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Causal Lossy and Lossless Coding of Vectorial Signals

D. Mary

The aim of source coding, or compression, is to reliably represent some information by means of bits,
with the natural concern for using a small number of bits. If the information can be exactly recovered from
these bits, the code is called lossless; otherwise it is lossy. Both lossy and lossless coding are of interest in
this work. Compression allows one to save bandwidth for data transmission over communications channels,
or memory space for information storage.

The informationconsidered in this thesis will be represented by vectorial signals, which compose a wide
class of signals, among which scalar and multichannel signals. Multichannel signals may be obtained as
soon as scalar signals are, in the context of various applications, gathered together. If this signals present
some dependencies, such as audio signals for example, one should code them jointly in order to achieve a
more efficient compression.

The initial idea of developping coding techniques for audio signaistivated this choice of a vectorial
representation. Though some applications will be presented for this kind of signals, the Gaussian assump-
tion is often made since it allows one to derive closed form expressions, to compare, and possibly to prove
the optimality of the considered coding schemes.

The first part of this thesis presents lossy coding techniques for vectorial signals.
In a transform coding framework firstly, we derive the optimal (linear) transform subject to the constraint
of causality. This transform is shown to correspond to an LDU (Lower-Diagonal-Upper) factorization of
the signal covariance matrix. This triangular transform is then compared to the KarhueeaTransform
(KLT), which is the optimal unitary transform for Gaussian signals, and which is therefore traditionally used
as a benchmark. One criterion of merit used for this comparison is the coding gain, which corresponds to
the ratio by which the distortion is decreased when using a particular transformation. Similarly asin DPCM
(Difference Pulse Code Modulation), we show that practical causal coding schemes should be implemented
in closed loop around the quantizers and, as in DPCM also, we show that at low rates a quantization noise
feedback decreases the coding performance. For moderate to high rates however, we show that the opti-
mal causal transform yields the same coding gain as its unitary counterpart. The optimal causal transform
presents furthermore several advantages with respect to the KLT, such as lower implementation and design
complexities, and perfect reconstruction property in the case of quantization of the transform coefficients.
In most of practical coding situations however, the data are nonstationary, which poses the problem of the
adaptation of signal dependent transforms such as KLT or LDU. The main advantage of backward over
forward adaptive coding schemes is to update the coding parameters with the data available at the decoder,
avoiding thereby any excess bit rate. The coding performance of the two transformations are thus compared
in this framework. This analysis allows one to quantitatively describe the influence of estimation and quan-
tization noise as compared with the ideal case where the statistics of the signal are known.
Finally, the LDU transform is extended to (matricial) filtering in the last chapter of this first part. In this
case, the optimal causal decorrelating scheme can be described by means of a prediction matrix, whose

1The first results of this work were obtained in the framework of the french RNRT proj@BASCACOdage en Bandelargie
avec partage Adaptatif diedit entre Source et CAnal powegéaux cellulaires de deexne et troistime gnérations (UMTS).



entries are optimal prediction filters. The diagonal filters are scalar intrasignal prediction filters, and the
off-diagonal predictors are Wiener filters performing the intersignal decorrelation. By considering vectors
of infinite size, one can get frequential expressions for the coding gains. We show that this decorrelating
scheme leads to the notion of “generalized” MIMO (Multiple Input Multiple Output) prediction, in which

a certain degree of non causality may be allowed for the off-diagonal prediction filters. In the case of non
causal intersignal filters, the optimal MIMO predictor is still lower triangular, and h&rzaesal”, in a wider

sense. The notion of causality may be generalized : the causality between channels becomes processing the
channels in a certain order. Some signals may be coded using the coded/decoded versions of the “previous”
signals. An interesting result is that if the quantization noise feedback is taken into account, the triangular
predictor is the more efficient. Moreover, the coding gain is maximized if the signals are decorrelated by
order of decreasing variance.

The second part of this thesis investigates lossless coding techniques, based on the previously consid-
ered causal approaches.
Recent work has shown that coding schemes using a lossless (integer-to-integer) implementation of the
Karhunen-LeVve Transform followed by scalar entropy coders are almost as efficient as vector entropy
coders. We compare the integer-to-integer implementations of the KLT and LDU in this framework, which
we refer to as “single-stage” lossless transform coding. We define the lossless coding gain for a transfor-
mation as the bitrate reduction operated by the corresponding lossless coding scheme. In a first step, we
show that the maximal achievable coding gain corresponds to the average mutual information shared by the
components of the vector. In a second step, we analyze the effects of the integer-to-integer constraint on
the coding gains. A third step analyzes the effects of estimation noise uppon the coding gains : in this case,
the transforms are based on an estimate of the covariance matrix of the quantized signals. We find that for
stationary Gaussian signals, the coding gains are close to their maxima after a few tens of decoded vectors.
Moreover, because of its tngular structure, the LDU based approach is shown to yield the highest coding
gain.
Orthogonal transforms are then compared with the causal transform in “multi-stage” lossless transform
coders. For internet browsing applications, or in the case of varying transmission bandwidth, this kind of
schemes allows one to deliver in a first step a low resolution (lossy) version of the signal, and to transmit
separately the error signal. In a two-stage lossless coder, each vector is transformed, quantized, and an error
signal is generated by substraction to the original signal. For orthogonal transforms, the cost of the multires-
olution approach is a bitrate penalty®P5 bit per sample. This excess bitrate is due to a “gaussianization
effect” of the transforms. We show that the causal approach allows one, in this framework, to code the
data (almost) without causing any excess bitrate as compared with a single-stage coder. Also, the approach
based on the causal transform allows one to easily switch between a single- or a multi-stage compressor.
Moreover, the proposed approach allows one to easily fix the distortion and rate for both the low resolution
and the error signal in each channel. Any of the channels may, as a particular case, be chosen to be directly
losslessly coded.
Finally, we apply our results about optimal coding of vectorial signals to the single- and multi-stage loss-
less structures described so far. In a first step, prediction matrices of the generalized MIMO prediction
framework are used in single-stage coders. The corresponding compression performances are compared
to the optimal compression performances, as achievable by any lossless coding technique. The particular



cases of the classical and the triangular MIMO predictors are investigated, and shown to present equivalent
performances. In a second step, we investigate the performances of two-stage structures where (A)DPCM
loops are introduced. The quantizers of these loops allow one to choose the respective bitrates for both the
error and the low resolution signals. For these two-stages structures, the overall bitrate delivered by the
multiresolution structure is compared to that of the corresponding “one-shot” approach. These two-stage
structures are shown to be slightly suboptineddéuse of the noise feedback created in the (A)DP@igs.

Finally, we show that the two-stage structure can easily be extended to a larger number of stages. In that
case, a simple method is proposed so that the delivered bitrates approach some predetermined target rates.



Techniques Causales de Codage avec et sans Pertes

pour les Signaux Vectoriels

D. Mary

La néssi€ de “comprimer” les signaux nwarigues trouve son origine dans les moyens ksidont
disposent les communications nergues : la compression permeeddnomiser la bande passante des
canaux sans-fil ou internet; elle permet ausscdtiomiser I'espaceemioire en ce qui concerne leur stock-
age. D'une fapn ggrérale, le codage de source consataéttre au point des techniques permettant, suiv-
ant I'application vige, de dterminer le meilleur compromis entre la quakitvec laquelle les informations
seront repesenges, et la ressource, ou leldf, qui sera atessaire pourattire la repesentation choisie.
Selon que l'information initiale peuttfe partiellement, ou parfaitement reproduiteeapfopération de
codage, on parle de codage avec, ou sans pertes. CettefgSente diverses techniques, etvBluation
de leur efficacie, pour ces deux types de codage.

L' informationconsicrée dans cette Hse sera repsenge par des signaux vectoriels, qui forment une large
classe de signaux, incluant par exemple les signaux scalaires ou les signaux multicanaux. Ces derniers peu-
ventétre construits @S que plusieurs signaux scalaires sont, pour des applications diverses, gésgiisp”

lors que les signaux scalaires individuelegghtent desependances, comme certains signaux audio par
exemple, il y a un irgféta les traiter conjointement, en vue d’'une compression plus efficace.

L'idee initiale de dVelopper des techniques adsgst‘aux signaux audia motivé ce choix d’une re@sen-

tation vectorielle. Bien que quelques applications soiesg@mnées pour ce type de signaux, I'’hypesie de

signaux gaussiens est souvent retenue, car elle permet d’obtenésdétsts analytiques et donc de com-

parer et de prouver, le caslgant, 'optimalit des sceimas de codage consids.

La premere partie de cette ése pesente des techniques de codage avec pertes pour les sighaux vecto-
riels.
Dans le cadre du codage par transfeentbut d’abord, nous nous @rgssons au codage de signaux vec-
toriels par une transformatioredére€latrice causale de type DPCM (Differential Pulse Code Modulation,
technique utilise pour les signaux scalaires, supprimant les redondancesquction lindaire). Nous
montrons que la transformation causale optimale correspamek factorisation triangulaire LDU (Lower-
Diagonal-Upper) de la matrice d’autocelation du vecteur de signalcoder. Cette approche est congzar’
a sa contrepartie unitaire, la transformation de Karhunen#dKLT), bien connue parce tént opti-
male pour les sources gaussiennes, elle sert traditionnellemesfédence. Plusieurs aspects sont absrd”
dans cette comparaison, comme le gain de codage agparta transformation (qui correspond au facteur
par lequel la distortion eseduite, pour un mfme dbit, gildcea la transformation), les effets intervenants
lorsque le scema de codage est ingotien€ en boucle fer@é (c’esta dire lorsque la transformation utilise
des doneées pecddemment quantdes, ce qui introduit dans le saha de codage un retour de bruit), ou
la complexi€ algorithmique. Nous proposons une analyse des perturbati@ssdii retour de bruit, qui
montre que quand celui-ci devientgligeable, les performances sont identiqueglles obtenues dans le

2Les premiersesultats de ce travail ort& obtenus dans le cadre du projet RNRBDBASCA COdage en Bandeldrgie avec
partage Adaptatif duebit entre Source et CAnal poueB8aux cellulaires de deexne et troigme gnérations (UMTS).

\Y



cas unitaire, bien que la complexitle la LDU soit notablement moindre. Dans la plupart des cas pra-
tiques cependant, les doges Eelles sont non stationnaires, ce qui pose un prabld’adaptation pour des
transformations eppendant du signal telles que la KLT ou la LDU. Naitadions donc les performances

de sclemas de codage pour lesquels ces transformations soneadat’ la base de does quantiéés,

ce quiévite un surcrd’de cEbit qui correspondrait transmettre auatodeur une description de ces trans-
formations. Dans ce contexte, nous analysons les effets de perturbesi@o lBruit de quantification et au
bruit d’estimation qui se posent par rapport au caaidCette analyse permeteddluer quantitativement,

en fonction d’un ébit moyen impos’et du nombre de doerS pecdemment déodes, |Ecart entre la
performance eélle des deux systies et leur performanceddle, a les statistiques des sighaaxcom-
presser sont connues.

Dans la fin de cette premmié partie, I'approche matricielle causale de type LDU eséiglige au caswles
coefficients de la matrice de transformation triangulaire sont des filteeggpeurs (pediction MIMO -Multi

Input Multi Output- triangulaire). Cetteagéralisation @bouche sur la pdiction MIMO dite “géréralise”,

pour indiquer que la gdiction MIMO classique et la pdiction MIMO triangulaire constituent deux cas
particuliers, parmi une infiné d’'une n&me approche totalemergabreélatrice, et “causale” dans un sens
plus large. Nous montrons que si les effets de retour de bruit de quantification sont pris en compte, la pr’
diction MIMO triangulaire est, parmi toutes ces approches, celle qui maximise le gain de codage. Dans ce
cas, @corgler les signaux par ordre de varian@ebissante est optimal. Une application de essiltats

est proposé dans le cadre du codage de la parole large bande ([0-7kHz]).

La deuxeme partie de cette ¢se @veloppe des techniques de codage sans pertesedasfi les ap-
proches causales considés pecgdemment.
Une preméreétape consista comparer les performances de la LBelles de la KLT dans le casi elles
sont impEmenges de fagna étre sans pertes (transformations “d’enti@rsntiers”). Le gain correspond
alorsa la Bduction de dbit opgrée par la transformation, tout en garantissant uneesgmtation exacte de
la source. Nous montrons d’abord que le gain maximal qui peatdppos’par de telles transformations
correspondh’la moyenne des informations mutuelles pagtagpar les diéffentes variables qui composent
le processus vectoriel. Nous analysons ensuite les gains appattla KLT et la LDU dans ce cadre, et
décrivons notamment les effetsigh la contrainte “entiera entiers” en terme deethit suppE€mentaire par
rapport au gain idal. Le bruit d’estimation pour un sehia adaptatif est aussi tmit[’approche causale,
gracea sa nature triangulaire, s'ere pesenter dans ce cadre des performanegsément sugrfieuresa’
I'approche unitaire.
Nousétudions ensuite des sas de codage sans pertes qui permettergldea,; dans un premier temps,
une version bassesolution du signal d'irgfét, et de transmettre le signal cormpiéntaire par la suite. Ce
genre de safrha est utile pour des applications de navigation rapide sur internet, ou de transentsaiale
passante variable. La transformation causale est campums ce cadre aux transformations orthogonales.
Nous considfons une versioregerement modiéée d’'un sckimaa deux niveaux deasolution simple (util-
isé par exemple dans le contexte du codage audio sans pertes), dans lequel chaque vecteur est d’abord
transforn®, quantifé, puis transmis comme version basassotution du signal. Un signal d’erreur est en-
suite ggnéré par soustraction au signal original, et transmis comme camgait. L'extension de ce seima
a plusieurs niveaux deesolution est obtenue en introduisant des quantificateurs de type APCM dans le
schéma sans pertes. On montre que les transformations orthogonales classiques sont sous-optimales pour

Vi



de telles approches muktisolution par rappog leur alternative causale. La transformation causasegnte
d’autres avantages par rappartiés transformations telles que la KLT ou la DCT, comme la possiliiit”
passer instantament d’'un scema de codage sans pertes mesofttiona des scemas multiesolution,

de pouvoir choisir des niveaux desdlution difErents pour chacun des canaux et, notamment, de pouvoir
coder sans pertes un ou plusieurs canaux particuliers uniquement.

Finalement, des selmas de codage sans pertes megitlitions sont @sengs, qui se basent sur lagatic-

tion MIMO considgrée dans la prerare partie. Nous montrons que I'approche malalution estdgere-
ment sous-optimale en terme debdt total par rappord une approche de compression glolzatause du
retour de bruit dans les boucles de type ADPCM. On propose aussietheae pour que leethits ggrérés

par chacune degsolutions correspondeatdes @bits cibles petetermies.
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Chapter 1

Introduction

Consider a system composed of two parts, a first part which possesses some information, and a second part
which does not. If the first part is concerned in reliably transmitting information to the second one, then
this can be called @ommunication systerithis formulation is both abstract and general. Communication
systems are ubiquitous. Providing a powerful mathematical framework to analyze communication systems
remained for a long time a complex and unsolved problem. It was the seminal work of Shannon [2], who
introduced a precise and flexible enough abstraction of a communication system, which launched this math-
ematical discipline, Information Theory.

In the last decades, Information Theory has provided many redubist awo original and fundamental
problems. The problem of building from an originalessagea signal which will efficiently represent the
information of interest, once, more fundamentally, “efficiently” has been precisely defined, is ttedled
source codingproblem. The problem of characterizing and understanding the way this signal will be cor-
rupted during the transmission, and proposing further operational systems which will effectively protect the
information of interest, is referred to as tbleannel coding problemHowever, beyond communications,
many scientific fields were impacted by Information Theory, including Probability, Statistics, Computation
Theory or Economics [3]. In the particular case of physiseme authors consider that information, as
defined by Shannon, may be a fundamental conGepten more so than energy [5].

In the framework considered in this work, the “information of interest” may be any mathematical signal
describing physical quantities, imagesesph, or music signals. In practice, transmission of these infor-
mation was analog (continuous-time and continuous-amplitude signals) up to the second half of the last
century. Since the introduction of Pulse Code Modulation (PCM) however, communication is almost al-

1As explicitely stated in [2], the difference between Boltzmann’s and Shannon'’s entropy merely amounts to a choice of a unit of

measure.
2|n [4], classical and quantum particle statistics are rederived using information theoretic arguments.

1



2 Chapter 1 Introduction

ways, and increasingly, digital. The PCM system was historically patented in 1938 [6], used for military
communications systems in 1945 [7] and published in 1947 [8, 8taBse PCM systems perform on ana-
logic signals a double discretization, in time (sampling) and amplitude (scalar quantization) they are also
referred to as A/D (Analog to Digital) converters. The main advantage of digital communication systems
is that, by introducing some loss (due to double discretization) in a controlled fashion, further loss can be
prevented during the transmission. The information is then transmitted by means of information elements,
the bits, resulting in a certain bitrate. Very generally, Source Coding deals with representing some infor-
mation by means of bits. If the original information can be exactly recovered from these bits, the coding is
called lossless, otherwise it is lossy. The branch of Information Theory which is dedicated to the problem
of characterizing the minimum rate required to represent a source up to a certain resolution level is called
Rate-Distortion Theory. Both lossy and lossless coding techniques will be of interest in this work.

The aim of the following introduction is to set the mathematical framework of this dissertation, and to re-
call some historical results. The particular topics of interest, and the main purposes of this work should be
underlined along the mathematical setting, and will be more precisely exposed at the end of the chapter.

1.1 About Shannon’s Mathematical Theory of Communication

The mathematical abstraction of a communication system as proposed by Shannon in [2] is represented by
Figure 1.1. In this abstraction, amformation sourceproduces anessageor a sequence of messages, which

may generally be continuous- or discrete- time and amplitude. tfdresmitteroperates on the message to
produce a signal suitable for transmission over the channel. cRaisnelrepresents the physical medium

used to transmit the signal (wires, RF spectrum, fiber optical [10]...).r&d@verattempts to recreate the
message from the received signal, and delivers this messagededtigationwhich is the person or thing

to whom the message is intended.

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION
1
SIGNAL | RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE

Figure 1.1: Shannon’s schematic diagram of a general communication system.

One achievment of Shannon’s description is to represent the various elements involved in this descrip-
tion by mathematical entities, idealized from their physical counterparts. We should now present the defini-
tions and notations of important quantities, and brieflyall some important results, which will be relevant
to this dissertation.



1.2 Definitions and Important Results 3

1.2 Definitions and Important Results

This short presentation aims only of introducing the results of the next section. Several properties and
interpretations regarding entropy, relative entropy and mutual information can for example be found in [3].

1.2.1 Information

Let i(n) be a stationary random process described by series of discrete independent and identically dis-
tributed (i.i.d.) random variables (r.v.s) with alphateThis source is called discrete memorylesource.
We denote by

pi(ix) = PHi(n) = i}, (1.1)
the distribution of the several probabilities. Each outcdtite) = i } contains an information

I(ix) = —logy i (ix). (1.2)

Since we choose a logarithm of baséor the definition,/ is expressed in bits per symbol. The lower the
probability, the higher the information: in some sense, being informed is being surprised.

1.2.2 Entropy

The discrete entropy afn) is defined as the mathematical expectation of thelf4),

H(i) = EI(ix) = — Y _ pilix) log, pi(ix)- (1.3)
ik €J

The entropy may be interpreted as the average quantity of information delivered by an outcime of
and measures the amount of uncertainty associated with the sdiif¢ecorreponds also to the minimal
number of bits required to exactly describe the discrete memoryless s¢ujcdhe entropy of a discrete
source can be shown to be positive or null, and upper boundeédghyV;, where N5 is the number of
elements of. Hence, entropy is maximal (and equhls.,, Ny) if all the symbols are equiprobable, see e.g.
[11].
For a continuous real-valued riwith p.d.f. p;, thedifferentialentropyh(¢) of i is defined as

b= [ nliloms (1)

oQ

Historic references about the concept and the origin of entropy, the relationship between differential and
discrete entropy, and particular applications to coding of audio signals can be found in [12].

1.2.3 Entropy Rate

The previous definition can be generalized to the casé dfscrete r.v.s. Let us consider the vector) =
[i(n) i(n+1)--i(n+ N — 1)]T, and define by; (i1, - - - , inx) the joint probability

pilink, - ink) = PHi(n) = ivg, - i(n+ N — 1) = ing }. (1.5)
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The entropy of this vector is defined as

H(i)=— Y pilite-- ine)logy pilive - --ine)- (1.6)

Tk INE
Theentropy rate H, (i) of the process(n) is then the limit

Hooli) = lim —H(). (1.7)

N—oo

One can show that it is possible to build an uniquely decodable code to a source as long as the number of
bits per symbol is at least as high as the entropy rate of the source.

Also, (1.4) and (1.7) may be generalized to the case where= [i(n) i(n+1)---i(n + N — 1)]T is
composed ofV continuous r.v.s. Fafhaving joint p.d.f.p;, the differential entropy of is defined as

() =~ [ i) log, ), 1.9
and the correspondirgjfferential entropy ratef the continuous sourcén) as
. .1
hoo(i) = lim —=h(2). (1.9)

1.2.4 Mutual Information

Let ¢ andj be two discrete r.v.s with respective alphatieedJ. The mutual informatiorf (¢; j) is the
average reduction in uncertainty of an evéiftn) = i} due to the knowledge of an evefif(n) = ji },
and is defined by

L) = s i) log, Pl ds) 1.10
(47) Z%J%P(k Jk) gzpi(ik)pj(jk) ( )

The mutual information is nonnegative and corresponds to the relative entropy between the joint probability
and the product of the marginal probabilities.

1.2.5 Capacity

Suppose now that the values of procégs) correspond to the input symbols of a channel, and that the
output symboldji } € d depend only on the input symbal at the same instant. For this so-caltidcrete
and memorylesshannel, the capacity is defined by

C' = max I(i;j). (1.12)

Pi
The fundamental theorem for a discrete channel with noise ([2][Tf.states that communication with
arbitrarily low error probability is possible if, and only if

H(z) < C. (1.12)

This theorem is sometimes referrred to as the “separation theorem” for stationary memoryless sources and
channel. Extensions to other sources and channels are reviewed in [13]. This theorem and the results of
[13] suggest that one could design practical methods to compress a source without any knowledge of the
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channel. Similarily, the design of a system aiming of communicating over a particular channel could be de-
signed without regard for the significanceeafch particular bit. For this reason, source and channel coding
have grown into separate fields with rather separate communitexauBe of channel capacity variations
however, joint source-channel coding may improve the overall coding performance of real systems. Thus,
the optimality of designing separately source and channel coders is somehow idealistic, but leads however
to easier designs.

As stated as early d984 in [14], digital source coding is by no means a new topic. One may however hope
that there is still room for improvement and innovation. A primary purpose of this work is indeed to show
that this is the case.

1.3 Source Coding : General Presentation

A source code is composed of two mappingseanoderand adecodey see Figure 1.2.

z i bits i z
e ) L gy

Figure 1.2: General representation of a source code.

The encoder maps any vectey € R¥ to a finite string of bits, and the decoder maps any of these
strings of bits to an approximatiarf € R™. The encoder can always be factoredyasa, wherea is a
mapping fromR" to some discrete sétandy is an invertible mapping fromto strings of bits. Operations
a and g are referred to as lossy encoder and decoder, and defjnardizer The operationy is called a
losslessor entropy code
The quality of a source code is assessed by measuring the approximetimacy ofx? with respect to
(w.r.t.) z, and the length of the description. The measure for the description length will be the expected
number of bits delivered by the encoder divided by the vector lengthThis is calledthe ratein bits
per scalar sample. The measure of approximation accuracy will be the expected squared Euclidian norm
divided by the vector length

1 1
d(z, z%) = 7 Ellex — zf[|” = 7 ElZ[", (1.13)

where B|Z,||* denotes the variances of the reconstruction error. The mean squared error (MSE) distortion
as defined in (1.13) is very conventional and usually leads to the easiest mathematical results. Source cod-
ing theory has however been developped for quite general distortion measures [15].

Concerning on the one hand the lossy component of the source code, also @qadietization stage
eachz, € R is mapped from a source alphabet to a reproduction codebeoK z!};c5 C RY, where
Jis an index set. Quantization operati@Qris then realized by cascading the operatioand 3. The lossy
encoder: R — J is specified by a partition &k”Y into partition cellsS; = {z, € RV |a(z;) = i},i € J.
The reproduction decoder. J — RV is specified by the codebodk If N = 1, the quantizer is called
scalar, and otherwis@ectorquantizer Most popular lossy coding techniques include (possibly predictive)
scalar and vector quantization, transform or subband coding, and combinations thereof. Those of them
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which are involved in the coding structures of interest in this thesis will be briefly described in section
1.5. Extensive literature aboe&ch of them exist however; for a comprehensive overview, see the excellent
tutorials [16] and [17].

On the other hand, the aim of the entropy coder is to assign a unique binary string called a codeword
to eachi € J. A trivial assignment consists of transmitting codewords which correspond to the binary
representation of each index. Since the codewords have equal lengths, this procedure fixedHade

coding. The codeword assignment may however be done in such a way that the average bitrate is lower
than in fixed-rate coding. The basic idea is to assign shorter codewords to the indexes whose cells are more
frequently used by the quantization process, and longer codewords for indexes which are less likely. Indeed,
lossless compression is achievable in this case only if the probabilities of selection of the quantization cells
are different. This coding scheme is then referred teaatable ratecoding. Though lossless coders may

also exist as standalone coders, they are always required as parts of lossy coding schemes. Lossless coding
techniques are reviewed in some more details in the next section.

1.4 Lossless coding

1.4.1 Introduction

Lossless coding is also callddta compactiomoiseless, invertibler entropycoding. As discussed above,
lossless compression can be achieved for discrete sources emitting symbols in a finite alphabet by taking
advantage of the non equal probabilities of occurence of the symbols. The cost is firstly some encoding
delay allowing one to reliably estimate these probabilities. Secondly, if the average bitrate may be decreased
by using variable rate coding, the instantaneous (or on a short period of time) bitrate may be arbitrarily high,
which may cause buffer overflows. This means that applying lossless codes may result in data expansion
instead of compaction in the short run. Finally, variable rate coding may suffer from error propagation if
some bits are received by the decoder in error. The main advantage of lossless over lossy coding is indeed
to guarantee, assuming a noiseless channel, that the data will be exactly recovered. In many applications,
such as computer programming, bank statements, some medical applicatimmgperfect information
recovering is not acceptable. In some more particular applications, such as audio archiving and mixing,
lossless compression may also be desired. This kind of techniques will be investigated in the second part of
this thesis.

1.4.2 Entropy Codes

We now precise some properties and definitions about entropy coding. Let us consider a discrete random
variable: with alphabet]. The entropy coder assigns a unique binary string called a codeword to each

i € J (Figure 1.2). Since the codewords are unique, entropy codes are always invertible. A code is called
uniquely decodablé the output sequence(iy),y(i2), - - ,v(ix) corresponding to the input sequence

i1, -, 1k IS one-to-one. Uniquely decodable codes can be applied to message sequences without adding
any “punctuation” sign to show where codewords begin and end. If no codeword is the prefix of any other
codeword, the code is callechzefixcode. Prefix codes are guaranteed to be uniquely decodable.
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The expected code length corresponding to the entropy-¢aglthen
L(y) = EQ(v(i)] = > palin)l(v(ix)), (1.14)

iy€J
wherep; (ix)is the probability of the symbal, and{(~(éx)) is the length of the corresponding codeword.
The entropy code isptimalif it is a prefix code that minimize&(y). Huffman codes [18] are examples of
optimal entropy codes. The performance of an optimal code is bounded by

H(i) < L(3) < H(i) +1, (1.15)

whereH is the discrete entropy defined in (1.3). More useful upper bounds may be found, e.g. [11, 19, 20].
Concerning the lower bound, analytical formulas which would describe the rate given by Huffman codes as
a function of the probabilities are unknown [16]. Approximating this rate by the entropy gives however a
useful though underestimated idea of the actual achievable rates.

Among most famous examples of lossless codes are the Morse cddg7ofwhere the binary represen-
tation is replaced by dots and dashes, and the codewords’ lengths are inveopalstipnal to the letters
relative frequencies; this code requires fewer bits than fixed-rate ascii), Huffmanigdde \{sed in Unix
compactutility), run-length codes (popularized by Golomb in the edtlg0’s, and used in the JPEG stan-
dard), Golomb codes which are type of Huffman codes, Lempel-Ziv(-Welch) cofes 78, used in Unix
compresasutility), arithmetic codes, Rice code (Huffman code for Laplacian probability density functions,
used in many state-of-the-art lossless audio coders [21, 22, 23, 24]).

1.5 Lossy Coding

The main results of Lossy Coding or Quantization come historically from two complementary approaches:
the information theoretic approach of Shannon, also called rate-distortion thesoyiiee coding with a
fidelity criterion[2, 25], and thehigh resolution or high rate or asymptotidheory, whose origin can be
foundin [26, 27, 28].

1.5.1 Rate-Distortion Function

In many practical cases, noiseless coding of discrete sources is not possible. One wishes to describe the
performance of a system which allows one to compress the source by accepting some distortion. Consid-
ering a distortion measuréz, x?), therate-distortionfunction [15] describes the lowest rate required to
represent a continuous sourcétaking values in theV -dimensional Euclidean spaég™) with distortion

no greater than some maximum distortion

re(D) = inf %I(r z9), (1.16)

where the infimum of the normalized mutual informatiﬁd(g; x%) is taken over all joint distributions of
2 andz? such that/(z, z7) < D. Alternatively, one can definedistortion-rate functiorwhich is the least
distortion with rater, or less. For: having joint p.d.f.p, and finite differential entrop¥(z) the Shannon

lower boundstates that for an MSE distortion measure

re(D) > %h(g) - %logz(Qﬂ'eD). (1.17)
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One important feature of the Shannon lower bound is that it easily generalizes to stationary sources. Let
x be a real stationary source, and detlenote the vector of the firéf samples of:. The rate-distortion
function ofz is defined by

. .1 1
Te0o(D) = J\;gl})o re (D) = J\;gl})o Nh(g) ~3 log,(2me D), (1.18)
. . . . .1
and the limit is known to always exist [15]. Assuming a differential entropy katéx) = th Nh(g),
—00
thegeneralized Shannon lower bouisd
1
Teoo(D) > hoo(z) — §log2(2ﬂ'eD). (1.19)

The performance of realizable quantizers as designed by high resolution quantization theory may then be
compared to these information theoretic resdltsThe quality of a quantizer, as defined in section 1.3,

is determined by its distortion and rate. We will limit this review by considering MSE distortion (1.13).
As for the rate corresponding to a particular distortion, it can be measured in a few ways. Associating a
particular entropy code to the quantizer gives wariable rate quantizefa, 3, v), whose rate is given

by eq. (1.14), possibly divided by the lengthin the vector case. If no particular code is specified, or

if binary representation is used to build the codewords, the quantizer is Galtedrate quantizemwhose

rate is hencédog, Ny. The ideal case where the rate is measured by the enfigpyyields anentropy-
constrainedquantizer. The optimal performance of variable-rate quantization is at least as good as that of
fixed-rate quantization, and entropy-constrained quantization is better yet.

1.5.2 High Resolution Scalar Quantization

For most sources, it is impossible to analytically express the performance of optimal quantizers. The ap-
proximations obtained when it is assumed that the quantization is very fine are however reasonnably ac-
curate even at low to moderate rates [30, 31]. See [16, 17] and references therein for a comprehensive
overview of the main historical contributions to high rate quantization.

Let p, denote the p.d.f. of a continuous scalar rv.High resolution analysis is based on approximating

pe on the intervalS; by its value at the midpoint. Assuming is smooth, this approximation is accu-

rate when allS; are short'. Optimizing a scalar quantizer turns into finding the optimal lengths for the
cells, depending on the p.d.f.. For large rate, the performance of optimal fixed-rate quantization (FRQ) is

approximately
3

+oo
EZl ~ 11—2 (/ pg(x)dx) 272, (1.20)

which is now called the Panter and Dite formula [28]. Optimal conditions for p.d.f. optimized quantizers
require that the quantization follows a nearest reconstruction level rule, and that these levels are the condi-
tional expectation of the source value given that it lies in the specified cell (also eadteid of the p.d.f.

in the interval). Lloyd [32, 33] and Max [34] independently derived methods to design a quantizer subject
to these conditions, which is therefore calletilayd-Max quantizer When FRQ is used the number of
cells® K, is related to the rate bj{ = 2”. Evaluating expression (1.20) for a Gaussian source gives, at

3The first paper to compare the performance of a specific quantizer to the Shannon lower bound was that of Koshelev in 1963 [29].
4These assumptions are known as Bennett's assumptions [27].
50Once optimized, the cells are call&dronoi regions
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high rates,

d ~ \/§7Tai
Gausstan,Lloyd—Maz ™~ SK2 (121)

V3T _26-—2r
V31 529 -2r,

For an entropy-constrained scalar quantizer, the partition cell should be reoptimized, and high resolution
analysis shows that it is optimal for eashto have equal length. Thus, a simpleiform quantizeresults
in the best performance for high resolution, which is

dGaussian ECUQ ™ %UiTzr. (1.22)
This formula is known as the Gish and Pierce [35] high rate approximation of entropy coded uniform quan-
tization (ECUQ). Interestingly, optimal entropy constrained uniform quantization does however not result
in a uniform quantizer at low rates, but again on a p.d.f. optimized quantizer [36, 37].
In any case, the number of cells is countably infinite with variable-rate coding (VRQ). If fixed-rate cod-
ing (FRQ) is used with uniform quantization, the grid of the quantization levels covers a finite range of
amplitudes and the distortion is comprised of two factors. The first stems from the distortion occuring by
approximating any value inside the grid by the corresponding reconstruction level, and is catieanthe
ularity. The second contribution comes from the distortion occuring by approximating any value outside
the grid by the corresponding reconstruction level at the boundary of the grid, and it isamadtbolad For
bounded uniform quantization (BUQ), the optimal stepsize depends consequently on the p.d.f. of the source
and on the rate (see [14], p. 127, Table 4.1, for optimisation results w.r.t. several p.d.f.s).
Summarizing these results, the performance of a quantizer may be described by a distortion-rate function
of the form

drec27%g2,

(1.23)

wherec? is the variance of the scalar source, arid a coefficient that depends on the rate, on the p.d.f. of
the source, and on the type of quantization (fixed rate, variable rate or entropy constrained). It is importantto
emphasize that the coefficiendf operational distortion-rate functions tends to a constant only at moderate
to high rates. The Shannon Lower bound is given by

dshannon = 27 o2 (1.24)

T

The rate-distortion performance discussed above are plotted in Figure 1.3.

The distortion obtained with p.d.f. optimized FRQ (1.21) is worse by a facter »f7 than that of the
Shannon lower bound, while the distortion of ECUQ (1.22%is~ 1.4 greater than the best achievable
distortion. Equivalently, for the same distortion level, FRQ requires an excess bitrate.@f bit/sample
as compared with the lower bound, while this excess bitrate iserily25 bit/sample for ECUQ. The excess
bitrate of ECUQ is often quoted as the “quarter bit result”, and was first reported in [29], and rediscovered
by numerical evaluation [30] in the case of i.i.d. Gaussian sources. The (slightly) subsequent paper of
Gish and Pierce [35] brought then several important results. It demonstrated analytically the “quarter bit”
result of ECUQ of Gaussian sources, and showed that this performance could be attairatyestource
distribution They also generalized the results from squared-error distortion to nondecreasing functions of
magnitude error. Important analytical results relating differential (1.4) to discrete entropy (1.3) can also be



10 Chapter 1 Introduction

10" ¢ S, | < T T T T T T T
L . — -
«...‘.\ S d Gaussian,ECUQ’ Gish & Pierce
-,' . > ~ - Actual DGaussian,ECUQ
S ~ __ d .
* ~, ~ d Gaussian, Lloyd—Max
BN :.\ A ~ —%— Gaussian,BUQ
N N —— ~ Shannon
T N
» §\> > ~
SN % ~
-1 ~
10 " DRI N .
— RN ~
w e N~
(72} ~ ~ ~
= NN
= . ~> ~
;% >~ \3.6\\
S ~ ~~
ki > S
a -~ \\\
~ ~—
~ N~
S ESN
_ . K
10721 0.25 . ~ .
n ~ o~ 3
L - N
N ~
0.72 3~ -
~ - ~ O
~N ke
N ~ 3
~N
~
~N
~ .
1072 I I I I I I I I I
(0] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

r [b/s]

Figure 1.3: Distortion-rate functions of several scalar quantizers.

found in the same paper. A uniform quantizer scalar with infinitely many levels and small cellsAvidth
has output entropy given approximately by

H(z9) ~ h(z) — log, A. (1.25)

In the high resolution case, the entropy/éfsuccessive outputs of a uniformly scalar quantized stationary
source is

H(z?) = H(af, 2%, 2%) = h(z1, 29, - ,zn) — logy A, (1.26)

Finally, they showed that th@25 bit/sample result is also true for sources with memory, and noted that
when coding vectors, the performance could be improved in two dimensions by using hexagonal cells
(instead of the cubic cells induced by uniform quantization).

1.5.3 Transform Coding

The first occurence of transform coding in digital systems is attributed to Huang and Schultheiss [1]. A

previously introduced coding procedure aimed of transmitting linear combinations of time- and amplitude-

continuous signals instead of the original signals was introduced by Kramer and Matthews [39]. The “quan-
tization” operation corresponded in this case to transmitting a linear combinatior a¥ signals instead

of the same number of original signals, which was found to be much more efficient for adequately cho-

sen transforms. The modern framework of transform coding introduced by Huang and Schultheiss and
including digitization is depicted in Figure 1.4.

8This result is due to Biyi [38], and was generalized in [35] to nonuniform quantizers, and to vectors.
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Figure 1.4: Modular structure of a transform code [1].

The essence of transform coding is the modular structure provided by breaking the mapgimgvo
steps, aninvertible transformproducingtransform coefficientg;, and the independent scalar quantization
of those coefficients. The corresponding serie of indexes are then compressed by an entrepwbacte
is usually itself composed ao¥ independent entropy coders. An approximatigrof x is then obtained
by reversing the operations at the decotleiThe quantizers indices are first recovered, from which the
decoder produces reconstructed transform siggfalsThe final step usually usésé = 7~ to obtainz?.
The great advantage of transform codes comes from their complexity reduction: the time for computing
the transform is at most proportional 6%, whereas computing the optimal code is exponentialin
Transform coding allows therefore large values\ofo be practical, at the cost of being suboptimal. It is
therefore aconstrainedcode, w.r.t. its particular structure.

Bit allocation

Coding (quantizing and entropy coding) each transform coefficient separditdytisp total number of bits

among the transform coefficients. One should then cleverly choose the quantization fineness, and hence the
number of bits required to represent the resulting quantized sources. The formulation of the bit allocation
problem is simple: one is given a set of transform signals with varianggs=Ed; r, and a set of scalar
guantizers with distortion-rate performance

din = fi(ri), (127)

wherer; are the nonnegative (and possibly noninteger) bitrates of the compapeatsl f; describes the
performance of the quantizer. The problem is to minimize the average distort]‘gWTE: % vazl d; T

subject to the constraint of a given maximum average rate % vazl r;. If the average distortion can

be reduced by taking bits away from one component and giving them to another, the bit allocation is not
optimal. Applying this reasonning with infinitesimal changes in the component ratesgagary condition

for an optimal bit allocation is that the slopes of egglat ; is equal to a common, constant value. The
problem becomes easy if the operational distortion-rate function is given by (1.23) and high rate is assumed

“The channel plays no role in the optimization and is assumed to cause no transmission error.
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(that is, B|7||> ~ ¢;27* "0, , wherec; is some performance factor, independent of the rate). If one
neglects further the fact that theshould be nonnegatifethe optimal bitrates are given by

1 C; 1 f
ri =1t g logy ———— + 5 logy ——*——, (1.28)

and the corresponding average distortion by

2=

i=1

N
1 ~ —2r
NEHQH%:Q 2 (Hciai) . (1.29)

If it turns out that some rates are negative, they are set to zero, and the remaining components have corre-
spondingly higher allocations.

With average rates of bits per component and Gaussian signals, the distortion-rate performance of the
guantizers may be approximated by (1.21) or (1.22), and the average distortion with optimal bit allocation
becomes

N >
1 ~ —2r
~ Ellllz = 27 (H 05,) : (1.30)

wherec = %= for ECUQ ore = @ for optimal FRQ.

An important property of commonly used (that is, orthogonal) transformations s that, if a noise (for example
guantization noise) is added to the signal in the transformed domain, then its power will be the same in the
transformed and in the signal domains. This property is sometimes referredrdysoise gairproperty.

The coding gainG'r for a transformatioff” which verifies unity noise gain property is then defined as the
factor by which the distortion is reduced because of the transform. Assuming high rate and optimal bit
allocation

312 F2 (det diag{Re}) ¥
Gy = EIEF _ EIEl; _ (det diag{Re )™ (1.31)

~N2 Y TE N
Ellzllz  Ellgllz (det diag{R%})N

where! is the identity matrix, and the notation||||7. denotes the variance of the quantization error on
the vectorz, obtained for a transformatidh.

Optimization of the transform

Now, the problem remains of optimizing the transform so that the distortion, resulting from the bit allocation
algorithm, is minimized. Firstly, among the possible choices of transforms, orthogonal transforms are
traditionally prefered because they avoid a possible noise amplification when coming back into the signal

8This is in fact implicitly assumed in the assumption of constant
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. . - 1
domain. Denoting byt E|[Z][3 = & Y o2, = ~ Ir{#zz}, we have for orthogonal transforms
i=1

~ ~ T
~ENEL = Nt{EGY } =Xt {E(y, — ¥y, —y)"}
Ftr{E(T (2 — 20)(z), — 2D)TTT)}
%tr{TRETT}

= wEl[-

(1.32)

Secondly, considering (1.30) or (1.31), the choice of the transform is guided by minimizing the geometric
mean of the variances. Consider the covariance matyjxof the transform signals. Sinde,, is positive
semidefinite, it verifies Hadamard’s inequality [40],

N
H 0'51 > det Ryy. (2.33)
i=1

Sincedet Ry, = det(T Ry TT), this determinant becomest R, for any orthogonal, and more generally
any unimodular transform. Thus, the product in (1.33) is at léast?,.., and the coding gain (1.31) of
unimodular transforms is at most [41]

det diag{ Ry }
0 _ i
G’ = ( dot R ) . (1.34)

2~

1.5.4 Karhunen-Loeve Transform

A Karhunen-L@ve Transform (KLT) is a particular type of orthogonal transform that depends on the co-
variance of the source. An orthogonal matvixrepresents a KLT of if V R,, V7 is a diagonal matrix.

This diagonal matrix is the covarian&J_y of Y, = Vz,. Thus, a KLT yields uncorrelated transform coef-
ficients. KLT is the most commonly used name for these transforms in signal processing, communication
and information theory, recognizing the works [42] and [43]. Among other names are Hotelling transform
[44] and principal component transform.

A KLT exists for any source because covariance matrices are symmetric, and symmetric matrices are or-
thogonally diagonalizable. The diagonal element$’di,,. V' are the eigenvalues dt,,. Note that for

a given source with covariance matti.., KLTs are not unique: any row df can be multiplied byt1

without changing?,,, and permuting the rows leavés,, diagonal.

Let us consider aj_ointly Gaussian source, which is tranform coded as in Fig 1.4/with7'~*. Since

the transform coefficients have the same normalized densities, the quantizer’s distortion-rate functions may
be described by a single functighas Ej; = d; = o7 f(r;),i = 1,---, N. Then for any bit allocation
(ri,72,---,7n), thereis a KLT that minimizes the distortion [45]. In particular, at high rates, the maximal
coding gain (1.34) is achieved by the KLT. Consequently, the KLT is often used as a benchmark in trans-
form coding.

However, if neither the Gaussian, nor f#le= 7! assumptions are valid, there are cases where the KLT is
not an optimal transform. The optimality of the KLT for transform coding of Gaussian sources is believed
to be a consequence of the fact that the KLT of a Gaussian vector yields independent transform coefficients.
The application of the KLT in transform coding of non-Gaussian sources is then justified using the intu-
ition that the KLT’s coefficient decorrelation is, for general sources, the best possible approximation to the
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desired coefficient independence. The successes and failures of this intuition are reviewed in [46]. Several
cases where the KLT is not optimal are described in [47]. Other recent works include [48, 49, 50]. A large
part of the present work deals with the performance of a new transform, namely the causal transform. The
proposed investigations are thus premiliminary, and the Gaussian assumption allows one to set a framework
in which analytical results can be derived. Therefore, we will not enter the details of the analyses related to
general sources; the KLT will be considered as the optimal transform in this thesis.

1.6 Thesis Themes and Overview

The thesis is comprised of two parts. The first one deals with lossy coding, and the second one with lossless
coding. A brief overview of the general framework of this thesis, and of each part is given in this section.
More detailed introductions to the specific frameworks considered for lossy and lossless coding can be
found at the beginning afach part; an abstract is provided at the beginning of each chapter.

The topic of causality in source coding is the essential link between the several chapters of this thesis.
Several causal decorrelating schemes will be, somewhat paradigmatically, investigated. In all the cases
where the considered causal coding scheme has the form of a (scalar valued) matricial transform, compar-
ison will be made with the Karhunen-ewgé transform. Inspiring from [19] and [20], this thesis could also
have been titled “Variations on a causal coding theme”; however, an effort was made so that the chapters
can be read independently. We tried to briefly but clearly recall the previously establisheddnackgnd
results, whenever it seemed necessary.

The informationconsidered in this thesis will be represented by vectorial signals (whose samples are
vectors), which compose a wide class of signals, among which scalar and multichannel signals. Multichan-
nel signals may be obtained as soon as scalar signals are, in the context of various applications, gathered
together. If these signals present some dependencies, such as audio signals for example, one may process
them jointly in order to achieve a more efficient compression.

The initial idea of developping coding techniques for audio signaistivated this choice of a vectorial
representation. Though some applications will be presented for this kind of signals, Gaussian source mod-
els is often assumed. Gaussian sources have indeed a particular status in information theory. Shannon [25]
showed that a Gaussian i.i.d. source has the worst rate-distortion function of any i.i.d. source with the
same variance, thereby showing that the Gaussian source is an extremum in a source coding sense. This
fact provided an approach tobust quantizationthe resulting code might not be optimal for the actual
source, but would perform no worse than it would on the Gaussian source for which it was designed (see
e.g. [61]). Besides, advantage can be taken of the central limit theorem and of the known structure of an
optimal quantizer for a Gaussian random variable. A general source is in this case coded by first filtering

it to produce approximately Gaussian density, scalar quantizing the result, and then inverse filtering to re-
cover the quantized original [52]. We will not argue however that Gaussian assumption was intended to
provide either worst-case performance, nor methods to code, with the same performance as that obtained in
the Gaussian case, sources with arbitrary densities. The Gaussian source model was retained in this work

9The first results of this work were obtained in the framework of the french RNRT prof@eBASCACOdage erBande€largie
avec partagédaptatif du @bit entreSource eiCAnal pour Eseaux cellulaires de deexne et troisgme gnérations (UMTS).
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because it allows one to derive closed form expressions, to compare, and possibly to prove tHigyoptima
the considered coding schemes. In this sense, it provides a valuable framework for preliminary theoretical
investigations, such as those intended in this work.

1.6.1 Part One: Causal Lossy Coding

The first part deals mainly with transform coding. Transform coding theory may appear as rather old and
routine; a primary aim of this thesis is to show that valuable innovations are still possible. These innovations
regard not only the framework of the standard description of transform coding (by introducing a new causal
transform and showing its efficiency for a wide range of rates), but also in the framework of a related and
almost unexplored research areas, namely the probldractfvard adaptatiom transform coding.

The causal transform is introduced in chapter 2. It is called LDU transform, for “Lower-Diagonal-
Upper” factorization of the correlation matrix of the input vectorial source; the matrix is lower triangular
and unit diagonal, and its design is based on optimal prediction. Both theoretical analyses and empirical
evidence of its coding performance w.r.t. the KLT are demonstrated. The presented theoretical investiga-
tions apply to the classical high rate transform coding framework, but particular practical systems working
at moderate to low rates are also investigated.

Because itis based on optimal prediction, the LDU is, as the KLT, signal dependent. Adjustingthe trans-
form to the generally varying changing covariance matrix of the source may result for practical systems in
a non acceptable bitrate overhead. A possible way to avoid this drawback is to adapt the transform based on
the decoded data, so that the encoder and the decoder adapt in unison without the explicit transmission of
any coding parameters. Among the questions of interest is that of knowing whether the backward adaptive
system will be suboptimal, in the rate-distortion sense, w.r.t. to a system designed with a perfect knowledge
of the source. This issue is addressed in the third and fourth chapters.
In a first step, the approach of chapter 3 makes the same assumptions as those of the classical transform
coding framework (optimal bit allocation procedure, high rate, Gaussian sources), and proposes an analysis
of the coding gain for such an idealized backward adaptive system. The approach consists in modelling the
behaviour of these systems by considering the effects of quantization and estimation noise as perturbation
terms on the ideal classical transform coding framework. The perturbation effects impacts both the bit as-
signment mechanism, and the transforms. The analyses are made in both the causal and unitary cases.
The previous approach assumes however an optimal bit assignment mechanism which may not be the case
for practical systems. Therefore, an analysis of practical algorithms is proposed in chapter 4, for which the
optimal bit allocation assumption is released, and replaced by a simple (equal stepsize) quantization rule.
Both constant and adaptive stepsizes are considered, though emphasis is put on algorithms using adaptive
stepsizes, in order to cope with possible variations of the energy of the sources.

