aspects d’un cadre th´eorique général bas´e sur la notion de

causalité. Les performances des divers syst`emes de codage propos´es sont analys´ees aux moyens d’outils

statistiques et, pour la plupart, sous l’hypoth`ese Gaussienne. Les r´esultats th´eoriques ont ´eté confrontésà

des simulations num´eriques et sont r´esumés dans cette partie.

La première partie de cette th`ese a pr´esenté des techniques de codage avec perte pour les signaux vec-

toriels.

Dans le cadre du codage par transform´ee (CT) tout d’abord, nous nous sommes int´eress´es au codage de sig-

naux vectoriels par une transformation d´ecorrélatrice causale de type DPCM (Differential Pulse Code Mod-

ulation, technique utilis´ee pour les signaux scalaires, supprimant les redondances par pr´ediction linéaire).

Nous avons montr´e que la transformation causale optimale correspond `a une factorisation triangulaire LDU

(Lower-Diagonal-Upper) de la matrice d’autocorr´elation du vecteur de signal `a coder. Cette approche a

été ensuite compar´eeà sa contrepartie unitaire, la transformation de Karhunen-Lo`eve (KLT), bien connue

parce qu’étant optimale pour les sources Gaussiennes, elle sert traditionnellement de r´eférence. Plusieurs

aspects sont abord´es dans cette comparaison, comme le gain de codage apport´e par la transformation (qui

correspond au facteur par lequel la distorsion est r´eduite, pour un mˆeme débit, grâceà la transformation),

les effets intervenants lorsque le sch´ema de codage est impl´ementé en boucle ferm´ee (c’està dire lorsque

la transformation utilise des donn´ees précédemment quantifi´ees, ce qui introduit dans le sch´ema de codage

un retour de bruit), ou la complexit´e algorithmique. Nous avons propos´e une analyse des perturbations

li ées au retour de bruit, qui montre que quand celui-ci devient n´egligeable, les performances sont iden-

tiquesà celles obtenues dans le cas unitaire, bien que la complexit´e de la LDU soit notablement moindre.

Ainsi, cette transformation apparaˆıt comme un mod`ele optimal alternatif `a la traditionnelle transformation

de Karhunen-Lo`eve.

Dans la plupart des cas pratiques cependant, les donn´ees réelles ne sont pas stationnaires, ce qui pose un

problème d’adaptation pour des transformations d´ependant du signal, telles que la KLT ou la LDU. Nous

avons donc cherch´e à étudier les performances de sch´emas de codage dont les param`etres sont adapt´es “en

ligne” (sur la base de donn´ees quantifi´ees uniquement), ce qui ´evite de transmettre un surcroˆıt de débit

associé à ces param`etres. Dans ce contexte, nous avons analys´e les effets de perturbation li´es au bruit de

quantification et au bruit d’estimation qui se posent par rapport au cas id´eal où la matrice de covariance est

connue parfaitement. Sous certaines hypoth`eses simplificatrices emprunt´ees au CT classique, cette anal-

yse a permis d’´evaluer quantitativement, en fonction d’un d´ebit moyen impos´e et du nombre de donn´ees

précédemment d´ecodées, l’écart entre la performance r´eelle des deux syst`emes et leur performance id´eale,

où les statistiques des signaux `a compresser sont connues.

Poursuivant l’analyse de syst`emes de CT “en ligne”, nous nous sommes tourn´es vers l’analyse de syst`emes

concrets utilisant des quantificateurs uniformes suivis de codeurs entropiques, pour lesquels le m´ecanisme
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d’allocation de bits est simple, et proche de l’optimalit´e. Les résultats de cette partie ont montr´e que des

systèmes adaptatifs (`a pas de quantification fixes ou adaptatifs) peuvent fournir des performances similaires

à des syst`emes con¸cus avec une connaissancea priori de la source, bien qu’aucune information concernant

les transformations ou le pas de quantification utilis´e ne soit transmise au d´ecodeur. Ces analyses traitent

du cas causal comme du cas unitaire.

Dans la fin de cette premi`ere partie, l’approche matricielle causale de type LDU a ´eté généralisée au cas o`u

les coefficients de la matrice de transformation triangulaire sont des filtres pr´edicteurs (pr´ediction MIMO

-Multi Input Multi Output). Cette g´enéralisation a d´ebouché sur la prédiction MIMO dite “généralisée”,

pour indiquer que la pr´ediction MIMO classique et la pr´ediction MIMO triangulaire constituent deux cas

particuliers, parmi une infinit´e, d’une même approche totalement d´ecorrélatrice, et “causale” dans un sens

plus large. Pour la pr´ediction triangulaire, la causalit´e correspond `a l’ordre dans lequel les signaux sont

décorrélés. Comme pour la LDU, nous avons analys´e le gain de codage sous une hypoth`ese de r´esolution

infinie d’abord; les effets de retour de bruit de quantification ont ensuite ´eté pris en compte. Nous avons

montré que pour la pr´ediction MIMO triangulaire, d´ecorréler les signaux par ordre de variance d´ecroissante

est optimal. Une application de ces r´esultats a ´eté propos´ee dans le cadre du codage de la parole large bande

([0-7kHz]).

La deuxième partie de cette th`ese a d´eveloppé des techniques de codage sans perte bas´ees sur les ap-

proches causales consid´erées précédemment.

Une premièreétape a consist´e à comparer les performances de la LDU `a celles de la KLT dans le cas o`u

elles sont impl´ementées de fa¸conà être sans perte (transformations d’entiers `a entiers). Le gain correspond

alorsà la réduction de d´ebit opérée par la transformation (par rapport `a un codage entropique scalaire direct

des coefficients quantifi´es), tout en garantissant une repr´esentation exacte de la source. Nous avons montr´e

d’abord que le gain maximal qui peut ˆetre apport´e par de telles transformations correspond `a la moyenne

des informations mutuelles partag´ees par les diff´erentes variables qui composent le processus vectoriel.

