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Abstract

We propose a novel approach to estimate the angles of arrival (AOA)
and delays of the multipath signals from digitally modulated sources ar-
riving at an antenna array. Our method uses a collection of estimates of a
space-time vector channel. The method avoids computationally expensive
optimization search by using Expectation Maximization (EM) algorithm.
The useful behavior of the proposed algorithm is verified by simulations.

1 Introduction

Source localization is an issue of interest in wireless communications. In this
system, mobiles emit signals that arrive at the base station via multiple paths
with different angle of arrivals and delays, which are in turn used for source (mo-
bile) localization. This paper focuses on jointly estimating AOAs and relative
time delays of multipath propagation signals emnating from a single source and
received by antenna array. Parametric joint angle/delay estimation has been
investigated i.e. see [1],[2] and [3]. In [2] the authors jointly estimates both pa-
rameters using MUSIC type algorithm, which though suboptimal, but involves
only two dimentional search. In [3], the authors used ESPRIT type algorithm
to estimate jointly the parameters. Wireless communications channel can be
characterized by slow varying parameters and fast varying parameters. The

*Eurecom’s research is partially supported by its industrial partners: Ascom, Cégétel,
France Télécom, Hitachi, IBM France, Motorola, Swisscom, Texas Instruments, and Thomson

CSF



amplitudes and the relative phase of each path are fast varying and is subject
to (Rayleigh) fading. The stationarity of the fading depends on the speed of the
mobile. If the mobile is moving fast enough then we can consider fading to be
stationary within single time slot and are uncorrelated among slots. In contrast,
AOAs and delays does not change over many slots even if mobile is at relatively
high speed. Typically, a mobile moving at 30 m/s changes angular position only
by 0.1° with respect to the base station 3 Kms away. Our method exploits the
stationarity of angles and delays, as well as the independence of fading over
many time slots. We assume that AOAs and time delays do not change over
multiple channel estimates because they are slow varying parameters. We also
assume that antenna array response has known structure.

2 Data Model

Consider a single usere case which transmit signal via multiple paths. The
received base band signal at an M-element antenna array at time t in the ny
interval is y" (t) = [y' (¢)....... yM (t)]r which can be written as

yP() =D SPR(E—IT) 4 " (t) (1)

where T is symbol period and n”(t) is additive white Gaussian noise. S is
digital transmitted sequence. A" (t) is the channel. The channel can be modeled

as
Q

B = al0:) 5 (n)a(t - ) @)
where @) are the total number of paths. Each path is parametrized by a DOA 6;,
time delay 7; and complex path attenuation (fading) 5;(n). The array response
to the path from direction #; is a(f;) and ¢(¢) is known pulse shape (modula-
tion waveform). After sampling at a rate P times the symbol rate. A block
formulation is obtained by taking N snapshots, yielding

Y*=H"S" + N",n=1,2..., 8 (3)

The first step is to estimate the channel impulse response from the user to the
antenna array. This can be accomplished by using training sequence or using
some blind method. Let H"® = X (n) be the estimate of the true channel H™.
We have L

X(n)=Hr=H"4+V" (4)

where V™ 1s the estimation noise matrix. H” can be written as

H" = A(0)diag(B(n))GT (7) (5)

where A(0) = [a(01)......a(0g)], B(n) = [B1(n).....0¢(n)] and GT (1) = [¢T (m1)...... T
Applying vectorization operator to eq(4) and using eq(5) and writing the result-
ing equation in matrix form as

z(n)=U@,71)8(n)+v(n),n=12...,N (6)



where

U@, 1) =G(r)o A() = [u(br,71...... u(fg, 70)] (7)

u(f, 7) is called space time matrix. It is assumed that the structure of the space
time matrix U is known. It is also assumed that path fadings are normally
distributed with zero mean. Estimation noise V' is white Gaussian. To be able
to identify (6, ) using eq(6), we need U(#, 7) to be strictly tall and full column
rank.