These topics are followed by a generalization of the presented causal coding scheme to (matricial)
filtering in chapter 5. For vectorial sources with memory, instantaneous decorrelation such as that performed
by transforms such as KLT or LDU applied to vector samples is not optimal. Temporal redundancies may
remain, which will not be accounted for by scalar entropy coders.
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By considering blocks of vectors with infinite length, we show that the optimal decorrelating approach
is still lower triangular. The scalar coefficients of the LDU matrix are in this casaceglby prediction
filters. We show that this renders the coding procedure of Gaussian vectorial sources with memory optimal
(assuming high rate and filters of infinite length). This generalization of the LDU is called “generalized
Multiple-Input/Multiple Output (MIMO) prediction”. This approach includes, as special cases, previously
introduced MIMO decorrelation approaches, and turns out to be rich of both theoretical and practical con-
sequencé$. A high rate analysis provides an optimal ordering in the decorrelation of the signals, and gives
insight about which particular decorrelation approach should be prefered to make the coding scheme the
most efficient.

A brief history of the preliminary analyses, and the framework which led to these results are then
presented in an appendix chapter.

1.6.2 Part Two: Causal Lossless Coding

The second part of this thesis presents and analyzes lossless coding techniques based on the causal decor-
relating approaches described in the chapters 2, 3 and 4. The analysis of the performance of the LDU
transform in a lossless coding framework was first motivated by our interest in pursuing the comparison of
its coding performance with the KLT, with the intuition that the LDU might, due to its simple triangular
structure, outperform in this framework its othogonal brethren. Also, multichannel lossless audio coding
has recently become a challenging field, and the results of chapter 5 may inherently be applied to lossless
coding of multichannel sources. Besides audio, the results presented in the second part may also be applied
to the field of image coding.

Basically, the structure of this second part resembles that of the first one. In the first two chapters, the LDU
causal transform is compared to orthogonal transforms, and in particular to the KLT, in a lossless transform
coding framework. The last chapter investigates the extention of the LDU transform, or generalized MIMO
prediction, to optimal lossless coding of vectorial signals.

An ubiquitous topic in the second part is that of integer-to-integer transforms, which received much
attention recently. The term comes the fact that both tipeitis and the outputs of these transforms are
integer valued (or lie on a scaled integer lattice). These transforms are thus of interest in a lossless cod-
ing framework, where they can be applied to discrete-amplitude source, such as those resulting from some
guantization process. The corresponding systems will be denoted by “single-stage”, or “one-shot” loss-
less coders. The goal of the integer-to-integer transforms is to provide systems which present (almost) the
same compression performance as those obtained by vectors entropy coders, though using scalar entropy
codes. A particular emphasis will be put on the “almost” of the last sentence. Theoretical analyses will first
evaluate the suboptimality of realizable integer-to-integer structures followed by scalar entropy codes, w.r.t.
optimal vector entropy coding methods. The analyses of these structures (and those of the corresponding
bounds) will regard the integer-to-integer implementations of the KLT and of the LDU in chapter 6. In
chapter 8, we will investigate those of the MIMO decorrelation approaches described in chapter 5.

10Beyond the field of source coding, generalized MIMO prediction has also found a natural and usefull applicatittiusemu
detection [53].
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Besides these “one-shot” or “single-stage” approaches, another recurrent theme of this second part is
that of multiresolution lossless coding. These systems aim of providing a low resolution (lossy coded)
version of the signals in a first step; the error signals are transmitted in a second step. For these systems,
it appears interesting to know whether the multiresolution approach is suboptimal w.r.t. the corresponding
single-stage system. We will therefore analyze the bitrates dedicated to code the low resolution, and the
error signals, and compare the resulting overall bitrate to that obtained with single-stage coders. These
comparisons will be done for the LDU transform and the orthogonal transforms in chapter 7, and for the
classical and triangular MIMO predictors in chapter 8.
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Overview of the First Part

Transform codes are populaedause they provide an attractive compromise between computational com-
plexity and performance. As summarized in the introdution of this thesis, this technique has been widely
analyzed, and source coding systems which use transform codes are ubiquitous. Many transforms ex-
ist, which allow different trade-offs between the theoretical coding efficiency and more practical criteria.
Theoretical coding efficiency include decorrelation efficiency, or compaction gain. More practical criteria
include design or implementation complexity, or subjective performance related to the particular behaviour
of the transforms w.r.t the nature of the signals they are applied to. A pervasive use is made of orthogonal
transforms, since they guarantee that the quantization noise will not be amplified when coming back from
the transform to the signal domain. Among them, the Karhunensteransform has become a benchmark,
since it has been proven to be optimal for Gaussian sources [1, 54]. A recurent theme in this thesis is to
show that, w.r.t. different criteria, KLT's performance may be approached, achieved, or even surpassed by
another transform, namely tlcausaltransform.

¢ In chapter 2, we will introduce the proposed transform coding technique, which is based on optimal
prediction. The corresponding transform performs a Lower-Diagonal-Upper factorization of the co-
variance matrix of the vectorial source to be coded. Itis not unitary but causal: the transform matrix is
unit diagonal and lower triangular. A theoretical analysis shows first that at high rates, it may achieve
the same peformance as the KLT. As a consequence of its non-orthogonality, we show that efficient
causal coding structures should be implemented in closed loop around the quantizers, as in DPCM
systems. As a consequence of the closed loop implementation, a noise feedback should increase the
resulting distortion at lower rates. The point is then to know quantitatively how the noise feedback
impacts the coding performance. We propose therefore theoretical analyses of the noise feedback. In
a first step, general quantizers, high rate and optimal bit assignment are assumed. In a second step,
the performance of practical systems using nearly optimal by allocation, (uniform quantization with
equal quantization stepsize, and entropy coding) are evaluated. Both theoretical analyses and numer-
ical results will show that the causal transform competes with the KLT at average bitrate budgets as
low as2.5 b/s. These results were presented in [55, 56].
As the KLT, the LDU is data dependent, and should thus be updated in case of changes in the source
statistics. In order to avoid transmitting coding parameters as side information, one may attempt to
adapt the transforms using decoded data only. This poses the probhmankefard adaptationor
adaptation without side-informatigor on-line adaptatiornn transform coding. The feasibility and
performance analysis of this kind of coding schemes will be the topics of the following two chapters.
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Introduction to the First Part

o Chapter 3 presents a first attempt to model theoretically the performance of causal and unitary back-

ward adaptive coding schemes. The proposed approach will consist in analyzing the perturbation
effects w.r.t. to the ideal case of the classical transform coding framework, where the second or-
der statistics of the source are known. In order to make tractable analyses, several simplifying as-
sumptions are made, which are borrowed from the classical high rate transform coding framework.
Namely, we assume Gaussianity, same quantizers'rate-distortion law, and bit assignment rule of the
form (1.28), in which however the actual variances of the transform signals are not known. The
proposed modedccounts then for perturbations occuring uppon both the bit assignment mechanism
and the transforms’ design. Three cases will be investigated: the coding schemes are perturbed by
guantization noise only in a first case, and by estimation noise only in a second case; finally, both
effects will be accounted for. Theroretical evaluations will be shown to describe correctly this kind
of systems. These results we presented in [57, 58, 59].

Our goal to provide a successful analysis of backward adaptive transform coding schemes seems
however somewhat incomplete at this point: practical systems may not verify the above assumptions.
This leads to the topics of chapter 4.

In chapter 4, three practical backward adaptive transform coding schemes will be investigated for both
the causal and the unitary transforms. In these algorithms, the quantization stepsizes are the same for
all the transform components; the transforms are computed using estimates of the covariance matrices
based on quantized data. In a first step, constant (w.r.t. time) stepsize algorithms are implemented.
This case is of interest if the input source is stationary; otherwise, it may resultaccetable
changes in the rate-distortion performance. The pointis to know whether the transforms will converge
or not to optimal transforms (designed with the knowledge of the statistics of the original source).
Empirical evidence will show that this is the case, even at low rates. In a second step, we propose a
theoretical analysis of two algorithms using adaptive stepsizes. The adaptation procedure is similar
to that used in classical adaptive scalar quantization. We model then the expected distortion obtained
for a given number of decoded vectors. Our results suggest convergence of both the stepsize and
the transforms, for both algorithms. In the case where the source is stationary, the algorithm using
a Sheppard’s correction on the second order moment estimates allows one to reach a target point of
the rate-distortion function of the system. This point is reached by the structure after a convergence
process, though the decoder laggriori neither the knowledge of the stepsize to be used, nor that of

the statistics of the source. These results are presented in [60].

The causal transform studied in these first chapters proves efficient decorrelation ability. As the KLT
however, it accounts only for correlatiowsthin each data block. For vectorial sources whose vectors

are not independent, better coding efficiency can be expected from tranforms which account for
temporal redundancies as well. This is the topic of the last chapter of this first part, which generalizes
in this sense the causal approach investigated so far.

e We show in chapter 5 how the causal transform LDU can be extended to (matricial) filtering. In

this case, the optimal causal decorrelating scheme will be shown to correspond to a triangular pre-
diction matrix whose entries are optimal prediction filters. The diagonal filters are scalar intrasignal
prediction filters, and the off-diagonal predictors are Wiener filters performing the intersignal decor-
relation. By considering vectors of infinite size, one can get frequential expressions for the coding
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gains. We show that this decorrelating scheme leads to the notigengfralizedVIMO (Multiple

Input Multiple Output) prediction, in which a certain degree of non causality may be allowed for the
off-diagonal prediction filters. Previously introduced MIMO decorrelation approaches are shown to
appear as special cases of the described decorrelation technique.

In the case of non causal intersignal filters, the optimal MIMO predictor is still triangular, and hence
“causal, in a wider sense. The notion of cditganay be generalized: the causality between chan-
nels becomes processing the channels in a certain order. Some signals may be coded using the
coded/decoded versions of the “previous” signals. An interesting result is that if the quantization
noise feedback is taken into account, the triangular predictor is the more efficient. Moreover, the cod-
ing gain is maximized if the signals are decorrelated by order of decreasing variance. These results
were presented in [61].
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Chapter 2

Optimal Causal versus Unitary

Transform Coding

In a transform coding framework, we introduce the optimal (linear) decorrelating transform subject to the
constraint of causality. This transform is shown to correspond to a Lower-Diagonal-Upper (LDU) fac-
torization of the signal covariance matriX,.. The LDU transform is compared to the unitary approach
(Karhunen-L@&Vve Transform, KLT), which is optimal for Gaussian sources. The performance of the LDU
transform is first shown to be equivalent to that of the KLT at high rates. Moreover, it presents several
advantages w.r.t. its unitary counterpart, such as lower implementation and design complexities, and per-
fect reconstruction property. As in classical (A)DPCM, closed loop implementation of the causal coding
structure is shown to be preferable. This leads to a noise feedback effect, similar to that occuring in DPCM
systems. We present high resolution analysis of these effects on the distortion-rate function. The proposed
analyses consider firstly general transform coding systems for which the bit allocation is optimal, and sec-
ondly practical systems whose bit allocation is nearly optimal. For the latter system, deviations from high
rate assumptions arise approximately beya@nll/s. The effects of the noise feedback in the causal case
become non negligible below approximatglip/s. The theoretic evaluations are validated by numerical
results.
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26 Chapter 2 Optimal Causal versus Unitary Transform Coding

2.1 Introduction

The unitary Karhunen-Leve Transform is known to be the optimal transform for Gaudssanrces [54]

This chapter analyzes the performance of the optoaakaltransformation for Gaussian signals for vari-

able length coding at high and low bitrates .

Rather surprisingly regarding its excellent coding performance, this transform was derived only recently
(independently in [62, 63] [55], and [64]). In [62], the transform is narReeliction based Lower trian-

gular Transform(PLT). The work [64] calls the transfori@equential Vector Decorrelation Technigue

[55], the causal decorrelation approach was named VDPCM because it generalizes scalar DPCM. The term
will not be retained here in order to avoid confusion with the technique presented in [65], which uses vector
guantization (see also section 5.1).

The causal transform is described in the second section, and the analogy with scalar DPCM is underlined, as
its coding performance depends on wether it is implemented in open or in closed loop around the quantiz-
ers. In the third part, the coding performance with negligible feedback is analyzed, and further comparisons
with the KLT are presented in section 2.4. Since the noise feedback arises in actual implementable causal
coding structures, a realistic analysis of the coding performance of this transform should evaluate what, in
terms of rate, does coarse quantization correspond to, and how the corresponding coding performance is
actually deteriorated. No such analyses were proposed in [62, 63] nor in [64]; this is the aim of the sections
2.5 and 2.6. Section 2.5 proposes an analysis based on high rate and optimal bit allocation assumptions,
and a practical system is investigated in section2.6. The last part summarizes the main results and draws
some conclusions.

2.2 Causal Transform Coding

2.2.1 Open Loop and Closed Loop Causal Transform Coding

Let us consider the coding scheme of figure 2.1. A matrix transformatisrapplied to the vectar, =

EZRRRRE 7 Ak y, = Lz, =z — Lz, where Lz, is the reference vector. The difference vector

Y, = [y1 % -y~ k]! is then quantized using a s@tof (variable- or fixed- rate) scalar quantiz€)s. The
outputz! is theny? + L. This scheme may be considered as a generalization of the scalar (open loop)
DPCM coding scheme.

T, 1 q 2!

Tk % Q i e

T 7
- +

Figure 2.1: Open loop causal transform codifigdenotes a set of scalar quantizers).

1For non Gaussian sources, different transforms may yield better compression results, see e.g. [47, 49, 50].
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As in scalar DPCM, the reconstruction error vecigrequals the quantization error vec@rsince
Ty =a, —zl =a, — (gZ—Ff@k) =z —f@k —gz =y, —gz :gk. (2.1)

Note thatl. behaves as the Identity matrix w.r.t. the noise veggoilntroduced in the transform domain. As

in the unitary case, the power of the quantization noise is thus the same in signal and transform?domains
Since the constraint imposed here on the linear transformation is causality, the inatrix— L is strictly

lower triangular. The nonzero elementsiofepresent the degrees of freedom of the transformation. The
causality refers to the ordering of the signalswhich compose:. This notion could be generalized by
working with the permuted componentsoéndy, which givesPy = L Pz ory = (PT LP)z, whereP is

a permutation matrix. This will be developped in chapter 5.

As in an open loop DPCM coding scheme however, the coding system represented by figure 2.1 suggests
that not only information concerning the prediction residual should be transmitted to the decoder, but also an
accurate version of every reference vector, which from a bitrate point of view is not realistic. If on the other
hand a reference vectdrz, is used at the encoder, and a differEm_ﬁ at the decoder, the system would
suffer from quantization noise amplification, which may unacceptably decrease the coding performance, or
even make the prediction structure useless. The closed loop coding scheme of figure 2.2 will therefore be
prefered. In this case, the reference sighe| is based on the past quantized samples (available at both the
encoder and the decoder).

o My Y Q — T
—

La? Lay

Figure 2.2: Closed loop causal transform codifigdenotes a set of scalar quantizers).

In this case, reconstruction and quantization errors are still equal, since

o=y —ap = — (Yl + Laf) =z, — Laf —yl =y, —yl =7, (2.2)
Two particular implementations of the closed loop causal transform will be reviewed in section 2.5.
In a first step (section 2.3), we neglect the quantization error on the reference signal. The coding perfor-
mance of a closed loop causal transform with non negligible feedback will then be described in section 2.5.
In any case, we will suppose an optimal bit assignment and make high resolution assumptions. A practi-
cal analysis at lower rates, in the case of a nearly optimal bit assignment is presented in the last section.

Moreover, one assumes jointly Gaussian ry,svhith known covariance matrik,,. .

2In the causal case however, the transform does not only conserve the Euclidian norm of the noise, but also the shape of its p.d.f..
This property will be used in chapter 8 in the framework of multiresolution lossless tranform coding.
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2.2.2 Problem statement

According to the so-called unity noise gain property (2.1), the coding gain for such a transforinasion
then

Ellzll7 _ ElZl7

G = —= = ———=,
Bllzllz  Elly,llz

(2.3)

where / is the Identity matrix (which corresponds to the absence of transformation), and the notation
E||z;||3 denotes the variance of the quantization error on the vectabtained for the transformation
L. Similarly, the SNR obtained by usind. may be defined as

E ] [I”

2
Ellzl” _ Ellzy[1* Elly, llz
Ellzillz

SEA " Elly NIz Elly, Iz

SNR;, = 10log,, = 10log,, (2.4)

We now set out to characterize the optimal transformatfioand bit assignment which maximizes the
coding gain. For a given bit assignment, the optimal causal transformation is

L= argmLaxGL = argmLaXSNRL = arg mLin E||gk||% (2.5)

2.3 Optimal Causal Transform Coding with Negligible Feedback

In the following, the time index will be omitted in order to put emphasis on the index of the component

(subscript). We assume in this section high resolution rate distortion funefor= E||7;||* = c27*"'o,

for all the quantizers. The coefficientdescribes the quantizer performance; it is independentvhigh

rates (e.g. %= for ECUQ, or@ for optimal FRQ, see section 1.5.2). For a giventhe optimal bit
N N

assignment minimizes ||} = > oy 27", subject to the constraify _r; = Nr, wherer is the
i=1 i=1

average bitrate budget. The quantiz€:sare assumed to introduce independent white ngjses the

componentg;, of varianceszrg-l The result of this (Lagrangian) optimization yields (see section 1.5.3)

N ~
2 _ 2 _ 9= 2 _ _o-2r 2 _ 2
0, =05 =c27 o, =c2 Hayl =0, (2.6)
i=1

The optimal quantization error varianoeé are equal (independent £t
N
Concerning the optimization df, one should now minimiz(eH o;) ~, where ther? depend on the rows
i=1
N
L; of L. The problem is hence separable, and minimiZH 051)% with respect ta. entails minimizing
i=1

051 with respect tal; 1.;—1. The componentg; appear clearly as the prediction errorsepfwith respect

to the past values of, thez,.;_,, and the optimal coefficients ; ;.;_; as the optimal linear prediction

3Signal to (quantization) Noise Ratio
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coefficients. The linear causal transform which minimizes (2.5) is therefore of the form

1

* 0
L= ,

* * 1

where thex represent optimal prediction coefficients. In other wo¥dis such that

LRy L" = Ry, = diag{c} -0, (2.7)

yn 1o

where diag{a} represent the diagonal matrix with diagonalSince each prediction errgy is orthogonal
to the subspaces generated bythe_,, the transform coefficients are orthogonal, an&,, is diagonal.
It follows that

Ryp = L7 'Ry, L7, (2.8)

which represents the LDU factorization &.. Since the covariance matri,.. is positive definite, the
transform/l. always exists. Moreover, it is unique (see Appendix 2.B).
The distortion (2.6) under high rate and optimal bit allocation becomes

2l

Elgli = ¢ 277 (det Rypa) ™, (2.9)

and referring to (2.3), the coding gain can be written as

2l

o0 _ ( det [ diag{ Ry, }] )% _ (det [diag{Rﬁ}])% _ (det [diag{RM}]) _ 0
o det | diag{L Rys L7 }] det Ry det A v

(2.10)

where the superscrif) refers to the ideal case where the quantizers have same and constant performance
factor ¢, the rate is sufficiently high and the bit assignment optimal. The notation{diaglenotes the
diagonal matrix with same diagonal as V' denotes a KLT ofR,, andA the corresponding matrix of
eigenvalues. The second and third equalities in equation (2.10) follow from the unimodularity property of
L andV: both the product of the eigenvalues and that of of the prediction error variances corresponding to
a covariance matrifl,, equal its determinant.

Summarizing, for an optimal bit allocation, the high rate coding gains of the KLT and the LDU are the same
without perturbation for three reasons : both transformations ensure that the power of the quantization error
is the same in the transform and in the signal domains, they are totally decorrelating transforms, and finally
they are unimodular. Moreover, this is the best coding gain achievable among all unimodular trAnsform

4A proof, based on Hadamard’s inequality for symmetric positive semidefinite matrices meyrizkin [41].
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2.4 Further Comparisons between Unitary and Causal Approaches

2.4.1 Complexity of the Design of an LDU transform

The optimal prediction coefficients can be solved by using the Levinson algorithm [66]. For each recursion,

corresponding the a predictor of orderthis algorithm requires approximatey. multiplications and a

N(N+1)
2

N
similar amount of additions. This yields a design complexitpof2n = 2 ~ N2.

i=1
2.4.2 Complexity of the Implementation of an LDU Transform

SinceN is a lower triangular and unit diagonal matrix, computgaeh transform N-vectay, requires
M%l multiplications and additions, which is less than one half the complexity required by the KLT
(which requiresV? multiplications andV (N — 1) additions) [67].

In the special case of AR(p) processes, the lower left cornér will contains zeros iftN > p + 1 (one
zeros will appear at the first entry of tiie+ 2)nd row, two zeros at the first two entries of tfzet 3)th row,

etc). The total complexity will therefore be reducedfl@ﬁ»'_—pwzv_—p_12 multiplications and additions. For

an AR(1) process) — 1 multiplications and additions remain. The complexity of the inverse transform is
indeed the same.

2.4.3 Quantization of the Coefficients

Suppose that we quantize the coefficients of the optimal causal and unitary transfarmd$’, resulting

in transformsl.? andV’¢. On the one hand, the quantized KIF will then loose its perfect reconstruction
property, sincd’ 9V 47 will in general be different from the Identity matrix. The recovered vector is then

Z, = Vngk = ViTyag, + z,.Inthe causal case on the other hand, the exact vegtoan be recovered
however coarse the quantization, singe = y, + Lz, = z, — Liz, + L%z, = z,. This means

also that if the transformation coefficients are transmitted to the decoder, in a forward adaptive transform
coding framework for example, the unity noise gain property (sec. 1.5/3), ¥ = E||7, [|* will not hold
anymore for the KLT.

2.5 Performance of a Closed Loop Causal Transform Coding Scheme

We first recall the results of the classical analysis regarding the noise feedback in closed loop DPCM coding
schemes [14]. In all the presented analyses, ECUQ is assumed. For this type of quantizers, the additive
guantization noise model is accurate for a wide range of rates (see 2.A). The operational distortion-rate
functions of the quantizers are then denoteddby= c2—2“a§l, wherec generally depends on For
sufficiently high ratesg tends tore /6 (=~ 3 b/s, see the numerical results in section 2.5.1) which is known

as the Gish and Pierce [35] approximation. Note that the analysis of noise feedback in DPCM does not
require ECUQ. Examples of DPCM systems using fixed-rate, p.d.f. optimized bounded uniform quantizers
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are presented in [14]. Efficient transform coding systems require however proper bit allocations; noninteger
rates such as those simply provided by ECUQ are therefore more usefull, in this framework, than those
obtained by fixed rate quantization. The analysis of noise feedback in scalar DPCM is then generalized to
the causal transform introduced above. A high resolution analysis assuming classical optimal bit allocation
is first exposed in 2.5.2. The analysis of a practical case is presented in 2.6.

2.5.1 Quantization Noise Feedback in scalar DPCM

Assume in a first step that we use a first order predictor, and the the prediction is not based on quantized
data, thatisy, = x — Zx = @1 — lz,_1. The reconstructed sample at the decoder is #jen y{ + ), =

yZ + 71‘2_1.

Tk

+

o

Lk

i Ui 2!
o[-
+

)
S

o~
=
o

Figure 2.3: Open loop scalar DPCM coding scheme.

If we assume the process to be a first order autoregressive process with normalized correlation coeffi-
cientp, the optimal predictarequalsp, and the variance of the optimal prediction errorjs= o2 (1— p?).
Denoting now byy = y — y? andz = « — x4 the quantization and the reconstruction noise respectively,

we obtain
= Tk — pTh—1— Yk + pTr_1 + pTr_1 = Tp — T
from which we get
Ty =Yg — PER_1. (2.12)

The reconstruction error differs from the quantization error. From the previous expression, their respective
variances may be related by

E"“2
E32= Yk (2.13)
1—p?

Hence, what is gained in prediction is lost because the quantization noise is amplified at the decoder. The
distortion-rate function of the prediction error signal is then

dy(r) = Egi = 2" ¥y, (2.14)
and that of the overall system is

2
g
B3l = 2™ 5 =270y, (2.15)
—p
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which corresponds to a direct quantization and entropy coding of the original saurtether words, the
prediction operation is strictly useless in this system. In order to avoid quantization noise amplification,
both the encoder and the decoder should use quantized data, since only quantized samples are available at
the decoder side. A closed loop scalar DPCM coding scheme is presented in figure 2.4.

p + o~ Uk Yi - ~ xd
oo G

&)
o~

—]

8
e

o~

=
ES

Figure 2.4: Closed loop scalar DPCM coding scheme.

The power of the quantization noise for the signal and for the prediction residual are then equal since

EF} = E(er—o{)? = E (2 — (vl +7x))" = E (s + 3% — vl — %2)” = Elwx — {)* = EFR.
(2.16)

Noise feedback analysis

As mentionned in [14], analytical evaluation of noise feedback can be found in the literature [68, 69].
An important result is that the quantization noise feedback has very little effect on the optimal value of
the prediction coefficienthowever coarse the quantizatiom the case of an AR(1) process, the optimal
predictor/ equalsp. Assuming that the quantization noigés white and decorrelated from the input of the
quantizer, the prediction error variance in the closed loop isthen

o'y =By = E(zx—pxl_,)’

E([xx — prr—1] + pUr-1)*

(2.17)
o2(1—p?) + CQ_ZTPZU@

xr

_ 2
~ op+ 27V prel

whereaj is the optimal prediction error variance obtained by using unquantized data. This leads to

2
12 o

PRI (2.18)

Ty ™ 1= 22 p2

which may be approximated as

0"5 zaiu(l—i—cQ_zrpz). (2.19)

The quantization noise of an ideal coding scheme without feedigaek c2~*" o} is filtered by the energy
of the optimal predictor, which increases the prediction error variance and decreases thereby the coding

performance.

5As far as the variances are concerned, the susb$arifitdenote the presence of noise feedback in the rest of this chapter.
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To summarize this analysis, describing the operational distortion-rate function of an entropy coded scalar
guantizer by

de(r) = 2™ g2

T

(2.20)
the distortion-rate function of an ideal DPCM coding scheme (neglecting noise feedback) would be

dy(r) = 62_2T05. (2.21)

The distortion-rate function of the DPCM coding scheme of figure 2.4 with noise feedback is evaluated by

0.2

_op 42 _or
d;(r) ~ 272 o"y ~ 272 m, (2.22)
which from (2.19) and (2.21) may be further approximated as

dy () & dy(r) (14 c272"p?) = dy(r) (1 + @) . (2.23)

Some Numerical Results

For entropy coded uniform scalar quantization (ECUQ) of a Gaussian soutbe Rényi’'s relation of
differential to discrete entropy yields

1
ri = H(z}) ~ 3 log, 2mea? — log, A. (2.24)

K3

Assuming sufficiently fine quantization with stepsixethe distortionisi, ~ %[70], therefore

2
% = d, ~ %2—2%3, (2.25)

T R llog2
2
from which we see that equals®> for sufficiently high rate. From figure 2.5, which compares the actual
performance coefficientof an ECUQ to the high rate approximation, high rate means approxinsalbéty
The distortion of ECUQ equals the Shannon lower bound at zero rate only, and is about twice this bound at
approximatelyl b/s.
The comparison of the results given by the noise feedback analysis in DPCM, with the performance of
an actual system using ECUQ is shown in fig. 2.6 and 2.7, for an AR(1) prgces$ .07).

In figure 2.6,

¢ (1) "High-Rated,.(r) of ECUQ" is the Gish and Pierce approximatian£ %%) of ECUQ for the

sourcer,
e (2)“Actual d,(r) of ECUQ" is the actual peformance of ECUQ for the source
¢ (3)“Highrated,(r) DPCM” is the Gish and Pierce approximation of expression (2.21),

e (4)"d,(r) DPCM theor. feed.” is the theoretic evaluation (2.22) of DPCM with quanitzation noise
feedback,

e (5)"“d,(r) DPCM theor. feed.” is the approximation (2.23) of the previous expression,
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Actual coefficient c vs rate — AR(1) — p =0.97
1.9 T T T T T

T T
Te /6
—— Actual c

1 1 1 1 1 1
(0] 0.5 1 1.5 2 2.5 3 3.5 4
rate [b/s]

Figure 2.5: Comparison between actual value and high rate approximation of coeffifne EHCUQ.

e (6) " Actual dy,(r) DPCM p” is the actual performance of a DPCM system using predigtand
ECUQ of the prediction residual,
e (7)" Actual d;(r) DPCM p'" is the actual performance of a DPCM system using a predictor opti-
mized for the closed loop,
¢ (8)“ Actual d,(r) without feed.” is the actual rate distortion of the optimal prediction error signal
(expression (2.14)),
e (9)“ Actual d,(r) DPCM Open loop” is the actual distortion-rate function of the open loop system
(expression 2.15).
As can be noted from the curvéd) and(1), closed loop DPCM followed by entropy coding is, on the one
hand, advantageous w.r.t. direct quantization and entropy coding even at low rates @uich/asOn the
other hand, an open loop system is useless (q@ye
Comparing(6) and (8) allows one to precisely observe which perturbation in the distortion of DPCM is
caused by quantization noise (cuf@ may be seen as an hypothetic model of what would be the distortion
if there were no feedback). Comparing wiB), the effects of nonconstantand of noise feedback become
visible for r less tharr 3 b/s and increase fast when the rate decreases. These effects are well described
by the first order perturbation analysis (cu#) for rates higher than approximatelybb/s, and even at
lower rates by the more accurate exp. (cu@p.
Finally, as previously observed in [68, 69], quantization feedback has very little effect on the optimal value
of the prediction coefficient however coarse the quantization, and systems that use an optimized predictor
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P’ have almost the same performance (cu®)@ as a system designed with the optimal predictor without
feedbacky (curve(6)).

Comparison of distortion—rate functions for ECUQ and scalar DPCM coding scheme — AR(1) — p =0.97
‘ ‘ ‘ ‘ 7‘ High rate d;(r) of ECUQ &1)
10° e . Actual d,(r) of ECUQ (2) H

F < High rate d_(r) DPCM (3) ]
d;,(r) DPCM theor. feed. (4)
_ d’ (r) DPCM theor. feed. approx (5)
‘o. Actual d;(r) DPCM rho (6)

e) ... Actual d’ () DPCM rho’ (7)
S Actual d, () without feed. (8)
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Figure 2.6: Comparison between theroetic and actual distortion-rate functions for Entropy Coded Uniform
Quantization (ECUQ), and DPCM with ECUQ

In fig. 2.7, similar observations can be made from the curves corresponding to the SNR.

2.5.2 Quantization Noise Feedback in a Closed loop Causal Transform Coding
Scheme

Let us now evaluate, for the causal transform, the perturbation caused by the quantization feeedback. In
order to compute the expression of the coding gain in this case, the analysis of this section will be based
on high resolution assumptions: all quantizers are assumed to have the same distortione%térllamél,

with constant performance coefficient= %°; a’fh are the actual prediction error variances obtained in

the presence of noise feedback. Furthermore, we assume an optimal bit assignment. In the case where the
reference vector is not based on the original signal but on its quantized version, the output vector becomes
y, =2, — La} =a — Lz, — %) = Lay + Ly, . (2.26)

The difference vectog, now not only contains the prediction error;, of z,, but also the quantization
error’gk filtered by the predictof.. Equivalent representations of the closed loop causal coding schemes are
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SNR of a DPCM coding scheme — p =0.97
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Figure 2.7: Comparison between actual and theoretic SNRs for DPCM

depicted in figures 2.8 and 2.9. In figure 2.9, the transform components are coded without reconstructing
the data, that is, by using the quantized whitened versjpmsstead of:{ to compute the prediction.

As inthe DPCM analysis, we will denote by the superscripe quantities relative to the case of noise
feedback.
The optimization of the coding sheme is again comprised of two steps, optimal bit assignment and optimiza-
tion the transform. This transform will be denoted bybecause it may be different from the transform
L designed for a system without feedback. We will see however that as in DPCM, the optimal predictor
should essentially vary.
As for the optimal bit assignment, it should again minimize the sum oirtéga The variances of the
guantization noises are therefore

N
o2 = CQ_ZT(H 0'/32/1)% = 0'/3, (2.27)

Yi
i=1

and the autocorrelation matrix of the noiseR%_@7 = a’fll. Comparing with (2.6), the variances of the

transform signals are increased because the reference vector is based on quantized data, and the quantization

noise components are therefore increaset! jo
We shall now optimizd.’. The coding gain for an optimal bit allocation is then, as usual,

1) El#|]* det diag{ Ry}

) = = : , 2.28
L SAGE (det dlag{Rg/_y}) (2.28)
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Figure 2.8: Closed loop causal transform coding sheme.

where notation!), as opposed t§ in (2.10), refers to noise feedback. The variances of the transform
signals( 2, )ii = a’fh depend now otL’, and in order to optimiz&’, one should consider

. . ,
min (det [dlag{Rﬂ}D . (2.29)
Thistime,y =z, — L'z} = L'z, — T'%s, and
y2—1—1T

T
Ry, = L'Res L + 0/ L'L . (2.30)

— —4T ) — =T . _ = .
Sincel/ = I -, T'T" =0L'T —1+T +T", and since the prediction matrix is strictly lower

triangular, we get
diag{c*T'T"" } = diag{L(c"1) 1" — o'’ 1}, (2.31)

and it follows that
det {diag{R;_y}} — det {diag{L’(Rﬁ +o?n L - o'l (2.32)

This problem is again separable and corresponds, for the purpose of this analysis takaugdotat the
first order of the perturbation, to the optimal predictionzgberturbated by a white noise. Note that this
does not imply thaf?,eze = Rpr + a’j[ (this would be the case for high resolution ECUQ, but not for
optimal FRQ, in which case the variance of the quantized signals are less than the original ones).

In order to optimizing’.’, we should look for

min L{(Ryy + 0’3 )L'] (2.33)

Lz,l:z—l
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Figure 2.9: Closed loop causal transform based on whitened quantized data.

For this problem, one can denote the resulting optimal prediction error variafjceso’; whereo’” is

the variances required for the coding gain. These variances may further be wri&t’ép aso. + Ao,

Yi?
whereajl is obviously the optimal prediction error variance without quantization noise feedbac&cajrgd

denotes the contribution to the prediction error variance of the quantization noise on the previous samples .
The normal equations for (2.33) can hence be writtén as

Liica 0
Ripi+ 01 _
o, | 0 ’
! i
wich leads to
‘7/@2/, + 0/3 =Ri;+ 0/3 = Rivi—1(Ruio11-1+ Ulzfi)_lRu—LL (2.34)

Under the high resolution assumption, the teﬂiﬂ is small in comparison witl#,.;_; 1.;—1, and we get
the approximation up to first order of perturbation

2
9

12 -1 1
o~ Rm’ — Rz’yl;i—1R1;i_171;i_1R1:i—1,i + o

Yi ||R1_:zl—1,1:i—1R11i—1,1||2 ) (2-35)

=75 =L il =) Lal2=1=(EL7 )

2
Aayl

8For notation simplicityR denotesRz until eq. (2.35).
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whereajl andZ are non perturbed quantities.
Hence, we get
o>~ (LRg LT + U/(?HT)M

v 17 (2.36)
(LRuo LT + 02T )i

X

whereL and L are non perturbed quantities.

Suppose now that the transforinof section (2.3), optimized without feedback, is used to compute the
reference vectors in a closed loop coding scheme. Then the variance of the transform signals will also
be given by (2.36). This suggests that the optimal predictor design should not essentially vary, at least at
moderate to high rates.

Summarizing, the distortion (2.27) is

~172 ~1112
~EIEIL, =~ FElEl;
N
1 T g—2r, 12
R 2
N; 6 v (2.37)
N ~
me o—2r 2
~ Ze27? (Halyl)
i=1
Using (2.36), this equation may be rewritten as
LEME:,, ~ (det diag{ LRy, L + 02T })ﬁ
7T€ r rZH2 v
VA HU ; (2.38)
i=1 O-yz

2|-n &

X

E)

2

y

Referring to (2.28), this leads to the following expression for the coding@%i)n taking into account the
perturbations up to first order

¥
det [ diag{ R, 1,
G(Ll) ~ G(Ll,) A et [ diag{ e }] — ~ G(LO) (1 — —o? Z
det {diag{LRﬁLT + 02T }} :
with LRy, LT = Ryy, o2
tion error variances, ant and L are also non perturbated quantities. This expression is established under

= ¢27 2R (det Ryy) v, Ryy is the diagonal matrix of the non perturbated predic-

high resolution assumptions (small quantization noise variance w.r.t. signal variances, and performance
factorc is constant).
An equivalent and interesting expressiorﬂﬁ” is (see Sec. 2.C)

2 N
GV GO (1 _ % [i _ LD (2.40)

. 2
Ai Ty,

whereG(") L is the coding gain in the ideal casg);} are the eigenvalues of the autocorrelation matrix of
x, andaj is the quantization noise in the ideal case, assumed to be white. Thus, maximizing the coding
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gain entails maximizing the sum of the inverses of the prediction error variances. Whereas the coding gain
in the ideal case is invariant by permutation, there is in the closed loop causal transform coding scheme an
optimal ordering of the components of thg It will be shown in chapter 5 that maximizing(") entails
decorrelating the signals by order of decreasing variances.

2.6 Analysis of a Practical Case

A simple mean of realizing nearly optimal bit assignment in the case of ECUQ is to quantize the signals
with equal quantization stepsizes. This case allows one to check, for a practical transform coding system,
firstly in which range of average rates the LDU suffers from a non negligible noise feedback, and for which
rates it presents similar coding performances to those of the KLT; secondly if the previously exposed noise
analysis has some value in this practical case; thirdly if the claimed, and not proven yet, decorrelation
strategy (consisting in processing the signals by order of decreasing variances) is actually the best one.

2.6.1 Optimal Bit Assignment and Equal Quantization Stepsize

The classical high rate result of the optimal bit assignment states that, given a set of vaar@r,\cthe
guantization noisegl should be equal for all the components. The number of bits assigned iththe

component is then

0.2

1
ry=r4+ 3 log, ——%——. (2.41)

N
N N
2
(H Uyz)
i=1

Under high resolution assumption, the quantization noise resulting from quantization with stkpsize

uniformly distributed with variancegl = ?22 .

quantize all the components with an equal stepaizdf the y! are further entropy coded, the bitrateis

A simple way of realizing equal distortion is therefore to

given by
1
r; = H(yl) ~ 3 log,, 271'60'51 —log, A (2.42)
It can then easily be checked that choosing
N N
A= \/27T62_T(H Ujl)ﬁ = 27T62_T(H Ujl)ﬁ (2.43)
i=1 i=1

N N
1 . . . . .
corresponds tgt Y _r; = ~ > H(y!) ~ r. Athigh rates, the corresponding distortion-rate function
i=1 i=1
N

. 2 1 . . . . .
is then g ~ %Q—ZT(H o, ). For a particular two-dimensional Gaussian source obtained by means

i=1
of a KLT, numerical simulations showed that optimal bit allocation and equal quantization stepsizes are
equivalent as long as the rate dedicated to eachpooent is at least bit per samplé[54].

"The corresponding average rate may be much higher.
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2.6.2 Distortion Analysis

For large quantization stepsizes (low rates), the relation of differential to discrete entropy as given by (2.42)
may not be accuratebe there a noise feedback or not. Thus, in the case of transform signals obtained in a
closed loop system working at moderate to low rates, the average distortion

e Ell7]|”* = e i i i 27" (2.44)

N B N i=1 7 N i=1 '
may be different from the geometric mean (2.37). This analysis will be guided again by that of DPCM
systems. In order to describe the coding system implemented in closed loop, we will refer to perturbation
w.r.t. an open loop system. For this system, the distortion of eaclpaoemt is B = d; 1 = 27> o ,
whereajl are the variances of the optimal prediction errors. The average distortion for the open loop system
in the transform domain is then

1 1 & 1 &

NEHEHZ = N;di,Lz = N;tﬁ_zr’o;l, (2.45)
Figure 2.10 compares the operational distortion-rate function (2.45) obtained with equal quantization step-
size for signals of decreasing and increasing variances. The high rate and optimal bit allocation approxima-
tion Z£272" (det Rpy) ~ is plotted in full line. It can be seen that even without noise feedback, the average
distortion (2.45) deviates noticeably from the high rate and optimal bit allocation approximations at rates
lower than approximately b/s.

For a closed loop causal transform system now, we assume that the covariance matrix of the quantization

noise is well approximated bﬁzi[ at moderate to high rates. Thus, the optimal transform is again given
by (2.33). From (2.35), the actual prediction error variancgs may still be approximated by expression
(2.36. Again, similar performance should be obtained for small perturbations by using either the optimal
transformZ’ (minimizing (2.33)), or the transform designed without feedbAckJsing (2.36), the opera-
tional distortion-rate function of the transform signals with quantization noise feedback may be evaluated
as

2

1 A2
dip, ~ T3

~ ‘32_2“‘7/%
JAN ppu—
~ 62_27"(0'51 =+ E (LLT)“))
~—
), (2.46)
d (1= T2 ~ dis
d.
d! ~ i, L
oL T 120927
= [Tz

8The discrepancy with the actual distortion is apparent at zero rate in (2.25).
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o Distortion—rate functions of the optimal prediction error signal
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Figure 2.10: Distortion-rate functions of the optimal prediction error signals.
Hence,
N
1 ~p2 1 —2r; 12
NEHQHL - WZCQ Ty,
i=1
N
~ Y o din
N | LPe2
5 (2.47)
v R
~ N ——(12d
12 &4, L
iz 1= [1L]]

2
O'yl

z

X

—odi L
v 2 G (LI —57)-
: 2

-
1
-

Athigh rates, the distortions 1, tend toZ£2-2"1¢2 = Z£2=2"(det R,,) ¥ = o2, and the above distortion
tends to (2.38).

2.6.3 Numerical results

The data are real Gaussian i.i.d. vectors with covariance matrix H R g1 H”. Ragi is the covari-

ance matrix of an AR(1) process with paramete= 0.9. H is a diagonal matrix whos&h entry is

(N —i41)Y/3, N = 3. The signals:; are coded by order of either decreasing, or increasing variances. For
these two decorrelating strategies, setsfvectors were transformed using each of the two causal closed
loop algorithms depicted in fig. (2.8) (on the basis of reconstructed data) and (2.9) (quantized whitened
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dataf. The resulting transform signals where then quantized using the same st&p$ine each compo-
nent, we measured the entropies of the discrete valued sighalBhe reconstructed vectors where then
used to compute the average distortion over the whole data set (of [EfgtHor a givenA, we repeated
this experiment ten times. Several value\ofvhere investigated in order to cover a wide range of rates.

¢ Infig. 2.11 and 2.12, the distortion-rate functions of the closed loop causal transform are plotted for
signals of decreasing and increasing variances respectively (optimal trarsfifreq. (2.8) is used)

— (1) “Theoretic with feedback” refers to the analytical evaluation (2.47) of a system with equal
stepsize,

— (2) "Actual with feedback” corresponds to the actual distortion-rate function of the resulting
closed loop TC system,

— (3) “Theoretic with Equal c and feedback” refers to the analytical evaluation (2.38) obtained for
an optimal bit assignment algorithm,

— (4) “High & Opt. bit alloc. approx” refers to the performance of a system without feedback,
constant quantizer performance facter = and optimal bit allocation, as given in (2.9).

It can be observed for both decorrelation strategies that

— The performance of actual systef® deviate from their high rate approximati¢f) for rates
below approximately b/s.

— These performance are accurately described by the analysis (&)rdown to approximately
1 bfs.

— The analysis of section 2.5.2, which does not account for possible variationvgiof. the rate
underestimates the actual distortions (it was shown in fig. 2.10 that even without noise feedback,
the actual distortion in the transform domain with egidk larger than (2.9)).

Comparing now the figures 2.11 and 2.12, it is clear that better performance are obtained by pro-
cessing the signals by order of decreasing variance, as suggested by the high rate analysis of section
2.5.2.

¢ In fig. 2.13 and 2.14, the actual distortion-rate performance for algorithms based either on recon-
structed, or on quantized and whitened data are compared for decreasing, and increasing variances
respectively. It can be seen that the two approaches yield essentially the same performance.

¢ In fig. 2.15 and 2.16, the actual distortion-rate performance for algorithms using either the causal
transform optimized without feedback (2.8), or the predid¢tooptimized as in (2.33) are compared

9Unless otherwise stated, the presented results are based on the algorithm using reconstructed data. The performances of both
algorithms are similar, see fig. 2.13 and 2.14
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for decreasing, and increasing variances respectively. It can be observed that even at low rates, the
two transforms yield comparable performance, however coarse the quantization. This result is similar
to that reported for DPCM [14].

o Finally, fig. 2.17 presents a comparison of systems using either no transform, or the KLT, or the LDU:

— (1) “Actual D without transform” refers to directly entropy coding theg

— (2) “High rate Approx D without transform” refers to the high rate (constaand optimal bit
assignment) approximation ¢f),

— (3)“Actual D LDU decreasing” refers to the actual distortion of the causal closed loop transform
coding scheme processing the signals by order of decreasing variances (predsaised),

— (4) “Actual D LDU increasing” as in(3) but with increasing variances (predictbis used),

— (5) “ Actual D KLT increasing/decreasing” refers to the actual distortion of a system using the
KLT (since there is no noise feedback, the distortion is invariant by permutation),

— (6)“High rate and opt. bit alloc approx” refers to the performance of a system without feedback,
and with constant quantizer performance factor (2.9).

Note that the performance of the LDU is inferior to that of the KLT at low rates only (approximately
2 b/s). The LDU with either a decreasing- or increasing-variance decorrelation strategy is still advan-
tageous (w.r.t. direct entropy coding the signals) at all rates.
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Comparison of closed loop implemented with reconstructed/whitened quantized data
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Figure 2.13: Comparison of actual distortion-rate performance for algorithms based either on reconstructed,
or on quantized and whitened data (decreasing variances).
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Figure 2.14: Comparison of actual distortion-rate performance for algorithms based either on reconstructed,
or on quantized and whitened data (decreasing variances).
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Figure 2.15: Comparison of actual distortion-rate performance for algorithms using either the trahsform

or I’ (decreasing variances).
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Figure 2.16: Comparison of actual distortion-rate performance for algorithms using either the trahsform
or I (increasing variances).
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Distortion—Rate functions with equal stepsize
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Figure 2.17: Comparison of the average distortiesigte for the causal and the KL transforms with equal

guantization stepsize(increasing and decreasing variances)
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2.7 Conclusions

The optimal decorrelating transform subject to the constraint of causality was shown to correspond to an
LDU factorization of the signal covariance matri.. This transform was compared to the KLT and
shown to provide asymptocically (w.r.t. the rate) the same coding gain as its unitary counterpart. Besides
the equivalence of the coding gain at high rates, the optimal causal transform presents several advantages
w.r.t. KLT, such as lower implementation and design complexities, and a best behaviour w.r.t. the quantiza-
tion of the transform coefficients.

As in classical (A)DPCM, closed loop implementation of the causal coding structure was shown to be
preferable. A high resolution analysis of the noise feedback effect uppon the coding gain was proposed in
a first step. This analysis models these perturbation effects, assuming that they are small, and that the bits
are optimally allocated. In a second step, an analytical evaluation of a practical transform coding algorithm
was proposed. This transform coding scheme uses equal quantization stepsize, and entropy coded uniform
guantizers. For this algorithm, the deviation from high rate approximation are noticegbledogpprox-

imately 3 b/s for both the KLT and the LDU. In the causal case, the effects of the noise feedback become
non negligible beyond approximatelyb/s, and are well described by the proposed analysis. Moreover,
decorrelating the signals by order of decreasing variances was shown empirically to be the best strategy.
Comparing finally the two approaches, the LDU is shown to compete with the KLT at rates higher than
approximately? b/s.



50 Chapter 2 Optimal Causal versus Unitary Transform Coding

2.A Quantization noise model

The aim of this appendix is to provide some definitions and known results regarding unbounded uniform
guantization of Gaussian sources. In particular, section 2.A.2 shows that the additive noise model may
accurately describe the effects of quantization is this case, assuming sufficiently high rates.

2.A.1 Uniform Quantization

A quantizer can be viewed as a nonlinear mapping from the domain of continuous-amplitude inputs onto
one of a possible outputs levels. The analysis of errors introduced by this mapping can be approached
using stochastic methods. In this framework, the output of the quantizer is modeled as an infinite precision
input and additive noise. The additive noise is a random variable whose distribution is nonzero only over
an interval equal to the quantization stepsize. Widrow [71] showed that under the condition that the input
r.v. has a band-limited characteristic function, the quantization is uniformly distributed; this is frequently
refered to as thguantization theorem For Gaussian inputs such as those considered in this work, this
band-limitedness is not verified; theoretic results exist however, which precisely describes the statistical
properties of the quantization noise and that of the reconstructed input [70, 72].

A roundoff quantizeof uniform step- (ograin-) size A has a staircase input-outputrelation (see fig. 2.18).

—5A/2 —3A/2 —A)2 a

AJ2 3&/2 5&/2

Figure 2.18: Input-output characteristic of an unbounded roundoff uniform quantizer.

At each sampling instarit, the inputz,, the quantized output?, and the quantization erras, are
related by

Tp = ap — 27, (2.48)
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wherez{ = nA,n € Z.10

If we assume the input to be a continuous variable with p.dff, (#;) and characteristic function
ds(u) = E(e7"7), (2.49)

the p.d.f. of the quantization errgg is [70]

~ 1 1 2mn —2imnd, A A .
= = — — _— — — < —_— . .
f#(Tk) A + A éso oy ( A ) e~ & if 5 < Tk < 5 and 0 otherwise (2.50)
If the characteristic function satisfies
¢z (2mn/A) =0 ¥V n # 0, (2.51)

A2

the p.d.f. is uniform (that is, equa% in the nontrivial interval). In this cas&z = 0, and Ez? = 15

2.A.2 Gaussian sources

For zero mean Gaussian signals, the condition (2.51) is not satisfied. In this case, the p.d.f. is of the form

1 _=k
w(Tk) = e 2°% 2.52
wherecs? is the variance of the input, the characteristic function is
¢s(u) = E(e 27), (2.53)

and the p.d.f of the error is given by

2,2

©0 2 » 27n?o2
1+QZCOS< szk)e_ Az ] if —
n=1

The mean of the quantization error is still zero, but the variance becomes

- 1
f’x‘(l‘k) = Z

<z < —, and 0 otherwise. (2.54)

v | >
no| >

Ez2 = A_Z
12

1+ e A (2.55)

n
n=1

12 S (—1)" _]

Figure 2.19 plots the actual variance (2.55) and ﬁgeapproximation. It can be seen that even for
coarse quantizationY ~ 2¢), the latter approximation is accurate. Figure 2.20 compares the actual cor-
respondence between rate afd(“Rényi’s correspondence” refers to that obtained assumiiiig? =
1 log, 2mec? — log, A)), the% approximation is accurate at rates as low as approximéatelsy.

