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Abstract

The maximum achievable capacity for a MIMO
channel corresponds to the waterfilling solution pro-
vided that the transmitter has a perfect knowledge of
the channel. In practice, the available knowledge may
only be partial due to the time selectivity of the channel
and delay of the feedback from the receiver. However,
exploiting the partial knowledge leads to a significant
improvement when compared to the capacity without
any channel knowledge. In this paper we analyze the
MIMO capacity with partial knowledge of the channel
under practical frequency flat channel models.

1 Introduction
The introduction of Multi Input Multi Output

(MIMO) systems leads to a significant increase in com-
munication capacity. To take advantage of the use
of MIMO systems, various space-time coding schemes
have been proposed. These techniques assume the ele-
ments of the channel matrix to be i.i.d. In practice this
assumption may not always be valid, since for physi-
cal reasons the channel components may be correlated
[1]. This correlation corresponds to partial knowledge
that can be fed back to the transmitter. When the par-
tial channel knowledge is present at the transmitter,
it is advantageous to use this information to optimize
the precoder at the transmission [2, 3]. This precoder
will basically be a cascade of space-time coder and a
decorrelating beamformer.

In this paper, we investigate the achievable capac-
ity given the available channel state information at
the transmitter. We assume that, in addition to the
channel correlations, the transmitter has more infor-
mation about the channel: knowledge of slowly vary-
ing channel parameters, or knowledge of the channel
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up to the amplitude and phase shifts that arise when
the roles of transmitter and receiver are reversed. We
demonstrate how the partial knowledge of the channel
leads to an improvement of the communication capac-
ity when compared to the capacity without any chan-
nel knowledge. However, the additional improvement
when compared to knowing only the channel corre-
lations is demonstrated to be small. We note that
similar results (for different channel models) have also
been published in [2].

Throughout this article scalar quantities are de-
noted by regular lowercase letters. Lower case bold
type faces are used for vectors and regular uppercase
letters for matrices. Superscripts T and H denote the
transpose and conjugate transpose, respectively. We
use diag{A} to denote the diagonal matrix of the di-
agonal elements of the matrix A and tr{A} (det{A})
for the trace (determinant) of the matrix A.

2 Channel models and assumptions

We consider a MIMO communication system with
N receive and M transmit antennas. The received
N × 1 signal vector is given by

y = Hx + v, (1)

where H is an N × M random channel matrix, x is
an M × 1 transmitted signal vector and v is an N × 1
noise vector, which is assumed to be complex circular
Gaussian with covariance matrix σ2

vI . The channel
covariance matrix at transmitter is defined as Σ =
E{HHH}. We use normalization tr{Σ} = 1.

The ergodic capacity for the channel (1) is given by
[5]

C = EH

{

log det
[

I + ρHQHH
]}

, (2)

where ρ = P
σ2

v

is the SNR and PQ is a covariance

matrix of the transmitted Gaussian signals maximiz-
ing the above expression, under the power constraint
tr{Q} ≤ 1. The expectation is calculated with respect
to the channel distribution.



2.1 Pathwise channel model

The pathwise model [4] for the channel matrix in
the case of frequency flat fading is

H =

L
∑

l=1

clalb
T
l , (3)

where L is the number of multipaths and cl, i =
1, . . . , L denote the complex multipath amplitudes.
We assume that the amplitudes cl are i.i.d. circular
symmetric complex Gaussian distributed with mean 0
and variance 1. The N × 1 vectors ai are the steer-
ing vectors of the receive antenna array and the M -
vectors bl are the steering vectors of the transmitting
antenna array. Due to the i.i.d. assumption of the
complex amplitudes, it is assumed that the multipath
variances are included in the vectors bi. We also nor-
malize ||ai||2 = 1 ∀i. Generally all cl, al and bl are
random variables. The complex amplitudes cl model
the fast fading channel parameters and the steering
vectors model the slowly fading channel parameters.

The channel matrix may also be given as

H = ACB, (4)

where A = [a1, . . . , aL], B = [b1, . . . bL]T and C =
diag{c1, . . . , cL}. If for every channel usage the re-
ceiver knows the realization of the channel and the
slowly fading parameters remain constant over a suffi-
cient time interval, the slowly fading parameters may
be obtained at the receiver [6], and fed back to the
transmitter. This information then corresponds to
partial channel state information at the transmitter.