Nous avons ensuite analys´e les gains apport´es par la KLT et la LDU dans ce cadre, et avons d´ecrits les

effets dûs aux non lin´earités (contrainte “entiers `a entiers”) en terme de d´ebit supplémentaire par rapport au

cas idéal. Le bruit d’estimation pour un sch´ema adaptatif a aussi ´eté traité. L’approche causale, grˆaceà sa

nature triangulaire, s’av`ere présenter dans ce cadre des performances l´egèrement sup´erieures `a l’approche

unitaire.

Nous avons ensuite ´etudié des sch´emas de codage sans perte qui permettent de d´elivrer, dans un premier

temps, une version basse r´esolution du signal d’int´erêt, et de transmettre le signal compl´ementaire par la

suite. Ce genre de sch´emas est utile pour des applications de navigation rapide sur internet, ou de trans-

missionà bande passante variable par exemple. La transformation causale a ´eté compar´ee dans ce cadre

aux transformations orthogonales. Nous avons consid´eré un sch´emaà deux niveaux de r´esolution simple

(utilisé par exemple dans le contexte du codage audio sans perte), dans lequel chaque vecteur est d’abord

transformé, quantifié, puis transmis comme version basse r´esolution du signal. Un signal d’erreur est en-
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suite généré par soustraction au signal original, et transmis comme compl´ement. L’extension de ce sch´ema

à plusieurs niveaux de r´esolution a ´eté obtenue en introduisant des quantificateurs de type APCM dans le

schéma sans perte. On a montr´e que les transformations orthogonales classiques sont sous-optimales pour

de telles approches multir´esolutionpar rapport `a leur alternative causale. La transformation causale pr´esente

d’autres avantages par rapport `a des transformations telles que la KLT ou la DCT, comme la possibilit´e de

passer instantan´ement d’un sch´ema de codage sans pertes monor´esolutionà un sch´ema multirésolution, de

pouvoir choisir des niveaux de r´esolution différents pour chacun des canaux et, notamment, de pouvoir

coder sans pertes un ou plusieurs canaux particuliers uniquement. Finalement, des sch´emas de codage sans

pertes multirésolutions ont ´eté propos´es, qui se basent sur la pr´ediction MIMO considérée dans la premi`ere

partie. Nous avons montr´e que l’approche multir´esolution est l´egèrement sous-optimale en terme de d´ebit

total par rapport `a une approche de compression globale `a cause du retour de bruit dans les boucles de type

ADPCM. On a aussi propos´e une méthode pour que les d´ebits générés par chacune des r´esolutions corre-

spondent `a des d´ebits cibles pr´edéterminés.

Comme cela transparaˆıt dans le résumé ci-dessus, de nombreuses techniques de codage ont ´eté consid-

érées dans ce travail8, notamment le CT, le codage en sous-bandes, les transformations d’entiers `a entiers

ou le codage multir´esolution. Le choix d’un large champ d’investigations est n´eanmoins `a double tranchant.

D’un côté, un large panorama ´etait nécéssaire pour d´ecrire l’étendue, la diversit´e et l’intérêt théorique des

approches causales. D’un autre cˆoté, chacun des th`emes trait´es a dégagé des questions int´eressantes, m´erite

certainement des approfondissements. Pour des applications pratiques, les syst`emes consid´erés peuvent ˆetre

améliorés et complexifi´es, même si dans ce cas une mod´elisation théorique peut devenir difficile. Dans le

cas du CT “en ligne” par exemple, une ´etude approfondie de ces syst`emes devrait inclure le choix d’un quan-

tificateur adapt´e à l’application consid´erée, ainsi qu’aux signaux `a coder; le probl`eme de l’adaptation des

fenêtres temporelles pose aussi d’int´eressant probl`emes pratiques comme th´eoriques. En ce qui concerne

les prédicteurs MIMO et notamment le pr´edicteur triangulaire, les performances de syst`emes pratiques,

basés sur des filtres RIF, d´ependra fortement d’un choix ad´equat du nombre de coefficients d´ediésà la dé-

corrélation intersignaux. Le degr´e d’anticausalit´e dédié à ces filtres devrait ˆetre optimisé relativement `a la

longueur des trames, ou relativement `a un délai de reconstruction dans l’optique d’un codeur ´echantillon par

échantillon. Par ailleurs, une question importante dans le codage de source est celle de crit`eres subjectifs:

si l’ évaluation de l’erreur quadratique moyenne est un crit`ere simple, et qui permet de mener facilement

des analyses th´eoriques, elle renseigne souvent tr`es mal sur la qualit´e effectivement per¸cue d’un codeur

audio ou d’images... Enfin, d’un point de vue th´eorique, il semble que deux axes de recherches se dessinent

naturellement `a la suite de ce travail. Premi`erement, il serait int´eressant de rechercher s’il y a d’autres (ou

la classe de toutes) les transformations qui, comme la KLT et la LDU, sont optimales pour des sources

Gaussiennes. Deuxi`emement, la mod´elisation de performances des syst`emes consid´erés dans cette th`ese

gagnerait en int´erêt si, au moyen de mixtures de Gaussiennes, elle pouvait d´ecrire des sources de densit´es

de probabilité arbitraires.

8En dehors du codage de source, la pr´ediction MIMO généralisée s’est av´erée utile en detection multi-utilisateurs [53].
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