The variance of the quantized ra# is given by

i 2nk202 A2 12 L (—1)F  2mk202
£ = o2 4402 31 T L &2 2 ) e (2.56)
k=1

12 k2 ’
k=1

10Thoughacg is not an integer, it lies on scaled integer lattice, and is sometimes neverthelessntatiedin the literature. This
slightly abusive term will be used in the second part of this thesis.
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Approximated and actual quantization error variance
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Figure 2.19: Comparison between actual distortion ﬁquapproximation for unbounded uniform quanti-
zation of a Gaussian r.vr? = 1.
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Figure 2.20: Estimated, andeRyi's correspondencé /o vsactual rate for a Gaussian r.v..
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and the correlation between the input and the quantization error by

oQ

2wk202
E(fz) = —202 ) (—1)fe" a7 (2.57)
k=1

Figure 2.21 compares the actual variancer§? as given by (2.56) to thé}; approximation. Again, the
approximation fits well the reality up td =~ 1.5, which from fig. 2.19 corresponds to approximately
b/s.

Actual variance of a quantized Gaussian r.v. and its approximation.
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Figure 2.21: Comparison between actual and theosétidor unbounded uniform quantization of a Gaus-

sianr.v.,c2 = 1.

In the case were jointly Gaussian zero mean ky.andz» with covariance?,, are quantized with the

same stepsiz4, the quantization errofg; andz, verify

w2 lk A?

2 O 0 1\i+k an? 10 R Am2lk .
B = 2 (=D 222 (2 (Rea) itk (Becon) (M) . (2.58)
=1 k=1

From the expression (22) of [72], applied to a roundoff quantizer, the correlation between quantized vari-
ables is given by

where

2nf 72 (Rpe)11 2n372(Reo)an
F=2| 3 (e T (e (2.60)

n1>0 ny>0
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and

Az _2”2(7‘1(RH)11+"2(RH)22) . 471'2(Rxx)12nln2
= Y (e i sinh (T . (2.61)
ni,nz>0

Similar conclusions regarding the accuracy of the classical approximation of respectively (2.57), (2.59) and
(2.60), by respectively,1, and0 can be drawn. Hence, for a Gaussian vector sagroaiformly quantized
with stepsizeA we have from (2.55) and (2.58)

AZ
Ezzl = EI + A, A—0 elementwise as A — 0. (2.62)

From (2.56), (2.60) and (2.61), we have
2

A
Ez%2%T = Ree + EI + B, B — 0 elementwise as A — 0. (2.63)

Moreover, the above numerical results and those of [70, 72] suggest that the elemératisdaB may be
negligible forA as large the standard deviations of the sources; this corresponds for entropy coded uniform
guantizers to rates as low as approximatefyb/s.

2.B Existence and unicity of the LDU factorization (2.8)

Lemma 1[73]: Let R be an/N x N nonsingular matrix, whose all principle submatrices are nonsingular.
ThenR can be written as

R=LDU, (2.64)

wherel, (resp. U7) is a lower (resp. upper) triangular matrix with diagonal entries equal f@and D is a
diagonal matrix. Moreover)., D andU are unique.

Since the covariance matri,. is positive definite, all its principle submatrices are positive definite also,
and its LDU factorization (2.64) exists. Since n@y,. is symmetric, transposing (2.64) yields

Ry =UT D LT (2.65)

wheret/” (resp.L”) is lower (resp. upper) triangular. Equation (2.65) represents then an LDU factorization
of R, which, from Lemmal, is unique. Hence; = LT, which establishes the form of (2.8).

2.C Derivation of (2.40)

Let V denote a KLT ofR,, andV’ a KLT of Ry, + o/;1.ThenV’(Ry, + o/21)V' T = A’, a diagonal
matrix with itk entry X, = \; + 0"3. Similarly, denote byl and L’ the lower matrices involved in the
LDU factorization of By, and Ree + a’fll. We have as in (2.8).R,, LT = Ryy, and, as in (2.33),
L'(Rye + 021 L'" = Rl + 0’21, where(R),,);; = o’> . Asin (2.36), the variances] may be written
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asoy + Agz , whereA,. = a’§||L_Z»||2. Now, since both the causal and unitary transfoktsnd L’ are

unimodular, we have

det(Ré/_y + 0"5[) = det A’
N O'/ + Ao-2 N 12
2 42 Twy _ | (14 Zx
Z,Ul"yz ( - Ul MY (2.66)
N N 0’2—|—A 2 N N 0,2
2 q %y ~ ) q
(T ) oo 2] = (D) e
i=1 i=1 Yi i=1 i=1 ?
N N
SinceZ andV’ are also unimodulaf [ Ai = [] #7,. and we get
i=1 i=1

(]
i

&

'MZ

| Q
i

(2.67)

]

R R
<L
[]= INE
=R

' |
Q‘H SQM‘H
SN ~

N A o
Hai) [1+ 0";%] (2.68)

X

X
TN

The distortion (2.38) becomes

2=

N
~ _ 2
FEEIF = e (H)
=1

2727 (det Ryw) ~

(2.69)

X

e (11
O Sy Ik

i=1 Yi
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Now the coding gain (2.28) becomes

2~

N
2
II-
i=1

¢ =

X

(2.70)

R
f=F
?q“
N
—
|
2|-nqw
b
QM‘ —_
~——

which with (2.10) yields (2.40).



Chapter 3

A High Resolution Analysis of Idealized
Backward Adaptive Coding Schemes

In a backward adaptive transform coding framework, we compare the optimal unitary approach (Karhunen-
Loéeve Transform, KLT) to the optimal causal approach (Lower-Diagonal-Upper, LDU). When the statistics
of the source are known, the previous chapter showed that both coding schemes present the same coding
gain at high rates. The purpose of this chapter is to analytically model the behavior of these two trans-
formations when the ideal transform coding scheme gets perturbed, that is, when only a perturbed value
R.. + AR of Ry, is known at the encoder. This estimate is used to compute both the transforms and the bit
assignment. This case is of interest in backward adaptive transform coding schemes: it avoids transmitting
the updates of the signal-dependent transformations and bit assignment parameters as side information,
and thereby avoids the correspondingess bitrate. In backwarddaptive structuresA R is due to two

noise sources : estimation noise (finite set of available data at the encoder) and quantization noise (quan-
tized data at the decoder). Furthermore, not only the transformation itself gets perturbed, but also the bit
assignment. In this framework, theoretical expressions for the coding gains in both unitary and causal cases
are derived, under several simplifying assumptions: high rate, Gaussianity of the signals to be quantized,
same operational rate-distortion function of the scalar quantizers, optimal bit assignment, and additive
uncorrelated white noise. Finally, simulations results are presented.

57
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3.1 Introduction

Backward adaptive coding schemes generally deal with non- or locally- stationary signals. In a transform
coding framework, sending the updates of the signal-dependent transformation and bit assignment as side
information may cause a considerable overhead for the overall bitrate. This problem is related to the general
problem ofuniversal lossy quantizationUniversality corresponds here to the ability of a system which

has noa priori knowledge of the source, to achieve the same rate-distortion performance as a system
designed with that knowledgeVery few works investigate the feasibility of universal transform codes in

the literature. The work [54] is closely related to ours and will be further discussed in chapter 4. Besides,
some techniques were proposed in [75, 76], which rely on so-dalledtagesodes: the first stage codes

the identity of the code that will be used to code the data; the second stage codes the data with the previously
chosen code. In [76], a pair (KLT; bit allocation) is chosen among a codebook of transformations and bit
allocations pairs; the index of the chosen pair is sent as side-information to the decoder. This type of method
is universal in the sense that it allows one to code with the best transform and bit allocation any source
among a particular class. The methods investigated in the present are different in the sense that they do not
rely on “universal codebooks” of any kind. Instead of choosing among several precomputed transforms and
bit allocations, we desire the encoder and decoder to compute these parameters using previously decoded
data only. This approach is computationally more expensive, but does not require any side-information.

The backward adaptive transform coding scheme considered in the present work should therefore require
that neither the transformation nor the parameters of the bit assignment are transmitted to the decoder. We
assume consequently that the transform coding scheme is bas%&ma Rse + AR instead ofR,.,.

R.. is the unknown covariance matrix of a (possibly locally) stationary Gaussian vectorial pocess

}A%ﬁ is the corresponding estimate available at both the encoder and the decoder. In this case, the computed
transformation will bel’ = T+ AT, and the distortion will be proportional to the variances of the signals
transformed by means 6f instead ofT", saya’fh. Moreover, the bits; should be attributed on the basis

of estimates of the variances available at both encoder and decoder also. These estir(iﬁ@iﬁﬁi,
where(.);; denotes theth diagonal element df), which yields

7 =7+ = log, N( — A) —. (3.1)
2 (Hi:1(TRﬁTT)ii)ﬁ
We obtain therefore the following measure of distortion for a transformatibased orﬁﬁ :
N - N =2[r+ §log2 N( —— A)T -
Elgl = EY 2%} = EY 2 (ITiz1 (TR THi)¥ 52— (3.2)
i=1 i=1

1pifferent kind of universality for lossy coding, or with a fidelity criterion are defined in [74].
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where the expectation is w.rA R in case it is non-determinisfic

Several assumptions are implicitly made by the above description.

Firstly, we assume a Gaussian source model.

Secondly, the rate must be sufficiently high. The bit assignment mechanism (3.1) neglects the fact that
can be noninteger and negative, which would happen for low values of the average bitrate-badgsen

at higher values of, for too low values of some transform coefficiepts

Thirdly, the expression (3.2) assumes that the quantizers’ operational distortion-rate laws are of the form
c2—2“a’§l, which assumes, besides high rates (independeneenoft. to r;) and significance of all
transform coefficient (they are assigned nonzegjpthat all the transform signals have the same p.d.f.s.

For jointly Gaussian scalar sourcescomposing the vectorial souraeg this assumption is clearly true for

the transform signals obtained by means of a KLT. In the case of a causal transform however, this is not
rigorous even at high rates, because the prediction resiguatstain a quantized component through the
closed loop prediction (Sec. 2.5.2). We shall therefore assume that this perturbation is small enough at high
rates for the shape of the p.d.f. of gllto be accurately approximated by a Gaussian p.d.f..

Fourthly, we assume that the effects of quantization is to introduce a uncorrelated white noise with variance
2= 2 0"32/1.

Finally, in the case where estimation noise is involved, the vectors to be coded are assumed to bei.i.d. This
restricts the scope of our analysis, but may be the case if the sampling period of the scalar signals is highin
comparison with their typical correlation time.

The expected distortion (3.2) is thus a model subject to these assumptions, which make however analytical
derivations possible. The goal of this work is then to provide, and compare in this framework the distortions
and the corresponding coding gains for the KLT and the LDU, in three cases. In a first case (section 3.2),
AR is caused by a quantization noise: the coding scheme is based on the statistics of the quantized data.
In a second case\ R corresponds in section 3.3 to an estimation noise : the coding scheme is based on

~

K
an estimate of?,, due to a finite amount of vectors : Ry, = % ZQQT Finally, both influences
=1

i=
of quantization and estimation noise are analyzed in section 3.4. Numerical simulations are presented in

section 3.5; the last section discusses the results and draws some conclusions.

3.2 Quantization Effects on the Coding Gains

Suppose we compute the transformation on the basis of quantized data. The statistics of the quantized data
is therefore assumed to be perfectly known in this section. In other words, we assume that an infinite number
of quantized vectorg/ is available at the decoder so thaf.,« is known. Under the above assumptions,

2The sign= will be used, as in (3.2), along in the derivations though this Etytia only correct asymptotically (w.r.t. to the rate)
and under the discussed assumptions; thessigrll be used when the original expression (3.2) will be replaced by its approximation
based on the dominant perturbation effects.
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AR = Ezi" = o21. Thus, the distortion (3.2) becomes

ot L (TRypagaTT )i
. N =2[r+ 3 ) (HN (fR . qu)”)% 2
Ellgl3, = 2 i=t I Fgapa 5)id) ¥ (3.3)

Yi)
i=1

whereq refers to quantization. Expression (3.3) may now be evaluated forl V andL.

3.2.1 Identity Transformation

In this case, the number of bits attributed to the quantizeis

1 (Reaga)ii

7 =1+ - logy — -, (3.4)
2 (ILi=1 (Reaga)ii) ¥

and the variance’fh are indeed R, )i;. The distortion (3.3) becomes
1 Ryaga)ii

N =2[r+ 3 log, N( ;2_ ) L]

Elglz, = S e (Iizi (Reoza) i) ™ (R

. L (Rggp)ii

= CQ_ZT det dlag{quxq} N =

Z ( - ) (Ryzyz)ii

i=1

The second equality comes from the fact that optimal bit assignment produces equal distogamhon
component : suppose we compute the optimal bit assignment for an hypothetic signal with covariance

matrix Rzaz«. Then we can write

1 Reaga)ii
N =2[r+ §log2 N( ztz) -] )
S e (=1 (Resws)it) ™ (R, )i = Ne2? (det diag{ Ryope}) Y = NoZ, (3.6)
=1
—2[7‘+%log2 (Rpaga)ii -
where all the terms?2 M2y (Feae)i) ¥ (R 404);; are equal to some, (each term equals the

arithmetic mean of the right hand side term in (3.6)). Replagg™ by o2, /( Ryaga )i in the first equality
of (3.5) gives the second equality.
Now, by writing Ryaz« = Ry, + 021 in (3.5), one can check that

(R )i 1
ZZ:; m =tr{(/+ US(dlagRﬁ)_l) 1, (3.7)
where tr denotes the trace operator, and also
det (diagRyapa) = det (diagRyy) det (I + aj( diagR,,)™ ). (3.8)

We obtain

-1

Elldll7, = Ellgll7(det(l + o7 (diagRys)~") ™ tr{(/ + o} (diagRy,) ™')™ 3. (3.9)
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The distortion is slightly increased because the bits allocated on the basis of variances of quantized signals
are not the optimal ones. An approximation of (3.9) up to the second order of the perturbation gives

I, = e dagl R YR () 300+
N N ) (3.10)
i=1 T zz i=1 j>i zx )ii\{lzz
3.2.2 KLT

As observed in [54] also, it denotes a KLT ofR,,, thenV (Ry, + c21)VT = A+ 02] = A9, and

V is also a KLT of Bz + 051. Thus, the perturbation termgl on R, does not change the backward
adapted transformationl’ = V. The variances of the transformed signals remain unchangég::

(V Rz VT)i = Ai. However, the decoder can only estimate the variafig@s,,« V7);; = i 4+ o2, on
the basis of which are assigned the bits

1 Vquxqu 77
ri =71+ - log, J\(, zar V) —. (3.11)
2 (ITiz1 (V RpagaV)ii) ¥
and the actual distortion becomes
1 V Rgaga V)3
N =2[r+ §log2 N( V;%_ V)T i]
Ellgl, = 32 [zt (V Reran VO (v g 1)
i=1
2 (VR V)i
— 9727 (det di apa VT N(ﬁ—“.
;c (det diag{V RzazaV'}) 0 Raeer VT
SinceV Ry, VT andV Ryqq4 V7 are diagonal, one shows that
N (VR VT -1 !
T 1 _ 2 -1\~
> Vquv - tr{([—i—a (RM)) Y= tr{(I+02(A)7) ) (3.13)
Also,
det (Ryaga) = det (Ryg) det(I + o2 (Rg, ). (3.14)
Finally, the distortion for the KLT with quantization noise is
~ ~ — L — -1
EllllY,, = ENgllF w(det(Z + o3 (A=) ¥ tr{(I + o7 (A71)) " }. (3.15)

Again, the increase in distortion comes from the perturbation occuring uppon the bit allocation mechanism.
An expression approximating this distortion may be obtained by

N 5\ N N 2\ ~1
. 1 o o
Ellgy, = c272(det diag{Re})¥ & (H(l + Tq)) > (1 + A—q) . (3.16)

i=1 i=1
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By developping the product and the sum in (3.16), it can be checked that the terms proporti@@al to
vanish, so that

N o2 ¥ N o2 -1 N1 o | X -
q 9 ~ - 4 _ — d . .
(||(1+/\i)) E (1+/\i) N+ =5 E 3 NE Ny (3.17)

i=1 i=1 i i=1 >3 Y

N

This leads for to the following distortion

'MZ

1
_2_

||'Mz

Z ™, ])] (3.18)

Using (3.9) and (3.15), the corresponding expression for the coding gain in the unitary case with quantiza-

4
Ellgliy, ~ Elgli [1+%(_N;

i=1

tion noise is

G = GO (det(I + o2( diagRﬁ)‘l))? tr{ (I + o2 diagR_x_f)—l)_l}’
’ (det(I + o2(A-N))~tr{(I + c2(A1)) "}

which, with (3.10) and (3.18), can be approximated as

ot (N-1 L 1 1 al 1 1
L+ 33 ( 2 Z((Rﬁ)? - (Az’)z) - ZZ((RQ)M(R&)M - AMJ))] '

i=1 22

(3.19)

Gqu ~ Gg?g

(3.20)

The perturbation effect w.r.t. to the ideal case is only due to the perturbation uppon the bit assignment, and
appears to be weak (since itis proportiom?).

3.2.3 LDU

In the causal case, the coder computes a transformatien’.’ such thatl Ryeye L' 7 = Ry,. Ry, isthe
diagonal matrix of the estimated variances involved in the bit allocatiomuid it;,, are both available to
the decoder). In this case, the difference vegtizrz — L’2. By the analysis of chapter 2, the quantization
noise is filtered by the rows df’, see Figure 2.

Note that in this case Ez||7,, still equals B|g||7. . sincei = 29 —x = yI 4 L'z — 2 = §.

Regarding the estimates of the rates, they are computed by

1 L/ququlT i1
7 =71+ = log, N( == ,) —. (3.21)
2 (ITii (L Rypaga LT )ia) ™
It was shown in section 2.5 that the actual variances of the signpalstained by means df’ and quantized
ry, ¢ may be approximated @E’REWL'T — o21);; (see (2.34)). Using (3.3), the distortiod@@,yq is

then approximately given by

1 L/ququlT i1
—2[r + = log, (L' Rysy ) ] ~

N / 1 /
2 2 Ml W R L)) ™ S (1 Ry LT — 02 1)
LR (3.22)
N

. ~ (03 1)ii
~ Z c2” 2 (det d|ag{L ququT}) ( m .

i=1

EllgllZ 4

s}
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Figure 3.1: Backward adaptation of the causal transform.

Since the transformatioh’ is unimodular, the determinant in the previous expression equals the determi-
nantin (3.14). The sum in (3.22) may be written a§(f— 02(L' Ryega L'7) ™)} = tr{(I — 2R}, ™)}
Thus (3.22) becomes

Ellgl , = ENGIE A (det(7 4+ o2 (A (1= 02(RigH) ) (3.23)

The increase in distortion comes not only from the perturbation occuring on the bit allocation mechanism
but also from the filtering of the quantization noise. Up to the first order of perturbation, we obtain

o
B

N

N
2% (det diag{Rys}) ¥ (H(l + i—j)) ' (1 - 0'5 ﬁ)

i=1 Yy

e (11
+32 (x|
i=1

Yi

Ellgllte
(3.24)

Ell7ll

X

where therjl correspond to optimal prediction error variances in absence of quantization noise.

The corresponding expression for the coding gain is

o g (det + o (diag{Re}) 1)) ¥ tr{(7 + o} (diag{ Re}) ™) "}
L'g =Yrc L : ’
(det(I + o2(A=1) ¥ tr{(1 - o2(RiZY )}

Up to the first order of perturbation we get,

(3.25)

Grig~ Gg%

1_%5%(%_%)] (3.26)

Yq
The approximated expression (3.26) shows that the perturbation effects of the bit assignment mechanism

are in the causal case negligible in comparison with those of the noise feedback; up to the first order of
perturbation, this gain is similar to the gain obtained in (2.40), which corresponds to the case of noise
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feedback only, but with optimal bit allocation assumption. As in chapter 2, an interesting consequence of
(3.26) is that the performance depends on the order in which the signals get decorrelated. It will be proved
in chapter 5 that we should decorrelate the sigmala order of decreasing variance if we wai- , to be
maximized (see also Fig. 3.3 and 3.7 in the simulations section).

3.3 Estimation Noise

We analyze in this section the coding gains of a backward adaptive scheme based on an estimate of the
K
covariance matri>13bM = % ZQZQZT We assume independent identically distributed (i.i.d.) real vectors

i=1
z,. Thus, the first and second order statistics\o? are known: one can show thatR is a zero mean
Gaussian random variable, with (see section 3.B)

2
EveqAR) (ved AR))" ~ T Rer © Raa, (3.27)

where® denotes the Kronecker product. Feach realization ol 2, the coder computes a transformation
T which diagonalizest,, : TRy, T = R,y. The number of bits assigned to each gament is therefore
ri = r+ - log, N A & -
2 (ITiz, (TRpeTT)ii) ¥

Now, the actual variances of the signals obtained by applfmg x are (fRﬁfT)ﬁ. Note that in the

(3.28)

causal casey = I — f@ = Lz, s0 thatr,, = ERQET. In the causal case, there is a qualitative difference
with the previous section, where the_quantization noise was filtered by the predictdts éfere, the
estimation noise does not perturb signals, but only transformations and bit assignments. The transformed
signals are Gaussian for the three transformations, and the resulting distortion by estifretich§y... by

means ofi vectors is

N =2[r+ §log2 N Ap AT
Eljl = EY e (ILizi (TR TT)id) ¥ (TR, TT),;. (3.29)
i=1
3.3.1 Identity Transformation
With 7' = I, the resulting distortion is
N —2[7°+ 510g2 #]
Ellglix = EY 2 (i (Ree)it) ¥ () (3.30)
i=1

Using a similar analysis as in the previous section , we obtain
N

12~ = Ec2-% (det di * (AR)ii Y (AR \ ™
Ellillf = Ee27* (det diag{Re.}) (H“*(Rﬁ)n»)) > (1+ (me)

i=1

X

el {1+ E % (G - £ g3y I
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With (3.27), the second expectation in (3.31) may be written as

N=1gh ((AR)ii\? N-1gs 2(Re)y, N—-12N N-1
~ ze)ii = (3.32)
o7 2\ (R

T 2N? & K(Ry)}  2N? K NK
and the third expectation leads to

AR” AR
ERY Y At~ L

; ]>Z Res)jj - ; ]>Z )J] (3.33)
N grelle ((dlag{Rﬁ})l/zRﬁ(diag{Rﬁ})l/z) I°

wherex(A) denotes the stritcly lower triangular matrix made with the strictly lower triangular patt &f

D denotes diag R}, we obtain

)'j 1 _L _1l.9 . _L _1l,9
= ~ s | | D72 Rpe D™ 2| — || diag{ D™ 2 Ryz D™ 2|
¥ Z}; R oz R_x)jj o || o N_ (3.34)
~ (1 {Rpe D™ Ryy D71} — N).
Finally, the expected distortion for Identity with estimation noise is, for sufficiently tigh
_ - 1 1 . _ . _
E 3.~ B (1+ 0 - 75 tr{ Ras{ding{ R}~ Rs(cing{))710]) . (3.39)
3.3.2 KLT
In the unitary case, the expected distortion is
ﬁéxx‘A/T i1
_2[r—|—%log2 N( ——— A)T =] R
Elgl% = E> 2 (ILiza (V Ree Vi)™ (R DT (3.36)

Using an analysis similar to the previous subsection (see Sec. 3.C), the expected distortion for the KLT
when the transformation is based Anvectors becomes, under high resolution assumption

- N N-1]1 1
el o ~ Bl (1+ 5 5+ 1)) 337)

The corresponding coding gain is

oo = Elilix oo () 1 [tr{R(diag{Re.}) R(diag{Re})™}) N1 1
VKRR, TN TR N7 2 N])
(3.38)
3.3.3 LDU
As stated in the introduction of this section, the expected distortionﬁv’ﬁhmputed Withf%ﬁ is
N gless e R
Bl = EY e [l (MRl D™ (L ey, £,
’ i=1 (3.39)

2~

N (LRpeL7T)
ZEEE

i=1

= Ee2™ % (det ‘A/Eﬁf/) )
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where we used a factorization similar to that used in (3.5). Now by the unimodularity prdpesty can
write the determinantin (3.39) as

2|~

(det f/fzﬁf/) = det Ryp = det(Rye) det(I + RZAR), (3.40)

and sincel diagonalizesﬁﬁ, we can write the sum in (3.39) as

N - TT
(LRye L™ )i
= tr{({+ Ry, LTAR 3.41
! Gratn, - )~ (3.41)

i=1

Now because both causal LDU and unitary KLT are decorrelating andaghilar transforms, it can be
checked that ﬁgH%K =E HQH%,K (comparing with the analysisin (3.65), the equality of the determinants
comes from the unimodularity of the transformatidnandV’, and the equality of thedces comes from

their decorrelating property). The distortion and coding gain with estimation noise are then the same in the
causal and the unitary cases; they may be approximated by (3.37) and (3.38) respectively.

3.4 Quantization and Estimation Noise

We arrive now to the most general case of this comparison between causal and unitary approaches. In
presence of quantization and estimation noise, the bits should be attributed on the bég'@qof:

+ Z@?@?T. As in the previous section, we assume independent identically distributed real vectors

The estimated transform i&, such thatfﬁgngfT is a diagonal matrix, which corresponds to the esti-
mated variances of the transformed signals. If we continue denotimgf/pyhe actual variances of the
transformed signals (obtained by applyiﬁgo z;), the expected distortion (3.2), obtained mﬁMsing[(
guantized vectors becomes

o+ 1 (TRpagaTT )i
- 082 1
BNl s, = ED e (i (T Rerae T) %2 (3.42)

Yi’

where the subscriptsand” refer to the presence of quantization and estimation noise. Equation (3.42)
must now be evaluated for Identity, KL and LDU transforms.
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3.4.1 Identity Transformation

In this case the transformed signaisare indeed still Gaussian. With = I we obtain for (3.42), by
writing Ryy = Ryags — 0.1,

1 Equq 117
N =2[r+ = log, N( 1%2_ ) =]
q ; aga)ii) N
EHQH%K,(} =E ZCQ (lel( L ) ) (qugq)“'
i=1
1 Reaga)ii 3.43
N =2[r+ §log2 N( £z ) =] ( )
—02ED 2 (ITiz1 (Reaga)is) ¥
i=1

The expected distortion for Identity transform with quantization and estimation noise may then (see sec.
3.D), for sufficiently high resolution and lardé, be written as

~ ~ . _ 1/N
E il ~ ENll7 (det (7 + 07 (diag{Ree}) ™)) "! 2
X |:1 + % [1 — % tr{Rﬁqu(diagRQqu)_lequ(diagRQqu)_l}] — ?V—qtr{(diagRQqu)_l} .
(3.44)

3.4.2 KLT

The expected distortion (3.2) with quantization and estimation noise becomes, in the unitary case,

1 (V Rypaga VT )i
N =2[r+ 510%2 (HN ‘A/_E_ ‘A/T))%] N o
EHQH%?Kq = E ZCQ i=1 etz V2 )it (V Ry V' )i (3.45)
i=1

After some computation (see sec. 3.E), we find for the expected distortion in the unitary case, when the
transformation is based aki quantized vectors,

ENAZ ., ~ Ellilli (det(] + o3(Re) ™) ™ |1+

N-1[1 1] o 1
—A, |:§ + N:| - W tr{(Rquq) }] )

(3.46)

for large K and under high resolution assumption. The corresponding expression for the coding gain is

] . i 1/N
Go . = Elgll kg o) (det({ + o7 (diag{Ree})™")) !
PR R T (et 4 o3 (Bn) )

1+ %(1 — %tr{RQQQQ(diagRQQQQ)_lRQQQQ(diagRQQQQ)_l}) — %tr{(diagquQq)_l}

1+ 5 G+ &) - Bt {(Rue) ]

X

(3.47)
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3.43 LDU

In the causal case, an estimatds computed, and the actual variances(ﬁﬁg = E(L'Ryaga L'T - o 1)ii.
Thus, computing (3.42) when the transformation is based aquantized vectors (for high® and under
high resolution assumption) gives (see sec. 3.F)

—

1 (L' Ryaga L'T)is
N —2[7“—1— 510%2 (HN (E E LIT))% N ~ip 5
Ellgll, ., = EY ¢2 =1\ grgs b )i )N (D Ryaoo LT — 621)i;,  (3.48)
i=1

which can be approximated as

Ellgl?, = ElgllL (det(I + o5 (Re) ™)) -
K,q K 2 N

_ 0'2
1] - ﬁtr{(R;_yrl}] ,
(3.49)

The corresponding expression for the coding gain in the causal case can then be estimated as

o ElElik,
e~ EGE,
. W 1/N
_ o (det(! + o2 (diag{ Ry })™"))
TC

(det(7 + 02(Rge)=1)) /™
{1 + £ [1 = 3 tr{Ryops (diag{Rys }) 7 Ryaga (diag{ Ruw 1)1} — J2 tr{(diag Rysps) 1}
L+ 2 [ ] = R (L B 7))

(3.50)

It can be checked that the expressions (3.50) and (3.47) tend to (3.19) and (3.25) respeclively as,
and both to (3.38) as} — 0.

3.5 Simulations

For the simulations, we generated real Gaussian i.i.d. vectors with covariance Ryatrix- HiRapiHT,

j = 1,2. Rapr1 denotes the covariance matrix of a first order autoregressive process with normalized cross
correlation coefficienp. H; is a diagonal matrix whosih entry isi'/3 for H, (increasing variances), and

(N — i+ 1)/3 (decreasing variances) féf,. The goal of these numerical evaluations is to check if the
distortion as described in (3.2) corresponds to the either exact, either approximated theoretical expressions
which were derived in the three cases of quantization, estimation noise, and both. The following algorithms
were therefore used check our analytical results.

3.5.1 Quantization Noise

For several rates (fror to 6 b/s), bit allocations and transform® (= I, L’ andV respectively) were
computed using]suﬁ = Rye; + o;1, whereos? = ¢272" det Ry ; (thatis, the distortion occuring in a high
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rate transform coding framework with optimal bit allocation). The choice of the constant is not relevant
because (3.2) is very general; we chese 5. The bits to be allocated where then computed by (3.1),

with (ffzﬁfT)“» = (Rgz)is for the Identity tranform, and by (3.11) and (3.21) in the unitary and causal
cases respectively. The corresponding distortions where computed using (3.5), (3.12) and (3.22) respec-
tively, with variancesﬂfh = (Rgo)ii, (L’RQWL’T — 051)”, and); respectively. The resulting distortion

where then computed to measure the coding gains which were compared with the theoretical expressions.

¢ In Figure 3.2, the coding gain with quantization noise is plotted for KLT (upper curves, full line) and
LDU (lower curves, full line), for signals of decreasing variances, and with 0.9, N = 4. The
theoretical exact expressions are given by (3.19) and (3.25), the corresponding curves are dotted. The
theoretical approximated expressions are given by (3.20) and (3.26), and the corresponding curves
are dashed.

o Figure 3.3 shows the influence of the variance ordering in the decorrelation process. The upper curve
depicts the gain obtained with the causal approach by decorrelating the signals by decreasing order
of variance {;.,), and the lower curve by increasing ordét,(;,).

It is checked that the expressions (3.19) and (3.25) are actually exact; the approximated expressions (3.20)
and (3.26) match their exact counterparts above approxinately's.

3.5.2 Estimation Noise
K

In this case, estimates of the covariance matrix of the data was computedsuisiegjors by% Z zxl
i=1
K = N,N+1,---,10% For each estimatg,,, the transform§ = V', I were computed so thdtR,., 7"

is diagonal, and the bit allocations were computed using estimates of the vamﬁﬂ%&SfT)”. In order

to evaluate the expected distortion (3.29), the sum in (3.29) was considered as a random variable, whose
expectation was evaluated by Monte Carlo simulations. This was done for the Identity transform, in the
causal and in the unitary case. The ratio of the corresponding distortions are the “Observed Coding Gain”
in Figure 3.4. The corresponding theoretical expression is given by (3.38) (should be the same for the KLT
and LDU because both transforms are decorrelating andadhitar). The coding gains in presence of
estimation noise are compared in the figurefoe= 4 andp = 0.9.

As expected, no difference can be noticed between the unitary and the causal case. Our calculations assumed
small perturbations; it can be observed that the model matches the actual coding gain after a few tens of

vectors.

3.5.3 Quantization and Estimation Noise

In this case, the quantized vectors were obtained for each-rayeperturbing the sets of i.i.d. Gaus-
sian vector with uncorrelated white noise vectors with covariance maffix= c2~*" (det Rgz) ¥ 1. For
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each set of available quantized vectors, an estimate of the covariance matrix of the data was computed by
K

S afad, K = NN +1,--,10% Again, for each estimat&,.,., the transformg” = V/, L were
i=1
computed so thaff%gngTT is diagonal, and the bit allocations were computed using estimates of the vari-

1
K

ances(fffgngfT)ﬁ. In order to evaluate the expected distortion (3.42), the sum in (3.42) was considered
as a random variable, whose expectation was evaluated by Monte Carlo simulations. This was done for the
Identity transform, in the causal and in the unitary case. The ratio of the corresponding distortions are the
“Observed Gains” of the following figures. The theoretical gains are given by (3.47) and (3.50).

¢ The coding gains in presence of estimation noise and quantization are compared for KLT and LDU
(signals of decreasing variances) in figure 3.5 (res. 3.6)Nfor &8 (resp. N = 4), p = 0.9 and a
rate of3 bits per sample. The observed behaviors of the transformation corresponds quite well to the
theoretically predicted ones féf = a few tens.

¢ The influence of the ordering of the signals for the same parameters as above is plotted in Figure 3.7.

In the limit if large K, the actual gains converge to the results obtained in the case where quantization noise
only is considered (the estimation noise vanishes). The proposed models match the actual convergence
behaviours in the causal and unitary cases after a few tens of decoded vectors. Finally, decorrelating the
signals by order of decreasing variance appears the best strategy.
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Coding Gains for KLT and LDU and Estimation Noise — AR1 : rho=0.9 — N=4 — Decreasing variances
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Figure 3.4: Gains for KLT and LDU with estimation noise.
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Coding Gains for KLT and LDU and Estimation Noise — AR1 : rho=0.9 — N=4 — Decreasing variances — 3b/s
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3.6 Discussion and Conclusions

This chapter has proposed an analytical model for the performance of causal and unitary backward adap-
tive transform coding schemes. The approach consisted in analyzing the effects of backward adaptation as
perturbation effects; these effects perturb the ideal high rate transform coding coding framework by per-
turbing both the transforms’ design and the bit assignment mechanism. The presented simulation results
have shown that the resulting analytical description of the systems is faiclyrate. In particular, exact
expression for the coding gain can be achieved as far as the quantization noise only is concerned. When
estimation noise is accounted for, the proposed analysis reliably estimates the distortions and the corre-
sponding coding gains after a few tens of decoded vectors.

The cost of the proposed analytical evaluation is the introduction of several simplifying assumptions. One
may argue that some, if not all the considered assumptions may not be verified in practical cases. These
objections are receivable: Gaussianity and independence of the source vectors may ruiroteseal

world sources. The additive quantization model is overly simplistic, if not incorrect, for quantizers which
are not uniform. Finally, it is not clear how practical systems would actually realize the bit allocation pro-
cedure as assumed in (3.1).

These reflections led us to investigate further more particular, but practical backward adaptive systems.
Some of the assumptions above will be retained, but at least the practical bit allocation mechanism will be
that of realizable system. Chapter 2 showed that equal quantization stepsize quantizers followed by entropy
coding may undergo tractable theoretical evaluation; algorithms based on this technique are the topics of
the following chapter.
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3.A Statistics of AR: “one-shot” estimates

We are interested in deriving the second order statistics/ot= R—R = R—zz",and more precisely the
(i,7)th block of theN? x N? matrix E(vecAR)(vecAR)T, where E denotes mathematical expectation.
Assuming Gaussian i.i.d. vectars= [z;...zx]7 ~ (0, R), and writingR = [r; r5...7y], this block may

be written as

E (vecAR)(vecAR)E, . = E(ziz —r;)(zjz— fj)T (351)

= Ewuzawj -l

Now let us denote by = [v; vs...vx]7 white i.i.d. vectors withy ~ (0, I), wherel is the identity matrix,
and byR? the (symmetric) square root &, R¥ = [r? - - %], Whel’er% denotes theth column of R=.
Thenz may be seen as a “colored” versiongfz = RZwv, and the first term of eq. (3.51) may then be

writen as
T T opl TRl o %
Eviza’z; = Er?vRzov’ R2v'r?
T 1
= ER:r7vw’o"r? RE. (3.52)
N——— ———
A

Let us consider thém, n)th element4,, ,, of A = r; vvavTr2 , which is

Am,n = Evmvn (Z rzkvk) (Z r]lvl)
EZ Tk ]kvkvmvn + E Zvavnvkvl (rlk ri+ rir ;k) (3.53)

ko I>k
(a) (6)

Whererp%s denotes theth element of-,, and the summations run up 26.
We shall now inspect the different cases corresponding to the products involvifig the

e Casem =n

— Term (a) : all the terms involved in the summation are nonzero, and two cases should be

distinguished

-

1 1 1 1
+ Casek = m: the corresponding term yields/g, 7 vivs, = 777
1

+ Casek # m : the corresponding term yieldsig. 7 vy, = 317,77

Thus, the ternfa) yields then in the case: = n

(]

Zrd 4 (diag{rirf Vmm + (diag{rir? 1 m

“ TS

) + 2rzm ]_m

EF‘ W=

] =

(@) = (3.54)

I3 =
MHH
S

e Term(b) : all the terms are zero becausg k and Ev3, = 0.
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e Casem # n
— Term (a) : all terms yield zero by taking expectation for the same reasons as in the previous
case
— Term(b) : two cases may be distinguished :

* Casem > n : Only the term for whichk = n and! = m is nonzero, which yields

|>—A

1 1 1 1 1
2.9 3 .3 _
Evmvn ( Tin ]m + TimT ]n) - rznr]m + rzm ]n
1 T
2 2.2
(D{fj r }) (D{Z’ ry }) 5
m,n m,n

wherer~{.} denotes the strictly lower triangular matrix obtained from the lower triangular

(3.55)

part of{.}, and subscript, ,, refers to elementn, n.

x Casem < n : symmetrically as in the previous case, only the térm m and! = n is
nonzero, which yields

1 1

PE R TR = (4{ i })m,n + (4{&%:%})%” : (3.56)

where«{.} denotes the strictly upper triangular matrix obtained from the upper triangular
part of{.}.

Using (3.54), (3.55) and (3.56), the expectation in eq. (3.52) may now be written as

T — 3 1 r T 3
Ex;zz'z; = ER (r r; I—i—r]rlz—l—r r; )R (357)
= rijR+r; r +r; r
The(i, j)th block in eq. (3.51) is then
E(vecAR)(vecAR)Z}ock i, = miR+r; rl
(R® R)brock i, + eriT (3.58)

2(R ® R)bioek i 55

X

where the approximation is valid for sufficiently highly correlated sources.

3.B Statistics of AR: case of /K vectors

Let AR; be a particular “one-shot” estimater Elz1 k...on )7 [21 k... 5 1] Dy means of one vector,

K
1
AR; = R — ,and letARE = E = — E AR; be the estimate of interest. Then
xlxl £2£ [{ =1

K K
EvecARE (vecARM)T Z Z vecAR; vecARj)T, (3.59)
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where since the\ R; are i.i.d., EvecAR;(vecAR;)T = Onzy n= fori # j. Thus, using (3.58)
K
EvecARK(vecARK)T = KLZ EvecAR; vecARi)T
=1 (3.60)
~K2R®QR
.~ 2R®R
~ R
3.C Derivation of (3.37)
In the unitary case, the expected distortion is
N, -2l loss - ORag® dis
EHQH(Z‘?7 Z {\7:1( Ree VT, )N (VR;C@'VT) (361)
=1
Using the facﬁA/}A%ﬁf/T is diagonal, we can write (3.61) as
1 N T T
~12 _ —2r op oT\N (VRya V7 )i
Elgl ., = Ee2 (det VRe V7 Z:; T, (3.62)
Because of the uniodularity ofV/, the determinant in (3.62) may be written as
det VRye VT = det(Rype + AR
Y e et(Ryy ) (3.63)
= (det Ryy)det(I + R} AR).
The sum in (3.62) may be written as
N (VR VT) PPN PPN
Z e = 0 {(VRu V)YV Ry VI (V R V) 1/}
i=1 VRx_V )“ - - -
= tr{VRu VT (VRwVT) ™'} = trt {VRwW RV} (3.64)
= tr{RuRy)} = tr{Ru(Res + AR)™'}
= tr{(/+R,AR)™'}.
Thus, (3.62) is equivalent to
1
~12 _ ~n2 { 1 -1 1
ENgl%y ., = Elali (N E (det(I + RG!AR)® tr{ (1 + RZIAR) }), .65

which also the distortion obtained in the causal case.
In order to compute the expectation oi]|§|(2‘7 )’ let us develop (3.61) as

L N O ST ~ N -~ S
e PSR (VARVT),; (VARVT),;
Ellgl% , = Ee2 (det diag{V Ryy V' }) (H(Hi‘?R_A L) Z Hi(v 7).
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The determinant in (3.66) may also be written as

N
det diag{V Ry VT} = J[(\+dx)
NN 5
= i 1+ = 3.67
(121 )(E ) (3.67)
N N
~ ([[wa+> 5,

where); ansé,, are the diagonal elements &fandAA, which is defined by
VR VT = A+ AA. (3.68)

Now (3.66) may then be approximated as

o~ o~ + —~ . -1
7 7 ‘5 VARVT); V7 & VARVT),;
(v.5) (") ; v )it

i= 1 (VRQVT)H i=1 ( RﬁvT it
~ Ellglltx,
N o~ o~
e V- (VARVT); VARVT  (VARVT),;
1+ B+ -
Y Z:: 2N i-l((VRMVT) e ZZ: VT)ii (V Ry V)5
(3.69)
Computation of the second expectation in (3.69)
Using the unitarity of =V + AV, we have
diag{AA} = diag{ AV Ryu AV — AVTAVAY. (3.70)
The expectation of the diagonal elements of the first term in (3.70) is
E (AVTR,AV)i = tr E R AVAVT = X Z L (3.71)
fagens i1 TL (A _ A ) .

VE2]

where we have used the following classical result in perturbation theory of matrices [77], for sufficiently
high K

A A
T ZE J T
J#1

The expectation of the diagonal elements of the second termin (3.70) is

E (AVTAVA); = ME(AVTAY) = A Z( Aj (3.73)

oy Aj— A%
Hence, we get from (3.70,3.71), and (3.73)

i A
Eo = Z(AT AZ/\—/\’ 374
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from which it is easy to show that

1 N(N -1
AZZ/\—/\ K (2 )' (3.75)

i=1 jZ¢

Computation of the third and fourth expectations in (3.69)
The perturbing ternﬂ!“//gRi‘:/T))“ may also be approximated as

(VARVT);;  VARVT 4+ VARAVT + AVARVT + AVARAVT  VARVT

—— = R~ 3.76
(VRpVT)ii  VReaVT + VR AVT + AVRy VT + AVRy AVT ™ VR VT (3.76)
Let A be
A = VRpVT =VR,VT +VARVT
N
K Z_; i (3.77)
N
= w2uy
i=1
N
Thus,VARVT = A - L Z . (VARVT),; is a real zero mean Gaussian random variable, corre-

sponding to the estlmatlon:errormfobtamed with a covariance matrix computed wihvectors. Hence,
we have Bec(VARVT)(vecV ARVT)T ~ 2294 'whence

i (VARVT)\* _ 2N (3.78)
o VRMV ) T K’ '
and
VARVT (v 2 Aj
ZZ VR ZZAM =0. (3.79)
7 ]>z 7 ]>z

Finally, the expected distortion for the KLT when the transformation is basdd wectors is, under high

resolution assumption

N-1]1 1
12 ~ 712 I
el ~ Elil (145 5+ 3] ) (3.80)

3.D Derivation of (3.44)

The first term of eq.(3.43) may be written as

(Rpaga) +
—2fr+Llog, — L] N AR, N N AR): -1
c2 (H{\le(REqEQ)”)N (qugq)ii E (H 1 + &) Z (1 + (&)

~ E|lgl[2c2?" (det(diag{quxq}))% (3.81)
N

AR zz 2 1 (AR)“ (AR)]J
Z:: - F WZZ (qugq i (Rﬁﬁ)jj) .

quq
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The equality concerning the determinant comes from a factorization similar to (3.5). The expectations in
(3.81) are computed in the same manner as in section 3.2. Note however that in this case,Ate r.v.
corresponds to the estimation errorf®f.., which is not the covariance matrix of Gaussian r.v.s because of
the uniformly distributed quantization noiggperturbing thez;. Since this perturbationis small we assume

that A R can be considered as a zero mean r.v. with covariance matrix
2
Evec(AR) (vec(AR))T ~ = Reaze © Rpago. (3.82)
o etz oz

With (3.82), the second expectation in (3.81) may be approximated as

N-1 (AR)i \*  N—-18 2(Rpep)y  N—-12N N-1 (3.83)
IN? =\ (Rpaga)ii IN? — K(Rypaga)j; 2N? K =~ NK' '
and the third expectation as
(AR)ii (AR)j; Ryags)i;
N2ZZR i (Rgaga)ji KZZ aga) RH)
i i>i zdzd zizd)jj Z»]>Z xx zizd)jj
~ f” > (( d'ag{Rﬁﬁ})l/zRﬁﬁ(diag{Rﬁﬁ})l/z) 17
(3.84)

If D? denotes diag R, }, we obtain

2

NzZzg i A L (D9 e (09— diag (D7) Rea (D) 1113

i i>i zdzd qugq)jj
7 (1 {Ree (DY) ™" Rya (DU) 1)),

X

(3.85)

The second termin (3.43) is small because@fand we neglect the estimation errors in this term (estima-
tion errors being itself small for sufficiently highi), so that we make the approximation

ﬁ 1
—2[r+3logs — Pgagalii ]

N
0iEY 2 (L (Rgaga)i)

e

~ 02c27 " (det(diag{ Rpoga})) ™ l Z ] (3.86)

Finally, using (3.81), (3.85) and (3.86), the expected distortion for Identity transform with quantization and
estimation noise may, for sufficiently high resolution &idbe written as

- - . _1W1/N
EN3ll? k.0 ~ ENElI} (det(] + o2(diag{ Rex }) ™))
tr{Ryaga DI ' Roapq DI~

2
I
- 1 o2 3.87
X 1+%{1— s e }}—thr{(diagquQq)‘l} : (3.87)




81

3.E Derivation of (3.46)

3.E Derivation of (3.46)

By writing V Ry VT = V Rpuga VT — 02VVT = VRyupa VT — 021 in (3.45), we get
N ot blogs—etetTu gy (VARVT) a
E y 2 E 62 (Hi\f—l(Vqugq‘?T)”)ﬁ 1—|— A—A“
(‘73£q£q‘7T)n _ og (VARVT),,
~ ( (VRgapaVT (VR ng?T),,) (1 + (ngngvT),,)
N o5 - ~
~ ARVT);
= E2? (det VRpensVT) ¥ H(1+w) (3.88)
S (VRgaga V)i

(VARVT);

[Z:: ( Vquxqu)ii

- 0’5 Z((‘A/quzq ‘7T)ii)_1]

i=1

Rewriting the last equality of eq.(3.88), we have

N . . +
5 ~ ~ VARVT)
A2 — —2r paga VL 1 (A ——
B0, = B2 (det ding{ Rursa V7)) (ZI_Il( TV Rarar? )“))
N - -1 N
VARVT) . ~ o L (3.89)
X E — -0 VEBgaga V"' )i
[ ( VR@'Q@'QV ) ) qi:l (( T ) )

i=1

Now, letA? = V Ryapa VT = A4+ AAY = A+ 021 + AAY, and lety§ be the diagonal elements AfA?.

Then, the first term of (3.89) may be approximated as

1

N (VARVT): " & (VARVT):; \
)(H —) 2 (1 )

N
Ellgll ( %Z

i (VRgagaVT) =
~ Ellgll
LLEL Z (VARVT); ™ ZZ (VARVT);  (VARVT)y,;
N Aq 2N2 VququT)u N2 i ]>z Vququ )Zi (‘7R£q£q‘7T)jj .
(3.90)

Using an analysis similar to (3.69) and using the same classical result in pertubation theory of matrices as

in the previous section [77], one can show that
1 NN -1
( ) . (3.91)

ARV
a Agl._AZZAq NTK T 2

i=1j#1 7

Also, the expectation of the second term in (3.90) may be computed as in (3.69). By using the first order

approximation
(VARVT);  (VARVT) 62
(‘7R£‘1£‘1‘7T)ii - (VRQQQQVT)M’ '
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N
and by writingVARVT asA? — £ > Vv, the random variabl¢’ ARVT);; corresponds now
=1
to the estimation error oA? obtained with a covariance matrix computed with quantized vectors.
As in (3.82) however, this is again an approximation sincegthare not Gaussian. Thus we assume
Evee(VARVT)(vee(VARVT))T ~ 22247 'whence

i WARVA)Y® 2N (3.93)
S \VRVT)i) — K '
and
VARVT )ii (VARV ”
=~ 0. 94
Z; V Rgege V)i (Vquv Z; K /\;?/\‘1 0 (3.94)

Thus, using the unimodularity af, the first term becomes

272 (det Ryaga)*™N |1+ (N 1) 4 2N(N-1)
272 (det Ryags) [ INTK L/N ) 3.95)
e (det R (det (T + o3 (Roex) ™)™ 1 (50 + 2]

The second term in (3.88) may approximated under the assumptions of high resolution aidasigh

X

N
2 TR Vquv it

i=1

02 Ec™? (det Rpaps) ¥ tr {(A7)~1}
o2c27 % (det Ry x)Y/N (det(I + US(RXX)_l))l/N tr{(A?)~"}.
(3.96)

o7 Ec™? (det Ryaga) v

X

X

Finally, the expected distortion for the KLT when the transformation is basdd quantized vectors is for
high K and under high resolution assumption

~ ~ 1 1/N
BN ey & BNl (det(T +02(Rax) ™)™ x 14 2= | 5+

1+ N1 [1 + i] - %gtr{(m)—l}] .