3 EM based JADE

Expectation Maximization (EM) [5], is an iterative approach to Maximum Like-
lihood (ML) estimation. Each iteration is composed of two steps: an Expecta-
tion (E) step and a Maximization (M) step. The aim is to maximize the log
likelihood l(v; D), where ¢ are the unknown parameters of the model and D are
the data. Suppose that this optimization problem would be simplified by the
knowledge of the additional variable y, known as missing or hidden data. The
set D, = DUy is refered to as the complete data set (in the same context D is
refered to as incomplete data set). Correspondingly, the loglikelihood function
l(¢; D) is refered to as complete data likelihood. x is chosen such that the
function I, (¢; D) would be easily maximized if x were known. However, since
Y 18 not obsevable, [. is a random variable and cannot be maximized directly.
Thus, the EM algorithm relies on integrating over the distribution of y, with
the auxiliary function Q(v, 1/;) = E[l.(4; D.|D, 1/;], which is the expected value
of the complete data likelihood, given the observed data D and the parameter
1/; computed at the previous iteration. Intuitively, computing ¢ corresponds to
filling the missing data using the knowledge of the observed data and previous
parameters. The auxiliary function is deterministic and can be maximized. An
EM algorithm iterates the following two steps, for k=1,2,...., until local or global
maximum of the likelihood is found.
Expectation: Compute

Q5 ™)) = By [l (¢ De| D, ™)) (8)

Maximization: Update the parameters as

G = a1 gman, Q(1; ), (9)

In some cases, it is difficult to analytically maximize Q(¢; 1/)(’“)), as required by
the M-step of the above algorithm, and we are only able to compute a new value
Y *+1) that produces an increase of Q at each iteration. In this case we have so
called Generalized EM (GEM) algorithm. Given the model of eq(6), we are now
ready to define the complete data set. Let z = (z(n), 3(n)) be complete data,
where x(n) is estimated channel and 5(n) (hidden data), is fading coefficients.
We are now in position to start the derivation of the E-step of the EM algorithm.



the pdf of z as function of u can be written as product between the likelihood
and priori distribution of 3, i.e.,

f(zu) = f((n), B(n);u) = f(x(n)|B(n), w) [(B(n); u) (10)

which can be further written as (after omitting f(5(n); «) because it does not
depend on the parameter u

1
Fziu) = Kieap(g(x(n) — up(n)) (2(n) — uf(n))) (11)
having multiple channel estimation over slots i.e., (1), #(2).....,#(N), we have
E-step given by
N
Qu; u™) = B log f(z; ula(n); ul))) (12)
n=1

which can be further expanded as

QUusu™) = 37 B((x(m)" a(n) =2 up(n)—B(m) T u a4 Bn) T u up(n) [ (n)); ul)

(13)
the above equation can be written as after omitting constant term
N
. H —
Q(u; u(k)) = Z(—x(n)Huﬁ(n) —fA(n) uHJ:(n) —|—Trace(uHuﬁ(n)ﬁ(n)H) (14)
n=1

where ﬁ/(ﬁ) = E[B(n)|z(n); u*)], and

Bn)Bn)H = E(B(np(n) |z (n); u™) (15)

where E is expectation operator.The conditional mean will also be Gaussian.
The conditional mean and second order moment is given by

JE—

B(n) = RbbuHx(n) (16)

where
Ry = uu+ RE(ln)@(n) (17)

where
Rpnysn) = exp(=B(n) Ran)pn) B(n)) (18)

where covariance matrix, Rg(,)(n) 15 assumed to be known and

B(n)B(n)" = Ry + B(n)B(n)" (19)
The maximization step (updated parameter values) is given by equation the
following equations to zero to find the stationary points i.e.,

0Q, _ 0Q du

8_79_8_u(87)|9:0 (20)



and

0Q,  0Q du

a0 = 5 ag) =" 2y
where ~
89 = S ") + 280 By (22)

These two equations can be solved iteratively to get updated value of the pa-
rameters to be estimated. The above fixed point equations are nonlinear and
hence there could be local minima or saddle points. That solution should be
chosen which gives maximum value of the likelihood function.
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