(3.97)
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3.F Derivation of (3.49)

The expression (3.48) can be developped as

(L'Ruq,9L
—2[r+3logs ~ Lz ]
E/quxQEl i1 % T T ~
E||7|)2 Ei 2 (1_[1( el )i ﬂ(1+ (L/ARLT)M) "
= ¢ = - ~
Y ( K ) — Z T (LRQQQqLIT)“
« (L'Ryagal ") (L'ARL'T
(EIREQEQEIT)” ( )” LR e qLIT)”
L/ N ¥
* L'ARL'TY;
= Ec277 (det diag{L’'Rpoza L'T})" |4 LPARL )i
( ot }) I (LquL )i )

1

i

N - 1
(L'ARL'T);; ) - ~
x Sl AL — L' Rpapa L 7))t

Z( (LRyagaL'T)si ) q;(( erza L 7)ii)

i=1
(3.98)

Now, let Ry, be L' Rysge L’ = RY, + ARY,, whereR), = L'Ryq,.L'", and letd,. be the diagonal

elements oA RY, . Then, the first term of (3.98) may be written as

N N ~ N = -
L'ARL (L'ARL'T);;
ENgll>, . .= E|yl? LE Oy ||1+—( > o —
||g||( Iyqu) ||g||L ( NZ:1 ) ( ( (LRxquL i=1 (LRxQxQL )

‘1
y— i=1
~ E|ylz
1 ZN 8ya e N-o1g ( (L'ARL'T ZZ (L'ARL'T); (E'ARE’T)
(Riy)ii — 2N? (Lququ'T) e = Si(LRyogs L'T)ig (L' Rpapa L'T) 15
(3.99)
Using a similar analysis as in (3.69), one can show that
N N q ..
Sya 1 (Rgy)jj 1 N(N —1)
E yo L vy A=l (3.100)
Z (Riy)ii K ;; (Riy)j; — (Rjy)ii K 2

Thus, using the unimodularity df', the first term may be approximated as

62_2’“(det qugq)l/N {1-1— (N D) + 2];(5\;;{1)} =27 Zr(detR

x (det(I + O'q(Rﬁ)_l))l/N [14+ L (M=t

The expectation of the second term in (3.98) can be computed as in (3.69) also. By using the approximation

(3.101)

o)V
wll

(L'ARL'T);  (L'ARL')y (3.102)
(ERQQQQEIT)M - (L/RQQQQLIT)M .
N
We can writel/ ARL'" = RY, — 4 Zy y?" : the random variablel’ ARL'");; corresponds now to the

estimation error of?¢,, obtained Wlth a covariance matrix computed withquantized vectors. Again, we
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make the approximation of Gaussianity fgr. Thus we assume &c(L'ARLT)(vec(L/ ARL'T)T
2RI QRI
%, whence

N / 2
(L’ARL T)“» 2N

T gy | 3.103
Z ((L/RmLIT)n K’ ( )

i=1 =

and
2

(r ARL' ) (r ARL'T
~ 0. 3.104
ZZ L/R“MLIT (L/R WLIT ZZ:Z K ( Ryy u(ng) ( )

i j>i
The second term in (3.98) may approximated under the assumptions of high resolution adasigh
, al 1
0'5 Ec™?"(det Ryaga) ¥ = ZZ_; m
02 E e (det Ryags) ¥ tr{(R3,) ™)
02277 (det Ryg) N (det (1 + 02 (Ree) ™) ™ tr{(R),)~"}
(3.105)

X

X

Finally, using the obtained expressions for the first and second terms of (3.98), the expected distortion for
the LDU when the transformation is based @rquantized vectors is for high and under high resolution

assumption

~112 ~ ~112 2 —1\\ /N N—-1f1 i_"_g roy—1
BN,y ~ ENIE (det(T + 07 (Re) ™)) [H 5+ ] - R

(3.106)



Chapter 4

Rate-Distortion Analysis of Practical
Backward Adaptive Transform Coding

Schemes

The main advantage of backward over forward adaptive coding schemes is to update the coding parameters
with the data available at the decoder, avoiding thereby any excess bitrate. The algorithms presented in this
chapter aims of evaluating the performance of practical backward adaptive transform coding schemes.
Their performance are analyzed in terms of rate and distortion, for the causal transform introduced in
chapter 2, and for the Karhunen-kewge tranform. The optimal bit allocation rule, which somewhat limits,
from a practical viewpoint, the results of the previous chapter, is replaced here by a simple (equal stepsize)
guantizationrule. In a first step, algorithms with constant stepsizes are considered: only the tranforms are
backward adaptive. In a second step, both the stepsize and the transforms rely on backward adaptation. In
this framework, the transform coding system is designed a priori to operate at a particular (target) rate-
distortion point. The question is to know whether the proposed algorithms will converge or not to this point.
For two algorithms, we evaluate the resulting expected distortion w.r.t. the numhectdrs available

at the decoder, as the distortion to which the systems converge. The rate is then measuredtby the
order entropy of the corresponding sequence of quantized data (asymptotically in the data length). A high
resolution analysis shows that for an algorithm using Sheppard’s correction on the second order moment
estimates, the performance of the system should converge to the target rate-distortion point. Without this
correction, the effects of backward adaptation tend to move the operational rate-distortion point of the
system from the target point by the same term for both transforms.

85
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4.1 Introduction

For non- or locally- stationary data, the efficiency of transform coding relies on the updating of the coding
parameters according to the source statistics changes. Tpdages aim to keep the performance of the
structure close to a predetermined rate-distortion trade-off. Classically, they are sent as side information
to the decoder, though this excess bitrate could be saved by using closed-loop, or backward adaptive algo-
rithms.

A first contribution of this work is a numerical evaluation of practical algorithms using equal and constant
(w.r.t. time) quantization stepsizes. Choosing a stepsize is equivalent to choose a target point of the rate-
distortion function of the source. If the source statictics do not change, the system may converge to the
target point, assuming that the transforms will converge to the optimal transforms (that is, desigred with
priori knowledge of the source). We will not try to prove convergence results in this first part, nor in the
rest of the paper. Instead, empirical evidence, or analytical evaluation based on small perturbations will be
proposed.

The first results for constant stepsize will provide empirical evidence that these systems converge. These
results are complementary to those established in [54], which regard the universality of the KLT in this
framework; also, the results of section 4.3 suggest the universality of the LDU at high rates. The sense
given touniversalityin this work is that of [54]: the ability of an adaptive system to provide, asymptotically

in the data length, the optimal rate-distortion performance for a given class of source, which in our case
is Gaussian. The drawback of using a constant is however that the rate may unacceptably vary in the case
where the statistics of the source change. The distortion is fixed, but may become unacceptable as well
w.r.t. to the energy of the source. As in adaptive predictive quantization, one may prefer algorithms relying
on updating not only the transforms, but also the quantization stepsizes.

We propose therefore in a second step to model the effects of the backward adaptation for two simple algo-
rithms using adaptive stepsizes, and for two different transforms, the unitary KLT and the causal LDU trans-
form. A transform coding scheme is in the ideal case designed to reach a target point of the rate-distortion
function of the source. This point{, Dy,R) is characterized by the covariance matkixa target rate,

and the corresponding target distortibp. Assuming now that we use some backward adapted algorithms,

an interesting question is to know if the coding performance will converge or not to the target rate-distortion
point, and if yes, how fast.

The theoretical comparison between causal and unitary approaches presented in the last chapter did not de-
scribe how practical backward adaptive transform algorithms would perform. This is the aim of the present
work, where we propose an analysis based on small perturbations. The investigated methods correspond
to actual, implementable algorithms, but again, we have to make several assumptions. We suppose that
the coding structure deals with a (possibly locally) stationary Gaussian source with covariance#hatrix
whose vector samples are independent and identically distributed. The results regarding the rate are asymp-

Lin order to simplify the notationg? will denote the covariance matri 5 in this chapter.
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totic in the data length. Moreover, we assume that the entropy coder posSességersal lossless codes

for the N transform coefficients streams.

The rest of the chapter is organized as follows. Section 4.2 reviews and formalizes some results from the
ideal coding schemes. Section 4.3 deals with constant stepsize algorithms. Section 4.4 states how both the
transformations and the quantization stepsize are adapted, for two different algorithms. Section 4.5 derives
the distortion analysis for the two proposed algorithms using adaptive stepsize; the problem of the rates is
investigated in section 4.6. Finally, the last section compares the proposed model with numerical results.

4.2 Framework and Background

4.2.1 Quantization Stepsize and Optimal Bit Assignment

Assuming an optimal bit assignment for some transform compopegrtse distortion-rate function for the
vectorial signaly is at sufficiently high rates

N N
Ellgliy => of. = Ne2w " ([J o5 )N = No. (4.1)
i=1 i=1
The corresponding number of bits assigned toitheomponent is

1 o2

log, —— Y. (4.2)

2 N ¥
i)
i=1

Under high resolution assumption, the quantization noise resulting from quantization with stepisze
A7
12

i =71+

uniformly distributed random variable (r.v.), with varianﬁjg = =i, Asimple way of realizing the optimal
bit assignment is thus to quantize all the components with an equal stépsiizthe y/ are entropy coded,
the bitrate is for Gaussian signals

1
r=H(yl) = 2 log, 271'60'51 —log, A. (4.3)

It can then easily be checked that choosing

N

A =are2([] 02,)77 = V2re2" det(diag{T RT"})>~ (4.4)

i=1

N 1 N
. 1 _ ~ . . . - _ . -

yields - Z_; = or Z_; H(y!) =~ r. At high rates, the corresponding distortion-rate function isthen

2
D(r) & % ~ %2—” det(diag{TRT"})~. (4.5)

Relations (4.4) and (4.5) allow therefore to choose a target paibt R) for the transform coding system.
Note that this strategy assumes the knowledgg.of

2In order to simplify the notationd), instead of H|.||?, will denote the distortion in the rest of the chapter.
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4.2.2 Optimal Transforms

In the unitary case, the optimal transform for Gaussian sources is dKITRV? = A, the variances of

the transform signals are the eigenvaldesf R.

Inthe causal casg, = Lz, =z, — Lz}, whereLz] is the reference vector. The outpiftis y? + Lz.

If we neglect the fact that the prediction uses quantized data, it was shown in chapter 2 that the optimal
causalL in terms of coding gain is such thatk L” = diag{s7 ,--- o2, }, wherediag{a} represents a
diagonal matrix with diagonal. The componentg; are the prediction errors af with respect to the past
values ofz, thez,;_,, and the optimal coefficients L; ;.;_; are the optimal prediction coefficients. For

both transforms, the high resolution distortion using ECUQ is then

2~

Do(r) ~ %2—2’" (det R)™ . (4.6)

From (4.4), this distortion corresponds to a quantization stegsjzgiven by

N
Ao = V2re2 7 ([ 02)7 = V2me2™" (det R)™ (4.7)
i=1

4.3 Backward Adaptive Algorithms with Fixed Stepsize

From the previous section, assuming that the encoder has the knowledge of the covarianck, ritatray

choose a target rate-distortion point for the systef(r),R). For sufficiently high resolution, this point

is determined by choosing, for a given source, a stepSize: /272~ (det R) . Two guestions arise
regarding the ability of the backward system to converge to this point. Firstly, the decoder shouéd have
priori knowledge of the desired.,.. Secondly, the estimated transforms should converge to the optimal
ones (so that the actual product of the varianggss, after convergence, actuallyt R).

As far asA,. is concerned, one shall assume that it is transmitted at the beginning of the coding process
as side-information to the decoder. In this sense, the scheme is not fully backward adaptive. The corre-
sponding excess bitrate is small and vanishes in the limits of the data length if the process is stationary;
but if the source is time-varying, this may cause a non negligible overhead. The question of the transform
convergence will be investigated after we have precisely described the coding algorithm.

Assuming that an estimate

2l (4.8)

of the covariance matrix is available at the decoder, the transféimas V, L can be computed so that
TRTT is diagonal. We assume that the firétvectors are sent with very high resolution to the decoder:
z! ~ gz, i=1,---,N. This leads to the following backward adaptive algorithm:
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Algorithm [0]:
o |nitialization: K = N.

is available at both the encoder and the

K
¢ Step 1: An estimate of the covariance maﬂ?dx = % Z &?&?T

decoder. =

e Step 2: A transfornT is computed such thdAfK}A%Kf§ is diagonal, wherd is either a KLT, either
an LDU factorization offix.

¢ Step 3: These tranforms are used to transform and quantiz&td )th vector byﬁifml = [‘A/KQK_H]AT

in the unitary case, Vi, = [2x 1 — Lzk,]a, inthe causal case, whe¢a, denotes uniform quan-
tization with stepsize\,..

. StepN4: Back to Step 1: the decoder computes then an estimate of the covarianceﬁnalfit

210wl +ad, 28, )), fromwhichTx ., can be computed, used to code the+ 2)th vector, and

i=1
SO on.

The corresponding block diagram is depicted in figure 4.1.
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Figure 4.1: Backward adaptive transform coding system with fixed quantization stépsize

For this algorithm, the question is to know whether the transforms will converge or not to the optimal
transforms. This algorithm was inspected in the unitary case in [54]; the following conclusions can be
drawn.

Assuming on the one hand that the effect of the quantization is to add a zero-mearx Siggegbendent

of z with EzzT = %I, the expected covariance matrixzEzr?” is Reo + %I. SinceRy, + %I and

R.. have the same eigenvectors, the transform converges to the correct transform, resultung veiesal

system. Universal means here that this performance approaches that of an ideal transform code designed
with a priori knowledge of the source distribution.

As detailed in section 2.A on the other hand, the difference betwgemnd ..« is not precisely a scaled

Identity matrix. Moreover, the distribution of/ depends of;_1, which in turn depends on the whole
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sequence; _, .. This interdependence renders the analysis of the convergence difficult. Some convergence
results are however proven in [54]. Assuming simplifying assumptions such as introducing dithering (whose
effect is to make the quantization noise precisely input-independent), or neglecting the stochastic aspect in
(4.8), theoretical proofs for the universality of such constrained systems can be established. For the general
system described by algorithfi], it is nevertheless asserted in [54] that convergence should hold as well.
One of the aim of this section is to provide empirical evidence that the backward adaptive unitary system
actually works.

In the causal case, the same comments can be made regarding the complexity of the convergence analysis.
Assuming that Eﬁ@?T converges td?,, + %I, it is necessary that the decoder comptﬁgssuch that
EK(Rﬁ + ?—;I)fﬁ is diagonal. From the expression (2.33) of chapter 2, this is precisely the optimal
strategy to compute the best causal transform optimized for a closed loop system, at moderate to high rates.
Note that equation (2.33) does not assume that the covariance matrix of the quantizedRlata is

Ree + %I; instead, this expression expresses the fact that, when optimized for a closed loop system, the
optimal transform can be seen as the optimal prediction matrix for the signal perturbed by a white noise. In
the case where the only available estimat®js + %I, computing the corresponding LDU factorization

of }3@@ is equivalent to finding the correct prediction matrix. Thus, at least at moderate to high rates, the
causal system should be universal as well.

Figure 4.2 plots the actual rate-distortion functions obtained with algorithnfor the same source as

in 2.6.3 (decreasing variances). Sequencel)bfvectors were backward adaptively transform coded as
described in algorithrf0], for several stepsizes,. For each stepsize, the résng distortion and entropy

were measured for the whole sequence; the experiment was rep@atietes. Comparing with figure

2.17, which plots the actual rate-distortion functions for transforms designedavgtiori knowledge of

the statistics of the source, the similarity is apparent. In particular, the system converges even at low rates,
when the quantization noise is large.

An interesting question for this algorithm would be the following. Let us assume that the decoder stops
adapting the transforms after a certain amounkofectors. Then what would be the rate required to code
(asymptotically in the data length) the resulting source ? This question will not be addressed here, but an
analysis provided in chapter 6 deals with the same interrogation in the framework of lossless coding.

The algorithn 0] as described above suffers from a drawback when the source is not stationary but locally
stationary. Quantizing with the same. may cause unacceptable changes in rate if the variances of the

vary w.r.t. the quantization stepsize; the distortion is fixed, but the SNR will vary as well.

To precise this, let us assume a piecewise stationary vector source, whose covariancg nuaimges to

R, after a certain time. The encoder may have the knowledge, pfaccording to some rate-distortion
trade-off objective(r;, D;), it may choose consequently for the source a convenient stepsize=
V2me27"1 (det Ry)7¥. This stepsize should be transmitted to the decoder at the beginning of the back-
ward adaptive coding process. Assuming the stationarity period long enough for the process to converge,
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Distortion—Rate functions with fixed stepsize
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Figure 4.2: Distortion-rate functions for the KLT and the LDU using a backward adaptive algorithm with
constant quantization stepsize. N=3 and 0.9.

the system will then work at a poinD§ = %,rl ,R1) of the rate-distortion function aof;. If now the
statistics of the source change (covariance maty, the system working with stepsizg,, will yield

after convergence the same distortiop the rate actually required to entropy code the source will become

(det Rz) % det Rz) %

1 1
= — - = — _ 4.
r =g log., 27e 2 r1+ 5 log, (det X (4.9)

Thus, the rate will change accordingly to the determinant of the covariance matrix of the source. Moreover,
the distortionD; may be acceptable fdk;, but not for R, : consider a single scalar soureewith vari-

ancec?. The operational rate-distortion function of this uniformly quantized and entropy coded signal is

d = % = %2—2%% If the variance of the source is time-varying, it is then more relevant to guarantee
the SNR% to be constant rather thahonly. Thus, it seems interesting to find a solution which keeps the
relation of the distortion td? constant (or equivalently, which keeps the asymptotic rate constant); such a
coding scheme should therefore converge to the goint ”6—62—2’“1 (det R2) ¥,

Possible solutions to that problem exist for algorithms using a fixed stepsize. A more convenient stepsize
may for example be retransmitted to the decoatmrordingly to the source variations, but this results in
some overhead. This side information may be avoided if, after convergence of the process, both the en-
coder and the decoder change in unison the stepsize according to the new estifgtehi$ solution
lengthen however the time by which the desired performance are achieved. One may therefore try to design
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algorithms which converge directly to the desired rate-distortion function point of the source, by keeping
the target rate constant. This is the aim of the next section, where both the quantization stepsize and the
transforms are backward adaptive.

4.4 Backward Adaptive Algorithms with Adaptive Stepsize

441 Framework

For a nonstationary input, the variances of the sources are time variable; the problem of (backward) adapt-
ing the quantization stepsize is very similar if the input is stationary, or locally stationary, with unknown
variance. The operation of an adaptive scalar quantizer is therefore of the general;ferma?, where

77 is the variance estimate at time instdnt and¢ is some constant [14]. We shall thus assume a sta-
tionary vector source with unkown covariance matfx This source is tranform coded in a backward
adaptive manner, and neither the encoder nor the decoderpras knowledge ofR. The transforms and

the quantization stepsize will be adapted periodically in unison at the encoder and at the decoder; no side
information is therefore required to transmit any coding parameters. Theqnlgri information shared

by the encoder and the decoder is the target #atat which the system should work. Assuming suffi-
ciently high resolution, the goal is then for the system to converge to the rate-distortionigoint, RR):

Dy (rg) = Z£27 20 (det R)~, which is for this transform coded source the best achievable rate-distortion
point at raterg.

We now propose two algorithms updatitigand A by means of the data available at the decoder only. In
addition to the assumptions expressed in the Introduction, thefingtctors are assumed to be quantized

with very high resolution and sent (without being transformed) to the decoder.

Algorithm[1]:

e Initialization: K = N. .
¢ Step 1: An estimate of the covariance maﬁix = % Z g?@qiT is available at both the encoder and the
decoder. =
e Step 2: A transforn i is computed such thﬁA’fo%ng is diagonal, wheréy is either a KLT, either a
LDU factorization of R, and a stepsiz@ﬁé] is computed by

A = \/amea 7o det (T R TE) o~ . (4.10)
¢ Step 3: These parameters are used to transform and quant{Zzé-tHigth vector byﬁifm L= [Viay 41 Al
inthe unitary case, v, = [Zy1 —LQ}H]B%] inthe causal case, wherg, denotes uniform quantiza-
tion with stepsize. The expected distortion for th@ -+ 1)th vector is theDl) (K + 1) = EALT /12,

e Step 4: Back to Step 1: the decoder computes then an estimate of the covarianceﬁnalfit
N

2wl + 2, 28, )), from whichTxk 11 andAf 41 can be computed, used to code e+ 2)th
i=1
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vector, and so on.

Algorithm [2]:
A simple improvement to the previous algorithm can be made by using the results regarding uniform quan-
tization of Gaussian sources evocated above. For Gaussian vglgtaqaantized with the same (constant)
stepsize, it can be shown (see 2.A) that
AZ
EQ?Q?T = Ryoys = R+ EI + B, where B — 0 elementwise as A — 0. (4.11)
In the previous algorithm now, if the stepsize converges to some stepsiZ&'), one may expect that the
estimate of the covariance matrix converges to some matrix cld%el%i# 1. The numerical evaluations
of the previous section indicate convergence even for large quantization stepsizes. A better estitnate of
may therefore be computed after a certain amount of vectorsysaly substracting‘%[ to the current
estimate ofR. This correction on the estimate of the second order moment of the data by their quantized
version is usually referred to as Sheppard’s correction [72]. Except from this difference cond%rrﬂimag
steps of algorithnj2] are the same as in algorithm|.
The corresponding block diagram of these two algorithms is depicted in figure 4.3.

‘j%[]i/]j Tk, 3%?” 7!
' I

,,,,,,,,,,,,

Encoder Decoder

Figure 4.3: Backward adaptive transform coding system with adaptive quantization stepsize.

4.4.2 Proposed Analysis

The convergence analysis for these algorithms will seek to determine if the corresponding distortions con-
verge or not to the target ratg and distortion),. Moreover, we will try to model the behaviour of the
distortionvs K. The proposed analysis will retain only first order perturbation; therefore, it does not claim

to establish rigorous convergence proofs.

Two preliminary steps required to analyze the distortion are detailed in the rest of this section. First, we
should precisely evaluate the respective contribution of the estimation and quantization noises for the es-
timates of the covariance matrix. This lead to a handful of perturbation terms. Second, we precise the
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relationship between the distortion of interest and these perturbation terms.
The estimate of the covariance matrix for the second algorithm can be expressed as

52 ST R R K e, ARE
i=1 i=N+1 i=N;+1
Ny K
= & |VE+ X (reDMGN+ X (r+ DPIGD) (4.12)
i=N+1 i=Ni+1
/\22
++ _A[K]—1I
" 12

whereD!!-2l(;) denotes the distortion obtained for tile vector, and where we used the following notation:
- superscripl/! refers to algorithny],

- superscript refers to quantization,

- superscript!) refers to estimation noise occuring by estimating a covariance mithy the estimate
2,27 = RW = R+ ARW),

- subscriptx refers to the total number of vectors available at the decoder (except indeed frarich
denotes théth vector).

The corresponding estimate for the first algoritli%ﬁ] can also be computed from (4.12), where in this
case the underlined terms vanish.

By writing % = DI?)(K) + §DI?)(K), the estimate (4.12) can also be writtenid! = R + AR,
with

i=N+1 i=Ny+1
AR,
LS ApD e NS Aplidi | N~ Apl@0) _speigy. A
+ ZARZ» +’Z AR! +’Z AR! — dDPY(K),
i=1 i=N+1 i=Ni1+1

ARk, sto

whereARB’?det is a deterministic diagonal matrix, arzldRB’?m is a stochastic matrix. The update of the
transform (to simplify the notations, the subscrigtwill be omitted forﬁf]) is then computed so that
fK}A%B'?]f§ is diagonal, and the updated steps&@:\/2we2‘T0det(fK§E§]f§) “is used to quantize
the( K+1)th transform vector. For sufficiently small stepsizes, the expected distortion is then
2l i A[I?]Z TE 5—2r =~ Bl2laTrs L

DK +1) m B0~ 2770 det (T Ric 1) ¥ (4.14)
The corresponding distortiddl!1( K + 1) for algorithm[ /] can be computed by simplifying iRl*} (K + 1)
the vanishing terms ak!2], see (4.12).

Using the unimodularity property of the transforms and considezrsimﬁ] in (4.13) as a perturbation term
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uppon R, one should compute in both unitary and causal cases (tr denotes the trace operator, see the
derivation in appendix (4.A))

DENK +1) » %2—2’“0 (det R %

Do[14 L Etr{ARAR 1} + - E(tr{AREIR-1})2— L E tr{ARIRARP R-T),
(4.15)

X

The corresponding distortion for algorithin] can be computed frond[*! by inspecting the vanishing
terms mAR through (4.12).

4.5 Distortion Analysis

In order to compute the three expectations in (4.15), we can describe the r.v.s involved in (4.13) as follows.
The elementary termfp‘AREI)} corresponds to "one-shot” estimates/®tased on a single observation.
Since the vectors are i.i.d., so isARZ(»l). The elementary term&Rf[l’Q](l)} correspond to "one-shot”
estimates of? + E (A2 /12)1 which, from (4.11), can be approximated Bs+ DU>?1(i)I. These

terms are indeed not identically distributed. They are neither independent&ﬁ%ﬁé’g](l) depends on

A[ Zih I which depends onRE 1", which in turn depends oARq[ 1) However, we assume that this

is the case, since this dependence concerns only the noise part of the quantized vectors. Because of the
quantization noise, the vectarg are not strictly Gaussian; for sufficiently high resolution, we assume that
this is however the case.

The following result (see appendix (3.A)) is how necessary to establish f.éll.’lfﬁ)AR,(l) =R = z;zF

be the (symmetric) estimate of somg = [r; ...r;,. ] by means of one real zero mean Gaussian vegtor

with Ez,z7 = R,. Then it can be shown thatR( ) is a zero mean r.v., and that among f& blocks of
EvecA R ved AR™M | the(i, j)th block

(EVG(‘AR VECTAR )block(, A (Rl ® Rl)block(, A + Ty, 7°l , (4.16)

where denotes the Kronecker product. If ndy = R+ D; 1, with / denotes Identity and); a scalar the
previous expression may, for correlated sources, be approximated as

EvecAR"Ved AR ~ 2R, @ R ~ 2[R@R+ Di(R® I + I ©R)]. (4.17)
The first term of (4.15) may be written as

LEw{ARTRY = L | w{aRY, R} + Et{ARY R}

0

(4.18)

~ &[S — DPNE)] tr{R™1},

3The derivations involved in the computations of (4.15) are only outlined in this section; the details are reported in sec. 4.B
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Ny K
with ¥, = Z DUy + Z DP1(i). The second term leads to
I=N+1 i=N1+1

A E(tr (RT3 AR R3))2
Az(ve’R3)(R"3 @ 1) EvedARved AR (R=% @ I)vecR—%

T E(tr{ARIR-1})2

X

vearl!, verarll,  wEveary! | vecrarl!

K,sto K,sto

(4.19)

where the term corresponding to the deterministic part can be computed using the fakRﬁElggt is
diagonal. The stochastic term in (4.19) generagesprding to (4.13), four terms, which can be computed

(E[tét _ D[Q](K)) 2] ’

(4.20)

using (4.17). The second term in (4.15) leads finally to

Sy By, ()

S E(r ARIR))? ~

where for the purpose of this first order analysis, only the dominating terms have been retained. Concerning
the third term of (4.15), lei be R~ * ARLZ'R=%. Then we have va& = (R~% ©® R~%)vecARL, and
we get

— Bt {ARPIRIARR-T = E - L tr{GG)
— i E tr{veaGvec’ G}
= L Etr{(R 3 oR %) EveA R ved ARI(R-* 0 R-3)}
(4.21)
where again, the arising terms can be computed using (4.17).
Finally, the distortion occuring with the second algorithm can be approximated by the recursive expression

1—1—%(%—]\7)—1— tr{R—l}(% l%( Z D7) Z Dl ) Dl ](A)])] .

i=N+1 i=N;+1

DN (K 4+1)~Dy

(4.22)

Inspecting the vanishing terms in (4.12), we obtain then the following recursive expression for the algorithm

without correction

DUNK +1) ~ Dy

L/ K
1+%(%—N)+%( > Dm(i))] ' (423)

i=N+1
On the one hand, the recursive expression (4.22) shows that the algorithm based on the Sheppard’s correc-
tion should, asg — oo, converge to the target distortidn,

AL
Dl » E% ~ Dy, (4.24)

The corresponding stesize should converge to

EALl x~ Ay &~ 27me(det R) 7V (4.25)
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On the other hand, the model provided by (4.23) does not converfjg but to someDL] > Dy, which
can easily be computed as

ALY D
DUl x EZZ o . (4.26)
12 1 — DO%
Accordingly, the quantization stepsize should converge to
. D ’
Al ~ (12113 ~ 2 % . (4.27)
1 — Do—HEL

Note that at low rates, the convergenceéé;ﬁ] to Ay does not guarante@{f;] to be axactlyD, because the
quantizer’s rate-distortion performance factor deviate figm

4.6 Rate Analysis

This section analyzes the bitrate required to entropy code the transform sigmalssasc. These results

are therefore asymptotic in the data length.

4.6.1 Algorithm with Sheppard’s correction

For the algorithm using the correction on the second order moment estimate, the rate is

N
TE?]) = x> H)

X

N
ﬁ Zlogz 271'60'5“00 — log,Ag (4.28)

N
2
H O-y,,oo
ot o log: S

X

whereo?, . are the variances of the transform signals obtained by using the transform based on the asymp-
totic estimateRL), which in this case is?. Thus, the estimated KLT and LDU should converge to the

optimal transforms. The variances of the transform signals in the unitary case avg Hreh
rE"Q/]) =ry. (4.29)

In the causal case, one shoalttount for the fact that the reference signal is computed by means quantized
data. The actual prediction error varianméﬁ are greater than the optimal onﬁ§ due to a quantization
noise feedback similar to that occuring in DPCM, and from (2.69), are approximately given by

N N

[175. = det(Rr) (1 + Do(r) Z(A% - Uiz)) : (4.30)

i=1 i=1 Yi



98 Chapter 4 Rate-Distortion Analysis of Practical Backward Adaptive Transform Coding Schemes

This traduces, for a given distortion, by an increase in rate approximately given by

N
(2] Do o1
") 0t G g 2 (AZ» 02) : (4.31)

i=1 i

As a conclusion, though the target distortiongached in both cases, the unitary approach yields to lowest
asymptotic rate because of the noise feedback occuring in the causal approach. From the analysis of chapter
2 section 2.5.2 however, these effects are noticeable at low rates only; for moderate to high target rates

r) & i = 1o (4.32)

4.6.2 Algorithm without Sheppard’s correction

For the algorithim 7] now, one should compute

N N
1 1 1
TET]) = ¥ Z_; H(y?) o~ N E_l log, 271'60'3/2“00—10g2 Ao (4.33)

where, thistime, thejhOo are the variances of the transform signals obtained by using the transform based
on the asymptotic estimatey] ~ R + %I. In the unitary case, since a KLT @t is also a KLT of
R+ %I, theajhOo should again be equal to the. Using (4.26), we obtain

[1] Dy

7“( ~Trg—

V) 2N In?2

tr{R™'1. (4.34)

In the causal case, the noise feedback in (4.30) involves thisAige= 12D(1X{2, and computing (4.33)
yields

2] Do

[1] B
") T 3N 2

")

tr{R™'1. (4.35)

o~
~

Thus, the effect of not using the Sheppard correction in the backward adaptive algorithms is, for both
transforms, to deplace the actual rate-distortion painyt¢rq, Do +9 Do, R) from the target point(y, Dy, R)

by a rate
Dy 1
drg & SN I3 tr{R™ "} (4.36)
and from (4.26), by a distortion
§Do =~ Dtr{R™'}/N. (4.37)

From (4.36) and (4.37), these mismatches vanish in the limit of high resolution systems (small target dis-
tortion/high target rates). Thus, the effects of the Sheppard’s correction become undetectable in the limit of
high rates, in which case the behaviour of the algorithfhand[2] become equivalent.
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4.7 Numerical Results

For the simulations, the data are real Gaussian i.i.d. vectors with covariance Ratfixd R4r1 H" .

R g1 is the covariance matrix of an AR(1) process witk 0.9. H is a diagonal matrix whosgh entry is
(N —i+41)Y3, N = 3. The target rate i8 b/s. Algorithms] /] and[2] were then implemented as detailed
in section 4.4. For each estima®! 2], the corresponding stepsizd’ 2! was computed as in (4.10), and
the distortion was estimated @1212 This experiment was repeat2d0 times.

o Figure 4.4 plots the averaged observed distortions for the KLT and the LDU v&rdas algorith
[1] (without Sheppard’s correction). The theoretical model is given by (4.23), and the theoretic
asymptotic distortion by (4.26). As commented in the text, this distortion should be the same for both
transforms, because it close togg, and this adaptive stepsize, as computed by (4.10), is the same
for the KLT and the LDU, because they are uoihular. The target distortion is given by (4.6).
It can be observed that the estimated distortion converges to theoretical limit (4.26). The excess in
distortion is due to the convergence of the stepsiz& g as given by (4.27), instead of {62 D) 3.

¢ Similar results are shown in figure 4.5 for the algorithd, where the Sheppard’s correction is
applied afterN; = 60 vectors. The discontinuity is caused by the substractia&%f/l? I from
the estimateﬁ%}; this decreases the determinan@f,}, andﬁﬁil is consequently smaller than
3%32. The theoretical model fob[?! vs K is given by (4.22). Discontinuity appears clearly after
N, vectors.

e Figures 4.6 and 4.7 plot the results for the two algorithms for a target rate of 4 b/s. It can
be observed that the behaviour of the two algorithms is similar because the resolution is sufficiently
high (the mismatchi Dy becomes negligible). At higher rates, the stepsizes convergs, tand
the distortions taD, for both algorithms. Comparing fig 4.7 and 4.5, the discontinuity due to the
Sheppard’s correction is decreased, because this correction vanishes in the limit of small distortions.

¢ Finally, the convergence of the two algorithms at a lower ratel§/s) is presented in figure 4.8 and
4.9 respectively. It can be observed tﬁ#t;—]z does not converge exactly to the theoretical bounds. A
this rate and beyond, the high resolution approximations assumed in the theoretical analyses become
less accurate. The largest mismatch for both algorithms occurs for the LDU; for this transform, the
noise feedback makes the quantization noise and the input the most correlated at low rates, so that the
perturbation deviates from a scaled diagonal identity. Moreover, the actual distortion may be different

A[I )2]2
from 2-—— for both transforms.

A[1)2]2
Summarizing these results, the proposed analysis of the convergence behavioﬁ%’gf—&natch ade-
quatly the actual convergence behaviour for rates higher than approxiradieliys per sample.
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Algorithm [1] : Distortions vs K for KLT and LDU

T
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,,,,,, Yoo,
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c

N=]
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— — Dist obs KLT
0.002 . Dist target DO ]
—— Theoretical Dist vs K
Dist obs LDU
Asymptotic Dist Doo
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K
Figure 4.4: Distortions for algorithii] vs K, 7o = 3 b/s.
Algorithm [2] : Distortions vs K for KLT and LDU
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Figure 4.5: Distortions for algorithi®] vs K, 7o = 3 b/s.
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X 10 Algorithm [1] : Distortions vs K for KLT and LDU

k7]
a
— — Distobs KLT
— .. Dist optimal d0 H
— Theoretic Dist
Dist obs LDU
—— Asymptotic Dist
O 1 1 PR L L L L P
10" 10° 10° 10*
K
Figure 4.6: Distortions for algorithii] vs K, 7o = 4 b/s.
x 102 Algorithm [2] : Distortions vs K for KLT and LDU
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— — Distobs KLT
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Figure 4.7: Distortions for algorithi?] vs K, 7o = 4 b/s.
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Algorithm [1] : Distortions vs K for KLT and LDU
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Figure 4.8: Distortions for algorithii] vs K, o = 2.3 b/s.
Algorithm [2] : Distortions vs K for KLT and LDU
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Figure 4.9: Distortions for algorithi?] vs K, o = 2.3 b/s.
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4.8 Conclusions

Summarizing the framework, for sufficiently high rate, a particular point of the rate-distortion of a source
with given covariance is chosen by fixing either the desired rate, or distortion. For transform coders using
ECUQ, this is equivalent to choose a particular quantization stepsize. In backward adaptive transform cod-
ing, the decoder has priori no knowledge about the statistics of the source. Thus, the tracking without
side information must depend only on the previously decoded data.

Numerical results show that backward adaptive systems designed with a constant stepsize should converge
to the target rate-distortion point for both the unitary and the causal approaches. In the latter case, the
effects of the noise feedback caused by the closed loop implementation are noticeable at low rates only
(below approximatel b/s).

Systems with fixed stepsizes may however result in uncontrolable variations of the actual rate-distortion
performance if the source statistics change. These variations may be accounted for by using algorithms
for which both the quantization stepsize and the transform are backward adaptive. In order to model the
statistical behaviour of these systems, we assumed a stationary Gaussian vectorial source, whose covari-
ance matrix is unknown. We showed that an algorithm using a Sheppard’s correction on the estimate of
the covariance matrix allows one to reach the target rate-distortion poihutithis correction, there is a
mismatch between the actual and the target rate-distortion performance of the system. These mismatches
vanish for high resolution systems (small distortion/high rates). The proposed modelsacatditely the
convergence process for both algorithms and transforms at rates higher than approxridiisly
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4.A Perturbation of the determinant (4.15)

To simplify the notations, let us denote hythe determinandet(.), let A be a square nonsingular matrix
with elements{a;; }, andA = A+ 64, wheres A is a perturbation matrix whose elemefds;; } are small
in comparison with thda;; }. In a first step, we computet + J A| and take then care of the exponent
One should now computel + J A| which by the Taylor theorem may be approximated as

32|A|
6 a;;0A

A
|A—|—6A|z|A|—|—tr{(6AT8| |}+ Za ajjt sATY. (4.38)

The following properties [78] are now necessary to compute the second and third terms of (4.38). Denoting
by A;; the cofactor oty;;,

(a) SEL = Ay
W = =g :
() AT(AT)™' =1 = ZAL(AT)=1 4 AT o g QAT o (471240 (47
(4.39)
The second term of expression (4.38) may now, using ggpbe written as
A
tr{(&A)Ta| |} = tr{oAT|A|(AT)~ ). (4.40)
To compute the third term of (4.38), let us rewrite
3lA a(lAl(aT)?
o2 () = e
0)A o(AT)—1
— | |(AT)_1—|- |A| ( )
3&2']' 602’]’ (4.41)
Ay —(AT)- 1aAT (AT)

= AGAT) !~ A(AT) T (4T

The third term be then be written as

0?| A _ 1
%Zaazj tr{aaiJaL(iAT} =13 dagtr{A;(AT) AT - Za% tr {|A|(AT)~
2,7 7 ]
9AT
1

A _
=43 das Ay r{(47) 047} - | 'Za astr (A7)0

aij

aA -1 T
G (AN

(AT)=ls ATy
§LAV=(%'2'), | A)(AT)

=4l Za% AT {(AT) 15 ATy -

|;Jtr{(AT)—HSAT(AT)-HSAT}

:%(tr{éAA )7 = Ml {sA(4) =16 A4(A)71).

(4.42)
Hence, eq. (4.38) may be approximated as
|A+S8A| ~ Al [ 14+ tr{dAA~'} + 1 [(tr{0AA™'})? — tr {6 A(A)1AA) Y] | . (4.43)
2

(a4

8
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Denoting by« andg the underbaced terms of (4.38), we obtain now fot + § A| ~

X

|A+5A|% AY [14 £ (a+8) + sk (F = D(a+ §)?]

e ) (4.44)
~ AR 1+ ya+ 58+ 53 (0” + 208 4 57)]

where we neglect the termas? and 32 for which § A is involved at a power superior thanWe obtain

A4+ 6AlY ~ |A|V

[ {8447+ () (- OAAT1 )2 =t {8 A(4) 10 A ()~ + 35 (tr {54471 ))']

~ AR [1 + L{rdAAT} + o (r{dAA—1})” - ﬁtr{éAA‘léAA‘l}} .

(4.45)

SettingA = R, 04 = ARB’?], and taking expectation of (4.45) establishes the expression (4.11).

4.B Derivation of (4.22)

The three terms involving expectations in (4.15) will be computed separately. The following properties will
be used, see for example [78]:

(A® B)(C ® D) = AC ® BD, (4.46)

tr {AB} = vec’ (BT )veq4), (4.47)

tr {ABC} = vec’ (AT)(C @ I)ved B), (4.48)
tr{A® B} = tr{A}tr{ B}, (4.49)

veq ABC) = (CT @ A)ved B) = (I ® AB)vecC. (4.50)

o First term of (4.15): Using the definition & Rk 4., andA R ;. Of (4.13) and the statistics of the
"one-shot” estimates of section 3.A, this term becomes

LEU{ARIR} = L | v{ARY R} + Et{ARY, R}

0

(4.51)
Xy [ S — DPIE)] r{R7"},
Ny K

withs, = Y DU+ Y pPG).

i=N+1 i=N;+1
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e Second term of (4.15): This is

=E(U{ARIR)? = S E(U{R-IARR 1))

2N?2
sz (ved R=3)(R™% © I)EvecA R ved” ARIR=% @ I)vecr~*

X

E (vecARB?det + vecARB?}sto) (vecT ARB’?det + vecTARB?m)
vecA Ry, ved" AR, 40+ 0+ EveaARYY,, ved AR,

aq b1
(4.52)
We first compute separately the terms namedndb, .
— Termay: SinceARB?det is a diagonal matrix, its contribution is the square of that involved in
the first term of (4.51), weighted by~ instead ofx-.

— Termb,: Assuming small perturbation due to quantization and estimation noise, expanding the
termARB’?sto gives, considering the estimatasi*!:?¢ as independent

by = EvecARY),, ved AR, |

N Ny K
iz | D vecA R ved AR+ vecA R Wved A RN S veeA RPN ved ARV
i=1 i=N+1 i=Ni+1

(4.53)

where the term EéDEI?]I)Zveo(I) (vecl)T is neglected for the purpose if this first order pertur-
bation analysis, at high resolution, and assuming sufficiently kigi\pplying now the result
(4.17) to the one shot estimates of their corresponding matrices yields

N
a = Y vecAR!ved AR

i=1

~ 2NR®R
N1
b= Y veARIWved ARIIM
i=N+1
N
: 4.54
~ 2N —-N)RoR+2 Y. DY RoI+19R) (454)
i=N+1
K
c = Z vecA RIFIMyed A pA1)
i=Ni1+1
K
~ 2K -N)RoR+2 Y. DFYR@I+I10R)
i=N+4+1+1
Hence
1 1 .
e (a+b+c) = e 2KR® R+ | RO I+T® R (2%40t) | » (4.55)
A S— ——— ———

A B C
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and using the underlced termsi, B andC, the termb; may be written as

by (ved' R™2)(R™% @ I)(A+ B+ C)(R™% @ I)vecR™%. (4.56)

~ 9KeN?
* Contribution of A

2 (ved RE) (R o 1) (Ro R)(RF © I) veak

R-%9R

. . fon (4.57)
= z=x=vec R™2(I ® R)vecR™=
= mh=r{R"*RR"5}

1

~— KN
+ Contribution of B

s2etved R™3(R™ @ I)(R@ I)(R™% @ I)veq(R™ %)

= 2retved R™% Iy=veq R™* (4.58)

= 1?2t10\;2 tr {R_l}a

wherely: denotes theV x N ldentity matrix.

* Contribution ofC

Ztatved R3(R™3 @ I)(I ® R)(R™% @ I)veo(R™?)

. ) (4.59)
= g tr{R™'},
which is the same contribution @&
The termb; may thus be approximated as
1 AT -1
o [y P R (4.60)
KN N

Grouping the terms; andb, yields

1
s E(H{ARIRT) ~

2%%0t (tr{R_l})z

+ R ) (Ge) R

(E[tgt _ D[Q](K)) 2] ’

(4.61)

KN

which is the expression (4.20).
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108
e Third term of (4.15): Let7 be R-* AR R-%. Then we have ve& = (R~% @ R~%)vecARL?,

and we get
E — 55 tr{GG}

— ok Etr{ARIR-ARPIR-1)
= — 5 E tr{vedGved G}
A Etr{(R* o R ¥)EvecA R ved AR R+ @ R-%))

EvecA R, ved AR+ EvecA R, ved AR,

b2

— R Etr{(RTQR"

— R EU{(RFOR"
(4.62)

The contribution of these terms is computed separately:

— Contribution of the first term in (4.62)
— o Etr{(R" % @ R™%)az(R™% ® R~ %)

S (£ — DEN2 e {(R"* @ R™3)(R™2 @ R™%)}. (4.63)
tr{rR-1@R-1}~(tr{r-11})2

o~
~

— Contribution of the second term in (4.62)
(4.64)

L Etr{(R} @ R ¥)by(R 0 R %)
- _ﬁtr{( K ®R_%)%[A+ (B 4 C)2%;0] (R_% ®R—%)}’

where the termst, B andC' have been define in (4.55). Their respective contribution are

A —FRt{(RTF0 RTH(ROR)R™F 0 B3} =-getr{ROR)"*(Ro R)*}=—%,
IN2
B —gkSr{(R7 0 R3)(Ro DR o R7%)} = - ZwllA
tr{rgR-1=Ntrr-1}
C i —m St {(R ¥ @ R-})(T @ R)Y(R-t © R-¥)} = — Sulln™
(4.65)
By regrouping the contributions of the terms in (4.63) and (4.65) we get for the third termin (4.15)
1 (2] ot g pl2l et . N 28 tr{R7'} (U {RT')? [ 1 [2]\2
——E1tr{A A ~N— — - —Yhot — D .
o EHARCRTARC R ~ e N (77 Zeot = D)
(4.66)

Grouping finally the terms of (4.51), (4.61) and (4.66), and by retaining only the first order perturbation

terms (linear inD) yields the distortion (4.22).



Chapter 5

Generalized MIMO Prediction

For vectorial sources presenting memory, we show in thagpter that the optimal causal decorrelating
scheme can be described by means of a prediction matrix whose entries are optimal prediction filters. This
decorrelating procedure leads to the notion of “generalized MIMO prediction”, in which a certain degree of
non causality may be allowed for the off-diagonal prediction filters. In the case of non causal intersignal fil-
ters, the optimal MIMO predictor is still lower triangular, and hence “causal”, in a wider sense. The notion

of causality is generalized in the sense that causality between channels becomes processing the channels
in a certain order. We then show that two previously introduced transformations, in the context of subband
coding, appear as special cases of this generalized MIMO prediction. As the previously described causal
LDU transform, realistic coding implementations of the latter two approaches should involve closed loop
structures for the prediction. We show that though these approaches are equivalent in the limit of high rates,
triangular MIMO prediction may be more efficient than its classical counterpart. In this case, we show that
the optimal ordering of the scalar signals (w.r.t. the coding performance at high rate) corresponds to the
case where they get decorrelated by order of decreasing variance. Finally, we present some applications of

these results to wideband speech coding.

109
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5.1 Introduction

In the transform coding framework, previous chapters showed that the optimal causal transform is a lower
triangular and unit diagonal matrix, which corresponds to a (Lower-Diagonal-Upper) factorization of the
autocorrelation matrix of the signal. The rows of this matrix are optimal prediction filters for the corre-
sponding component of the vector to be coded, and the transformed coefficients are the optimal prediction
errors. As in classical (A)DPCM, the prediction should be implemented in closed loop around the quantiz-
ers, that is, using the previously quantized samples. As in (A)DPCM also, we showed that a quantization
noise feedback occurs for which closed form expressions can be obtained. In this chapter, we apply this
causal decorrelation approach to the optimal coding of vectorial signals, as for example those obtained by
subband filtering stereo, or multichannel audio signals. In this case, the vectorial sonagepresent both
temporal redundancies (between the samplesat different time instants) and spatial redundancies (be-
tween the scalar sources). Thus, instantaneous decorrelation such as that performed by a decorrelating
matrix (KLT or LDU) is not optimal, even for Gaussian sources; further decorrelation may be achieved by
exploiting the temporal correlation structure of the vectorial source. Optimal coding of vectorial signals will
refers to decorrelating strategies which remove both spatial and temporal dependencies; the source model
is Gaussian. As in the analysis of chapter 2, the coding@aimvill be the criterion of merit which allows

one to evaluate the coding performance of a transformdtiott corresponds to the factor by which the
distortion is reduced because’6f

ElZ3
Ellgllz

For the causal decorrelating approach introduced at the begining of this thesis, the analysis of the coding

Gr = (5.1)

is again made for two cases: neglecting the effects of the noise feedback in a first step, and accounting for
them in a second step.

By considering vectors of infinite size, we show in section 5.2 that one can get frequential expressions for
the coding gains. In this case, the optimal causal decorrelating scheme can be described by means of a
prediction matrix whose entries are optimal prediction filters. The diagonal filters are scalar intrasignal
prediction filters. The off-diagonal predictors are Wiener filters performing the intersignal decorrelation.

This decorrelating procedure leads in section 5.3 to the notion of "generalized MIMO prediction”, in which

a certain degree of non causality may be allowed for the off-diagonal prediction filters. In the case of
non causal intersignal filters, the optimal MIMO predictor is still lower triangular, and heacsal”, in a

wider sense. The notion of causality is generalized : the causality between channels becomes processing the
channels in a certain order. Some signals may be coded using the coded/decoded versions of the “previous”
signals. We also show in section 5.3 that two previously introduced decorrelation approaches are actually
special cases of this so-called generalized MIMO prediction.

An interesting (and empiricial) result of chapter 2 is that if the quantization noise feedback is taken into
account, the efficiency of the interband decorrelation depends on the order in which the decorrelation be-
tween the signals is processed. We present in the fourth section of this chapter a new theorem concerning
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the optimal ordering of the signals for a trianguleausal” MIMO predictor, namely the ordering which
minimizes the quantization noise feedback.

The fifth part of this chapter deals with optimal triangular MIMO prediction with finite prediction orders.
Despite the non causality in the classical sense of this approach, the optimal triangular MIMO prediction
is well suited for frame based audio coding, which allows a certain degree of non causality in the coding
procedure. When FIR filters are used to perform the intersignal decorrelation, we will show that the optimal
positioning of a finite number of taps is fairly straightforward.

An application of the proposed coding procedure is presented in the framework of widebaoH spding

in section 5.5. Finally, the last section summarizes the results of this chapter and draws some conclusions.

5.2 Optimal Causal Coding of Vectorial Signals

Let us consider a Gaussian vector souregth covariance matrixi,.. Each sample vectar, of z may be
transformed by means of an optimal causal transférrand the resulting transforgy components scalar
guantized and further entropy coded. In this framework, the optimal causal transform is of the form

1
* 0

L= ,
* e * 1

where thex represent optimal prediction coefficients. In other wo¥dis such that

LRy, L™ = Ry, = diag{c], -0 (5.2)

yn 1o

wherediag{a} represent the diagonal matrix with diagonalSince each prediction errgr is orthogonal
to the subspaces generated byithe_,, the transform coefficientg are orthogonal, an&,, is diagonal.
It follows that

Ryy = L7'Ry, L77, (5.3)

which represents the LDU factorization 8f...

5.2.1 Case of Negligible Feedback

Let us now consider the case in which each vedigrto be coded is composed of a succession of samples
of a stationary vectorial signal, = [z14---zmi)?, Xi = [2F 2T ---2F]7. The transform vector
Yp=LXy =[yl yT---yl1" withy, = [y14---ynmx]". Forthese vectorial signals, it is interesting to
consider the limiting case in which the dimensiogoes to infinity. In this case, the optimal transfofm

will lead to a signagk, asymptotically stationary too, sindewill become block Toeplitz (with blocks of
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sizeM x M). In this case, the coding gain (5.1) becomes

det [ diag(Ry, x, )] )M_ (det[diag(ngﬁk)])ﬁ 1:[10

(0) _ _
G = el (det [diag(LRx, x, L7)] det[diag(Ry 4 )] | M (5.4)

2
H Tyi
=1
wherey; ;. is the optimal prediction error of infinite order af x, based on{z;.x . 1,215 1 4™
We shall continue to denote by; (now of infinite dimension) the vector of the corresponding prediction
coefficients.

M

There exists a frequency domain expressionﬁfrajl. Sincey is a totally decorrelated signal, its power
i=1

spectral density matrix can be written as

Sy(f):Ry:di—ag{O'jl,...,O'jM . (55)

If we now describe the prediction operation in the frequency domain, the prediction error should be written
asY (f) = L(f) X(f), whereY (f) andX(f) denote the Fourier transforms gf andz,. The M x M
matrix L( f) denotes the Fourier transform of the prediction error filter. Hence we have

Syy = L(f) Sex(f) LH(_f)a (5.6)
where!! denotes the Hermitian transposition, abfd(—f) = L¥(f) since we consider real signals. Thus,
we can write

i 7 E, Infees (5, ()dr
H O-yz = € 2

I ndeSaa ()2 et (L) (5.7)

_ ] _Z In[det(Sex(£))] df
where we used the following property (due to the monic and causal diagonal prediction filters, see Appendix
5.A)

1

/_2 Indet[Z(f)] df = 0. (5.8)

1
2

The coding gain with negligible feedback (or infinite resolution) is thus

M M
II7.
a0 i=1
L = 1 . (5.9)
J 2, Infdet(Sza(/))] df

1The notationz, ; . - denotes the set of samples of the components; 1 - -- 1, »; of z atinstantse, k+1--- K —1, K.
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5.2.2 Noise Feedback Effects on the Coding Gain

If we now consider the effects of the quantization in the closed loop an analysis similar to that of 2.5.2 can
be made. The gaiG(Ll) can then be expressed as

g
2~

G~ lim

k—oco

1 Hag
det[diag(Rx, x, )] : o1
( . T p— ~ , (5.10)
detl oot x 1T 4 oyl L) [Lie%, + o201l = 1)
Yi q 3
=1
which leads to

Lij? -1
G(Ll)zG(L( qMZH I ) (5.11)

wherel andajl refer to non perturbed quantities.
As in the ideal case, one can derive an expressioﬁ?fb)rin the frequency domain. Under the high resolu-
tion assumption, the quantization errors are decorrelated. Hence we cafyy(if¢ as dlag{a e ag-M ,

or, equivalently, ag> I/, in the case of an optimal bit assignment. Using a similar analysis as in section

2.5.2, the coding gain taking into account the perturbation effects up to first order may be written as (see

5.8)
W o | % : S
~ 9q [ _ -1 L
ERVYE 1+M( /_%tr (Sﬁ(f))df-l-;o_gl)] (5.12)
where, comparing with equation (5.11), the tefrﬁ tr {Sz,} (f)}df corresponds toZ: I UZH . Thus,
i=1 Yi

maximizing G{1); entails maximizing the sum of the inverses of the prediction error variances. This
results was obtained in the transform coding framework of chapter 2 also. Empirical evidence was given
that maximizing:(1);, entails processing the signals by order of decreasing variance. This will be proven
in section 5.4.

5.3 Linear Prediction of Subband Signals

In the case of subband coding, in which the componentsf the vectorial signal: correspond to the
subband signals, we will now show that two previously introduced transformations for maximizing the
coding gain are special cases of a causal unit diagonal transformation. Moreover, the equivalence of these
transforms in the ideal case (consider'(ﬁﬁg) is a consequence of the LDU nature of the optimal transfor-

mation.

5.3.1 Subband Coding

Subband coding schemes decompose a source data stream into a humber of sulesigmdiaying a
passband equal to a fraction of the bandwidth of the original signal, and the subsignals collectively cover
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the entire bandwidth of the original signal. Because a reduction in bandwidth of these subsignals, they are
typically downsampled so that an efficient representation of the original source data may be obtained. A
bit allocation procedure is then performed that assigns a bit rate to each subsignal subject to an overall bit
rate constraint, and finally each subsignal is encadddpendentlpf the other subsignals. Many subband
systems use filterbanks, whose filters are designed to satisfy a perfect reconstruction property, see e.g. [79].
In the example of figure 5.1, the subband signals obtained from downsampling and filtering some process
z are further independently coded. Perfect reconstruction is assumed in absence of quantization.

€T To ’Q—O‘ @
O e @

) &
Gt | L

Figure 5.1: Polyphase representation of a filter bank.

Several results exist which describe the coding efficiency of this structure. For ideal filters with equal
bandwidth (non overlapping brickwall frequency responses), the coding gain is asymptotically the same,
w.r.t. the number of subbands, as that of transform cdadifigis is not the case of other subband decom-
positions, which may be suboptimal even for infinite number of subbands (e.g. [80]). Various performance
comparisons with TC and DPCM, and applications to images and audio coding may be foundin [79, 14, 11].

5.3.2 Linear Prediction of Subband Signals

If now a prediction stage is applied to the subband signals before quantization, a question of interest is to
know whether, for realizable filterbanks, this structure is optimal (in the sense that it totally decorrelates the
input).

For finite prediction order on the one hand, the subband approach has been shown to be more efficient in the
sense that it minimizes the combined prediction errors of the subbands w.r.t. that of the fullband for a given
ordef. This was shown in [81] for Gaussian signals and ideal analysis and synthesis filters. Similarly, for
Gaussian AR sources, tiph-order entropy of the combined subbands is lower for subband signals than

2Note that the coding gain may decrease by increasing this number for subband coding, whereas this is not the case for TC [79].
3In this sense, the resulting— th order is called "super-optimal” [81].
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that of the fullband signal, for any finite These results are confirmed for lossless coding of audio signals,
QMF banks, finite linear prediction order and context based non linear pj&ediction in [82]. (Interestingly,
the problem of attributing the optimal ordgr subject to the constraint thi = p resembles that of
allocating the bits for a tranform coder, because the prediction error variair?tlzes are non increasing variances
of the prediction order, just as the distortions with the bits.)

For optimal prediction on the other hand, Fischer showed in [83] that, except for specid, ¢ades
pendently coding the subbands instead of the fullband signal is, from a rate distortion viewpoint,
suboptimal. The analysis assumes realizable perfect reconstruction QMF filters [84], and wide sense sta-
tionary Gaussian processes. The result is drawn from the high resolution rate-distortion function of the
system, which depends on the variances of the subband signals, which in turn can be analytically derived
from the power spectrum densiti€s, ,, (f) obtained for the particular considered filters. The geometric
mean of these variances is greater than the prediction error of the fullband signal because some interchannel
correlation remain, which can not be further removed. Two approaches aimed of totally decorrelating the
subband signals in order to maximize the coding gain where then proposed.

5.3.3 Two Causal Decorrelation Approaches Compared

On the one hand, Maison and Vanderdorpe [85] introduced in the classical subband coding scheme a ma-
tricial filtering transformatiori’(z), which transforms the vectorial signal = [z1 x...za]7 into the
vectorial signayk = T(q) z,, (Wwhereq is the unit delay operator). This approach corresponds to the causal

MIMO prediction : 7'(z) = Z T, z~", whereTy is lower triangular and unit diagonal. The MIMO predic-

tor is assumed to be of infl?r?i%e order. In order to keep the structure causal, each sampleibbtresis

predicted by means of the past samples of all subbands, and by means of the present samples of lower index
only. In the casé// = 2, the MIMO predictor is made of two intraband scalar predictors and two interband
scalar predictors. It was shown in [85] that such a transformation leads to an optimal codir(g(ﬁiain
because the coponents of the resulting process are totally decorrelated. Fop)Ad{ finite prediction

order, this approach may also outperform fullband prediction for some orders smaller[8&n

On the other hand, Wong used the following triangular transform [87]: in the/dase2,

() = [ 0 1 0 | Ty (z) 0
0 Tha(z) War(z) 1 0 1
) ] (5.13)
] Ty (2) 0 ]
a I Too(2)War (2)Th1(2) Tha(z) ]

4e.g.if the filters of E(z) are ideal (brickwall), or if the p.s.d5,z (f) is symmetric abouf = % in the case of two subbands.
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The scalar prediction error filtéf;(z) whitensz, ; and yieldsy; x, Wa1(z) is a (noncausal) Wiener

filter estimatinges  fromy; », and T2 (z) whitens the resulting error signal to yiejd .. This transform

hence uses only one interband predidtigr; (=) . The loss in degrees of freedom due to the loss of one
interband predictori» in Maison and Vandendorpe’s transformation) is balanced by the non causality

of this remaining unique interband predictor. Using a similar analysis as in [83], Wong showed that the
suboptimality due to the non ideal subband filters vanishes, or equivalently, that the subband redundancy is
removed from the coding procedure, assuming high rate and Gaussianity for all the signals to be quantized.
We will now show that these two transformations can both be expressed as lower triangular unit diagonal
transforms, simply by reorganizing the samples in the vector to be coded. Let us write these transformations
in the case of two subbands, and for a finite frame of signal :

¢ In Maison and Vandendorpe’s approa¢hy , can be witten as

- | *10 Y1,0
1
2,0 Y2,0
* 0 __ I
T1,1 Yi,1
* * 1 T2 Y2,1
Llik = = = Xk
* * 1 - -
*
X1k Y1,k
| * * K * 1]
| T2k | | Y2,k |
¢ In Wong's approach,P.X, can be written as
M1 U T1,0 Y1,0
T1,1 Yi,1
* 0
T1k Y1,k
* e * 1
* e PN * 1
2,0 Y2,0
* 2,1 Y2,1
L * * ok * 1-_1'2k_ 2k |

where? is a permutation matrix. Hence, by reorganizing the vectorial signal inside the véctors
andY ., the transformation is again lower triangular and unit diagonal.
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¢ Let us note that Maison and Vandendorpe’s approach can also be described by the following trans-

formation
1 0 Il ®1,0 Y1,0
Z11 Y1,1
* 0 * 0
T1k Y1,k
K, * I x .- * 0
LPX, = — |=| —— |=PY,.
* 1
2,0 Y2,0
0 * 0 Z21 Y2,1
L*x - * ke * 1-_.’1}27k_ _y27k_

The degrees of freedom corresponding to the triangular block (1,2) in Wong's approach have been
transfered to the upper triangular block (2,1) in Maison and Vandendorpe’s approach.

To precise this, let us consider a first causal transfotm= L, X with Ry y = LiRx x LT =
D;. Consider now another causal transformatiyi, = L. P X orY, = P7 L, P X with Ry.y,
(fPT Lo fP) RH (fPT Lo fP)T = Ds. Then

det(D;) = det(Rxx) = det(Dn) (5.14)

The product of the variances of the subband signal is constant, no matter which causal transform we use, and
as in chapter 2, the coding gaﬂ}‘% is indeed invariant by permutation. Each permutation leads to another
causal decorrelation of the components of one vector. For a stationary vectorialssiginal means that

there exists more that one way to decorrelate the scalar signals which compose this signal. The examples
of Wong, and Maison and Vandendorpe present in fact ffoe= 2) two extreme cases of an infinity of
variants, which are parametrized by the degree of (non) causality (in the classical sense) of the interband
predictor(s).

5.3.4 Influence of the Noise Feedback

Let us now compare the approaches of Wong, and Maison and Vandendorpe in the presence of quantization.
Prediction should be based on quantized data, which from section 5.2.2, perturbs the codinglgain
expression (5.11) shows that in order to maximize the g%ﬁﬁ , one should maximize the sum of the
M
. . - . 1 .
inverses of the optimal prediction error varlancg —-. Consider the cas@/ = 2: let us assume,
g

i=1 Y
without loss of generality, that the varian0e§ composing the vectorial signal are placed in decreasing

order. In this case, one should minimizé. This variance will be minimized if the largest number of

5In order to simulate a realistic source coding framework, one numerical result based on quantized data was presented in [86];
Wong [87] explicitly made the assumption that the power spectrum densities afgthedf the crossband predictor and that of the
corresponding unquantized signal are equal.
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samples are used to predict,. The triangular approach of Wong should therefore be the best one, since it
will lead to a smaller variance far;,. This difference between the two transformations appears only when
the prediction is based on a quantized signal, but this is the way in which such decorrelating transforms will
be implemente?] The following section deals with the genefélcase.

5.4 Optimal Ordering of the Subsignals for Closed Loop Triangular
MIMO Prediction

Very few results, except from [88, 89], seem to concern an optimal ordering w.r.t. to the order of the decorre-
lation in prediction. These problems were presented in the framework of lossy [89] and lossless [88] coding
of multispectral images; they are however different from those of investigated in our work. In [88, 89], one
signal, orband(images of the same spectral band) is chosen as the best preaitioo(band) for the other

signals. This choice of a single anchor band is due to the constraints on the algorithmic complexity, which
must be kept low in order to facilitate on-board implementation of the coding sheme ireitecsaft. In a

second version of the algorithms proposed in these wedd previously compressed/decompressed band
may be chosen as a possible predictor for the bands remaining to be coded, which poses the problem of
an optimal ordering; computationnaly efficient solutions are then found using graphs theory. In the present
work now, each remaining signal may be codedbyhe previously coded/decoded signals.

ComparingG(Ll) in (5.11) with the infinite resolution case (5.9), the different variances produced by the
different decorrelation approaches induce now different sums. Hence, the codir@%ﬂaidepends on

a carefull choice of the decorrelation procedure. In the @ddse- 2, maximizing the coding gain entails
making the variances as different as possible. Thus, the subsignal of greater variance should be processed
first, and all the degrees of freedom of the interband decorrelator should be used to decrease the variance
of the subsignal of lower variance. The triangular MIMO predictor is in this case superior to the classical
MIMO predictor, sincel/;, defined above is the most efficient interband predictor. Now\for- 2, the

following theorem holds.

Theorem:Optimal ordering of the subsignals for triangular MIMO prediction . The optimal order-
ing of the subsignals in a stationawgctorial sgnal for maximizing the high-resolution coding gm”#g
of vectorial DPCM with trangular MIMO prediction is obtained by processing the signals in order of de-

creasing variance.

To show the theorem, consider a recursive argument. First of all, the theorem is clearly true for the case
of two channels. Now consider— 1 channels that we have ordered in order of decreasing variance. When
we add anth channel, the question is in which position it should be put w.r.t. the other channels. Assume
in a first scenario that we put the channel in a position such thatelannels are in order of decreasing

6Another improvementdue to Wong’s approach appears when the filters are forced to have a finite length, see section 5.5.
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variance. Assume in a second scenario that we insenttthehannel at another position. Then we can
evolve from the first to the second scenario by a sequence of permutations of two consecutive channels.
In one such permutation operation, assume that the channels involved in the permutation are in positions
andi + 1. Then the channels ... ,i — 1 are unaffected in the triangular MIMO prediction approach. The
channels+2, ... , n are also unaffected by the order in which channelsd: + 1 are put since in any case

they get orthogonalized w.r.t. the signals in those channels. So the only effect of the permutation between
channelg and: + 1 is on the prediction error variances of those channalsd: + 1. In other words we

are reduced to the two channel case, in which case we know that we should put the channels in order of
decreasing variance. So, as we move from scenario one to scenario two by a succession of permutations of
two consecutive channels, we decrease the coding gain in each permutation. Hence, the optimal ordering is
in order of decreasing variance.

The (closed loop) triangular MIMO predictor can be seen as a generalization to the vectorial case of the
classical (scalar) ADPCM coding technique, see figure 5.2.

ENCODER.

Figure 5.2: Encoder of the triangular MIMO predictor (“Vectorial DPCM”) fir = 2. The bitstreams;
andi, are transmitted to the decoder. Predictiorrefis non causal w.rt¢ (throughZ»; (z)), and causal
w.r.t. 22 (throughLss(2)).

In [55], this technique was therefore named "VDPCM”, for vectorial DPCM. A possible confusion may
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however arise witlpredictive quantizatiof65], which uses vector prediction and vector quantization. We

will therefore not retain this term in this thesis. The original VDPCM technique was first introduced by
Cuperman and Gersho in [90], and was referred to as “vector DPCM"in [91], and as “differential vector
guantization” (DVQ) in [92]. The coding technique introduced in the present work is different from these
approaches because scalar, instead of vector quantizers are used to quantize the prediction residuals. More-
over, practical implementation of this scheme suggests closed loop implementation of the prediction, which

in turn suggests a sequential (instead of block) procedure.

5.5 Optimal Triangular MIMO Prediction

with Finite Prediction Orders

So far we have assumed that all filters involved are of infinite length. In the classical MIMO linear predic-
tion, a finite number of prediction coefficients is typically used in a way that is a straightforward extension
from the scalar case. Namely, the MIMO prediction order is limited to a finite order, resulting in a desired
number of prediction coefficients (from the point of view of complexity or performance or both). In the
triangular predictor case, it is more straightforward to assign a finite number of coefficients in an optimal
fashion. The diagonal terms in the MIMO prediction filter correspond to classical scalar predictors, so
the number of assigned coefficients will simply determine the prediction order as usual. However, for the
non-causal off-diagonal terms, the filters are Wiener filters of unconstrained structure, except that we wish
to use a finite number of taps. The problem then becomes the optimal positioning of those taps. In what
follows, we shall assume that the diagonal scalar predictors are of sufficient order for the whitened versions
of the signals to be considered as effectively white. In that case, the design of the off-diagonal terms in a
row of the MIMO prediction filter corresponds to an issue of estimating a sigal the basis of uncor-
related variableg;. Due to the uncorrelatedness of thethe estimation in terms of thg decouples and

the contribution of eacly; can be considered separately. In particular, the variance of the estimation error

becomes

(5.15)

2
wherer, is the correlation. So, those variablgsshould be used for which the ratgM is the largest.
T
Within a subset of the; that are samples of a certain whitened signg),, is indeE/)eyndent of due to
stationarity and hence it suffices to use those samplEs which |7,

is largest. The optimal positioning
of a finite number of taps in the off-diagonal filters is therefore fairly straightforward.
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5.6 MIMO Prediction of Audio Signals in the Frequency Domain

The several channels of a multichannel audio data stream may be stronlgy dependent, especially for record-
ings of an audio scene by multpiple microphones. For these audio signals, it has been experimentaly proved
that coding schemes which remove the interchannel redundancy can considerably increase the coding ef-
ficiency [93]. This redundancy may be removed either in the temporal or in the frequency domain. In the
latter case, the transform coefficients may be obtained by means of DFT, DCT, etc, applied to blocks of
N samples of the scalar signals...+~—1. In this case, the transform coefficients belonging to the same
channel are (almost) uncorrelafe@hus, the interchannel redundancy removal can be performed by means

of a decorrelating transfom (such as KLT or LDU) at each frequency band. Such an approacbpeasgr

in [93, 95], where the frequency decorrelation was performed via KLTs, and added as a post processing
stage in the core of a perceptual MPEG audio codec. This approach is attractive because it avoids the prob-
lem of finding the delay to which the channel are the most corrélafeat this reason, better compression

was achieved by decorrelating the channels in the frequency than in the temporal domain in [95].

We will not pursue further this approach here; we should however note that, in the particular case of per-
ceptual audio coders, the interchannel decorrelation performed in the temporal domain by means of Wiener
filters should be carefully designed. The bitrate reduction caused by the decorrelation at low frequencies
may be compensated by an excess bitrate due to the noise introduced by the predictors at higher frequencies;
this may make the components at these frequencies more greedy in bits for the corresponding quantization
noise to be maintained under the perceptual masking threshold [97].

5.7 Applications to Wideband Speech Coding

In the third generation mobile networks, the encoded signal band in wideband speech codersis 7kHz instead
of the usual 3.4kHz. One way to construct such a coder is to filter and split the input signal into two
subbands, which allows one to use an existing narrowband coder for the lowest subbganskg figure

5.3.
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Figure 5.3: Triangular MIMO prediction applied to WideBandegph Coding.

"This is only asymptotically true in the framelength see [94] for bounds on the coding gain of the DFT.
8Negligible instantaneous correlation exist in stereo signals, even in those generated by the recording of the same sonore source

[96].
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MIMO prediction may be applied in such a scheme to decorrelate the subband companeiaisd
z2 ;. In the case of an optimal bit assignment, Wong's strategy described above should be applied: since
the higher subband has on the average a lower variance than the lower subband, this approach should be
the best decorrelating predictive transform. Note that, despite the non causality in the classical sense of this
approach, it is well suited for frame based speech cddingich allows a certain degree of non causality.
Actually, one can code one frame of signal in the lower subband and then code one frame in the higher
subband.
Another special case is when the bit assignment is fixed, and when all the bits are used to code the lower
subband. In this case, the quantization noises introduced by the quantization of thewsigreaigy- . are

%2.1 =27l = acl ,Witha < 1, anda@%2 = o;,. The coding gainis

Ell7 2

2 2
OzO'yl + Uyz

In this case again, the '[ermrj1 being small compared ton, one has to minimizei, and Wong’s
approach is more efficient. Informal listening tests we performed (using several GSM AMR narrowband
codecs) have confirmed the perceptual gain over narrowband coding, introduced by the interband prediction.
The prediction of the higher subband is done on the basis of the decoded version of the lower subband. The
length of the frames waX)( samples in the subsampled domain, and the interband Wiener filter comprised
of 21 taps (symmetric around the 0 lag). The filters were either the 32-taps QMF of Jain et al. [98], or the
32-taps CQF of Smith et al. [99]. The encoded lower subband is transmitted @ R, R, = 0) along with

the coefficients of the crossband predictor (for which we assumed perfect quantization in these results). The
decoder produces, by way of higher subband, only its predicted version on the basis of the decoded lower
subband. The improvement in perceptual quality is nevertheless significant. Some overhead is required in
transmitting the prediction filtdi’2; (z), since backward adaptation is indeed made impossible in this case
(there is no genuine highpass subband to predict).

This technique is closely connected to the problenbafidwidth expansigrfor which the goal is the
generation at the decoder of an acceptalgiper subband subject to the constraint that no rate should be
dedicated to its coding. The only available information about the high frequency band is therefore the
guantized lower subband -assuming that significant statistical dependencies (or mutual information) exist
between the two bands. In [100], a lower bound on the mean log spectral distortion (mLSD) of the spectral
envelope in the missing frequency band as achievable by any memoryless bandwidth expansion algorithm
is presented. The mLSD is first related to the mutual information shared between sets of parameters (the
more the mutual information the less the mLSD). This information is then estimated for long term speech
sequences, and for usual coding paramaters (LPC correlations coefficients,...). The minimabodings

mLSD is evaluated at roughtydB in the missing frequency baHt This paper provides also a detailed

list of references about this interesting problem, including non memoryless techniques.

9such as that considered here, which uses GSM-AMR NB codecs
10As a rule of thumb, a “sufficient” WB speech dityacorreponds usually ta dB on the average of thetal band
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5.8 Conclusions

For vectorial sources with memory, we showed in this chapter that the optimal causal decorrelating scheme
can be described by means of a prediction matrix whose entries are optimal prediction filters. The diagonal
filters are scalar intrasignal prediction filters. The off-diagonal predictors are Wiener filters performing the
intersignal decorrelation. This decorrelating procedure led to the notion of “generalized MIMO prediction”,

in which a certain degree of non causality may be allowed for the off-diagonal prediction filters. In the case

of non causal intersignal filters, the optimal MIMO predictor is still lower triangular, and Heagsal”, in

awider sense. The notion of causality was generalized in the sense that causality between channels becomes
processing the channels in a certain order. Some signals may be coded using the coded/decoded versions
of the “previous” signals. We showed that two previously introduced transformations, in the context of
subband coding, appear as special cases of the generalized MIMO prediction. As the previously described
causal LDU transform, realistic coding implementations of the latter two approaches should involve closed
loop structures for the prediction. We showed that though these approaches are equivalent in the limit of
high rates, triangular MIMO prediction may be more efficient than its classical counterpart. This triangular
predictor appears as an extention of the classical scalar (A)DPCM to the vector case. In this case, we showed
that the optimal ordering of the scalar signals (w.r.t. the coding performance at high rate) corresponds to the
case where they get decorrelated by order of decreasing variances. In the case where FIR filters are used
to perform the prediction, the triangular predictor was shown to benefit from a simple optimal positioning

of the taps for the off-diagonal filters. Finally, we presented some applications of these results to wideband
speech coding.
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5.A Derivation of (5.8)

The determinant of the lower triangular and unit diagonal prediction matifx may be written as

M
det L(f) = T Lu(f), (5.17)
i=1
from which we obtain
M 1
[2mdeaft(dr = 3 [ mLathd
v (5.18)
= Qi(f).

It is now shown that any of thé/ previous integralg);(f) is zero. The idea of the proof is to show that
these sums do not depend on the coefficients of the prediction filters, and in particular, they may be set to

oQ

without affecting the result.

SinceL;(z) = Y _ Li; »2~* are prediction filters, they have causal and stable invéises > _ Bj; »2~".
k=0

k=0
Thus we have

0Qi(z)  _ jg%d_z
OLik Lii(z) E

= jgz_kB“(Z)dz—z

dz

(o]
= §F) By —
7=0

z

= ZBii,jfz_(k+])7Z (5.19)
7=0

(o]

= ) Biijdo, 4k
7=0

= By

= 1.

Hence (=) does not depend on the strictly causal coefficiénts, and is therefore equal to that obtained

with L;; (#) = 1, which is zero.

5.B Derivation of (5.12)

Similarly to section 2.C, we consider the optimal decorrelatioRf x, + o I, 5. Then we have

M
Jim (det {diag{L’(R&gk + 07 Inm) L T}D = H(U@%, + Aoy, +0g),

=1
M 2 2
Aoz + o
_ 2 Yi q
= 117 (1 ¢ 2Tt )

Yi

=

(5.20)
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WhereAajl correspond, as in 2.35, to the increase in prediction due to the noise feedback (w.r.t. to the opti-
mal prediction error variances;,), and/; s is thek M x kM |dentity matrix. Sincel’ totally decorrelates
Rzzzz, we have

M Al + o2 [z In[det(Sze ()+555(f))]df
HO_Z 1_|_ Yi q —% L vy

Yq 0-2 €
Yi

i=1
1

J 21 Infdet(See (1))]

X
[}

T (sansgn) ) G20

M M
i) (-5

i=1 Yi

X

where tr denotes the trace operator. Now, the required quantity for the coding gain is

M
HO'Z»Z = H(Uil—l—AU;l)
i=1

M 2
Ao
2 i
O'yl) (1 + Z —Uzy ) ,
i=1 i=1 Yi
which from (5.21) may be written as

M M 2 1
Ao . T2, In[det(Sge (£))]df
(HU;) (1+Z—05y ) N e T2
=1 =1 t

(5.22)

2
—s="

[ (S2 D sm() df—JZW:Z_z(?] |

i=1 Y
(5.23)
SettingSy; (f) = o1, we obtain for the coding gaiﬁ(T%
M 7
Hgi, Mo —r
o = || e[t () a- 3]
1S i=1 Y (5.24)

X

M
G [1 + % (—ff% r (S5 () df + Uiz)] ,
i=1 Y

which is the desired expression.
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Brief History of this work:

Analysis-by-Synthesis Structures

The results of the presented work find their origin in the french RNRT pr@@BASCAL, which aimed

of providing source and (joint source-) channel coding algorithms for wideband audio sigiidls: (—

Tk Hz]) in the framework of UMTS. Our personal contribution to this project concerned mainly source
coding, for which we followed two axis of research. The first axis lies beyond the scope of the present
framework, and will only be briefly summarized. The description of the second axis may however be rele-
vant for the reader interested in the topics of this thesis; it is shown how existing source coding techniques,
industrial constraints and scientific objectives together led to the causal coding framework described along
these pages.

Joint Optimization of Formant and Pitch Predictors

Low bit rate speech coding makes a pervasive use of linear prediction. The GSM AMR codecs standardized
by ETSI for narrowband speech coding are based on CELP algorithms. As most source codecs, decorrela-
tion is performed (by means of linear prediction) before entropy coding. Due to the particular structure of
speech waveforms, the prediction is comprised of two stages: a short term predictor (STP) removes short
terms correlationf¢rmantsdue to the vocal tract), and a long term predictor (LTP) deals with more distant
correlations due to the excitation of the vocal congisch). Though the coding algorithms of CELP coders

may be very elaborated, thegparatelyestimate these predictors. The depicted correlations are however
not independent, and a sequential approach for linear prediction is not optimal. We proposed therefore a
method allowing one to jointly estimating STP and LTP, using an iterative algorithm. In order to establish
the efficiency of this joint optimization, an analysis-by-synthesis -like criterion was proposed. An estimate
of the original signal is computed filtering the excitation (white noise) by means of the jointly estimated
predictors; this signal is then compared to the original which is a synthetic stationary signal whose optimal
STP and LTP are perfectly known. The results show that a joint optimization clearly improves the decor-

1lcodage erBandeclargie avec partagsdaptatif du @bit entreSource etCAnal pour Eseaux cellulaires de deexne et troigime
gérérations (UMTS), http://www.telecom.gouv.fr/rnrt/pcobasca.html.
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relation efficiency. Moreover, both the complexity of the proposed method, and the number of iterations
required by the iterative algorithm to converge to the optimum estimates are fairly low. Details about this
work may be found in [101, 102].

Analysis-by-Synthesis Coding of Wideband Speech

The second axis regarding wideband coding of speech was based on the idea of using an existing (stan-
dardized) narrowband coder; this approach was attractive because it would indeed greatly simplify the
optimization work concerning the coding of the lower (and most important) sujbaat: — 4k H z]. The
remaining problem was that of designing a convenient filter bank. Besides traditional constraints such as
delay and passband selectivity, preliminary results showed that the quality of the codecs of the GSM AMR-
NB rapidly decreases beyondik H . Moreover, this frequency may be within the frequency area where
symmetric two channel filterbanks overlap &ir/ = original signals (aliasing may be accounted for by the
relation of analysis to synthesis filters, but reappears because of the quantization). Finally, the human hear
is particularly sensitive in this frequency region. These facts suggested the use of an analysis-by-synthesis
technique, which had proven usefull results by the past in speech ¢adiAg attractive structure was
therefore that of figure 5.4, based on the Laplacian Pyramid [103] (in the figures of this cligpteay

denote any codec). The input signal is wideba®d ¥ - — 7k H z]). The filtersH,, Gy, H{, G, and Gy

should now be optimized subject to the constraint of minimizing the variance of the reconstruction error
E(x — z,)%. First, we need one branch to be a genuine lowpass subband, which fixes conseHyently
Second, by writing explicitly the polyphase components [104] of the signals and those of the dilgers (
X¢(z) and X°(z) denote respectively the even and odd components of the input signal, and similarly for
the filters and the reconstructed signal), we may obtain more insight about the role plaid by the other filters.
The polyphase analysis lead$to

X¢ = X[GeHS + GSH\* — GSHPGHE — GSH°GOH{)
+2 7 XCO[GEHG + GSH\ — GSH FHIG — GSH * G HE],
X = zX°[GPHS + GSH\* — GOH G HE — GH,°G°HE]
+X°[GPHS 4+ GOH,* — GH HIGE — GSH,°G°H{).

(5.25)

Considering the analysis-by-synthesis bra6cH in fig. 5.4 (b), ne may denote by’ the filter equivalent
to the cascade

F'=G°HS +G°H,’. (5.26)

This relation expresses the influence of one branch uppon the other, see figure 5.5.

12CELP coders are.g. well known analysis-by-synthesis coders: the excitation signal is selected among several candidates of a
codebook by synthesizing the reconstructed speech (through the inverses of the LTP and STP), and by choosing the most representative

w.r.t. to a weighted distortion measure.
13dependence in is omitted for notation simplicity.
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Comparing these representations with figure 5.4 (a), this figure shows in particular that the analysis-
by-synthesis filterbank may be linked to a classical filterbank, where respectiely F’(-?)G; and
H{ — F'(z*)H, would be identified to respectively, or H; QMF- or CQF- like filters. Focusing then on
the role of the filtei, it should be designed in order to minimize the variance of the input of the quantizer
@-, as shown by the substractive branch of Figure 5.4, (b). This branch allows one to optimize the whole
structure through the optimization of the filtéf (figure 5.6), which corresponds to the cascée Hj.
Suppose we fiiy, Gi;, H andG; as those of a classical filterbank (fig. 5.4, (a)). The remaining degrees
of freedom are then the coefficients of the transfer functiofd ofvhich may be written as

G* = GYF.,
G° = GYF,,.

(5.27)

Using the expression (5.26) relating the component’’dd the analysis and synthesis filters, we obtain
F' = H{GSFy, + HYGSFy,, (5.28)

where the components,,, andF,,, of some filter/" are the remaining degrees of freedom of the system.
Thus, they correspond to adaptive Wiener filters aimed of modeling one subband signal on the basis of
the other. This lead to the alternative representation of figure 5.7, where a crossband predictor should be
designed to minimize the variance at the input of the second quantizer, which makes the subbands ideally
decorrelated. The adaptive part of the whole structure is concentrated into this single filter; the other analysis
and synthesis filters are those of a classical, and possibly separately optimized filterbank. The positioning
of I w.r.t. to the quantizef); is therefore a consequence of the desired analysis-by-synthesis configuration.
This is the structure described by Wong in his 1997’s paper [87].

The decorrelation matrix resulting from this approach was expressed in 5.13. The link with the causal
LDU transform was then straightforward, since a triangular matricial transform whose rows are optimal
prediction filters (with increasing prediction orders) of the input signal diagonalizes the covariance matrix
of these data; this renders the structure optimal in the classical high rate transform coding framework. The
analysis-by-synthesis constraint led then to the closed loop implementation described in the first chapters
of this thesis.
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Figure 5.4: (a) Classical filterbank and (b) Laplacian pyramid-like structure applied to wideband coding of
speech.
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Figure 5.5: Equivalent representations of the analysis-by-synthesis filterbank.



131

HO @ Ql @ G W

_I_

H=

d
I 12
—~ H, F(z?
z / (=) d
| A @
+
Hj

Figure 5.6: Equivalent optimizations of the analysis-by-synthesis filterbank w.r.t. the impulse response of
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Figure 5.7: Representation of the analysis-by-synthesis filterbank as the Wong's structure.
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Causal Lossless Coding
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Overview of the Second Part

The second part of this thesis presents and analyzes lossless coding techniques based on the causal decor-
relating approaches (LDU transform and generalized MIMO prediction) described in the first chapters.
This overview is organized in four parts. The first one sets the stage; it presents the coding structures and
the related problem which will be investigated. Basically, these structures involve integer-to-integer trans-
forms, and multi-stage lossless coding. The second part presents a brief overview of state-of-the-art coding
technigues and issues in lossless coding of multichannel audio, which is a natural field of application for
the proposed coding procedures. The third part presents in more details the framework of multiresolution
coding. Finally, the last part details in more depth the particular contents of each chapter.

Framework and Coding Structures Analyzed in this Part

Integer-to-Integer transforms

Lossless coding schemes may exist as stand-alone encoders, but they are also part of the core of lossy
encoders, in order to improve its compression efficiency; this is the goal of the entropy coding techniques
described in the introduction of this thesis. Let us consider now the coding scheme depicted in figure 5.8,
which uses a decorrelating transformation

In a first step, a very high resolution (amplitude-continuous) vectorial satfr¢® quantized using a
lossy source codec, represented by the o) may represent the discretization realized by any lossy
codec,e.g. independent uniform scalar quantizers, independent ADPCM or MPEG audio codecs...). Once
the quantization has been performed, one is left with a discrete-valued vector solireeproblem is then
to transmit efficiently (w.r.t. the bitrate and the complexity) the vecigro the decoder. An efficient en-
tropy coding procedure is vector entropy coding; it is known to be asymptotically optimal w.r.t. to the block
length, but requires to estimate the joint probability distributions of the vectors. Such a coding procedure
is consequently very complex and not well suited to signals which present long term corréfafsoich
as high quality audio signals sampledddt1kHz). In this case, the set of strearns; } obtained from the

14For vector sources with memory, the problem is even more acute since joint probability distributions of eleatatsrsshould
be estimated.
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Figure 5.8: Transform based lossless coding scheme embedded in a lossy codec.

lossy encoder is preferably entropy coded usinhgcalar entropy coderg®®. However, the scalar sources

x; are generally neither memoryless, nor independent, which makes the single-letter entropy coding subop-
timal. One may therefore apply after the quantization stage a lossless transformationder to reduce

the intra- and inter- signal correlations, and thereby, the bitrate. Indeed, the signal should not incur further
degradation7” must be invertible. Both the inputs and the output$'afre discrete valued; therefofE,is

called an integer-to-integer transform.

Summarizing this framework, the integer-to-integer approach divides the coding procedure into two steps:
a transform?" is firstly applied to each block in the aim of decorrelation; the transformpoorents are
secondly scalar entropy coded, which keeps the complexity reasonnably low. The vectorial gyl

rise toN transform signalg; from which the decoder is able to losslessly recover the original signal. This
approach will be referred to as “one-shot”, or “single-stage” lossless coding.

For a given transforrfi’, and a given source we will consider two scenarios: scenario 1, whéris used,

and scenario 2, where it is not. In both cases, the structure wilMusealar entropy coderg as in figure

5.8. We will then investigate the following questions. Firstly, what is the maximum achievable bitrate re-
duction over scenario 2? Secondly, what is the actual bitrate reduction operated by using the trésform

In chapter 6;1" will be based on two decorrelating transforms: the KLT and the LDU. In chaptEn|l

be based on the MIMO decorrelating approaches discussed in chapter 5, which account for both intra- and

inter-signal correlations.

15For example, popular codes in audio include Huffman and Golomb-Rice codes.
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Multi-Stage Lossless Coding
Besides this “one-shot” compression approach, a different lossless coding procedure consists in lossy cod-

ing the sourcer in a first step, producing thereby a first streams\Voflow resolution” signalsy?. In a
second step, the error sigrails separately encoded, which results in the two-stage structure of figure 5.9.

Y gq {z]} gq B x 2
T {Q} i} T T

&

Is

o

ENCODER DECODER

Figure 5.9: Classical two-stage lossless transform codidg.denotes uniform scalar quantizefs, } and
{~!} scalar entropy coders, afdl rounding operators.

The advantage of this schemed. in the case of variable transmission bandwidth, or internet browsing)
is that an approximative version of the signal of interest can be quickly obtained, independently of the error
signals. The original signal can eventually be recovered by adding the error signals. Depending on the
stepsizes of @ }, the rate dedicated to code the low resolution vergfoaf « can be regulated; this permits
for this signal lower rates than in a single-stage lossless coder, at the cost of introducing some distortion.
This coding scheme is widely used in lossless coding of audio signals, see e.g. [21, 24], and of images
[105, 106]. A comparison of the compression efficiency of standard orthogonal tranforms to that of the
causal one appears therefore interesting. In particular, it is interesting to know wether using a two-stage
lossless transform coding scheme is suboptimal w.r.t. to the single-stage approach explained above. These
guestions are addressed in chapter 7 for the two-stage approaches based on LDU and orthogonal transforms,
and in chapter 8 for two- and/ -stages structures based on MIMO predictors. We present now an overview
of lossless multichannel audio, for which the considered coding schemes may be useful. Then, the concept
of coding a source by means of multiple resolution levels will be described more precisely. It has a long
history in source coding.
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Lossless Multichannel Audio Coding

In the last decadefittle attention has been paid to lossless audio coding, maedabse it provides lower
compression ratios than lossy coding. Many modern applications suggest however the use of a powerfull
lossless audio coding technique. In applications where coding is not subject to stringent bitrate constraints,
as for Digital Versatile Disks (DVD), lossless coding obviously appears as the best technique. Some appli-
cations of very high fidelity music distribution over the internet could also provide lossy compressed audio
clips in a first step (allowing the music lover to browse and select the desired clip in a reasonnable time),
and then provide losslessly compressed audio signals in a second step. Such systems aoalcddlédl

systems, and will be the topics of chapters 7 and 8. For archiving and mixing applications, lossless compres-
sion avoids signal degradation when successively encoded/decoded with lossy encoders [107]. It can also
be observed that an increasing number of companies now provide products for lossless audio compression
[108]. A complementary survey to that of [107], reviewing free competitive lossless codecs, can be found in
[109]. In the particular case of MPEG-4, MPEG members are now discussing issues in considering lossless
audio coding as an extention to the MPEG-4 standard [110].

An important issue for which lossless audio coding schemes slamalount is the multichannel aspect

of recent audio tdmologies. Starting from the monophonic and stereophonic technologies, new systems
(mainly due to the film industry and home entertainments systems) such as quadraphonic, 5.1 and 10.2
channels are now available. An efficient coding procedure aimed of storage, or transmission of these sig-
nals should benefit (sub)channel correlations.

Multichannel audio sources can be roughly classified into three categories : signals used for broadcasting,
where the channels can be totally different one from another (e.g. different audio programs in each channel,
or the same program in different languages), film soundtracks (typically the format of 5.1 channels) which
present a high correlation between certain channels, and finally multichannel audio sources resulting from
a recording of the same scene by multiple microphones (in this case, there is indeed a great advantage to be
taken from the structure of the multichannel audio signal) [93].

In most state of the art lossless (and lossy) audio codecs however, interchannels correlations are not fully
exploited; these systems often only compute sums and differences. This assertion should be contrasted by
the recent works in [93] and [21], where KLT and adaptive prediction are respectively used to remove inter-
and intra-channel redundancies. The former was evocated in chapter 6; the latter will be described more
extensively in chapter 8.

Besides purely lossless systems, interesting alternatives are lossy/lossless coders. These systems either
switch from lossy to lossless algorithms, or provide a lossy version of the signal first, and the complemen-
tary error signal in a later stage, resulting in multiresolution systems.

16The termprogressivés more frequent in image coding.
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Multiresolution Coding

The principle of multiresolution coding is that only an incremental increase in rate over the current trans-
mitted rate results in an improvement in the source representatidapending on the available resources
(transmission bandwidth, capacity storage), the scheme may be lossy or lossless, and provides an SNR
scalability.

Let us consider coding methods designed to operate at fractional rates of an overall rate. The question
whether this system is suboptimal in the rate-distortion sense w.r.t. the same system designed for the over-
all rate has been fist addressed from the rate-distortion theory viewpoint by Koshelev [112] who called it
divisibility, Equitz and Cover [113] under the headingatcessive refinement informatidiis shown that
successive refinement in the rate-distortion (r(D)) optimal sense is not always possible, and that a sufficient
and necessary condition is that the individual encodings (or representations) be expressible as a Markov
chain. More recently, this result was reinterpreted by Rimadld4] and extended from memoryless to

more general sources in [50]. We will restrict the rate-distortion considerations of this second part by
focusing on the operational multiresolution compression performance obtained by particular multiresolu-
tion (or multi-stage) coders only; these performance will be compared with the corresponding one-shot (or
single-stage) lossless coders.

Progressive coding has become important in image and audio coding, since in a network environment, dif-
ferent users may have different access cdipi@s, such as different bandwidth, CPU power, etc, and may
access the sources at different levels oflifpaln such circumstances, a coder that can provide a coded
sequence in a progressive way has an advantage. Progressive coding is also designated as scalability, mul-
tiresolution, layered or embedded coding, information divisibility, or successive approximation. Because it
has become ubiquitous in practical coding systems, it is difficult to exhaustively present the several related
techniques. Two basic approaches can however be distinguisbeatral selectiorandsuccessive approx-
imationor refinementwhich will be investigated in this work.

Spectral selection uses the signal representation obtained by means of a transform or a subband coder. Since
for many signals (e.g. images or long term speech) most activity is concentrated in the low frequency area,
an acceptable representation may be obtained by means of thepomalasy (or, more generally, by the

most significant) coefficients onf§; This approach is for example used in MPEG audio codecs, where

the significance of the transform coefficielftss computed w.r.t. to @sychoacoustic masK his is aldo
somewhat in the spirit of the AMR-WB codec where the high frequency W@add- 7]k H =, which is

not perceptually critically relevant, is discarded from the transmis$i§hil6, 117]. As for images, many

17This contrasts with the Multiple Description framework, where the division of the overall rate is aimed of ensusitzeatable
quality in case of channel impairments [111].
18The Significance majocates for example the significative transform coefficients on a grid, and is transmitted as side information
in the JPEG standard.
9In layers 1 and 2 of MPEG1, these coefficients are obtained by means of QMF; In layer 3, alsdviBleahd MPEG2-AAC,
by means of MDCT [115].
20A bandlimited white noise is instead spectrally shaped at the decoder, according to the formant structure of the lower frequencies.
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approaches exist, including e.g. the prioritized DCT method [118], and lossless approaches based on Lapla-
cian Pyramid [103] such as [119, 105, 80], on subband coding with QMF [120], antialiasing filters [121],

or wavelets [122, 123].

Another powerfull progressive coding scheme is successive approximation. In contrast to spectral selection,
which generates minimum distortion for the selected coefficients but discards all the other coefficients, suc-
cessive refinement produces relatively constant distortion for all the coefficientsedded coding systems

have the feature that bit rate reductions can be performed at any point along the communication network.
They imply a block of bits within which is embedded a subblock, which is itself sufficient for producing a
decoded signal of sufficient quality, although full quality is achieved only upoaiving the entire block.
References about early systems may be found in [14]. PCM is for example a naturally embedded system
(least significant bits are simply discarded first), but DPCM is not. In order to cope with possible degra-
dations of the reconstructed signal, a tractable approach is to decrease the precision in the feedback loop:
in this case, only theore bits (as opposed tenhancemerttits) of the value of each quantized sample are

used in the prediction. Other approaches are based on adaptively allocating the bits among the quantizer
of the prediction residual and the quantizer for the reconstruction error [124, 125]. CCITT Recomandation
G.727 describes embedded (A)DPCM algorithms usig@ and2 core bits [126, 127]. A both bit rate and
bandwidth scalable CELP coder is standardized in MPEG4 [128]. Besides, combination of (A)DPCM and
spectral selection with Laplacian pyramid was studied in [129], and with filterbanks for lossy speech cod-
ing [130]. In images, examples of coders which use successive refinements (based on DWT) are the EZW
(Embedded Zero Tree) algorithms of [131, 132]. Context information is used in successive refinement of
image coding in [133, 134], and more recently in [135].

A two-stage lossless coder, including a previously standardized MPEG codec in the lossy stage was pro-
posed in [136], and extended to multiple bit rates in [137]. Spectral selection andssive refinement

may also be combined, as in [138]. A comparison between the performance of these various techniques can
be found in [139, 140] and [141].

Proposed Analyses

The following topics will be investigated in this second patrt.

¢ Chapter 6 deals with single-stage transform coding. In the case whefdig. 5.8 is based on
decorrelating matrices such as KLT or LDU, the relationzofto y is similar to that obtained with
transform coding, except that quantization and transform stagesvarsed The transformed signals
must be discrete since they are further entropy coded. Therefore, integer-to-integer implementations
of transforms traditionally used in the context of transform coding may be useful in such a scheme.
This chapter will compare the compression performance of the KLT and the LDU in this framework.
From a rate-distortion point of view, the question of whether integer-to-integer transforms are, as
efficient as their continuous counterparts was addresseehtly in [41]. Let us Assume that the
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guantization stagé is comprised of uniform scalar quantizers with the same stegsizé/e will
refer to the following coding schemes:

— (1) scalar quantization of thef followed by scalar entropy coders,

— (2) scalar quantization of the followed by integer-to-integer decorrelating (single-stage loss-
less transform coding), transform and scalar entropy coders,

— (3) continuous decorrelating transform followed by scalar quantization and scalar entropy
coders (transform coding),

— (4) quantization of the:¢ followed by vector entropy coders.

The results of [41] show that, for Gaussian vectors, the performance of the sch&més), and

(4) are equivalent in the limits of small stepsizes. This is equivalent to neglecting the integer-to-
integer constraint on the transformation of schgg The purpose of this chapter is to evaluate

the bitrate reduction actually operated by schemgw.r.t. scheme( /), when this constraint is
accounted for. This bitrate reduction is defined &ssaless coding gainNVe will show how the gains

of schemeg3) and(4) represent an upper bound for thaf ®f in terms lossless coding gain; this
bound will be linked to the mutual information shared by theFor a given quantization stage (fixed
distortion level), the suboptimality ¢2) will be expressed in terms of excess bitrate. This inherent
suboptimality of integer-to-integer transforms will then be compared for the LDU and the KLT. The
LDU will be shown to outperform the KLT in this case, because of itegidar structure. Finally, the
adaptivity of the considered single-stage lossless transform coding systems will be investigated. This
part is somewhat in the spirit of the analyses of chapter 5. We will consider systems whose integer-
to-integer transforms are computed in a backward adaptive manner, by means of an estimate of the
covariance matrix based dii decoded vectors. In this case, the lossless transforms converge to the
optimal transforms a&” tends to infinity. For a fixed number of vectaks we will try to evaluate,

for both transforms, which bitrate reduction (w.r.t. schef¢) is achieved by the corresponding
transform. These results are presented in [142]. After the analysis of these single-stage coding
schemes, we will move on to two-stages structures based on the KLT and LDU transforms.

¢ In chapter 7, the integer-to-integer implementation of the two transforms will be further investigated
in the framework of figure 5.8. For a fixed preliminary quantization stage (and for sufficiently high
resolution), we will analyze the bitrate required to entropy code the low resolution and the error sig-
nals. The resulting overall bitrate will be compared to that obtained with the single-stage structures
of the previous chapter. We will show that while orthogonal transform tend to “gaussianize” the error
signals, the LDU benefits from keeping them uniform. As a consequence, the orthogonal transforms,
including the KLT, will be shown to be approximately25 b/s/ch suboptimal w.r.t. their causal coun-
terpart. Finally, we will underline several other practical coding advantages of the LDU, such as the
ability of switching easily from a single- to a multi-stage structure, or that of allowing one to quantize
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with different resolution levels the different channels. These results are presented in [143].

As at the end of chapter 4, we will then generalize the results regarding the causal approach by con-
sidering infinite vectors of vector samples, in the frameworks of the single- and multi-stage lossless
structures described so far.

The last chapter deals with optimal lossless coding of vectorial signals. The coding structure inves-
tigated in a first step is similar to that of schett®, or fig. 5.8, where the transforffi will be

a particular prediction matrix.(z) of the generalized MIMO prediction framework. Similarly to
chapter 6, the corresponding compression performance will be compared to the optimal compression
performance, as achievable by any lossless coding technique. The particular cases of the classical and
the triangular MIMO predictors will be investigated, and shown to present equivalent performance.

In a second step, we will generalize the coding scheme of fig. 5.9 by introducing ADPCM loops,
whose quantizers allow one to choose the respective bitrates for both the error and the low resolution
signals. For these two-stages structures, we will compare, similarly to chap. 7, the overall bitrate
delivered by the multiresolution structure to that of the corresponding “one-shot” approach. These
two-stages structures will be shown to be slightly suboptimahbse of the noise feedback created

in ADPCM loops. Finally, the two-stage structure will be generalizefiitstages; a strategy will be
proposed so that the delivered bitrates approach some predetermined target rates. These results are
presented in [144].



Chapter 6

Causal versus Unitary Single-Stage

Lossless Transform Coding

In single-stage lossless transform coding, integer-to-integer transforms are used to deca¥ralegerete

scalar sources int@v transform components. These integer-to-integer implementations involve a cascade
of triangular matrices and rounding operations. In [41], the optimality of the integer-to-integer implemen-
tation of the Karhunen-Leve Transform (KLT) was established in the limit of negligible round off errors.
This chapter presents a similar single-stage, or “one-shot” lossless coding procedure based on the causal
LDU transform. We define in a first step tlussless codingain for a transformation as the number of
bitrate reduction operated by the corresponding lossless coding scheme over a system using no transform.
This gain is linked to the mutual information between the random variables (r.v.s) to be coded. In a sec-
ond step, the effects of the integer-to-integer constraint (round off errors) on the coding gain are analyzed
for both the unitary and causal approaches. A third step focuses on the effects of estimation noise on the
coding gain: in this case, the transforms are based on a estinﬁg&gq of the covariance matrix of the
quantized signal$tz«.«. In any case, the LDU-based approach is shown to yield the highest coding gain.
The theoretical analyses are confirmed by humerical results.

143
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6.1 Introduction

Let us consider the three coding schemes of figure 6.1, simplified from figure 5.8. In all cases, continuous
sourcese; are quantized using unbounded uniform scalar quantizers with stegsigsiantization stage
Q, def. (7.1)). In the first schem@ ), the resulting discrete valued scalar source$ are directly entropy

coded using a set of independent scalar entropy cogddrodewords; with lengths/;, are transmitted to
the decoder).

7 . 7
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Figure 6.1: Coding schemes considered in this chaptemDirect entropy coding of the/ (2) Introduction
of a lossless transform after quantization &fi¢ Classical transform coding scheme.

As stated in the introduction of this second part, sources of inteyesay generally present dependen-
cies , and so do indeed their quantized versions. Thus, in order to avoid to code any redundancy, one may
apply a transforn?’? ,, which maps integers to integers, before entropy coding (coding scfiemeThe

Lin this chapter, superscripwill denote quantization in order to emphasize the fact that the soufcasdy? are, up to a scaling
factor, integer valued. Subscripi; refers to integer-integerimplementation of the corresponding transform.
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resulting discrete scalar souragsare further entropy coded (codewoigisvith lengthg;, are transmitted).
The transformil 2

int

is chosen to be invertible so that the decoder can losslessly decode th¢ .détam-
paring with the classical transform coding framewd#, quantization and transformation are reversed.
We will refer to the coding schemig2), which from N quantized values produce$ discrete transform
components, asingle-stager one-shotossless coder.

Because the classical transform coding framew@rkis very similar to the coding schengé) in the sense
that 7}

n

. is aimed of producing decorrelated transform components, integer-to-integer transforms approx-
imating continuous transfornig€ have received much attention in thierature?. In [41], the framework
presented irj2) was first introduced as an alternative to transform coding. It is shown that uniform quanti-
zation followed by KLT based integer-to-integer mapping and separately encoding of the transform sources
is asymptotically (in the limit of high rate, or smal;) as efficient as vector entropy coding the sourees

of schemg( 1), or scalar entropy coding the componegitof scheme( 7).

Before these theoretical results, many papers had devised one-to-one integer mapping approaches for sim-
ple transforms, such as the S transform [145], the TS transform [146], the S+P [147] and the generalized S
transform [148]. The method called “lifting scheme”, introduced by Sweldens in [149], was implemented
for integer mappings of wavelet transforms in [150] and generalized in [151, 152] and [153]. An integer-to-
integer implementation of the DFT is described in [154]. Integer mappings based on lifting stepeiit]

DCT is exposed in [155], using previous factorizations published by Chen [156] and Loeffler’[1AT]

these systems are widely used in the framework of lossless image compression. Integer-to-integer tranforms
applied to audio coding were compared [21]; the work [159] presents results concerning integer-to integer
DWTs to lossless sound compressionecBnt work presents general results concerning the factorization
(and therefore the integer-to-integer, or “reversible” implementation) of general real-valued transforms, in-
cluding existence conditions and factorization algorithms [160].

Previous attempts to characterize the performance of integer-to-integer transforms [41, 160] were to find
an upper bound for the error induced by a mapping, that is, a bounfor(z?) — Tz9||.. In [41], it

was shown that fo? x 2 unimodular matrices with non-zero coefficienesg( the KLT), positioned after a
guantization stage using equal stepsizgshis bound is

173

int

no| [

($q) - quHoo < (1 + [() ) (61)

where||z||.c = max|z;|, and K is a strictly positive value depending on the coefficientsTof This
shows thatr},, precisely approximate® for small stepsizes, and the performancelff, and 7" were

proved to be equivalent in the limit of high rate. In this work, we try to go a step further into the analysis
of the performance of

int

by evaluating, in terms of loss in compression, or excess rate, this inherent
suboptimality.
First, it may seem natural to definel@ssless coding gajrwhich corresponds to the gain, in bits per

’Note that we are not interested in buildingeger arithmetidransforms. The computations are stithne with floating points

numbers, but the result is guaranteed to be integer and invertibility is preserved.
3According to [151], the cases of the DFT and the DCT were previously solved by Hong in [158].
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sample, obtained by entropy coding the outptsf an integer-to-integer transform (schei#g) w.r.t. to
that required to entropy code thé of schemg 7). This gain may be thus defined as

N N
1 1 q q
Gr = N;; Exli, — Exliy = NZ;H(%) - H(y)), (6.2)

where E; denotes the expectation over the indexes, Ardkenotes discrete entropy.

An obvious question is then: given a vectorial soutéeobtained fromz by uniform quantization4;),

what is the maximum bitrate reduction obtained by using schghénstead of(/) ? The corresponding
gainG,,.., derived in section 5.1, will then represent an upper bound to the performance of any integer-to-
integer transform.

Instead of bounding the erroji§,, (%) — T'z%||, for both the KLT and the LDU, we will then seek to
express in terms of excess rate (or in terms of coding gain reduction @&k4..), the respective integer-
to-integer constraints incured by the two transforms. This approach seems natural since minimizing the
average bitrate is the most relevant issue in the design of lossless coding systems.

Note that transforms optimized such that the outputs have similar distributions were also presented in [41],
allowing one to entropy code these outputs with the same Huffman table, resulting in complexity and mem-
ory savings. Further complexity reduction was achieved for Gaussian sources in [161] by using Golomb-
Rice instead of Huffman coding. The present work focuses more on the performance of the transformations
than on the entropy codes, and their corresponding complexity. The rates of the corresponding transform
components will be measured by the discrete entropy, or by those obtained by (multiple-table-based) Huff-
man coding.

Finally, adaptativity will also be considered, that is, the problem of describing how fast a single-stage com-
pressor which haa priori no knowledge about the optimal transform, and whose adaptation is based on the
causal past, converges to the optimal performance.

In order to carry a tractable analysis, we will assume a stationary memoryless Gaussian source model,
z ~ N(0, Ryy). Moreover, the resolution will be assumed to be sufficiently high, and the p.d.f.s of the
signals to be quantized smooth enough, so that quantization with stegsidelds uniformly distributed

errors (over[— Az’; Az’]), and distortionﬁ. We will use the Rhyi’s relation of differential to discrete

entropy for uniformly scalar quantized sources with step4iz§38]

H(z!) ~ h(x;) —log, A;. (6.3)

K3

and the similar relation for the N-vectorial source [35, 162]

N
H(z%) + Y logy A; = h(z) as A; = 0,i=1,..,N. (6.4)
=1
In the next section, we derive the expression of the ideal lossless coding gain. The third part compares the
causal LDU and unitary KLT approaches to this bound for single-stage lossless coding based on approxi-

mation of linear transforms. The fourth section is dedicated to estimation noise and derives the coding gains
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of the two approaches when the transformations are based on an estimate of the covariance matrix. Finally,

the fifth section presents some numerical results.

6.2 Maximum Coding Gain and Mutual Information

6.2.1 Maximum Lossless Coding Gain

The amount of informatiori7 (x¢) about a vectorial source? conveyed to the decoder is the same in any
lossless coding scheme, either integer-to-integer transform or not. However, a lossless transform coding
scheme takes advantage from a non- (or less) redundant repatrtition of this information among the several
signalsy. Assume that these components are made independent by an ideal trafigfor@onsider the

Venn diagram of figure 6.2. The entropl(z?) is represented foN = 2. In diagram (a), the information
conveyed to the decoder i$(z%) + H(zd) > H(z%); in diagram (b), where? andy? are independent,

the vectorial source is represented Byy?) + H(yl) = H(z9). This intuitively shows that the mutual
information between the variables chosen to represent the source should be minimized.

H(z?)

@ (b)

Figure 6.2: Entropy and mutual information

Assume that such a transformation; exists. If the transform is invertible, the entropy of the vectorial
sourcez? remains unchanged [3], thus the overall bitrate required to independently cogeishe

N

D H(y!) = H(y") = H(a?), (6.5)

i=1
which is also the minimum bitrate required to losslessly encode the vectorial ssurddese signalg!
will then be more suitably scalar entropy coded thanatheFor a Gaussian random variahlg the dif-
ferential entropy:(«;) equalst log, 2rec? . It can be easily shown that for sufficiently small quantization
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stepsizeg\;, subsisting (6.4) in (6.5) yield

1 2me)N det Ry,
H(z?) = 5 log (ome)_det Ree )N =, (6.6)

s
i=1

whereR,, = E z ¥ The maximum coding gain is then
Gmaz = % Z H(l‘?) - H(ﬁq)
i=1

N
= %) —hi) 6.7)
_ 1 1: det diag{R..}
2N det Ry,
= jlog Gé%,
where diad 12} denotes the diagonal matrix with same diagondliag, andG?. - is the high rate transform
coding gain (2.10).

The gainG,, . is ideal because it cornesnds in the Gaussian case to an optimal linear decorrelating
N
transform placed before the quantizers: byiting det R,, = Haz H/\ (wheres?, and ); are

respectively the optimal prediction error variancerpbased onc1 i1y and the eigenvalues dt..), we

can write equation (6.6) as
Sl
H(z9) = E —log, 271'60' —log, A;
i=1
N
1 6.8
E 3 log, 2meA; — logy A, ©8)

i=1

which shows that the entropy of the vectrmay be written as the sum of the entropies\ofndependent

r.v.s of variancesrjl (or A;), quantized with quantization stepsizas. Thus, if we apply a KLT or an

LDU to the source: before quantization, and then quantize the tranformed signals with stepsize¢be
minimum bitrate required to entropy code these transformed signals is given by (6.8). Hence, the gain (6.7)
would be obtained by a classical transform coding schetme

Another interesting figure in lossless coding is the ratio of the bitrate reduction operated by the lossless

coder divided by the bitrate obtained without compression. gbispression rati@’,, ... is defined as

Gmax
N

> L HED

=1
As will be illustrated in the next section, the performance of realizable lossless coding schemes based on

Cmazr = (6.9)

approximations of linear transforms must be expected to be lower than the expression (6.7): since the
transform is placed after the quantizers and just before scalar entropy coders, its batpdite discrete
valued, which is not the case for optimal linear decorrelating transforms. Thus, rounding operations are
necessary; they will induce an entropy increase in the transform signals.
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6.2.2 Coding Gains and Mutual Information

A relation of the ideal lossless coding gain (6.7) to the mutual information between quantized cas

be obtained as follows.

Let us consider a set 6f— 1 quantized scalar source#, j = 1...i— 1. Assume we wish to code dath
sourcer?, which is notindependent from thie- 1 others. Intuitively, the best strategy would be to code the
only information contained in thih r.v. which is not shared with the- 1 previous variables (cf figure 6.2).
The mutual informatior (z{; z7,_,) allows one to evaluate, loosely speaking, how much information is
useless in each r.v., given the knowledge of the other ones. It representsoiinet aninformation that the

r.v. ¢! shares with the — 1 others {.e, the vectorz{ ; ,), and is defined by

Naefszl, ()= H(«]) + H(zl, ) — H(xf, 2], )= H(z])+ H(z},_ ) - H(z{;).  (6.10)

By writing the expressions of the mutual information betwegmndz{,_, fori = 2, ..., N, we obtain

I(z3;2f) = H(x3)+ H(z]) — H(zf,)
Hzd;at,) = H(xd) + H(zl,) — H(zis)
(6.11)
Iy yiziy_y) = H(L )+ H(al v o) - H(&ly_y)
Hafsaln_y) = H(el)+H(xiy_y) — H(zl )
Then by summing and averaging the previous expressions, we get
N N
Y Iehal, ) = %> H(xl) - H(z)
7=2 i=1
(6.12)

Thus, the maximum bitrate reduction using a lossless transform coding scheme corresponds to the average
mutual information shared between each neadan variable to be coded and the previous ones. Equiv-
alently, by (6.7), this illustrates why TC is advantageous. By optimally dividing the informatioh

between the transform componepts TC provides w.r.t. to schemg ) of figure 6.1 a gairtG5.. for the

same rate, or a gaifi,,,., in rate for the same distortion. This shows that under high rate assumption and
for variable-rate coding, optimal decorrelating transforms such as LDU or KLT may not be optimal for non
Gaussian sources since independence, rather than decorrelation, is seeked.for [49]

Note also from (6.12) that quantizing does not change mutual information, which is correct énlggsR”
relation (6.3) is valid (sm%u&i). This means that the compression rdilg,, (eq. 6.9) should increase

when the reference ratg Z H(z}) decreases (see section 6.5).

i=1

4For fixed-rate coding, there are sources for which even a transform that yields independent components may be suboptimal [46].
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6.3 Integer-to-Integer Transforms

We considerN quantized scalar signalg, which are quantized versions of to the nearest multiple of
A; (denoted by.]a,), and takes values in the set

T
NZ ol = [efyef el IT = [z ka2 4] as, o (20 6] a ]

An integer-to-integer transfor?,,: A1Z x AsZ... x ANZ — AZ x AyZ... x AyZ associates to
each quantizedV-vectorz], an N -vectory?, = Tu! ), whose componentg' are quantized to the same
resolutionA; as the correspondingf. The transformation is chosen to be invertible so that the decoder can
losslessly compute the original data &, = T_lﬁg,k' Since the aim of the transforffy, , is to make the
transform signals independent, it can be designed to approximate linear decorrelating transforms such as the
LDU or the KLT, which are optimal for Gaussian signals in the classical transform coding case. Although
both integer-to-integer implementations tend to the maximum gain of expression (6.7) in the limit of small
guantization stepsizes, a quantifiable loss in performance occurs in practical coding situations. This loss is

evaluated in the following.

6.3.1 Integer-to-Integer implementation of the LDU

In a first step, the linear transforh¥ = 7 — L4 is optimized to decorrelate the quantized detaSimilarly
as in chapter 2, we look formin LY(Rgage) L9} , which leads to the normal equations

1,1:8—1

q
i,0—1 0
Rﬁqﬁqlzi,lzi _
- bl
q
il 0
1 o2,

whereai is the optimal prediction error variance corresponding to the optimal (continuous valued) predic-
tionerrory; , = @}, —L!,, \x{, |, =], —% . Theoptimaltransformvectoristhgh = z}—L7z?,

and the optimal transform? corresponds in this case to the LDU factorization of the covariance matrix
of quantized datdlyeza = Lq‘le/g/Lq‘T. The second step is to design an approximafi¢y of L9

which allows one to keep the transform structure lossless. This can easily be realized by rounetic off
estimatez; | of z{ .. Each transform coefficient is then computed by

y:'],k = $?,k - [/x\?,k]Az = $?,k - [L?,lzz'—lﬁzi—Lk]An (6.13)

see figure 6.3.

Let us denote by.¢ the matrix whose non zeros off diagonal elements correspond thttogtimal

5“Integer-to-integer” has be retained in the literature to specify that the transforms are on an integer (but scaled) lattice .
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T

Figure 6.3: Lossless implementation of the LDU transform. An optimal prediction métrig first com-
puted; the transform coefficienté are obtained by rounding off and substracting the corresponging esti-
matesz?.

predictor®

1% — - T% = a h . (6.14)
iy o L

s 1,0—1

Then a lossless implementatidi,, of L% is obtained byy? = L} (xf) = I — [L" z!]a,. The inverse
operation is simplye{ = Lf:, (y?) = I + [L" 2{]a,.

int

Now, the global transform vectgf! can be computed using a cascadevof 1 elementary transforms, that

8This kind of matrix (calledSERM Single-row Elementary Reversible Matrix [160]) appears in many lossless factorizations.
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are represented in figure 6.3.

yi = [qu [Loe . [Lo QZ]AN...LJA
s (ras ’ 6.15
= LB, (L8 (L8 () (6.15)

At the decoder, the inversion is realized by

[ A — 9
Ly = Lj’]ritl (E%?_Vl_l - (6.16)
= Ly (Ling (L (QZ)))
Since the source! is discrete, we can write the transform components as
y:'],k = $?,k - {@{k}A
= {x?k - l’?,k}Al (6.17)
= {yg,k}Al

This leads to the equivalent representationl@f, of figure 6.4, wherel.! , corresponds to the cascade

7 with a guantization stag@’ composed ofV — 1 quantizers. Comparing with eq. (6.1), this shows in
particular that forV = 2, ||L7 ,(z9) — La?||oe < & < [|Vih,(29) — V29|o, meaning that the maximum

error is less in the causal than in the unitary case, but this does not give much insight about how the rates

are increased.

Y
z 2! v v’ 2
+ {71 o
G
Q

L

int

Figure 6.4: Equivalent implementation of the integer-to-integer LDU transform.

We should here underline the similarity between the integer-to-integer implementation of the LDU and
the lossless matrixing described in [163], or the decorrelation approach applied to lossless image coding
[121]. In these works however, the diagonalizing aspect of the transform (and thus its optimality for Gaus-
sian signals in the case of negligible perturbation effects) was not established. Moreover, the perturbation
effects due to the rounding operations (next section) and estimation noise (section 6.4) are not, to our knowl-
edge, analyzed in their published related work.

In order to analyze the effects of the rounding operations, (quantiZatigrof thefj{k) uppon the coding
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gain, we approximate the entropi(y?) of the variableg! by i(y}) — log, A;, which assumes a quantiza-

tion noise uniformly distributed ové 2:]. The continuousr.v.g/ are not strictly Gaussian since each
y} is a linear combination of Gaussian r.v.s and— 1 uniformr.v.s . Since the p.d.f. of a sum of uniformly
distributed r.v.s tends quickly to a Gaussian p.d.f., we assume that this is the case, and this entropy may be

evaluated as
1
H(yl) ~ 3 log,, 271'60'51 — log, A4, (6.18)

whereaj, is the actual variance of thiéh transform signal. Note that in the integer-to-integer implementa-
tion of the LDU, the first scalar signal remains unchanged, and@nrlyi rounding operations are involved
in the lossless transformation. The bitrate required to entropy code the discrej iswten

N
1
+ Z Hy) ~ + (% log, (2me)oZ — log, Aq + Z 3 log2(27re)0'51 —log, Ai) . (6.19)
i=1 1=2

The lossless coding gain for the integer-to-integer LDU may then be written as

N
Gra, = x ) H(zl)-H()
=1
0'
H 1 det diag{Rzs } (6.20)
~ ZNIng—NﬁIng —N’

2 2 2
I1 o Lo
1=2 i=2

The last equality shows that« is indeed inferior ta ., since the denominator involves the optimal
prediction error variances obtained fraf.,« = R, + D (whereD is the diagonal matrix of the distor-

tions,D;; &~ A?/12), instead ofR,.
N

Moreover, sincel? diagonalizesiyoz«, We haveH oy = det Ryaga, whereo? = o’ e Using the last
i=1
equality, the coding gaify, « may alternatively be approximated as

det diag{R..}

2 N
(o) 1%

det diag{R..
zlo 2edTg;{q}+110g2(

det diag{R..} A2
log, det R a0 +241n202

X

1
GL?M 5 lo

1207, (6.21)

X

1
2

X

A?
G ~ Gmax_ZNlnztr{DR }—1_241n202 )

tnt

which clearly expresses the loss due to the lossless constraint w.r.t. the optimal performance. This last
expression shows that one should position the most coarsely quantized signal (ﬁghﬁsﬁrst position
in order to maximize7 s (see section 6.5.1). Moreover, one can check that ~tends toG 4. as
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A; = 0,i = 1,..., N,which means that the transform is optimal in terms of lossless coding gains in the

case of negligible rounding effects.

6.3.2 Integer-to-Integer implementation of the KLT

As far as the KLT is concerned, the integer-to-integer approximation is based on the factorization of a
unimodular matrix cascaded with roundings ensuring the inversibility of the global transform. In [41], this
transform was shown to be equivalent to the original KLT for arbitrarily sthallThe loss in compression

due to the rounding operations is evaluated here in\the 2 case.

Let us denote by’ ? a KLT of R,e.a. Then we have

Al = VqRQqu VqT, (6.22)

and we denote by? the variances of the (real-valued) transform signals.
We recall now the construction of the integer-to-integer transform basét¥ 0As any unimodular trans-
form with nonzero coefficients/? can be factored into three unit diagonal triangular matrices with unit

diagonal as
a b
V= = VIV vy,
c d
(6.23)
. R 10 R
Vl = ¢ ) qu = ’V?? = ¢
0 1 c 1 0 1

The transform vectoy, is then losslessly obtained by using the three-step integer-to-integer trangform

g _ v .9 _ e |ve |vene
Y. = Vi, = |V |V | Ve, (6.24)
yl
Y% 1a,
N—_—
2
L y? d A,
Yy

L ) 1A,
Since the matrices are triangular, their inverses are simply computed by changing the signs of the off-
diagonal elements.

One can analyze the effects of the roundingssah step. Denoting by ; the error caused by rounding the

ith component of the vect%i, it can easily be shown that the final (discrete valued) transform vegtisr
obtained by

e+ =18 5+ =L (exd + by +dxl+ 6
v = | = [of + Tt ST el by ded - aa)]y, (6.25)

Yo,k [ex + cdr 1 + dad],,
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Assuming small quantization stepsizes (ensuring the independence of the quantizatiord;ngjsasd
Gaussianity for the transformed signals, the discrete entropy of each transfordedreariable may be
approximated as

a’A} (a—1)? A3

Bt 1) Tl

H(yi) ~ % log, 2me(A] +

A=A94e,
(6.26)
CZA%
H(yd) ~ %log2 2me(A: + 3 ) —logy As.
————

Ad=Altes

Thus,y! may be seen as a continuous r.v. of variah;;?e: Al + e;, quantized with stepsiz4;. The
termse; are the increase in the variance of the transform signals due to the rounding operations. The

corresponding expression for the lossless coding gain ifvtke?2 case is then

tnt

Gy, = &Y HE)-H)

1172 (6.27)

Comparing with the gain obtained for the lossless implementation of the LDU (6.20) we&havg,: <
2 2 2

G L4 int (this comes from the following series of inequalitEf A7 > 12 =1]e: > o200). Thus

the gain for the integer-to-integer KLT is clearly inferior toZt:hlat of thé:iéteger-ltg}integer LDU faWthe2

case. Indeed, only one rounding is used in the LDU casé&/fer 2, whereas three roundings arecessary

to losslessly implement the KLT. In the generédlcase, the triangular structure of the prediction matrix
allows one to implement the lossless causal transform ugirgl rounding operations (see (6.15)), which

is most probably less than the number required in the unitary case, where the transform matrix has not a
triangular structuré.

An alternative expression @fy« may be obtained by approximating the following product under high

resolution assumption

2

2 2 2
HA;q:HAZZ<1+%)zHA?(1+Z%). (6.28)
i i=1 i=1 "

i=1 i=1

"By [160], Th.4, Corol.6, ailV x N orthogonal transform may be factorizedsis+ 1 SERM (and a permutation matrix) of the
form (6.14)
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We get

Q
3
2

i=1 !

det diag{ Rqe } 2 g
3 logs — 3 Rpage av log | 142 37

X

1
2

det diag{ Rq. } 2 g
log, ——— e i (6.29)
gkl i=1 "1

X

2
— €
Gys Grmar — 5= (tr{DRx_xl} +>° V) :
i=1 "1

As (6.27), this expression holds fof = 2, since the perturbation terms on the varianee (6.26)

have been analytically derived in this case only. However, the effects of the rounding can be similarly
evaluated for a generadl, and the expressions (6.27), (6.29) would hold more generally by plugging in the
corresponding;. Finally, as expectedyy« tendstoG,q, asA; tendstd), i =1,..., N.

6.4 Adaptive Systems: Effects of the Estimation Noise

In the vein of chapters 3 and 4, the following analysis focuses on the lossless coding gains of an adaptive

scheme based on an estimate of the covariance matrix

K

- 1

Rysgs = Rpsgs + AR= 2= > S’ (6.30)
k=1

where K is the number of previously decoded vector available at the decoder. We suppose independent
identically distributed Gaussian real vectar’s (again, the r.v.s are not strictly Gaussian because of the
contribution of the uniform quantization noise; this contribution is however small for a high resolution
guantization). In this case, the first and second order statistidsbimay be analytically evaluated (see
sections 3.A and 3.B){AR);; may, for sufficiently largei’, be approximated as a zero mean Gaussian
random variable with covariance matrix such that EveR) (veq AR))" ~ 2 Ryags @ Ryapa, Where®

denotes the Kronecker product. Feach realization o\ R, the coder computes a in a first step the linear
transformatiorl” ( T=1I%r X7q) which diagonalizesﬁmq : fﬁgqﬁf = 3. Then, by using the lossless
factorizations of the previous sections, the encoder computes the corresponding integer-to-integer transform
Tine. The coding gaiitzz (K) is then the expected bitrate reduction w.r.t. to a scheme without transform,
for a transform based oR vectors. Equivalently, this is the expected gain obtained for a scheme which
stops adapting the transform aft€rvectors, asympotically in the data length. We assume that the entropy
coder possesse$ universal lossless codes for thetransform coefficients streams.

6.4.1 Coding Gain for the integer-to-integer LDU

The coding gain is in the causal case

Gie (K)= Z H(z?) — H(y!, K), (6.31)

tnt
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where only the entropiel (y{, K) of the discrete variableg', obtained by applyln@ toz?, depend on

int

K. Since the variance of the first variahjgis not affected by the transformation, we have
H(yi,K) = H(z%) = log2(27re) 2 —log, Aj. (6.32)

Concerning theV — 1 remaining r.v.sy/, they may be seen as r.v.s obtained by applyifigo z¢, and
then by quantizing the continuous valued result with stepdize Thus, by denotinqﬁRﬁgqﬁ)u =

H(y!,K) = E 110g2(27re)(i5}z£q£ Lq)“ log2
R I I
= Edlog, (2re(Ryy)i (14 T2 )) log, A (6.33)
1 A( Ry’y 1)id
~  glogy 2me(Ryy )i — logy Ai + 57 E Ry )i
Therefore,
N N )
D HELE) = glogy(2me)or, —logy Ay + ) o logy(2me)¥ oy,
- N =2 (6.34)

1 A(Ryy)ii
—1 Az E — .
082 + ZZ_; 21n 2 (Rg/g/)”

Comparing with the bitrate required to code tfievhen the transformation is not perturbed (6.19), the last
term corresponds to an excess bitrate due to estimation noise. Using the fact @t &)1 = 0, this

term may be written as

N

Z 1 A(Rg’g’)u Z A y’y’ 1 N N(N — 1)

—_ E ~ _
> 2In2 (Rg/g/)“' 21112 ( y/y/ if 41n 2K

(6.35)

i=1
Finally, the lossless coding gain for an integer-to-integer implementation of the LDU when the transform is
based on observed vectors may be approximated as

G+ (K) = =+ K
zs,,(K) Ng (!, 1) (6.36)
~ GL?M - 411\171 2%('
for large K and under high resolution assumption.
6.4.2 Lossless Coding Gain for the integer-to-integer KLT
In this case, one has to compute the difference
VLA—NZH H(y!, K), (6.37)

where only the entropied (y/, K) of the discrete variableg', obtained by applylng’lq toz?, depend on
K.
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Using a similar analysis, the lossless coding gain with estimation noise for the integer-to-integer KLT may
be approximated as

X

Gya (K)

tnt

1
2

N
log. det diag{r.} S e N(N-1)
2 det Rgaga 21ln 2 = /\;1 41n2K (638)

~ _ _N-1
~ GV,"M 1n 2K’

under high resolution assumption and for sufficiently highAs in section 6.3.2, this expression holds for
N = 2 (in which case we have derived analytically the g&ip: ), but would hold more generally with
the corresponding'ys .

6.5 Numerical Examples

In the first part of this section, we compare the lossless coding gains obtained for the integer-to-integer
implementations of the LDU and the KLT for N=2. Then simulations results for higher valugsark
presented in the case of the LDU. The second part of this section describes the effects of estimation noise
on the coding gains. We used either entropy or Huffman coded uniform scalar quantizers, and real Gaussian

i.i.d. vectors.

6.5.1 Lossless Coding Gains without Estimation Noise

In order to check the theoretical results we generated real Gaussian vectors of covarianc&mairo¢
variance matrix of a first order autoregressive process with normalized correlation coefficierit9).
The number of vectors wa§, = 10*. The vectors were quantized using the same normalized quantiza-
tion stepsizeci—’l. For several values of: , the optimal decorrelating transformatioh% and V¢ were

No
computed using the covariance matt’-bgq@ of the whole data set, that iﬁ(ggg = NLD ZQ?Q?T. The
i=1

integer-to-integer transforms! . andV,? , based on the transfornis and V¢ were im_plemented and

int int?

used to compute the transformed dgtaWe repeated this experiment ten times and averaged the different
obtained gains.

Results for N = 2.

The theoretical maximum coding gain is related to the mutual information between the unquantized vari-
ables as expressed in (6.12). The theoretical gains for LDU and KLT are then given by (6.21) and (6.29)
respectively. The observed lossless coding gains were then computed in three different ways. Firstly, by
computing thelth order entropies of the discrete transform signals. Secondly by measuring the average
length obtained with Huffman codes. Under high resolution assumptionghgi Rélation asumes a one

to one correspondence between the discrete entropy and the variances of the transform signals through the



6.5 Numerical Examples 159

relations (6.18) for the LDU and (6.26) for the KLT. Thus finally, a third way is to measure the actual
variances of the transform signals before quantizanimjfl &nd /\31 for the KLT). This allows one to check

if the analysis concerning the variances is accurate. In this case, the observed gains are obtained by com-
puting (6.21) and (6.29) with the measured variances of the transform signals. These gains are denoted by
“Observed Gain Transform Var.” These gains are plotted in figure 6.5 v:g};suéor high resolution (smalll

values of%), there is a good match between the observed gains and the analytical expressions. In particu-
lar, it can be seen from the estimates of the gains based on the actual variances and on the entropies, that the
assumptions of Gaussianity and of high resolution are fairly precise for valtgeﬂ;asfs than approximately

0.8. The bitrate reduction obtained by using integer-to-integer transforms is not negligible, evén=far

Figure 6.6 illustrates the compression ratio of the two analyzed integer-to-integer transform. The maxi-
mum achievable compression ratif, ... is given by (6.9). Basing our observations on the rates obtained
with Huffman codes, a compression ratioldf% can be operated fof: = 0.1 by using any of the two
integer-to-integer transformations analyzed in this work. ﬁon: 0.51, the compression ratio 5% for

the integer-to-integer implementation of the LDU, addt for the integer-to-integer implementation of the

KLT. (For higher values ofV, higher compression ratios can be achived). Also, note that high compression
ratios are still achievable in the case of coarse quantization.

Considering again figure 6.5, the rounding effects due to the lossless implementation of the transforms in-
deed can be seen to increase as the quantization gets more coarse. The observed coding gains based on
the estimates of the variances of the transformed signals correspond well to the predicted ones until a ratio
% ~ 1. When the quantization becomes even more coarse, the quantization noises are not independent
anymore, and the mutual information between the quantized variablissuperior to the theoretical one.

Figure 6.7 shows the normalized correlation coefficients of the quantization noise versus the normalized cor-
relation coefficient of the variables andz, for several quantization stepsizes. It indicates that for most

of quantization situations, the hypothesis of independence of the quantization noises is reasonnable. When
the correlation is not negligible, the transforms take more advantage of the information shared between the
guantized variables, and the gains may become superior to the predicted ones. The curves obtained for
N = 2 are well matched by the theoretical analysis %rlower than approximatel9.8. They show that

a noticeable part of the bitrate may be saved by using an integer-to-integer transform. Finally, the lossless
implementation of the LDU provides better performance than that of the KLT.

Position of the first signal

Figure 6.8 shows the codings gains obtained for the integer-to-integer LDU applied to scalar sources of unit
variance, versus their correlation coefficignin the first case, denoted b¥y™in the legend, the first signal

x; IS quantized with stepsiz&; = 0.1 and the second signal with stepsizeA; = 1. In the second case,
denoted by 2" in the legend, the stepsizes drdor #; and0.1 for x5. The curves show, as expected, that

the most coarsely quantized signal must be placed in first place in order to maximize the lossless coding
gain.
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Results for N > 2.

The coding gains (estimates based on measured variances and Huffman codes) obtained for the integer-
to-integer LDU withN = 5, A = 0.51 and N = 5, A = 0.21 are presented in figures 6.9 and 6.10
respectively. In this case, the data were composed of real Gaussian i.i.d. vectors with covariance matrix
R = HRy:H'. R,, is the covariance matrix of a first order autoregressive process with normalized
correlation coefficienp. H is a diagonal matrix whosg/ entry is(i)2/? (increasing variances, ranging

from 1 to 8.56). Hence, the coarseness of the quantization decreasema®gases. It can be seen that

the observed gains match well the predicted ones. Figure 6.11 (resp. 6.12) compares the compression
ratio (resp. the lossless coding gain) verdugor several values oﬁ for the LDU. Note that whereas the
theoretical coding gain does not depend on the quantization (the mutual informationis theoretically the same
between unquantized and quantized r.v.s by 6.12), the compression ratio (percentage of the bitrate reduction
caused by the transform w.r.t. to the overall bitrate of the uncompressed data) does. For fine quantization,
the maximum compression ratio is relatively low, but may be achieved by an integer-to-integer transform
because the effects of theundings are not too strong. When the quantization becomes more coarse, better
compression may be achieved, but on the other hand, the integer-to-integer constraint moves the actual
performance of the transfom away from the the optimal performance. However, it appears from this figure

that is always advantageous to use an integer-to-integer transform, even in cases of coarse quantization.

6.5.2 Coding Gains with Estimation Noise

In the first experiment. = 2. The coding gains with estimation noise are plotted in figure 6.13. The
normalized quantization stepsizeg% = 0.51. The coding gair,,. refers to the mutual information

given by (6.12). The theoretical gains for LDU and KLT are given by (6.36) and (6.38) respectively (gains
referred to as “G(K) Transform Asymptotic”). The observed coding gains are either based on the estimates
of the variances of the transform signals (gains referred to as “G(K) observed variances”), or based on the
actual gain computed by Huffman coding. In this case, a Huffman code is designed for the signals obtained
with integer-to-integer transforms based on an estimate of the covariance matrix of quantizégqgata

with K vectors. The theoretical curves correspond well to the observed ones for the observed gains based
on variances estimates féf ~ a few tens. Huffman based and variance based observed gaing6&ach

of their maximal value forX ~ 10 decoded vectors. That is, regarding the results obtained with Huffman
codes,90% of an optimal compression df6% can be achieved fok” ~ 10 in the case of the integer-to-
integer LDU. In the case of the integer-to-integer KET% of a compression of4% can be achieved for

a comparable estimation noise.

Finally, figures 6.14 (resp. 6.15) plot the lossless coding gain with estimation noise versusvK=fo5p

andA = 0.51 (resp.A = 0.21). Theoretical and observed gains correspond wellfog a few tens.
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Figure 6.5: Lossless coding gains for integer-to-integer implementations of the LDU andsiLiBintiza-
tion stepsize N = 2 andp = 0.9.
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Figure 6.6: Compression ratios achieved by integer-to-integer transférms2 andp = 0.9.
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Figure 6.7: Correlation coefficient of quantization noises versus correlation coefficient of the vatiables
andz, for several quantization stepsizes. The variableandz, have variancé.
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Figure 6.8: Importance of the coarseness of the quantization of the first signal.
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Figure 6.9: Lossless coding gain for integer-to-integer LDU with= 5. A = 0.51.
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Figure 6.10: Lossless coding gain for integer-to-integer LDU With- 5. A = 0.21.
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Compression ratios (%) vs N
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Figure 6.11: Compression ratios for several valueA o vs N for 121 LDU (AR(1) andp = 0.9).
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Figure 6.13: Lossless coding gains with estimation noise versus K for2. UA =0.51.
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Figure 6.14: Lossless coding gains with estimation noise versus K for N=5.0.51.
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Figure 6.15: Lossless coding gains with estimation noise versus K for N=5.0.21.

6.6 Conclusions

For single-stage lossless coding, where the components to be coded are decorrelated by means of integer-

to-integer transforms, an upper bound for the lossless coding gain has been described in term of mutual

information. The performances of the KLT and the LDU have been described using high resolution approx-

imations, and compared with the maximum achievable coding gain for both fixed and adaptive systems.

Various numerical results were then presented. These results indicate that the theoretical analyses regard-

ing the perturbations caused by the lossless constraint, and the estimation noise are fairly accurate as far

as the entropies are concerned. The compression performance obtained with Huffman codes are slightly

lower than those predicted for both approaches. Moreover, these results show that in any case, the causal

transform leads to better compression ratios than its unitary counterpart. Moreover, an interesting side re-

sult is that the most coarsely quantized signal should, in the causal casegckd i first posion for the

compression to be the most efficient.



Chapter 7

On the Suboptimality of Orthogonal
Transforms for Lossless Transform

Coding

The analysis of the previous chapter showed that the integer-to-integer implementation of the Karhunen-
Loéve transform leads to lower compression performance than its causal counterpart. We pursue this
analysis in the framework of a multi-stage lossless transform coding scheme, which yields a lossy coded
signal, and an error signal. This scheme allows one to choose the respective bitrates of both complementary
signals, depending for example on the bandwidth of the transmission link. We show that the causal approach
presents several advantages w.r.t. its orthogonal counterparts. For orthogonal transforms, the price paid
for the multiresolution approach is a bitrate penaltylo®5 bit per sample. This excess bitrate is due to a
“gaussianization effect” of the transforms [21]. Firstly, we show under the assumptions of smooth p.d.f.s
for the sources, and of high resolution for the lossy coded signal, that the causal approach allows one to
code the data (almost) without causing angess bitrate as compared with a single-stage codeni8#y,

the approach based on the causal transform allows one to easily switch between a single- or a multi-stage
compressor. Thirdly, in the framework of interchannel redundancy removal, this approach allows one to
easily fix the distortion and rate for both the low resolution and the error signal of each channel, by using
different stepsizes in the quantization stage. Any of the channels may, as a particular case, be chosen to
be directly losslessly coded. Finally, a side advantage of the causal approach is that entropy coding of
the error signal is made very simple since for odd quantization stepsizes, the discrete error sources are
uniformly distributed, so that the optimal codewords have the same length, and fixed rate coding is optimal.
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7.1 Introduction

Consider a discrete vectorial sourcevhose samples ate,. This source may for example be composed

of N scalar signals;, in which caser;, = [z1 4 ---zn ], or by the samples of the same scalar source, in
which caser, = [z zx_1---zx_n41]T. In the framework of a two-stage lossless transform coder each
block of signal;, undergoes first a transform, the decorrelated componpergee then quantized by means

of uniform scalar quantizers, and further entropy coded, see figure 7.1. The corresponding bitrate will be
denoted by r(y).

o

ENCODER DECODER

Figure 7.1: Classical two-stage lossless transform codidg.denotes uniform scalar quantizefs; } and
{~!} scalar entropy coders, afd; rounding operators.

By inverting the transform and taking the integer part of the resulting reconstructed#/athe error
signale can be generated by substractian= = — 2%, and further entropy coded. The correspnding bitrate
will be denoted byF¢). The decoder generates thehin the same way, and recoversdy x = z7 + e.

Note that the rounding operations aezassary: sinc€ is a linear transformy’ = 7~ 'y¢ is generally not

integer valued.

In this framework, we compare in this chapter the compression performance of orthogonal transfgrms (
DCT, DFT, DST, DHT), as analyzed in [21], to that of the causal transform. A generalization of the two-
stage structure to M stages is analyzed for the causal transform in chapter 8.

Let us now denote by, ;5. (2) the bitrate dedicated to entropy code the souraeith a single-stage
lossless coder. The main question addressed here stands in the following: Is there, in terms of rate, a cost
by using any multiresolution approach ? Or in other words, will the overall bitiatéy) + 7(e) be larger
thanri_,x0: (), and if yes, by how much ? The analyses of the next sections will show that the causal
transform outperforms orthogonal oneschuse it avoids the bitrate penaltydo?5 bit per sample reported
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in [21], resulting in an optimal system (w.r.t. a single stage coder). Moreover, the causal approach presents
several practical important coding features which orthogonal transforms do not share. In the following, the
KLT will be used as a benchmark for orthogonal transforms, but as will be underlined, the conclusions of
thes analyses can be generalized to other orthogonal transforms.

The rest of the chapter is organized as follows. Section 7.2 states the main assumptions, definitions and
notations of this work, and recalls the main characteristics of the causal transform and some results about
the “one-shot” compression. Section 7.3 describes the proposed two-stage coding structures and analyzes
the statistics of the error signals. Section 7.4 is dedicated to the analysis of the bitrates in the case of
Gaussian signals and section 7.5 comments the case of non-Gaussian probability density functions (p.d.f.s).
Section 7.6 considers the particular case where lossless transform coding is used to remove intrachannel
redundancies, and the last section presents some numerical results.

7.2 Single-Stage Structure

Consider a vectorial source, which is obtained by some discretization (quantization) process from a
continuous-amplitude souraé (for notation convenience, the time indexvill be omitted). In the rest of

this chapter, we assume very high resolutieis(integer valued, and? > 1), smooth p.d.f.s for the r.v.s

to be coded, and high resolution quantization of the lossy sighak{ o ).
The rounded value obtained frarfi and denoted bju:¢]; is then defined by
n
5
Similarly, a uniform quantizer with non unity stepsi2eassociates then tef a quantized valuge]a. In

[], = roundzS) = n, n € Z, if — g <l < (7.1)

the case where® is a vector[z°] o will denote quantization of each cqonentz¢.
In order to compute the different rates, we will use thenid’s relation of differential to discrete entropy
[38]:

H(z;) +logy A — h(xf) as A = 0, (7.2)

whereH denotes the discrete entropy of the discrete saurcebtained by uniform quantization with step-
sizeA from the continuous amplitude soureg with differential entropy:. For vectors, a similar relation

can be derived, see [35, 162]

We now recall some results of the previous chapters concerning single-stage compression of a vectorial
sourcer by means of integer-to-integer transforms.

7.2.1 Lossless Implementation of the Transforms

In the causal case the vectoiis decorrelated by means of a lower triangular transférnThe transform
vectory is Lz = z — Lz, whereLz is the reference vector. The componeptare the prediction errors of

1Gish and Pierce gave an outline of the proofin [35]; Caigggneralized the result in [162].
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x; with respect to the past valuesafthe{x:;_, }, and the optimal coefficients ; 1., are the optimal
prediction coefficients. It follows thak,, = L—lR%L‘T, which represents the LDU factorization of
Ry . Inthe unitary casel,, = VAV =T, whereA is the diagonal matrix of the eigenvaluesif. . In

both caseslet Ry, = det Ry, since both tranforms are unimodular.

However, since the resulting componeptsare generally not integer, such a transform cannot be used for
lossless coding. A lossless implementation of the LDU transform is depicted in figure 7.2.

x§ W 1 " - 7 -
[ EI

s Ty
[h _
Ly,
Ty ’—‘ TN Y — o
[]: ’7/1\’1 - ...

Figure 7.2: Lossless “one-shot” implementation of the LDU Transform.

In this case, the transform signals are obtained by

Yik = Tik — [/l’\i,k]l =ik — [fi,lzi—lﬁl;i_lyk]la (73)
wherez;  is the estimate of; , based on the previous samplesagf The signalg; are then entropy
coded (bitstreamgi’; }). At the decoder, each cqranentz; is losslessly recovered by = y; + [z 4 ]1-

7.2.2 Orthogonal Case

Many lossless implementations of orthogonal transforms have been stederdly, see for example [41,

164, 165]. Concerning the KLT, the integer-to-integer approximation of the optimal linear orthogonal decor-
relating transform is based on the factorization of the unimodular matrix into a product of triangular matri-
ces, cascaded with rounding operations ensuring the invertibility of the global transform [41].

Because of its triagular structure, the LDU transform is naturally well suited for factorizations involving
lifting steps and roundings. This is not the case for noninteger-valued orthogonal transforms, in which case
the number of rounding operations decreases the coding performance. It was shown in [142] that for single-
stage coders, the best linear decorrelating orthogonal transform is slightly less efficient than the causal one.
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For other transforms such as DCT, DFT, etc, the compression performance will most probably be still worse,
since they are square matrices with non-integer coefficients also, and their decorrelation efficiency is less
than that of the KLT. In the next section, orthogonal and causal approaches are compared for a two-stage
structure.

7.3 Two-Stage Structure

7.3.1 Orthogonal Transforms

As stated in the introduction, the vectorial soutcean be losslessly coded by means of a two-stage struc-
ture, yielding a low resolution versiatf, and an error signal.

In the case of orthogonal transforms (KLT, DCY), the coding scheme is represented by figure 5.9. The
error signal may be written as= « — 29 = [z — g’q]l = [T‘lg]l. Thus, each; is a discretized mixture

of N random variables (r.v.s), which, as shown by high resolution quantization theory, are unifarm if
is small in comparison with the variance%l of the signalsy;, and if their p.d.f.s are smooth. Since the
convolution of N uniform r.v.s tends quickly to a Gaussian, the error signalmay be approximated as
continuous Gaussian r.v.s with varianc%f;, discretized with stepsize unity. The minimum distortion is
now obtained by settindh = 1, resulting in a distortion o% = & on each comonent. Thus, this
scheme does not offer the simple mean of switching from the two-stage to the “one-shot” coder by only
setting the quantization stepsizesito

Since the:; are nearly Gaussian, the probability that an error occurs for a gefsezah be approximated
with the error function [21]:

1 31
P(ez'?ﬁo)—P(|€i|Z§)~1—€7°f(£z)~ (7.4)
ForA =1, thisleads taP(e; # 0) ~ 0.08, which means that one out of twelve samples should be corrected
at the decoder to ensure the losslessness. The question of the rate dedicatec: tis exdenined in the

next section.

7.3.2 Causal Transform

The two-stage causal structure may be described by the figure hereafter.

The transform signals are computed by substracting the optimal estimatéaged on the paguan-
tizedsamples:!;_,, and by quantizing with some stepsi2g the resulting error prediction, which leads
to y!. The reason for computing the prediction by means of quantized data is that we are interested in a
low resolution signal which can be computedependentlyof the error signals. Thus, only the available
z! at the decoder should be used to compute the remajnj‘lng > i. As will be commented in the rate
analysis, prediction based on quantized data is slightly less efficient than that based on original data, though
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q
Y1

I (to the decoder)

] &t
[
Gy
LR
p o
‘N T N
i

{4} : (to the decoder)

e

e

Figure 7.3: Encoder of the two-stage lossless coding Structure in the causal case.

this difference will be shown to be negligible in most of the cases. Each error signal is thus computed by
ei=w;—xl =wi — [yl + Linicazl, v = [w — Livio1zl,_ — vl = [y — vi]1 (7.5)

Thus, the errorg; are now the discretized versions of the quantization errors in the transform domain.
Assuming smooth p.d.f.s and high resolutiak; (« 051), three cases should be considered in order to
derive the statistics of the errars?.

Firstly, if A = 1, it can be checked that fixing all stepsized tgields a single-stage lossless coding scheme

of figure 7.2. We have noted in the previous section that a similar equivalence is not possible in the case of
orthogonal transforms.

If now A; is an odd integer greater thanthe rounding definition (7.1) yields equally likely errors (with

probabilitiesp; = 7-), and belonging td— 2452, — 2=t 1, S=l}

If finally A; is even, all the errors are equally likely excep%, which, in virtue of (7.1), and assuming
thatP(zf > 0) = P(z{ < 0), are twice less likely than the other ones (for exampl&: occurs only for
positive values of:{). Thus, regarding the probabilitie$ of the errors obtained with eveh, the values

2The p.d.f. should not change much within each quantization bin, otherwise the p.d.f.s of the errors may be far from the uniform
distribution. Numerical simulations show that this is a reasonable assumption for Gaussian sources.
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0,%1...& 4+ — 1 are equally likely with probabilities-, and+4+ have probabilitiesx—. These remarks
suggest that the errors will be nonzero with the same probability for even and oaldich is given by

1 1
P(eiio)zp(|6i|25)=1—g VA;. (7.6)

The difference between the cases of even and®dklillustrated in figure 7.4. For the partionning induced
by the round off quantizers with = 6, the errorst3 are twice less likely thaf, =1, +2. ForA = 5, all
the cells are equivalent, which makes the errors equally likely.

EvenA (= 6)

[;L’/l’}5 < por [;L’/l’}5 >0

Figure 7.4: Probability of errors induced by the rounding operator (7.1), for even anfl.odd

Figure 7.5-a) plots the observed and theoretic probabilities of error in the orthogonal case and in the
causal case as given by (7.4) and(7.6) (for these simulations, all the quantization stepsizes are equal, see
details in section 7.7).

As a conclusion, the causal transform allows one, on the one hand, to switch easily between either a single,
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or a two-stage structure, by simply fixing the stepsizek. thloreover, the stepsizes; may in general be
different, allowing one to choose a possibly different rate-distortion trade-offon signak?. Also, any
channelx; can be chosen in the causal case to be directly losslessly coded, by setting the corresponding
A; to 1. On the other hand, the KLT does not benefit from these advantages because of the mixing effect
of the quantization errors in the signal domain. As shown in figure 7.5, the probability that an error occurs
is higher in the causal case than in the orthogonal case as sabn>as. The next section will show
however that this does not preclude that the rate associated to the error signal is higher in the causal than in

the orthogonal case.

7.4 Analysis of the Rates

In this section we assume jointly Gaussian signals for which closed form expression for the rates can be
obtained; the case of non-Gaussian p.d.f.s will be discussed in section 7.6. Moreover, we assume for
simplicity that all the quantization stepsizes are equal in both causal and unitary cases (though this is not
necessary for the LDU transform, as stated in section 7.3).

7.4.1 Low Resolution Versions

For the two transformations, one should compute

N N
1 1
rLRr = 5 S H(y:, T)» ~ > h(o},,T) —log, A, (7.7)
i=1

i=1
wherel" denotes either the causal or the unitary transform. For both transforms, the transform signals are
Gaussian. The variancegl are in the orthogonal case the eigenvalugef R, so that
1. /1 1

"LRy N 5 ; (5 log, 2me; — log, A) b log, 2me(det Rﬁ)% — log, A. (7.8)
In the causal case, the variances of the transform sigrjalare not exactly the optimal prediction error
varianceSfrjD of orderi — 1 based onr;.;_1, because the prediction is computed by means of quantized
samples. One shows that (see result (2.36) with= %) oy~ 05? + %(HT)”, As in DPCM, the
prediction error variances are increased due to a quantization noise feedback.Using (2.68), we obtain

> H(yi, L)

K3

1
% (5 log, 271'60'51 — log, A)
=1

z|~

TLR;, =

i

X

K3

N ~
% log, 27e (H 0'5?)

i=1

(7.9)
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Thus, for the same distortioﬂ;l1 on each comonentz?, the bitrate required to entropy code the low
resolution version obtained by means of the causal transform should require an excess bitrate in comparison
with the KLT. Simulationsin section 7.7 show however that this excess bitrate is negligible in many practical
coding situations.

7.4.2 Error Signals

Regarding now the ratey dedicated to the error signals, one can compute the discrete entropies of the
signalse; by using the error analysis of section 7.3.

In the unitary case, each can be seen as a discretized Gaussian r.v. with variééceThus, the bitrate

Tv = £ S H(e;, V) can be written as [21]

N

B 1 1 A? 1 e

Ty & N E 5 log2 271'65 = 10g2 A + 5 logz F; (710)
i=1 Vv

~0.25 bit

We find in (7.10) the well known difference between Gaussian and uniform entropies [29).66 bit.3.
In the causal case we obtain, depending on the parity of
N
_ . . 1 1 1 1 1
YL even = — Zpi log, p; ~ —(A - 1)Z10g2 AN 2 (ﬁlogz ﬁ) ~ log, A + N

i=1

i (7.11)
TLodd = — pr log, pi = —A (i log, i) ~ log, A.
— A A
Comparing (7.10) and (7.11), the approximat&Bh bit/sample excess rate of orthogonal transforms w.r.t.
single-stage lossless coding vanishes in the causal case. Moreover, in the casegftbdderror are
uniformly distributed, which means that no compression is required for the bitrate to reach the entropy of
the sources;, and the optimal coding procedure is simply consists in transmitting the binary representation

of the values;.

7.5 Intrachannel Redundancy Removal

The coding schemes presented in figures 7.2 and 7.3 can indeed be used to remove intrachannel redun-
dancies, in which case frequential expression can be obtained. In this case, each data bloek is

[#r ®r_1---rx_n41)7. Again, we assume a Gaussian p.d.f. and equal quantization stéps$aethe
quantizers{@}. By letting the block length grow to infinity, and using the asymptotic distribution of
Toeplitz matrices [166],

lim det(Rxx)% — lm e%IOgH{\le Ao 6f_% lnSzI(f)df’ (712)

k—oco - k—oco

3This (often called “quarter bit”) result was first reported by Koshelev in [29], rediscovered by numerical simulations by Goblick
and Holsinger [30] and derived analytically by Gish and Pierce [35].
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whereS,, (f) denotes the power spectral density:pfve get for the bitrates of the low resolution signals

1
2 In Seo(f)df
TLRy R %log2 2me ef‘% P Seeld) —log, A,

o | e I3 S ()t
rLr, A TLry t 5its |20 Sea (Hdf —e 773 , (7.13)

The bitrates corresponding to the error signals (7.10) and (7.11) remain unchanged.

7.6 Case of Non-Gaussian p.d.f.s

Regarding the low resolution signals, non-Gaussian p.d.f.s of thy lead to non-Gaussian p.d.f.s for the

y;*. Since the relation of the differential entropies to the variances of the transform signals will be different
from that of Gaussian r.v.s, the ratesg,, andrr , will differ from equation (7.8) and (7.9). However,

since a Gaussian r.v. maximizes the differential entropy for a given variance, one may expect that the actual
rates will be lower than those of equation (7.8) and (7.9), obtained in the Gaussian case.

As for the error signals, the analyses of the previous sections are still valid under the same assumptions
of smooth p.d.f.s and high resolution. The quantization errors in the transform domain are still uniform,
leading, in the signal domain, to nearly Gaussian errors in the orthogonal case, and to nearly uniformly
distributed errors in the causal case. Thus the causal approach avoitl@ih®t suboptimality of the
orthogonal transforms regardless of the p.d.f.s of the sources.

7.7 Numerical Results

For the simulations, we generatstf real Gaussian i.i.d. vectors with covariance maftps = H Rag1 H” .

R g1 is the covariance matrix of an AR(1) process with- 0.9 and variance 0°. H is a diagonal matrix
whoseith entry is(N —i+1)'/3, N = 3. The data are rounded with even or aldA “one-shot” approach
requires~ 9.8 b/s to losslessly code these data.

Figure 7.5-b) compares the theoretic (expression (7.8) for the KLT, and (7.9) for the LDU) and observed
entropies for the low resolution signals. Note that the excess rate in the causatfaageafion (7.9)) is
negligible aslong ag; , is greater than roughBybits/sample, which is one third of the overall bitrate. The
first set of figures deals with odf. Figure 7.6-a) compares the theoretic (expressions (7.10) and (7.11))
and observed entropies for the error signals. Figure 7.6-b) compares the theoretic and observed overall rates
for the two-stage coders in both approaches, showing that the best orthogonal approach i Ziebily
suboptimal w.r.t. its causal counterpart in most cases.

In the case of everA, similar results are obtained in figures 7.7 and 7.8. Note the excess rategt)awhi(ch
appears ifry .ven Of equation (7.11) for low values . As shown in figures 7.8a and 7.8b, choosing the

‘e.g,if z = Az is arotated version of some= [z; - - - zy]7, wherez; are independent and uniformly distributed, then the KLT
V willbe V = A=, andy will equalz.
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Figure 7.5: Case of odd: a) Error probability and b) Entropies of low resolution versions.

causal approach is preferable if one desires to transmit a lossy signal whose rate is less than approximately
7.8 bits per sample.

Finally, these results are confirmed by figures 7.9, 7.10 and 7.11, where the rates are the actual rates obtained
by Huffman coding the different signals.

7.8 Conclusions

The causal LDU transform has been shown to present several advantages over orthogonal transforms in
the framework of multi-stage lossless transform coding. Firstly, under the assumption of smooth p.d.f.s for
the sources, and of high resolution for the lossy coded signal, the causal approach allows one to code the
data (almost, that is, neglecting the noise-feedback term in (7.9) and (7.13)) without causing any excess
bitrate as compared with a single-stage coder. Secondly, the approach based on the causal transform allows
one to easily switch between the single-stage compressor described in chapter 6 or a multi-stage lossless
coder. Thirdly, in the framework of interchannel redundancy removal, this approach allows one to easily fix
the distortion and rate for both the low resolution and the error signal of each channel, by using different
stepsizes in the quantization stage. Any of the channels may, as a particular case, be chosen to be directly
losslessly coded. Finally, a side advantage of the causal approach is that entropy coding of the error signal is
made very simple, since for odd quantization stepsizes, the discrete error sources are uniformly distributed,
so that the optimal codewords have the same length, and fixed rate coding is optimal.

Indeed, better compression performance may be obtained by removing intra- in addition to inter-channel
redundancies if the vectorial sourgepresents memory. The next chapter presents the extention of the
previous results in this case.
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Chapter 8

Multistage Integer-to-Integer MIMO

Prediction

This chapter investigates lossless coding procedures based on the “generalized MIMO prediction” as ana-
lyzed in chapter 5, and on the single- and multi-stage lossless coders of chapters 6 and 7. The considered
coding schemes are applied to discrete vectorial sources with memory. In this case, both intra- and inter-
channel redundancies are removed by lossless prediction. The resulting signals are scalar entropy coded.
For Gaussian sources discretized with uniform scalar quanti@grsve establish first the expression of the
maximal bitrate reduction as achievable by any lossless coding technique. This bound corresponds to the
performance of optimal vector entropy codes. We compare then the performance of the described integer-
to-integer MIMO prediction lossless coding schemes to this bound. Theses schemes are suboptimal because
of the lossless constraint imposed to the transformations, which vanishes in the limit of small distortions
introduced by the quantizetg;. The proposed coders may be used either as compressors, or as a scalable
lossless coder. In the latter case, a multistage version of the lossless coder based on triangular MIMO pre-
dictor is proposed. (A)DPCM lossless prediction loops are introduced which allow one to transmit the data
by means of substreams, which represent different “resolution” levels. This multiresolution approach is
slightly suboptimal in comparison with a single-stage compression approach because of the noise feedback
created in the (A)DPCM loops. We propose a strategy to fix the stepsizes of the quantizers of these loops so
that the delivered rates approach some predetermined target rates.

181
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8.1 Introduction

8.1.1 Lossless Coding

Let us consider a continuous-amplitude Gaussian vectorial setirte a first step, this source is quantized,
resulting in a source’. As z¢, the source: may present both temporal and spatial dependencies.

Once some rate-distortiontrade-off has been chosen, the distortionis fixed. By the noiseless coding theorem
of Shannon, the minimum bitrate required to code the discrete-amplitude souraeprresponds to its
entropy rate. The aim of lossless coding is to design a coding procedure whose actual bitrate will be as
small as possible, and, if possible, will reaeh Indeed, it is known that entropy coders which assign
adequate codewords to blocks of samplgsaccording to the joint probdiiy of these vectors, careach

rg. The complexity of these vector entropy coders may, however, be prohibitive. Thus, an interesting
guestion is that of designing a coding procedure which is performant in terms of rates, though maintaining
a reasonnable complexity, by using scalar entropy coders. This problem was investigated in chapter 6,
where we analyzed the performances of lossless transforms (based on the KLT and on the LDU), followed
by scalar entropy coders. The first topic of the present chapter is to analyze the performance of similar
coding schemes where the transfofffr) corresponds this time to the decorrelation approaches of the
MIMO prediction framework. The corresponding single-stage lossless structaeaited in figure 8.1.

Discretization Lossless Coder / Decoder
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Figure 8.1: Lossless coding scheme considered in this chapter.

Assume in a first scenario that the components of the vectorse,, in figure 8.1 are directly scalar
entropy coded (entropy codefs), resulting in a bitrate-;.,;(x). Assume in a second scenario that a
reversible transformatiofi’(z), aimed of removing intra- and inter-channel dependencies, is applied to

1The subscript will be dropped for discrete sources andy; , and will be later dedicated for the DPCM quantized signals in the
multistage structure of 8.5.
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z,, before scalar entropy coding, resulting in a bitrate, (y). As in chapter 6, one may define for this
transform a lossless coding gain expressed in bits per sample as

GT(z) = rscal(&) - rscal(g)~ (81)

As in chapter 6 also, one may expect that . is upper bounded by SOn&y; = 7scar(z) — 70. The
general expression @¥ ., for Gaussian sources with memory will be derived in section 8.2. This gain
will be compared to the lossless coding gain of integer-to-integer implementations of totally decorrelating
MIMO predictors in section 8.3.

After the analysis of these “one-shot” lossless structures, the fourth part will turn to two-stages multichannel
prediction structures, in the spirit of those described in chapter 7. The bitrates for both the low resolution and
the error signals will be first evaluated; the overall bitrate will then be compared to that of the corresponding
“one-shot” lossless coders. The two-stage structure will be extend&t stages in section 8.5. Finally,

some numerical results will be presented in section 8.6.

8.2 Entropy Rates and Maximum Lossless Coding Gain

The aim of this section is to establish the maximum bitrate reduction, or lossless coding gain, as achievable
by any lossless coding method ovgg,; (z). We first derive the minimal rate, (z) required to represent

the discrete-amplitudéy -dimensional source, obtained fromz® by some discretization process (figure

8.1). We will then express the bitratg.; ().

By the noiseless coding theorem of Shannon, the minimal bitrate required to represent the: $eurce

min{r} = ro(z) + € bits per sample, (8.2)

whererq(z) denotes the entropy rate, ant a positive value which can be made arbitrarily close to zero
by means of optimal vector entropy coders. We assumeath&tan uniformly quantized version of¢
with stepsizes\;. Let the samples of be collected in a vectak, = [z,...z,]7 and denote by} the
corresponding vector of samples fet. The entropy rate,(z) is defined by the limit

ro(z) = lim %H(Xk) (8.3)

k—oco

Now, for any continuous-amplitude soureguniformly quantized with stepsiz&;, the differential entropy
h(z¢) can be related to the discrete entrdpyz; ) by the Rényi’s relation [38]

H(z;) +logs Ay — h(zf) as A; — 0. (8.4)

This result can be extended to thé:-vector.X,, [35, 162], leading to

N

.1 . 1

rolz) & Jim ——h(X5) + 5= D log, Ay (8.5)
i=1
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Expressing the differential entropy of the multivariate normal distribution (see, e.g., [3] pp. 230) we obtain
1 1 g
ro(z) & Jim - log, 2re (det Rxex<) ™ + ~ ;logz A, (8.6)
Using the result (5.7), the minimum bitrate required to code the seuces be expressed as
1 L 13 Indet Spepe(f) 1 &
ro(z) &  log, 2me (e df) + N;logz A, (8.7)

whereS;,(f) is the power spectral density of the vectorial process
As mentioned previously, this bitrate can be achieved by optimal vector entropy coding. If now we use
scalar entropy coders to code the the bitrate is that of expression (6.7)

2l

N
Pscal (Z) & %log2 2me(det( diag{ Rycec}))™ — %Zlogz A (8.8)
i=1

Finally, the maximum lossless coding gain corresponding to the bitrate reduction achieved by vector over
scalar entropy coders is

GMax =  Tscal (&) —To (&)
det diag{ Rgez-}

57 log
2
2N e _1/1§2 In det SECEC(f)df

~ 5 log, G(LO).

X

(8.9)

WhereG(LO) is the optimal coding gain (5.9) obtained in chapter 5, corresponding to an optimal decorrela-
tion of the sourcéeforethe quantization stage. This expression generalizes (6.7), which links similarly the
coding gains of the classical and lossless transform coding frameworks. Note that for uniform quantization,
Gy does not depend on the stepsizes (assuming they are sufficiently small), but on the spatial and tempo-
ral dependencies of the continuous amplitude soutgemly. Also, (6.7) is indeed a special case of (8.9),

JZ{je et Seeas (N4 reqces talet Ryege.

The next section investigates the coding gain of actual transforms based on MIMO prediction, followed by

since for memoryless sources,..<(f) becomesR ez, ande

scalar entropy coders.

8.3 “One-Shot” Integer-to-Integer Multichannel Prediction

We first present the general structures corresponding to “one-shot” integer-to-integer multichannel predic-
tion. The corresponding coding gain will then be computed, and compafegt io of (8.9).

8.3.1 Triangular MIMO prediction

The causal decorrelation approaches presented in chapter 6 are easily adapted to lossless coding by intro-
ducing round off quantizers, similarly to those presented in figure 6.3. The choice of a particular structure
of the generalized MIMO prediction framework depends then on the degrees of non causality which are
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attributed to the intersignals filters. As in the lossy coding case, particular structures are the triangular, and
the classical lossless MIMO predictors.
The application of the triangular MIMO predictor to lossless coding is depicted in figure (8.2) for a two

dimensional vector source.

€
2

N

CODER DECODER

Figure 8.2: “One-shot” integer-to-integer triangular multichannel predictiotvfet 2.

The entries of the lower triangular MIMO prediction matiixz) (which may be written ag — L(z),
whereT is the identity matrix) aré.;; (z). L;;(z), ¢ # j are Wiener filters, and;;(z) are optimal causal
linear prediction filters. The rounding operations denoted\py(high resolution is assumed) ensure the
losslessness of the structure: eaghs quantized to the same multiple of; asz;. They; are obtained
by v; = «; — [Z:]a,, and further (independently) entropy coded. At the decoder; tlege recovered by
yi + 2.

Any lossless MIMO predictor can be written &4, ,(z) = I — L,,(z). In the triangular case, only the
diagonal entries of figure 8.3 are causal. In the classical MIMO prediction E4seis striclty causal. A
generic block diagram of the “generalized” MIMO predictor is presented in figure 8.3.

8.3.2 Case of Finite Prediction Orders

An application of the classical MIMO prediction to lossless audio coding has been recently presented in
[167]. In this case, FIR filters are used to remove inter- and intra-channel correlations of stereo and mul-
tichannel audio signalsi§ b/s,48kHz). The orders of these filters are adaptatively chosen (on a frame



186 Chapter8 Multistage Integer-to-Integer MIMO Prediction

=
1=

-1

Lgnt(z) L?’at '3)

Figure 8.3: Equivalent block diagram of the “one-shot” integer-to-integer multichannel predictors.

basis 0fl 024 samples) among a set of possible ordatsfor the intra-signal filters and0 for the (causal)
intersignal filters). Those orders are retained which minimize the bitrate. Finding the optimal order com-
binations results in a great complexity, even for stereo signals. Strategies are thus proposed to reduce this
complexity. The orders of the intrasignal filtefs (=) are determined by using Levinson algorithms. Once
these orders are fixed, the best order for the causal crossband prégictor: # j is evaluated. Further
complexity reduction can be achieved by increasing all the orders simultaneously. After the optimization
procedure, the coefficients are quantized withbits each, and transtted to the decoder. The results

show that appreciable bitrate reduction may be achieved by these techniques. They are also interesting in
the sense that they show how the compression efficiency depends on a carefull compromise of the orders
w.r.t. the complexity, and the quantization accuracy. A success of the structure relies on the decorrelation
efficiency, which in turn relies on positioning judiciously the taps of the filters. As discussed in chapter 5,
the triangular MIMO lossless predictor may be useful in this framework, since the intersignal filters are not
restricted to be causal, and some non causality may be allowed in frame-based coding schemes.

8.3.3 Coding gain

We can define the gaifiy ) for the lossless implementation of a transfatia ) as the difference;..;(z)—
Tscal,L(2)(y), Wherers.q (z) was defined in (8.8), and...; .(-)(y) is the actual bitrate required to scalar
entropy code the decorrelated transform compongnfBhis gain may be written as

N N
1 1
Gr(z) = Tseal(Z) = Tscar,L()(Y) = N Z H(x;) — N ZH(yi)~ (8.10)
i=1 i=1

We shall now investigate the effects of the rounding operations on the compression performance. Let us
denote byy?yk the optimal prediction error obtained by applyifig:) to z (that is, without the rounding
operations ensuring the losslessness). Thep;thean be related to thyfyk by

Y, = Zi

= (8.11)
= [z

[L(q)z]a,
T

k
()zg]a, = [QZ]A”
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where[y°] A, denotes quantization with stepsixe of theith component 0§, and the notatiofy) denotes
the unit delay operator. Thug, . may be seen as the optimal prediction eyﬁ;,g guantized with the same
stepsize as; . Sinceg0 is a totally decorrelated process, we have from (5.7)

N
2 In[det(Szx d
T[o% = det Bypyo = -3 =N 612)

N
1
rscal,L(z)(g) = % Z h(yo) - N Z IOgZ Az
i=1 i=1 (813)

1/2

N
~ g log, 2me (e%f—lﬂlndetsﬁmdf) - % Zlogz A,
i=1

which is the generalization of the rate of the one-shot coder expressed in (6.19).
Using (8.8), (8.10) and (8.13), we get the following expression of the gain :

1 det diag{ Ryege}

~—1
GL(Z) IN ng ef—1/1§2 In det SH(f)df

(8.14)

In the case of equak; = Ay g, expression (8.14) may be approximated, similarly to (6.21), by

GL(Z) ~ 7 10gs 1/2

1 ) det diag{Rgexc}  Afyp /1/2
2N ef—1/2 In det Sgegedf 94N 1n 2 ~

tr{ Spehe ( f)}df) , (8.15)

1/2

GMaz Ewcess bitrate due to the lossless constraint
where tr stands for the trace operator.
This gain is achieved by any optimal decorrelating approach. Thus, in the case of very high resolution,
vector entropy coders performance can be approached by an optimal MIMO lossless prediction followed
by scalar entropy coders. Comparing with the lossless implementation of the LDU in figure 6.4 of chapter
6, note that the quantization stagé involves N quantizers instead df — 1, because of the presence in
MIMO prediction of the intrasignal prediction filtdr,; (z). This renders the excess bitrate caused by the
lossless constraint the same for all decorrelation approaches.

8.4 Two-Stage MIMO prediction

8.4.1 Structure

We will now investigate the compression performance of multiresolution approaches based on the decor-
relating transform’.(z). For these approaches, a uniform quantigeris introduced in the (A)DPCM
prediction loops, whose effect is to reduce the entropy of the transform sigfhalfese signals represent

low resolution versions of the transform signgJsdescribed in the previous section. The error signgls

i =1, ..., N,are then generated by substraction, and separately entropy coded. Note that the transform sig-
nals are computed by substracting the optimal estimatg based on the pasuantizedsamples:!, and
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by quantizing with stepsiz&\; the resulting error predictidn Thus, only the available{ at the decoder
should be used to compute the remainhjg j > i. Atwo-stage structure based on the triangular MIMO
predictor is depicted in figure 8.4, fo¥ = 2.

oy
Ty

wa

STAGE 1.

Figure 8.4: Two-stage encoder of the scalable lossless multichannel triangular predictor=far The
bitrates for{i} . } and{:? , } are fixed by the quantiz&p; .

This structure resembles the embedded DPCM coders of [124, 127], evocated in the introduction to the
second part of this thesis. In these schemes, the predictions are also baseglhits (lossy versions?),
and may be seen as lossless, multichannel, and possibly noncausal version of these algorithms. The overall
bitrate is the average, r of the bitrates corresponding to the low resolution substreafisk = 1, ..., N,
plus the average of the rates corresponding {6; }, k¥ = 1,..., N (substreams of the error signals). In
order to simplify the derivations, we assume in this section thartheorresponding to the preliminary
quantization stage are all equal; = Ay g r. Moreover, we assume w.l.g. that the varianegsare large

2The prediction is computed by means of quantized data because we are interested in a low resolution signal which can be computed
independentlyof the error signals.
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in comparison withl, and thatAy gz = 1. Thus,z; are integer valued, anH (z;) =~ h(z) — logy A; &~
h(zf), andSys (f) = Seee<(f). This is equivalent to neglecting the effects/®f ;g w.r.t. those ofAg, .
The stepsize\ g, is generally much larger than for example, if one wishes to divide Bythe Oth order
entropy of an integer-valued source with variangé, the correspondingg, is~ 20 > Ay gr = 1.

8.4.2 Analysis of the Rates

N
We shall now analyze the bitrate dedicated to the low resolution versgigr= + Z H(y}). Considering
the figure 8.4, each; ;. is the optimal prediction of; , based on the past quan'zi:zled value:gfand on all
the quantized components ©f, for all j < i. (For the classical MIMO predictor, the corresponding
are based on the past and current quantized samples ., and on all the past samplg$_ . ).
Assuming that thg; are Gaussian, we have

| X 1 N | X
_ A\ o~ N 2 _
FLR= E_l H(y]) ~ 5N log, (2me) | | Ty TN E log, Ag, . (8.16)

i=1 i=1
We now use the result (5.23) from chapter 5. We aggly) to decorrelate the vectorial sourgen closed
loop around quantizers with stepsize that is, by computing the predictions by means of quantized data
of z. The resulting vectorial processys Then the variances of the processan be approximately related
to the variancesjg of y° (eq. (8.12), fig. 8.3), and t6,<.< (f) by

N N AL [ 3 Ny
ng’ ~ Hajg (1—1— - l/—l trSﬁ‘clgc(f)df—Z; . ]) , (8.17)

0
2 Yi

Applying (8.17) to (8.16) yields

1 9 + f_%L Indet Sgeze 1 Aél 1/2 g1 d N 1 1 A
3 log, 2me 3 + s f—1/2 trSyege(f) f—z —log, Ag,

TLR z o2,
=1 Y,
A2 1/2 N 1
Q1 -1
~ sca z 1 TS tr chxc df — —1 A L ,
r l,L()(g) +24N1n2 l/—l/z __(f)f 2020 0%y AQ
= Y. Bitrate reduction due to Q1
Factor FExcess bitrate due to noise feedback
(8.18)
N
Minimizing this excess bitrate entails maximizi@ 5 From the theorem of chapter 5, this in turn en-
T o
i=1 Y,

tails processing the signals in order of decreasing variance. Moreover, this excess bitrate will be minimized
by the lossless triangular MIMO predictor.
Now, the bitrater dedicated to the error signals, corresponds to the entropies of the;ra.se; — «7,
which were calculated in chapter 7, eq. (7.11). Thus, depending on the pafity,ofve obtain
= ~ _1
Teven =~ logyAg, + Ao,

(8.19)
Todd & Ing AQI .
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8.5 Mutistage Integer-to-Integer Multichannel Prediction

Finally, one may elaborate multiresolution structures basell dwo-stage lossless coders. These schemes
allow one to split the rate obtained by a one-shot codgy 1.(.)(y) into M + 1 substreams with rates
ri, t=1,---, M+1. These rates are controled by the stepsizesgfof each two-stage block, see figure
8.5. For the stages> 2, the predictors become useless if the error signals are white.

1 1
. o o : X
b4 an Tl I 7 rbits

STAGE1 (Q))

1 i : ) 2 } Substream 2
e T ] I L b
- 1 !
i ! !
I

L - STAGE2(Q.)

i
1
1
! ! } Substream M
i iy i )
: :_)E __________ . rar bits
(-1 : i
——=1i STAGEM (Qu)i
1
1
I
1
1
1
1
1
1
1

(,\Ifl

“a M1 -
] ]
A } Substream M+1

. ) :
1 1 raryr Dits
=[N -

Figure 8.5: Multistage structure of the lossless multichannel (triangular) prediction scalable encoder for
N = 2. The bitrates of the substreams are determined by the quarizers

Suppose we dispose of partially- or un-compressed datduppose we wish to transmit the data by
M41

means of\/ + 1 substreams corresponding to different resolution levels with imposedRa’(eE R; =~
i=1
Tscal,L()(y)). HOw should we choose the stepsizeg, of the M uniform quantizers ?

For the sake of simplicity, we will neglect the term corresponding to the noise feedback in (8.18), and
assume odd, and sufficiently large stepsixes.

In a first step, the minimum bitrate...; .(-)(y) (8.13) is obtained by compressing the data with some
one-shot lossless coder. Now, the two-stage structure of figure 8.4 will yield a first substream with rate

"M =TLR~ rscal,L(z)(g) - 10g2 AQU (820)

and a complementary susbstream with rate log, Ag,. If we use a second stage, the previous error
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signal with rater will be divided into two substreams with rates~ log, ﬁg

L, andr; = log, Ag,. Thus,

2

a structure using/ stages will yield a first substream with rategiven by (8.20) M/ — 1 complementary
substreams with rates

, ] =2,3.. M, (8.21)

and a last substream with ratgy 1 ~ log, Ag,,.

It can easily be checked that the constraink: R; imposesig, ~ [27schr W=, Similarly, the
constraints, ~ Ry imposeAqg, ~ [Ag,_,27 %]y, fork = 2,...M. Thus, the stepsizes, of the M
uniform quantizers should be determined by the simple rule of thumb

k

Tscal,L(z)(g)— ZRZ

Ag, ~ |2 i=1 Ck=1,.., M. (8.22)

1

8.6 Numerical Results

Some numerical results regarding the strategy (8.22) are presented in this section. We implemented the
structure of figure 8.5 for the multiresolution coding of a two dimensional memoryless vector source. In
this case, the temporal decorrelation becomes useless, and each two-stage block reduces to the structure
presented in figure 7.3, where thg are equal, and determined, for each block, by the rule (8.22). The
covariance matrix of the source was= H R4, H' with diagonal elements.6 x 10*, and10*. Each

vector was quantized with stepsiZze, yr = 1. The resulting theoretical bitrate for the corresponding
single-stage codef,..; (-)(y) is given by 8.13. We chose to compress this source by means of three
substreams with rate8,, and R, = Rs. For different target combinations, the stepsizeg, andAg,

were fixed according to (8.22) (with the restriction todzll). The resulting rates were measured either by

the entropy (fig. 8.6), or by the average rate obtained by Huffman codes (fig. 8.7), for sequences of length
5 x 10%. The rater;., (), obtained without compression, is plotted in full line. The correspondence of the
stepsizes for each combination of target rates is given in the table below.

Combination|| 1 | 2|3 |4|5|6|7|8|9o|10]11]12]13]14] 15[ 16] 17 18] 19]
111133355 7] 9]of13]15]10]23]27]35] 43
1l1]1]1l3]3]3|3]|3]3]|3|3|3|s5|5]|5]5]|7]7

Ag
Ag

1

2

It can be observed that the bitrates actually delivered by the multiresolution structure match approximately
the target ones when the stepsizes become largeswr .z = 1 (cases where the rate of the low resolution
version is decreased by more tHHI% w.r.t. the rate of the single-stage structure).
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8.7 Conclusions

This chapter dealt with optimal lossless coding of vectorial signals. The coding structures investigated in a
first step involved single-stage structures using prediction matficesof the generalized MIMO predic-

tion framework. The corresponding compression performance were compared to the optimal compression
performance. The particular cases of the classical and the triangular MIMO predictors were investigated,
and shown to present equivalent performance. In a second step, we investigated the performance of two-
stage structures where ADPCM loops were introduced. The quantizers of these loops allow one to choose
the respective bitrates for both the error and the low resolution signals. For these two-stages structures,
the overall bitrate delivered by the multiresolution structure was compared to that of the corresponding
“one-shot” approach. These two-stages structures were shown to be slightly suboptimadebof the

noise feedback created in ADPCM loops. Finally, we showed that the two-stage structure could easily be
extended taY/ stages. A strategy was proposed so that the delivered bitrates approach some predetermined
target rates. This strategy is efficient if the rate of the low resolution signal is sufficiently decreased w.r.t.

the overall rate.
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Chapter 9

Conclusions

This thesis has presented various coding structures derived from a general causal framework. As far as
the origin of these results is concerned, one may recall that this framework is issued from an analysis-by-
synthesis structure based on a Laplacian Pyramid.

The performances of the corresponding coding systems were analyzed in both the lossy and the lossless
coding frameworks. In the following, we summarize the main results of the thesis, and outline then open
problems and further works.

In a transform coding framework firstly, we showed that the proposed causal transform performs a
Lower-Diagonal-Upper factorization of the covariance matrix of the vectorial source to be coded. It is not
unitary but causal, and is based on optimal prediction. A theoretical analysis showed that in the limit of
high rates, this transform achieves the same performance as the KLT, which is the optimal transform for
Gaussian sources. As a consequence of its non-orthogonality, we showed that efficient causal coding struc-
tures should be implemented in closed loop around the quantizers, as in DPCM systems. We proposed a
general analysis of the corresponding noise feedback for both systems working at high rates, and for partic-
ular systems using entropy coded uniform quantizers with equal quantization stepsizes. For these systems,
we showed that the causal transform competes with the KLT at average bitrate budgets highérlfan
As the KLT, the LDU is data dependent, and should thus be updated in case of changes in the source statis-
tics. This led us secondly to turn our investigations to backward adaptive transform coding systems. The
first attempt to model theoretically the performances of the causal and unitary transforms in this context
consisted in analyzing the corresponding perturbation effects w.r.t. to the classical transform coding frame-

195



196 Chapter9 Conclusions

work. In order to make tractable analyses, several simplifyingassumptions were made. The proposed model
match accurately the corfgending idealized coding systems. We turned then to three practical backward
adaptive transform coding schemes, including fixed and adaptive stepsizes. The proposed analyses suggest
that the corresponding algorithms are universal in the sense that the transforms converge to the optimal
transforms for sources among a given class. In the case where both the stepsizes and the transforms are
adaptive, the algorithm using a Sheppard’s correction on the second order moment estimates converge to
the target stepsize, and thus, to the target distortion at high rates. The proposed models match the actual
convergence process for rates higher than approximately/s.

We then considered optimal coding of vectorial signals. We showed in this case that the optimal causal
decorrelating scheme could still be described by a triangular prediction matrix whose entries are optimal
prediction filters. The diagonal filters are scalar intrasignal prediction filters, and the off-diagonal predic-
tors are Wiener filters performing the intersignal decorrelation. This decorrelating scheme led to the notion
of “generalized” MIMO prediction, in which a certain degree of non causality may be allowed for the
off-diagonal prediction filters. Previously introduced MIMO decorrelation approaches were shown to be
special cases of this description, namely the classical, and the triangular MIMO predictors. For the latter,
the “ causality” between channels becomes processing the channels in a certain order; some signals may be
coded using the coded/decoded versions of the “previous” signals. We then showed that if the quantization
noise feedback is taken into account, the optimal strategy is to decorrelate the signals by order of decreasing
variance. Moreover, the triangular predictor was shown to be the most efficient predictor.

The second part of this thesis analyzed the performances of causal approaches in a lossless coding
framework. Our results regard integer-to-integer transforms, and multiresolution structures.
For single-stage structures, the bitrate reduction operated by a lossless coding scheme was defined as a
lossless coding gain. An upper bound for this gain was expressed in terms of mutual information shared
by the random variables to be coded. The inherent suboptimality of integer-to-integer transforms was then
compared for the LDU and the KLT. Finally, adaptive single-stage lossless transform coding systems were
investigated. For a fixed number of vectdts we evaluated, for both the causal and the unitary cases ,
the bitrate reduction that could be achieved by the corresponding estimated transform. We showed that for
single-stage systems, the respective performances of theusiibse of the KLT are reversed w.r.t. the
classical transform coding case. The integer-to-integer KLT achieves the same compression as that of the
lossless LDU in the limit of high rates only. At lower rates, the KLT’s compression performances are more
deteriorated by the integer-to-integer constraint than those of the LDU, because the KLT istguiiétia
We then studied two-stage structures based on the KLT and on the LDU transform. For a fixed preliminary
guantization stage (and for a sufficiently high resolution), we analyzed the bitrate required to entropy code
the corresponding low resolution and error signals. The resulting overall bitrate was compared to that ob-
tained with the corresponding single-stage structure. We showed that while orthogonal transforms tend to
“gaussianize” the error signals, the LDU benefits from keeping them uniform. As a consequence, the or-
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thogonal transforms, including the KLT, were shown to be approximatehyb/s/ch suboptimal w.r.t. their

causal counterpart. Finally, we underlined several other practical coding advantages of the LDU, namely
the ability of switching easily from a single- to a multi-stage structure, and that of allowing one to represent
the different channels with different resolution levels. Moreover, we showed that the errors in the causal
case can be made equally likely, which makes the entropy coding very straightforward.

Finally, we applied our results about optimal coding of vectorial signals to the frameworks of the single- and
multi-stage lossless structures described so far. The coding structures investigated in a first step involved
single-stage structures using prediction matrices of the generalized MIMO prediction framework. The
corresponding compression performances were compared to the optimal compression performances, as
achievable by any lossless coding technique. The particular cases of the classical and the triangular MIMO
predictors were investigated, and shown to present equivalent performances. In a second step, we inves-
tigated the performances of two-stage structures where (A)DPCM loops were introduced. The quantizers
of these loops allow one to choose the respective bitrates for both the error and the low resolution signals.
For these two-stages structures, the overall bitrate delivered by the multiresolution structure was compared
to that of the corresponding “one-shot” approach. These two-stage structures were shown to be slightly
suboptimal kecause of the noise feedback created in the (A)DP@dp$. Finally, we showed that the two-

stage structure could easily be extended to a larger number of stages. In that case, a simple method was
proposed so that the delivered bitrates approach some predetermined target rates. This method is efficient
if the rate of the low resolution signal is sufficiently decreased w.r.t. the overall rate.

As can be seen from the summary of these results, various coding techniques appeared in the scope
of the proposed investigatiohsncluding transform coding, subband coding, integer-to-integer transforms,
multiresolution coding, and combinations thereof. The choice of such a wide scope is of double value. On
the one hand, this choice was necessary to describe the versatile forms of the causal coding approach. On
the other hand, this choice led us to let for further work some interesting topics, which were only evoked,
or taken up in passing throughout the developments . Some of the presented analyses were focused on a
statistical modeling of the coding performances of particular causal systems; these systems may, however,
be further elaborated for the purposes of particular applicateagsaudio coding. In particular, it seems
interesting to investigate the performances of the backward adaptive LDU or the triangular MIMO predictor
for multichannel audio sources, with appropriate and possibly time-varying adaptation windows. As for the
triangular MIMO predictor, the coding efficiency will also rely on a careful positioning of the taps of
the crossband filters. The degrees of noncausality allowed to these filters should be optimized w.r.t. the
framelength, or w.r.t. some reconstruction delay between the different channels for a sample-by-sample
coding scheme. Besides, perceptual considerations, which were not mentionned throughout the thesis, may
be accounted for by introducing noise shaping filters, as in classical scalar (A)DPCM. This technique would
regard both the lossy encoder of the triangular predictor, and the low resolution signal of the corresponding

1In addition to source coding, the generalized MIMO prediction have interesting applications in multiuser detection [53].



198 Chapter9 Conclusions

lossless multi-stage encoder.

The proposed bandwidth expansion operated by the Wiener filters may also be improved by optimizing the
analysis filters (on which depend the information shared by the subbands), and by carefully optimizing the
number of coefficients of the filters transmitted to the decoder.

Finally, one may attempt to extend the presented theoretical results established in the Gaussian case to
different sources. One may consider Gaussian mixture models, which allow to model sources with arbitrary

probability density functions.
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10.1 Introduction

La nécéssit de “comprimer” les signaux nusriques trouve son origine dans les moyens ksiidont dis-
posent les communications nenues : la compression permeeddnomiser la bande passante des canaux
sans-fil ou internet; elle permet ausseddnomiser I'espace emioire en ce qui concerne leur stockage.
D’une fagon ¢grérale, le codage de source consatettre au point des techniques permettant, suivant
l'application vige, de éterminer le meilleur compromis entre la qualévec laquelle les informations
seront repesenges, et la ressource, ou leldf, qui sera atessaire pourattire la repgsentation choisie.
Selon que l'information initiale peuttfe partiellement, ou parfaitement reproduiteeapfopération de
codage, on parle de codage avec, ou sans perte. CestepeSente diverses techniques, evBluation de

leur efficaci€, pour ces deux types de codage.

L' informationconsicrée dans cette Hse sera repsenge par des signaux vectoriels, qui forment une large
classe de signaux, incluant par exemple les signaux scalaires ou les signaux multicanaux. Ces derniers peu-
ventétre construits @S que plusieurs signaux scalaires sont, pour des applications diverses, gésgiigp”

lors que les signaux scalaires individuelegghtent desependances, comme certains signaux audio par
exemple, il y a un irgféta les traiter conjointement, en vue d’'une compression plus efficace.

L'idee initiale de delopper des techniques adsgst‘aux signaux audia motivé ce choix d’une re@sen-

tation vectorielle. Bien que quelques applications soieasgmées pour ce type de signaux, I'hypetie

de signaux gaussiens est souvent retenue. Les sources Gaussiennes ont un statut parti@diéz de th”
I'information. Shannon [25] a morgrqu’une source Gaussienne @pghdante et identiquement distréeu”
(i.i.d.) posede la fonction dbit-distorsion la plusefavorable, comparativemeat’importe quelle source

i.i.d. de méme variance, montrant pa tjue les Gaussiennes constituent un extremum du point de vue
du codage de source. Historiquement, ce constat a fourmiéesehts pouelaborer des techniques de
guantification robust®1]. Par ailleurs, pour une source de deasi¢ probabili’arbitraire, on peut utiliser
avantageusement legbeéme de la limite centrale et un code construit pour une Gaussienne [52]. Toutefois,
on ne petend pas utiliser ici le made de source Gaussienne pour fournir des approches de quantification
robuste ou des athodes de codage de sources arbitraires @dittpaige et quantificateurs Gaussiens. Cette
hypottese permet surtout d’obtenir desstiltats analytiques relatifs shas de codage consids, de les
comparer et de prouver, le castBant, leur optimal@. Dans ce sens, elle fournit un cadre de travail adapt”
aux investigations #mriques peliminaires assoeis aux sarhas de codage ggéngs.

Nous inspirant de [19] et [20], cettedbé aurait aussi petre intituBe “Variations on a causal coding
theme”: le tleme de lacausali€ dans le codage de source est le lien essentiel entre les chapitres de cette
thésé. Plusieurs salmas de codage causaux sorgserigs et analyss au long du document. Dans tous
les cas a'le sciEma de codage comprend une transformation matricizglb®éfficients scalaires) causale,

1Les premiersesultats de ce travail oet& obtenus dans le cadre du projet RNRDBASCA COdage en Bandeldrgie avec

partage Adaptatif duebit entre Source et CAnal poueB8aux cellulaires de deexne et troime gnérations (UMTS).
2Nous avons eanmoins essayde faire en sorte que les chapitres puissénet lus inégpendamment, et avons repris, quand cela

semblait ®assaire, lesasultats pecddemmengtablis.
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nous en comparons les performances avec lersaBquivalent bas'sur une transformation optimale pour

les sources gaussiennes, la transformation de Karhunevel[42, 43] ( Karhunen-Le/e Transform, KLT).

Cette tlese comprend deux parties. La prereitraite du codage avec pertes (ou compression), et
la deuxeme du codage sans pertes (ou compaction). Chaque partie comporte une introchtatilée d”
présentant la problhatique et la trame des diversvgloppements. Uresung est pesent au é&but de
chaque chapitre.
Apres un chapitre d’introduction, rappelant les principaux concep&fieitions de teorie de I'information
nécéssaires au codage de source, la peeepartie de cette dse concerne le codage par transfeer(CT).
Le CT peut apparsie, d'un point de vue #drigue comme pratique, comme une technique parfaitement
maitrisée et aboutie. Un des buts de cette partie est de montrer que des innovations majeures sont en-
core possibles dans ce domaine. Dans le cadre du CT standard tout d’abord, ces innovations concernent
I'introduction d’une transformation qui n’est pas unitaire mais causale, et gaepté des performances
comparables celle de la KLT. Par la suite, les apportedhiques de cette preerie partie concernent un
domaine presque totalement inex@ocelui du codage par transfoemen boucle ferg€, ou “en ligne”,
ou encore sans "side-information”.
Dans la fin de cette premiie partie, la transformation matricielle causale esEgili®e au caswles co-
efficients de la matrice de transformation triangulaire sont des filteigi€urs (pediction MIMO, Multi
Input Multi Output, triangulaire). Cettesgéralisation @bouche sur la pdiction MIMO dite “géréralise”,
pour indiquer que la gdiction MIMO classique et la pdiction MIMO triangulaire constituent deux cas
particuliers, parmi une infinitd’'une n&me approche totalemengabreélatrice, et “causale” dans un sens
plus large. Un bref historique des principaesultats est @seng en fin de partie.
La seconde partie de cetteete pesente et analyse des techniques de codage causales et sans pertes,
dérivées des structuresgeénges dans la premiée partie.
Les tkemes de cette partie sont premdment les transformations d’enti@rentiers, qui peuvergtre vue
comme une analogie “sans pertes” (et nordiinés) du codage par transfaeyet qui oneté rticemment
I'objet de nombreux travaux. Dans ce cadre, la transformation caussderie” aussi une alternative in-
téressante aux transformations habituellement edfgunitaires). Le deusine tleme gcurrent dans cette
seconde partie est le codage masiolution qui permet, en augmentant&bod apporga un premier codage
grossier d’'une source, d’en afidrer la repesentation. Par ailleurs, le codage sans pertes de signaux audio
multicanaux est actuellement un terrain de recherches actives, esldtats propes s'appliquent na-
turellementa ce domaine. Enfin, legslltats et les structuresgsentes peuvergtte appliqes au codage
de I'image€galement.
La structure de cette seconde partie ressemlokele de la prenaire: les deux premiers chapitres couvrent
des techniquesdisa des transformations matriciellasoefficients scalaires; la deené partie ghéralise
ces derniersadultats dans le casida transformation e€or€glante est sans perte, et bassur un filtrage
matriciel causal de type MIMOeag€ralis.
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10.2 Premere Partie: Codage Causal avec Pertes

10.2.1 Introduction

Le codage par transfoie’est populaire parce qu'il permet un compromis attratif entre la compkidis
performances. Cette technique est largement aealgsCommemee dans la ligfature, et les sysines de
codage de source qui utilisent ce genre de code sontinnombrables. Il existe de nombreuses transformations,
qui présentent des compromis a@ifénts entre I'efficacit théorique et des crtes d’utilisation pratiques.

Par efficaci¢’théorique, on entend la capaeide &cor€lation, et de compaction; des eries pratiques sont

la complexi€ de calcul et d'impmentation de la transformation, ou desases subjectifs & au comporte-

ment de la transformation par rapparta nature des signaux auxquels elle est appbqlie monopole du
codage par transforee” est dtenu par les transformations orthogonales, parce qu’elles garantissent que le
bruit de quantification n’est pas ampéifiuand on passe du domaine trans®(vecteurg)) au domaine
signal (vecteurg:). Parmi ces transformations, la transformation de Karhunesv& ¢KLT, Karhunen-
Loeve Transform) [1, 54] est traditionnellement uks comme parangon, parce qu’elle est optimale pour
des sources Gaussiennes, quel que soit le type de quantificateurs scalaiess Utilidés tbres ecurrents

de cette prengire partie est de montrer que, relativemewlifferents crigres, les performances de la KLT
peuventetre égaEes par (au moins) une autre transformation, la transformation triangulaire causale dite
LDU (Lower-Diagonal-Upper,galisant une factorisation triangulaire de la matrice de covarigagedu

signal source).

10.2.2 Codage par Transformation Causale de Type LDU

Dans le second chapitre de cettesh, nous ekivons la transformation causale optinfakgans le cadre du
codage par transforee’classique (hypoéses d'allocation optimale de bits, et de performanebgfiiistorsion
constantes par rapport aaldf pour les quantificateurs). Decfan similaire au codage MICD (DPCM), cette
transformation donne lieadeux structures, dites en “boucle ouverte”, ou en “boucledefmCommepour

le codage MICD, cette dergié est plusedliste d’'un point de vue pratique; un desestiasequivalent est
repiseng figure 10.1.

L v, A

Figure 10.1: Codage par transformation causale en boucleé@dénote un ensemble quantificateurs
scalaires).

3Le choix de cette contrainte dmusali€, imposie sur la transformationedoule d’une approche de type analyse par ssgh’
adop€&e comme axe de recherche initial, voir (10.2.6).
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Notons que les erreurs de reconstructigret de quantificatio@k sont les nefnes, puisque
Ty =z, —zf =z, — (Yl + L)) =z, — L — ¥} =y, — ¥} = U (10.1)

Ainsi, la conservation de I'erreur de quantification n’est pas seulement vraie en norme euclidienne,
comme dans le cas unitaire, mais pour le vecteur d’erreur &umen”
Dans un premier temps, on optimise cette transformation afin de minimiser I'erreur de reconstruction en
négligeant le fait que le vecteur deféfenceLz! soit construita partir de doneés quantiéies (hypotase
de ésolution infinie). On obtient une transformation de la forme

1
* 0

L= )
* e * 1

ou lesx repesentent les coefficients degpliction optimaux. En d’autres termdsgst telle que

LRy L" = Ry, = diag{c} -0, (10.2)

Y1’ ynJo

ou diag{a} rep®sente une matrice diagonale, de diagonal€omme chaque erreur deeglictiony; est
orthogonale aux sous-exges grerés par les,.,;_,, les coefficients transforesy; sont orthogonaux, et
Ry, estdiagonale. Il suit

Ryp = L7 Ry, L7, (10.3)

qui repesente la dcomposition LDU de&?,,. On montre que puisque la matriég.. est dfinie positive,

cette transformation existe toujours.

On montre ensuite que le gain de codage correspor@%htqui repesente le facteur par lequel la distor-

sion est dimineé gecea la transformation, est leenie que celui de la KLT (dans les deux cas, la distorsion

est proportionnell@ det Ryy; la KLT et la LDU étant unimodulairesiet Ry, = det Ry, dans les deux

cas).

Dans un deuxdme temps, nous proposons des analyses des effets du bruit de quantification sur le gain
de codage. Boptimisant la transformation sous les hypsts classiques du CT d’abord, et menant une
analyse des perturbations au premier ordre, nous obtenons comme expression pour le gain de codage

~ N -

ElZ]® _ o 1 |12

G == x e (1- =Y , (10.4)
EUEm T N = o,

ou la notatiori!) dénote la pesence du bruit de quantification sur le vecteuredierence NV est la dimension

du vecteur,a§ est la variance du bruit de quantification dans le caslidt\; sont les valeurs propres de
Rys.

Finalement, nous analysons un €yst de CT pratique qui utilise des quantificateurs scalaires uniformes
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suivis d'un codage entropique (Entropy Coded Uniform Quantizers, ECUQ). Ces quantificatsersent
'avantage deedaliser simplement une allocation de bits proche de I'optimadit’ choisissant des pas de
guantificationegaux. Dans ce cas, lesstltats tBoriques et nueriques montrent que la KLT et la LDU
présentent des performanaegales pour desathits aussi bas queb b/s. Ces esultats onefé pesengsa
[55, 56].

Comme la KLT, la LDU @&pend des dora®s et devrait donetfe contimiment adapé aux changements de
statistique de la source. Afinaliter le surcrd’de dgbit asso@a la transmission des paratres de codage
au ddcodeur, on peut chercharadapter ces sehias sur la base des de®s pecddemment quantdgs.
Ceci pose le proleime d’adaptation “en ligne” pour le CT. La faisal@liet I'évaluation des performances
du CT “en ligne” est I'objet des deux chapitres suivants.

10.2.3 Analyse Haute Rsolution de Sclkemas Ickalisss de Codage par Transfornge
“en ligne”

Une premere contributiora’la modlisation tleorique de sadrhas CT adaps “en ligne” consista anal-

yser la perturbation par rapport au cagatiai la matrice de covariance est connue agatieur. Afin

de mener les calcula leurs termes, nougiritroduisons les hypotises simplificatrices du CT classique

opéranta haute esolution. Les sdarhas consieés réassitent donc que ni la transformation (KLT ou

LDU), ni les paramsires de l'allocation de bits ne soient transmis eaatfeur. Nous supposons par con-

sequent que ces sehias sont ba&s sur un estimB = R.. + AR de la matrice de covariance inconnue

R... Ree cOrrespond un processus vectoriel Gaussie(eventuellement localement) stationnaireest

I'estimé correspondant, disponible au codeur et acodeur. Dans ce cas, le processus de codage utilise

une transformatioft' = 7'+ AT (ou T est la transformation calaed’ au moyen d&,.), et la distorsion est

proportionnelle aux variance:éfh des signaux transforgs’au moyen dé au lieu del'. De plus, les bits;

sont attribe’s au moyen des est@®des variances disponibles acddeur, ncﬁés(ff%f)”, ol (.);; dénote

le ieme€lément diagonal d¢). Les Bsultats de cette allocation de bits “en ligne” sont par equsht
(TRTIT);;

(LS, (TRTT)i)

(10.5)

ri=r+ =log,

2

Nous obtenons alors la mesure de distorsion suivante, pour emadbds surR, utilisant une transforma-
tion 7"
1 TRIT);;
N N =2[r+ ilog2 N( fﬁf)T -
~ —oF 42 . i) N 2
Ellgl2 = EY 270’y = EY e2 ML @RI o2 (10.6)
i=1 i=1

ou I'espérance E correspond aux casA R est non @éterministe.

Le but de ce travail est de fournir les expressions des distorsions correspondantes pour la KLT et la LDU,
et de les comparer. Ces calculs sont faits dans trois cas.

Dans un premier cag\ R est cee par le bruit de quantification: le setma de codage est lgesUr les statis-

tiques des doregs quantiées @ = Rgaeze). Dans un second cad i correspondi un bruit d’estimation:
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le syseme est basSur un estim’de Z,, construit au moyen dé& vecteurs:R = e Ef; z;z!. Finale-

ment, les deux bruits sont treg‘ensembleR = + S°% | #727".

Calculant dans chacun de ces trois cas la distorsion obtenue pour une transformatios (alesgitce de
transformation), puis pour la KLT et la LDU, nous obtenons des expressions analytiques pour le gain de
codage.

Dans le cas v seul le bruit d’estimation est pris en compte, on montre quel les gains de codage sont les
mémes pour la KLT et la LDU. Dans le cas tes bruit de quantification et d’estimation sont pris en compte
conjointement, on obtient pour la LDU

EIEll s, o) (det(I + o2 (diag{Rer}) =) """

o (detT 4 o)) Y 2
{1 + £ [1 = & tr{ Rpaga(diag{ Rew })? " Ryaga (diag{ Re })?1}] — ZE tr {(diagRyaga) ™'}

(1425 [ ] = S (0 R 7)1

G’\/ = ~
Eofa gl

X

(10.7)

Cette expression (bas’sur un calcul des perturbations au premier ordre, et supposant le nombre de vecteurs
K suffisamment grand) permet dealire quantitativement les influences respectives du bruit de quantifi-
cation (termes efi et 05), du bruit d’estimation (termes i), et leur influence conjointe (termes cres$.
Comparanga’I'expression correspondante pour la KLT, on montre ainsi que le bruit de quantification li’
a l'utilisation de vecteurs desférences quantdés dcrat a bas @bit les performances de la LDU rela-
tivementa celles de la KLT. Les calculs ¢bfiques de ce chapitre sont ensuite \@digar des simulations
numeériques. Cesasultats sont @sen¢s dans [57, 58, 59].

Notre but initial de pesenter une analyseguise et compie de sysres de CT adaptatifs “en ligne” nous

a semb¢’toutefois partiellement inachea ce stade. En effet, les hypeses simplificatrices retenues pour
les calculs (principalement leenanisme d’allocation optimale de bit) peuvent ne @ias €alistes pour

des systimes concrets. Ceci nous a reenix gtveloppements du chapitre 4.

10.2.4 Analyse [Bbit-Distorsion de Sclemas Concrets de Codage par Transfori@e
Adaptatifs “en ligne”

Nousétudions dans ce chapitre, trois sofds concrets de CT “en ligne” lessSur la KLT et la LDU. Dans

ces algorithmes, les quantificateurs scalaires sont de type ECUQ, et les pas de quantification somt¢es m”
pour chaque composante transfeanlLes transformations sont calee sur la base des estisdes matri-

ces de covariance obtenwepartir des donges pecddemment quantées.

Dans un premier temps, des algorithragsas de quantification constant (relativement au temps) sont im-
plemen€s. Ce cas @sente un irgfét pour des sources stationnaires; autrement, de tels algorithmes peuvent
occasbnner des variationsaitceptables deathit. Pour ces algorithmes, la question est de savoir si les trans-
formations vont converger ou non vers les transformations “optimales”lés transformations caloed’s

avec une connaissance parfaite des statistiques de la source). Nous montrons empiriquement que c'est le
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cas pour la LDU comme pour la KLT, emiea trés bas dbit.

Dans un deuxme temps, nous proposongiluer analytiquement le comportement de deux algorithmes
a pas de quantification adaptatifs, permettant aesystde produire unatit relativement constant. Pour ce
probléme, nous supposons que la source est un processus vectoriel (de dimension N) stattyentued|€-
ment par morceaux), de matrice de covariaiigeénconnue du dtodeur. La question est de savoir si le
syseme CT adaptatif “en ligne” va converger vers un sgs ce€ avec la connaissance étgi.e. vers un
sys€me produisant uneditrg, et une distorsiomy = ¢272"(det R) ~ . La pro@dure d’adaptation du pas
de quantification est simple, et similagecelle utilige classiquement dans desestias de quantification
scalaire adaptative. Ces algorithmes sont les suivants:

Algorithme([!]:

o Initialisation: K = N.

K
¢ Etape 1: Un estimde la matrice covariandEK = % Zgj@q? est disponible au codeur et aeabdeur.
i=1

o Etape 2: Une transformatidf est calcute de telle sorte qu@KﬁKf§ soit diagonalefK est soit une
KLT, soit une factorisation LDU d&x. Un pas de quantificatioﬁgé] est calcut par

ﬁ[lé] =V2me27" det(fKﬁng)ﬁ. (10.8)

¢ Etape 3: Ces paragtres sont utilies pour transformer et quantifier(& + 1)éme vecteur pargjfmrl =
[VKQNH]B%] dans le cas unitaire, et pat . = [Try1 — f@j{(H]Né] dans le cas causdl.](x dénote
la quantification uniforme de pas). L'espérance de la distorsion pour (& + 1)éme vecteur est alors
DU(K +1) = EAEY /12,

o Etape 4. Retoun I'Etape 1: le @codeur calcule un estande la matrice de covariandéKH =
N

ﬁ(z @?@?T + @}H@}TH), a partir duquellx 11 et Ax 11 peuventetre calcuds, utilisés pour coder

le (N Zf?)éme vecteur, etc...

Algorithme[2]:

Une anglioration simplea’l’algorithme pecédent peuefre appore en utilisant dessultats concernant la
quantification uniforme de sources Gaussiennes. Pour des vecteurs Gayssjesitifés avec le rme

pas de quantificatio, on montre que @.@!T = Ryays = R+ %I+B, ou B — 0 élément paelément
quandA — 0. Dans l'algorithmd 2], si le pas de quantification converge vers un certain pas (suffisamment
petit) A (7T'), 'estimé de la matrice de covariance converge alors vers une matrice proéhe éé@[.
Lesévaluations numiques de la prerare partie de ce chapitre ont seggla convergence des estEl
versR + %I, méme pour des pas de quantification de I'ordre éedit-type des sources scalaires. Par
congquent, un estim’plus pecis deR peutétre obtenu en soustraya%] a l'estimé actuel ams un
certain nombreV, de vecteurs cogk/dEcods. Cette correction sur I'estimation des moments de second
ordre d’une source au moyen de sa version quaetést parfois apped”“correction de Sheppard”. A part
cette diférence sur I'estimR intervenant as N, vecteurs, legtapes de l'agorithmi] sont les nefnes

que celles de 'agorithmle ].
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Nous modlisons ensuite I'egyance de la distorsion obtenue pour chaque algorithme, pour un nombre
donré K de vecteurs e€ods, et obtenons les expressioesursives suivantes

Ny K
1+]1 (% — N)+ tr{R™ 1}( [ . ( > DY DEf)]) —DE'?K])D] , (10.9)

i=N41 i=Np+1

ple]

(1)~ Do

1+%(%_N) ”;RN } ( > Dl )] (10.10)

i=N+1

Par conequent, nous montrons queisj est la distorsion cible, choisie pour uelidfr, et une source de
covarianceR, I'algorithme utilisant la correction de Sheppard converge vers le painD,, Ag) choisi.

Si cette correction n’est pas applgp)’le sysgme CT adaptatif converge vers une distorsion plus grande
Dy + 6Dy, et un d&bit plus petitrg — drq:

§Da
D2 & Dy Dgi]zDM-Dg%H
AP~ A, , et A~ Ag(1+ A tgfj;l)
r[g]zro r[l]zro 2]\?1 2t {R 1}
sro

Les @sultats nurafiques confirment les assertionedhiques. En particulier, le syshe utilisant la correc-
tion de Sheppard converge vers le pdint, Dy, Ag) cible choisi au écodeur, bien que leeddodeur n’ait
priori aucune connaissance du pas de quantificatiotiliser, ni des statistiques de la souaceoder. Ces
résultats sont @sen¢s dans [60].

La transformation causakdttidiée dans ces premiers chapitres pdgsdes propetés de @core€lation op-
timales. Comme la KLT toutefois, la transformation causale telle queitd jusqud pesent ne prend en
compte que les coetationsa l'interieur de chaque bloc ¢gendancespatiale$. Pour des sources vecto-
rielles dont lesethantillons vectoriels ne sont pas épethdants, une efficagitle codage s@pieure peut
étre obtenue en prenant en compte kegatidanceemporellesLa description et Etude de la transforma-

tion causale dans ce cadre est I'objet du chapitre suivant.

10.2.5 Pediction MIMO (Multiple Input Multiple Output, multi-entr  ées multi-
sorties) Generalisee

Nous montrons d’abord dans ce chapitre comment la transformation causale LDetygadtendue au
filtrage matriciel. Nous supposons que éehantillong;, (de taillesM x 1) sont collect's dans un “super-
vecteur’ X, = [zl T .27 et consigtons le cas limitewk — oo: dans ce cas, la matride peut
étre dEcrite par une matricé(z) (de tailledM x M) :
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e PourX, décrit pcddemment, la matricé(z) corresponda’la p€diction MIMO classique. Pour
M =2,
Lll(Z) le(z)

s 0
L(z)= = ZLkz_k avec Ly = ,
Ly1(2)  Laa(z) 50 lor 1

afin de conserver la structure temporellement causale.

¢ En organisant diffemment leg¢hantillons au sein d&,, nous obtenons la pdiction MIMO tri-

angulaire
1 0 1 0 L 0 L 0

L(z)= nz) 04 _ 1(2) , (10.11)
0 LZZ(Z) Wzl(z) 1 0 1 L22W21L11 LZZ(Z)

ou Wa; est un filtre de Wiener. Comparant laegiction MIMO classique 'sa contrepartie triangulaire,
les deges de libet’de L1, sont transéiéesa la partie anticausale de;. Les filtres diagonaux sont des
filtres scalaires de pdictions (intrasignaux), et les filtres non diagnaux sont des filtres de Wiesdeyarit
une décorglation intersignaux. Nous montrons que lagtiction MIMO classique et la pdiction MIMO
triangulaire sont deux cas particuliers d’une infinit¢é margres de dcorgler les signaux vectoriels via
Gram-Schmidt. Ces diffentes approches sont caegisEes par le degrd’anticausali’dédié aux filtres
non diagonaux, et peuventré vues comme desgqatictions MIMO classiques appligasa des signaux
vectorielsz, = [z1x T2 Jords T M k+dit. +dar_1 ) OU l€Sd; sont des dlais. Nous montrons alors que
la prédiction MIMO triangulaire est aus&tausale”, mais dans un sens plus large:

o elle correspond au cas egtne ailes dlaisd; — oo, i =1,...,. M — 1,

¢ pour la matrice de diction triangulaire,

- la notion de causaktreste inchargpour les pedicteurs diagonaux (SISO, Single-Input Single-
Output),

- lesfiltres non diagonaux sont des filtres de Wiener entre des signaux scalaires,
- la causali¢ entre les canaux correspaatiordre dans les signaux scalaires soatdfglés.

Par coneguent, certains signaux peuvetite” co@’s en utilisant les versions aees/@&codes des “prté-
dents” signaux. Ainsi, la gdiction MIMO triangulaire, cas particulier d'uneqaliction MIMO ggréralige,
appar# comme une gréralisation au cas vectoriel de la technique (A)DPCM.

Une question irdfessante est alorgtlide des gains de codage pour ces approaws dlatrices causales.
En consi@rant des vecteurs de taille infinie, on obtient des expressieqsdnitielles pour le gain de codage.
Pour les netnes raisons que dans le cas de la LDU, uneemplitationealiste de ces syaties devraiefre
faite en boucle fermé. Par corexjuent, I'analyse #0rique proposé comporte encore deesapes.

Dans un premier temps, oreglige le fait que la pdiction soit faite en utilisant des doees quantiées
(hypothese de @5olution infinie). Dans ce cas, on montre que toutes les approches aeélitipri MIMO
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gérérali®e (notamment classique et triangulaire) santivalentes, et que le gain de codage assest”

M M
Hi:l U%‘z

a0 — _
ef _5% In[det(See(f))] df

, (10.12)

ou Sy (f) estla matrice de densiSpectrale du processus
Pour des systmes en boucle feree” utilisant des dorags quantiéiesa haute esolution dans un deuine
temps, on montre que le gain de codage est

o : -1 - 1
14+ (—/_l tr (S2(0) df+;%)] , (10.13)

2

¢W(L) ~ GO

ou 031 est la variance de I'erreur de quantification dans le ceali@solution infinie), et DleSUjl sont les
variances de gdiction optimales.

Ainsi, pour une esolution infinie, toutes les approchedf€lation sonequivalentes@(")), alors que pour
une hautee$olution, maximise€:(") (1) équivauta maximiseer‘i1 ——. Nous proposons un ¢oeme
pour ce prol@ime, qui montre que I'ordre optimal dans Iecd'nélationyf)our le pedicteur triangulaire est
de dEcorgler les signaux par ordre de varian@ebissante.

Le cas de filtres 'eponses impulsionnelles finies (RIFs), ainsi que celui d'wwElation oErée dans le
domaine fEquentiel sont ensuite ab@sl Finalement, une application directe de essiltats est propes’
pour le codage de la parole large bande. @ssltats, ainsi qu'uneatfonstration audio omté pEsengsa

[61].

10.2.6 Origines des Pecedents Resultats: Structures Analyse par Syntlese

Les @sultats du travail @sen¢’ dans cette #se trouvent leur origine dans le projet RNRDBASCA,

dont le butetait de fournir des algorithmes de codage conjoint source-canal pour des signaux audios large
bande [50H =z — Tk H z]) dans le contexte d’ UMTS. Nous avons pour cela suivis deux axes de recherche.

Le premier concerne 'optimisation conjointe deggticteurs ligairesa court et long terme pour des sig-

naux de parole; ce sujet sortarimoins du cadre de cetteetle (les eSultats assoes sont repods dans

[101, 102]). Il nous a cependant sembhtéressant de fournir un descriptif du second axe de recherche,
parce qu’il montre comment des techniques de codage existantes, des contraintes industrielles, et des ob-
jectifs scientifiques ont conjointement nesinl'ensemble de techniques causales de codagpepges dans

cette tlese.

4COdage erBandeclargie avec partagsdaptatif du @bit entreSource etCAnal pour Eseaux cellulaires de deexne et troigiime
gérérations (UMTS), http://www.telecom.gouv.fr/rnrt/pcobasca.html.
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10.3 Deuxeme Partie: Codage Causal sans Pertes

La seconde partie de cettece pesente et analyse des techniques de codage causales sans peees bas’
sur les approchesedorelantes (de type LDU et MIMOey¥ralige) dcrites dans la premie partie. Nous
présentons d’abord les principales pratlatiques de cette partie. Sommairement, les structures de codage
étudées mettent en oeuvre des transformations naeiies, les transformations d’entiexsentiers, et

abordent le prol@ie du codage mulgsolution.

Transformations d’Entiers a Entiers

Les sclemas de codage sans pertes peuvent exister comme des @padrmnre (codeurs “entropiques”,

par exemple de type Huffman), ou bietré inclus dans la structure de codeurs avec pertes, afin d'en
améliorer les performances. Consitns dans ce cas le sha de la figure 10.2, qui utilise une transfor-
mation transformatiofd’.

Quantification Codeur/Décodeur sans pertes

' YLK | Yk [ Gy
I M M I : f '
Lo - P
Yok, | Yok, o2k
— Y2 Y2 T o
Co : [
L e S R
T Y3k - Y3k | T3l
T V3 T3 .
: [
: P
: P
YN | UN & LN
’ N Y =

1 Lo

_______________________________________________________ ;o

2 Ly Yy Yy Ly

Figure 10.2: Schma de codage sans pertes ertéhdans un codeur avec pertes.

Dans un premier temps, une source vectorighies hauteeSolutionz¢ (amplitude continue) est quan-
tifiee au moyen d’un codeur avec pertes espri¢’ par le bloa (@ peut repesenter la disetisation en
amplitude gali€e par des quantificateurs gEndants de type PCM, des structures de type ADPCM, des
codecs MPEG, etc...). Une fois cette detgsation gali®e, le probdime est de transmettre efficacement la
source dis@tex ou, en d’'autres termes, de minimiser kebit'asso@'a la repegsentation de cette source.
Une nethode de codage entropique optimale est un codage entropique vectoriel, qui assigne des mots de
codead des vecteurs. Cependant, cetetmode requiert de calculer la distribution de probabdithjointe
des vecteurs sources; elle est par eguEnt complexe, mal adagtd des signaux gsentant des cala-
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tionsa long terme, et peu utili€e en pratique. Dans ce cas, oafpré coder I'ensemble des flux par N
codeurs entropiques scalaires @pehdantsy; °. Bien sir, ce type de codage entropique scalaire est sub-
optimal parce que les sourcesne sont pas ingendantes, et que les fluepslEment transmis comportent
des redondances; il estarmoins largement moins complexe. Uneofade pallie@ cette suboptimalkt”
est d’'appliquer, a@s I'étage de quantification et avant le codage entropique, une transforrihatiamns
pertes, oueversible, qui rend ces flux iergendants (ou au moingcbrelés). Les redondances intersig-
nauxétant gduites, le dbit total ré@ssairea’la repesentation des sources ainsi transfeems’en trouve
réduitégalement. La transformatidns’appuyant sur un ensemble discret, et produisant un autre ensemble
discret, elle est non liggire, et appek transformation d’entieesentiers.

Pour esumer, une approche de codage utlisant une transformation d'entietiers epare la proedure de
codage entropique en deetapes: prensifement la transformation inversible est appéiga’‘chaque bloc
quantifié dans un but deetor€lation; deuxémement, les coefficients transfassont indpendamment
codgs, ce qui assure une complexittale relativement faible. Du signal vectoriebn passe au signgl a
partir duquel le dcodeur peut retrouver exactement le signaCette approche sera aussi aggetodage
sans pertes “morgtage” ou “monogsolution”.

Pour une transformatidfi et une source donrges, nous allons constEr deux seharios: le senario 1,

ou T est utilige, et le sehario2, ou elle ne I'est pas. Dans les deux cas, la structure de codage Wiilise
codeurs entropiques scalaires. Les questions suivantes se posent alors: queléglastitmrimaximale de
débit que le schma 2 peut oprer relativement au sehia 1, et quelle serait alors la transformation corre-
spondante ? Deugimement, quelle est l@duction de dbit réellement opfée par des transformatiofis
concetes ? Dans le chapitre 6, ces transformatibesncetes sont ba&gs sur les imgimentations entiers

a entiers de la KLT et de la LDU. Dans le chapitré/8est basé sur les approches de MIM@mfralise.

Codage sans Pertes Multiesolution

ParalElementa’ cette approche moresblution, une approche de codage sans pertesreliffé consiste
a coder avec pertes la sourcalans un premier temps, produisant pauh premier flux deV signaux

scalaires “basseesolution’y!. Dans un second temps, le signal d’'erreur est emapgaement, ce qui
donne la structura deuxetages de la figure 10.3.

L'avantage de ce type de smas est qu’une version approximative de la source gtesitdisponible
rapidemment, indpendamment du signal d’erreer.d. dans le caswla capacit’du lien de transmission
varie, sur internet par exemple). Le signal original petné Teconstruit uifieurement en ajoutant le sig-
nal d’erreur. Sil'on suppose qu)} est compos’de quantificateurs scalaires, lebit’du signal basse
résolutionz? de x peutétre contole simplement par les pas de quantification correspondants. Ceci per-
met d’obtenir un signal basebit, au cat d’'une certaine distorsion. Ce type de actas est utilisdans

5Pour des sources vectorielles aveemmire, le protime est plus aigpuisqu’elle maéssite d’estimer la probabiitéonjointe de

vecteurgle vecteurs
SPar exemple, des codes populaires en audio sont les codes de Huffman et de Golomb-Rice.
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Figure 10.3: Schma classique du CT sans peredeux niveaux deesolution.{(} dénote des quantifica-
teurs scalaires{~; } et{~/} des codeurs entropiques scalaires,]etet des opfateurs d’arrondi.

des codeurs de signaux audio sans pertes [21, 24], et d'images [105, 106]. Rauemnsine comparai-

son de I'efficacié’de compaction entre les transformations orthogonales traditionnelles et la transformation
causale semble iatéssante. Par ailleurs, une question @iigttest celle de savoir si un saina de codage
multirésolution sans pertes est sous optimal par ragpkapproche monasolution @crite plus haut. Ces
guestions sont tras dans le chapitre 7 pour des approchdeuxetages ba®s sur la LDU ou sur les
transformations orthogonales, et dans le chapitre 8 pour des struatres M étages ba®s sur des
prédicteurs MIMO.

10.3.1 Codage par Transfornée sans Pertes: Cas Causal, Unitaire, éftude de
Sysemes “en ligne”

Le chapitre 6 adresse le preiohe du CT sans pertes matage. Dans le caud” de la figure 10.2 est
ba< sur des matricesedor€lantes de type KLT ou LDU, la relation d€ a y est similairea’celle existant
dans le CT classique, sauf que leegiions de quantification et de transformations apparaisseoitdre
inverse de plus, les signaux transfoesmdoiventtrea amplitude dis@te puisqu’ils sont par la suite cesl”
entropiguement. La question de savoir si les transformations d’eiatiengiers sont, d’'un point de vue
débit/distorsion, aussi effaces que leurs contrepartiesi#ires seté adressé €cemment [41]. Supposons
gue I'étage de quantificatiap soit compos’deN quantificateurs uniformes deamie pas\, et consigrons
les sclemas de codage suivants:

¢ (1) quantification scalaire des suivie deN codeurs entropiques scalaires,
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¢ (2) quantification scalaire des suivie d’'une transformation d’entiees eéntiers et deV codeurs
entropiques scalaireg)(et CT sans pertes),

¢ (3) transformation dtor€lante lirgaire suivie d’'une quantification scalaire, suivie decodeurs
entropiques scalaires (CT),

¢ (4) quantification scalaire deg suivie d’'un codage entropique vectoriel.

Les sultats de [41] montrent que, pour des vecteurs Gaussiens i.i.d., les performancesmes(sgh”
(3), et(4) sontéquivalentes dans la limite de petits pas de quantificatioBette analyse revieatrégliger

la contrainte d’entiers entiers sur les transformations du ¢a3. En effet, ces transformations doivent
produire des coefficients discrets; elles ne sont paaiies et ne peuvent qu'approximer leur contrepartie
lineaire. Le but de ce chapitre eseddluer la sous-optimadéitlieea ces non-lieari€s. Le criere choisi
pour cetteevaluation est uigain de codage sans pertedfini comme la eduction de dbit opérée par le
schéma(2) par rapport au saa( /) (en bit parechantillon).

Nous montrons d’abord que les gains desesehs(.3) et () rep@sentent un limite sugrieure au gain du
sckéma(2). Le débit minimum rEcéssaire au codage sans pertes de signaux sam®ing est I'entropie
discrete. Pour des signaux Gaussiens, nous utilisons la relatiormig [38]

K3

1
H(z!) ~ 3 log,, 271'60'12;1 —log, A;. (10.14)

Le gain de codage sans pertes maximal, obtenu pour un codage vectoriel et pour une souremségs m’
est alors donapar

1 det diag{ R 1 Y
Gomaw = —logzL{—} — _Z

2N det Ryp N Hwisey,y) (10.15)

=2
' Information mutuelle

Cette expression montre que pour des signaux Gaussiersiuetion de dbit oprée par le scma(4)
sur le sciema( 1) correspondh’la moyenne des informations mutuelles entre chaque nouvelle variable
du vecteurz? et les variables mddemment coesz? . ,. Elle permet aussi de donner une intetption
du gain de codage traditionnel en termes de I'information mutuelle.
Nous comparons ensuigecette limite les gainsegllement opfés par les imgmentations sans pertes de la
LDU et de la KLT, pour un niveau de distorsiondif fixe). Nous montrons d’abord que 'ingatientation
entiersa entiers de la LDU pewgtfe obtenue &s simplement gea sa structure triangulaire. Le gain sans
pertes assoeia la LDU est done’par

Af
1202

tr{R,, D} — (10.16)

1
Gre =~ Gmax T
L 2N In?2

Une congquence irdgfessante de cesiltat est que la version la plus gressiment quantiéié (%’ ) doit
étre plaee en prendfe position pour maximiser le gain (minimiser lebit). l

En ce qui concerne la KLT, nous suivons la factorisation @enpér Goyal pour obtenir la transformation
d’entiersa entiers assoe€. Dans le cad’ = 2 par exemple, si’¢ est une KLT de la sourca coder, on la
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, a b 1 =L 10 1 &L
factorise commé’ ¢ = =VIVEVE Vi= < | V= V! ¢
¢ d 0 1 c 1 0 1
La transformation recherele’V,? . est alors obtenue en intercalant desmpions de quantificatiah; apes

int

chaque matricé;?. Analysant les effets di$ aux non liearigs introduites par led; sous I'hypottese de
haute gsolution, on montre que le gain de codage est strictemeriénf’'dans le cas de la KLT par rapport
au cas causalGys < Gp« . L'approche causale emea une eduction de dbit plus importante que
I'approche unitaire, ce qui est une cegsience de sa structure triangulaire.

Finalement, 'adaptativitde systmes sans pertes momrsolution “en ligne” esefudiée: nous consitons
des systines pour lesquels les transformations d’entéeestiers sont calce¥s sur la base des daas’
précédemment reyes auKek':odeur uniquement, c'eatdire au moyen d’un estiende la matrice de co-

variance de typé? = + Zf’xﬂ. Dans ce cas, les transformations convergent vers les transformations

i=1
“optimales” (bases sum?) seulement quand le nombre de vectekirtend vers l'infini. La question est ici:
guelle est laeduction de dbit moyenneGﬁm(K) apporge par une transformatidhy,,, calcube aveck
bag surk vecteurs ? Nous calculons pour ce pebE un modle statistique de vecteurs Gaussiensi.i.d. :

2
EveqAR) (ved AR))" ~ = Resar © Ryuga, (10.17)
- fzigs @ Ry

et obtenons, pouk’ suffisamment grand, des gains en fonctioriddonreés par

G’\q K = L J\i H 7 — EH {1’[7
L,m( K) N izt N(?) (v, K) (10.18)
~ Gre, — ik
Gpa (K) ~ Gyo — =l (10.19)

Les @sultats analytiques de ce chapitre sont ensuite cavgalés esultats nurafiques obtenus en imgl”
mentant les systhesetudiés. Ces travaux sontgséng's dans [142].

Apres I'analyse de sysies monasolution, la suite de cette partie se tourne vers desregst de codage
sans pertea deux niveaux deesolution bass$ sur la KLT et de la LDU.

10.3.2 Sur la Sous-Optimalié des Transformations Orthogonales pour le Codage
par Transform ée sans Pertes

Dans le chapitre 7, nous nousentssons au selria classique du CT sans perdageux niveaux dessolu-

tion de la figure 10.3. Pour uetdge de quantification #éta haute esolution, nous analysons leshifs

rrr €7 néessaires pour coder respectivement la version bassdution et le signal d’erreur. Leebit

total rr + 7 est compag’a celui obtenu pour le codeur morspolution correspondant (k&asoit sur la

KLT, soit sur la LDU).

Pour la KLT, le sckema est celui de la figure 5.8; les statistiques des signaux d’erreurs pour une source
Gaussienne orgté analyss dans [21]. Pour le sehia bas’sur la LDU, le schma correspondant est
differenta cause de la structure deediction en boucle fersg, et est regseng par la figure ci dessous.
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—

I (vers le &codeur)

y

9

{4} : (vers le &codeur)

Figure 10.4: Encodeur du CT sans pedeateux niveaux dessolution dans le cas causal.

Menant une analyse similaigecelle de [21], nous montrons qu’alors que les transformations orthog-
onales tenderd "gaussianniser” le signal d’erreur, la transformation causale les laisse approximativement

uniformes’. Les probabili€s qu’uneéchantillon du signal d’erreu; soit non nul sont doregs par

Cas unitaire : P(e; #0) = P(le;| > %) 1 — erf(@%). (10.20)
1 1
Cas causal : P(e; # 0) = P(le;| > 5) =1- ~ YA, (10.21)

(dans le cas unitaire, les pas des quantificateurs sonetauspour contifer la distorsion totale; ce n'est
pas rEaéssaire dans le cas causal). Calculant I'entropieelis@ssoe€iéa ces distributions de probabég;
nous obtenons dans le cas causal

N
2 1 1
Signal basse resolution : rLr, ,y & TLRgLr + wﬁw (/\— - = ) .
7 T o
i=1 Y,
. / _ _ 1 e (10.22)
Signal d’erreur : TLDU ~ TRLT — 3 log, R

—_——
~0.25 bit VA

Elles sont strictement uniformes si lés sontimpairs.
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Nous montrons ainsi que dans le cas causakhétdotal est le rafne que dans le cas de codeur menor”

prés, qui vient du fait que la pdiction est faite sur la base

D

solution, au termﬁ Z (/\

du signal basseesolutlon au lieu du S|gnal original. Ce terme esaimmoins egligeable dans la grande
majorité de situations pratiques de codage. Lebitd pour les versions basssolution sont donc sen-
siblement les reines dans les deux cas. A 'oppo$es abits des signaux d’ erreur diffent dans le cas
orthogonal et causal d’enviran25 bit/ech., qui corresponalla difference entre les entropies d’une variable
aléatoire (v.a.) Gaussienne et d’'une v.a. uniforme denes variances. En conclusions, &b total dans

le cas causal est leanie que dans le cas morsolution, et il est envirofi.25 bit/éch. inErieura celui
obtenu pour la KLT.

De plus, nous soulignons que le saié causah deux niveaux deesolution pesente des avantages pra-
tiques tes inBressants par rapport au eai| classique de la figure 10.2. Premsiment, ce s@&ma of-
fre la possibili€ de passer instantament d’'un scema mono-a'un sclema bi-gsolution en fixant tous
les pas de quantificatiom I'; ceci n’est pas possible dans le cashogonal (pourA = 1 dans (10.20),
P(e; #£ 0) = £5). Deuxiémement, un ou plusieurs canauxpeuventetre cog's en monasolution, et les
autres en multeSolution. Finalement, le codage entropique du signal d’erreur devésngimple dans le
cas causal, puisque la distributietaht dans certains cas exactement uniforme, transmettreéseapation
binaire desthantillons est optimal. Ces travaux soraganes dans [143].

Commea la fin du chapitre 4, nousgéralisons lesesultats obtenus dans leflit de cette deugime par-
tie en considrant des sources ave@moire, et en appliquant la LDH des vecteurs de vecteurs de taille
arbitrairement grande, dans les contextes mono- et nadthution @crits ci-dessus.

10.3.3 Pediction MIMO d’Entiers- a-Entiers Mono- et Multir @solution

Ce dernier chapitre traite du codage sans pertes “optimal” (minimisaabl gour les signaux vectoriels.
La structure de codage eteditout d’abord est celle du saia(2), ou encore de la figure 10.2uda
transformatiory’ est une impmentation entiera entiers d’un des pdicteurs MIMO dcrits au chapitre 6.
Premgrement, on chercheexprimer laeduction de dbit maximale relativement au saina( /), pour une
sourcer avec neémoire. Nous supposons quest une version uniforement quantiéée dex® avec des pas
A,;, et que leechantillons de sont collects dans un vecteur, = [z, ...z, ]7. Par le tltoéme de codage
sans bruit d’'une source digte, le &bit minimum assoeia la repesentation de est le abit entropique
ro(z) de cette source,

1
ro(z) = lim —— H(X,). (10.23)

Exprimant ce @bit pour une source Gaussienne, on obtientduction de dbit maximale7 ;4. qu'il est
possible d’ogter sur le solma( /),

det dlag{ z¢
GMax:rscal(ﬁ) —7“0( ) 2M1 2 f1/2 In det Sge -

1/2

e}
ST (10.24)
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Cette Eduction est possible avec un codage entropique vectoriel, asymptotiquement dans la longueur des
vecteurs. La complexétde cette rethode la rend toutefois gdliste pour une approche pratique. Nous
montrons par la suite que ses performances peusartméingfre approckés par des pdicteurs MIMO

sans pertes.

Nous considfons ensuite les gains de codage sans pertes essoci pedicteurs MIMO, et pg&entons les
structures de codage ass®s. Nous montrons que pour toutes les approcbkesrdlantes du contexte de
prédiction MIMO gérérali®ge, I'implémentation entiera éntiers correspondante produit un gain

1 det diag{ Ryey- } A2 1/2 .
Gy ® 571 i tr Sz (f)df |, 10.25
L(z) ™ 5or 08> ef_l/1§21ndet Sgegedf  24M 1n 2 /_1/2 reae(f)df ( )
Grax FExces de debit: contrainte sans pertes

De méme qu’au chapitre 6, les non-#iafi€s liéesa la contrainte entiets entiers se manifestent comme
un ex@s de @bit (diminution du gain) par rappaatla méthode de codageédle. Elles deviennentah-
moins régligeables haute €solution A — 0).

Dans un second temps, nousngfalisons le sarha TCa deux niveaux deesolution de la figure 10.4 au
cas du filtrage. Lesebits des signaux bassessolutions et des signaux d’erreurs sont aolés par des
quantificateurs de pagauxAg,. Nous comparons alors lestit total produit par la structure obtenue au
débit de la structure monesolution pesente au @but de ce chapitre. Nous obtenons, pour kdsitd des

sighaux basseesolution-; i, et les signaux d’erreudt,

AZ) 1/2 M 1
X Tone—shot(Y) (1+ 55— trSoe o (f)df — —log, Ag, ,
LR r h t(g)( +24M1H2 /_1/2 zez (f) f Z_; 0_20 ) 082 8Q,
! Y: Reduction de debit (1026)

Facteur d'excs de dbit
T & 10g2 AQ1

ou M est la dimension du signal vectoriel,igf,. —s.¢ (y) est le ébit total de la structure monesolution.
Ainsi, cette structure esegerement sous-optimale relativementine approche monesolutiona cause de
retour de bruit I€a la structure de pdiction en boucle fergg.

Finalement, cette structuie deuxetages estgy¥rali®e au cas dé/ étages. Dans ce cas, leshits
assocEs aux difErentes eSolutions sont conttés par des quantificateurs de psg, . Nous proposons la
regle suivante pour calculer lés,, afin que les dbitsr, de chaqueeasolution approchent deglits cibles
Ry, prédétermirgs:

k

Tscal,L(z)(g)— ZRZ

Ag, ~ |2 i=1 L k=1,.. M. (10.27)

Des exemples nuemiquesevaluant la qualéde cette rathode sont finalementggéngs. Ces travaux sont
présengs dans [144].
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10.4 Conclusions

Cette tlese propose diverses techniques de codage avec et sans pertes pour les signaux vectoriels. Ces
techniques sont psenées comme les divers aspects d'un cadeotigue ghéral bas” sur la notion de

causali€. Les performances des divers gyses de codage propsssont analyeEs aux moyens d’outils
statistiques et, pour la plupart, sous I'hypedb Gaussienne. Lesstltats tlhoriques onefé confronésa

des simulations nueriques et sonesungs dans cette partie.

La premere partie de cette ¢ise a pesent des techniques de codage avec perte pour les signaux vec-
toriels.
Dans le cadre du codage par transfeenfCT) tout d’abord, nous nous somme®iesges au codage de sig-
naux vectoriels par une transformaticecdf€latrice causale de type DPCM (Differential Pulse Code Mod-
ulation, technique utilisé pour les signaux scalaires, supprimant les redondancesegigtiom lindaire).
Nous avons mongrgue la transformation causale optimale corresomae factorisation triangulaire LDU
(Lower-Diagonal-Upper) de la matrice d’autoaalation du vecteur de signal coder. Cette approche a
été ensuite compaga sa contrepartie unitaire, la transformation de Karhunen4¢KLT), bien connue
parce quétant optimale pour les sources Gaussiennes, elle sert traditionnellemeférdacé. Plusieurs
aspects sont aboed 'dans cette comparaison, comme le gain de codage emaora transformation (qui
correspond au facteur par lequel la distorsion edtite, pour un mfme &bit, gicea la transformation),
les effets intervenants lorsque le saté de codage est ingotien€ en boucle fermé (c’esta dire lorsque
la transformation utilise des doee$ pecddemment quantégs, ce qui introduit dans le saha de codage
un retour de bruit), ou la complegitdlgorithmique. Nous avons progoshe analyse des perturbations
liees au retour de bruit, qui montre que quand celui-ci deviegligeable, les performances sont iden-
tiquesa celles obtenues dans le cas unitaire, bien que la conmpldith LDU soit notablement moindre.
Ainsi, cette transformation appargomme un moedle optimal alternatié la traditionnelle transformation
de Karhunen-Leve.
Dans la plupart des cas pratiques cependant, lesedsrgglles ne sont pas stationnaires, ce qui pose un
probléme d’adaptation pour des transformatioepetidant du signal, telles que la KLT ou la LDU. Nous
avons donc chered étudier les performances de somas de codage dont les paems sont adaps “en
ligne” (sur la base de doees quantiies uniqguement), ce qevite de transmettre un surcrale dbit
assoct’a ces paraetres. Dans ce contexte, nous avons amalgs effets de perturbatiore’au bruit de
guantification et au bruit d’estimation qui se posent par rapport au eakadlla matrice de covariance est
connue parfaitement. Sous certaines hypsés simplificatrices empre®s$ au CT classique, cette anal-
yse a permis dValuer quantitativement, en fonction d’ualdf moyen impos’et du nombre de doer$
précédemment déodes, I1Bcart entre la performanceefle des deux systies et leur performanceddle,
ou les statistiques des signaaixxdmpresser sont connues.
Poursuivant I'analyse de sgshes de CT “en ligne”, nous nous sommes tesmvers I'analyse de systes
concrets utilisant des quantificateurs uniformes suivis de codeurs entropiques, pour lesqaenieme
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d’allocation de bits est simple, et proche de I'optin®lit’es Esultats de cette partie ont mamtlie des
sysemes adaptatifa(pas de quantification fixes ou adaptatifs) peuvent fournir des performances similaires
a des sysrmes conys avec une connaissaregriori de la source, bien gu’aucune information concernant
les transformations ou le pas de quantification ilig soit transmise atedddeur. Ces analyses traitent
du cas causal comme du cas unitaire.

Dans la fin de cette premtié partie, I'approche matricielle causale de type LDéaggnéralise au caso”

les coefficients de la matrice de transformation triangulaire sont des filedgcmurs (pediction MIMO
-Multi Input Multi Output). Cette ghéralisation a dboucle” sur la pediction MIMO dite “géréralige”,

pour indiquer que la gdiction MIMO classique et la pdiction MIMO triangulaire constituent deux cas
particuliers, parmi une infinitd’'une n&me approche totalemengabrélatrice, et “causale” dans un sens
plus large. Pour la pdiction triangulaire, la causatittcorresponé T'ordre dans lequel les signaux sont
décoreglés. Comme pour la LDU, nous avons analys gain de codage sous une hypsth de eSolution
infinie d'abord; les effets de retour de bruit de quantification ont enstéteris en compte. Nous avons
monte que pour la grdiction MIMO triangulaire, dcorgler les signaux par ordre de varianeeissante

est optimal. Une application de cesstiltats & propose dans le cadre du codage de la parole large bande
([0-7kHz]).

La deuxeme partie de cette ¢se a évelop@ des techniques de codage sans pertedsasir les ap-
proches causales considés pecdemment.
Une preméreétape a consisth comparer les performances de la LRWElles de la KLT dans le casio”
elles sont imptmen€es de fagna étre sans perte (transformations d’enteeentiers). Le gain correspond
alorsa la Bduction de dbit opgrée par la transformation (par rapparin codage entropique scalaire direct
des coefficients quant#f§), tout en garantissant une regghtation exacte de la source. Nous avons raontr’
d’abord que le gain maximal qui peetré appor’par de telles transformations corresparid imoyenne
des informations mutuelles partgg par les difffentes variables qui composent le processus vectoriel.
Nous avons ensuite anay$és gains appaet par la KLT et la LDU dans ce cadre, et avoegrits les
effets dis aux non liearigs (contrainte “entiera éntiers”) en terme deethit suppEmentaire par rapport au
cas idsal. Le bruit d’estimation pour un sefma adaptatif a aussté trai#. L'approche causale, @&géa sa
nature triangulaire, s'are pegsenter dans ce cadre des performareggsdment sugfieuresa’l'approche
unitaire.
Nous avons ensuitetudié des scémas de codage sans perte qui permetteneterel, dans un premier
temps, une version bassesolution du signal d’irgfét, et de transmettre le signal corapléntaire par la
suite. Ce genre de sehias est utile pour des applications de navigation rapide sur internet, ou de trans-
missiona bande passante variable par exemple. La transformation caustéle@ripage dans ce cadre
aux transformations orthogonales. Nous avons cemsidh scleimaa deux niveaux deesolution simple
(utilisé par exemple dans le contexte du codage audio sans perte), dans lequel chaque vecteur est d’abord
transforn®, quantifé, puis transmis comme version basssotution du signal. Un signal d’erreur est en-
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suite ggnéré par soustraction au signal original, et transmis comme camgait. L'extension de ce seima

a plusieurs niveaux de=solution ae¥é obtenue en introduisant des quantificateurs de type APCM dans le
schéma sans perte. On a mamgle les transformations orthogonales classiques sont sous-optimales pour
de telles approches muktisolution par rappog leur alternative causale. La transformation causasegnte
d’autres avantages par rappartiés transformations telles que la KLT ou la DCT, comme la possibiiit”
passer instant@ament d’un scema de codage sans pertes mesofitiona un scleima multigsolution, de
pouvoir choisir des niveaux desolution difErents pour chacun des canaux et, notamment, de pouvoir
coder sans pertes un ou plusieurs canaux particuliers uniguement. Finalementedessth codage sans
pertes multiesolutions onefé proposs, qui se basent sur lagaliction MIMO consi&rée dans la prerare
partie. Nous avons morijue I'approche mult@solution estdgerement sous-optimale en terme asbid”

total par rappor& une approche de compression glolzatause du retour de bruit dans les boucles de type
ADPCM. On a aussi propedine nethode pour que lesethits ggnérés par chacune dessolutions corre-
spondent’des @bits cibles petitermires.

Comme cela transpataians le €sung ci-dessus, de nombreuses techniques de codageaurisid-
érées dans ce travadl] notamment le CT, le codage en sous-bandes, les transformations d’areieisrs
ou le codage multesSolution. Le choix d’un large champ d’investigations estmoing double tranchant.
D’un cbté, un large panorametait récdssaire pouretrire 'étendue, la divergstet I'intérét théorique des
approches causales. D’un autmé; chacun des gmes traiés a @gag des questions iatéssantes, enite
certainement des approfondissements. Pour des applications pratiquesgleesysinsielés peuventfre
amgéliorés et complexiés, méme si dans ce cas une natidation tleorique peut devenir difficile. Dans le
cas du CT “en ligne” par exemple, uatide approfondie de ces sgistés devrait inclure le choix d’'un quan-
tificateur adap'a I'application considfée, ainsi qu’aux signaux coder; le proldme de I'adaptation des
fenétres temporelles pose aussi ddréSsant probhes pratiques commeedbriques. En ce qui concerne
les pedicteurs MIMO et notamment le guicteur triangulaire, les performances de syss pratiques,
bass sur des filtres RIFghendra fortement d’'un choix eqdat du nombre de coefficientedEsa la -
corrélation intersignaux. Le degrd’anticausal#’dédié a ces filtres devraitire optimig relativement’la
longueur des trames, ou relativemantn &lai de reconstruction dans I'optique d’'un codechéntillon par
échantillon. Par ailleurs, une question importante dans le codage de source est celkreesuftjectifs:
si I"evaluation de I'erreur quadratique moyenne est urer@isimple, et qui permet de mener facilement
des analyses #woriques, elle renseigne souvergstmal sur la qualkt’effectivement peye d’'un codeur
audio ou d’'images... Enfin, d'un point de vuethique, il semble que deux axes de recherches se dessinent
naturellement’la suite de ce travail. Preareément, il serait imfessant de rechercher s'il y a d’autres (ou
la classe de toutes) les transformations qui, comme la KLT et la LDU, sont optimales pour des sources
Gaussiennes. Dewxinement, la maglisation de performances des gymeEs consieés dans cette dse
gagnerait en irgfét si, au moyen de mixtures de Gaussiennes, elle pouseiird ‘des sources de demsit”
de probabili€ arbitraires.

8En dehors du codage de source, ladiction MIMO géréralisse s’est agfée utile en detection multi-utilisateurs [53].
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