We investigate the ergodic capacity of the channel
given in (4) when A and B are fixed.

2.2 Channel models for limited reci-
procity

Assume that the physical channel is reciprocal be-
tween uplink and downlink, and the transmitter knows
the uplink channel W T . The overall channel in down-
link including the cabling and electronic devices for
both ends is therefore

H = D1WD2,

where D1 and D2 are diagonal matrices. These ma-
trices reflect the amplitude and phase shifts that arise
when the roles of transmitter and receiver are reversed
in case of no or limited calibration. We use three dif-
ferent models for the matrices D1 and D2

Model 1 Only phase shifts: Diagonal elements con-
tain i.i.d. phases (D1 = diag{ejφ1

1 , . . . , ejφ1

N} and

D2 = diag{ejφ2

1 , . . . , ejφ2

M }, where φi
l are i.i.d.

and uniformly distributed on [0, 2π])

Model 2 Case of complete absence of calibra-
tion: Diagonal elements of D1 and D2 are i.i.d.
zero mean complex circularly symmetric Gaus-
sian with variance 1.

Model 3 Case of imperfect calibration: The diagonal
matrices are given by D1 =

√

1 − ε2
1
I + ε1DN1

and D2 =
√

1 − ε2
2
I +ε2DN2, where εi are small

and DN1 and DN2 are diagonal matrices with
i.i.d. diagonal elements that are zero mean com-
plex circularly symmetric Gaussian with variance
1.

3 Results for pathwise channel model
In the case of pathwise model, the ergodic capacity

for a given transmit covariance matrix PQ is

C = EC

{

log det
[

I + ρACBQBHCHAH
]}

. (5)

For arbitrary SNR (ρ), the optimal Q can be given by
direct numerical solution as described later in this pa-
per. In what follows, we first calculate approximations
for low and high SNR scenarios.

3.1 Low SNR

When ρ << 1, we may approximate (5) by

C ≈ Etr
{

ρACBQBHCHAH
}

= ρEtr
{

BQBHCHAHAC
}

= ρtr
{

BQBHdiag{AHA}
}

= ρtr
{

QBHB
}

.

Note that diag{AHA} = I due to the normaliza-
tion. Write BHB = UΛUH according to the spec-
tral decomposition, and let Q′ = UHQU . Note that
tr{Q′} = tr{Q} = 1. Now

tr
{

QBHB
}

= tr
{

Q′Λ
}

. (6)

For any Λ, the matrix Q′ maximizing (6) is given by

Q′ = diag{0, . . . , 0, 1, 0, . . . , 0},

where the only nonzero diagonal element is in the po-
sition corresponding to the largest diagonal element of
Λ (if there is no unique maximum, we may choose a
position of any of the “maximum” elements).

We have thus shown that for ρ << 1, the optimal
transmit covariance matrix maximizing 5 is given by

Q = uuH , (7)



where v is the eigenvector corresponding to the max-
imum eigenvalue of the channel covariance matrix

Σ = BHB. (8)

The optimal covariance matrix thus depends only on
the channel covariance matrix at the transmitter.

We note that in this case, the capacity without any
channel knowledge (Q = 1

M I) is given by

ρ

M

M
∑

i=1

λi,

where λi are the eigenvalues of the matrix given in
(8). Hence the ratio between the capacity with partial
channel knowledge and the capacity without channel
knowledge is given by

max{λi}

M−1
∑M

i=1
λi

≥ 1.

As a conclusion, the gain obtained by using the partial
knowledge can be very significant.

3.2 High SNR

When ρ >> 1, giving a general solution is not possi-
ble, because the optimal covariance matrix Q depends
on the dimensions N, M and L, more specifically on
the minimum dimension. We now derive the solution
for two different possibilities for the minimum dimen-
sion.

1. When L ≤ min{M, N},

C = log det
[

IL + ρBQBHCHAHAC
]

≈ EC

{

log det
[

ρBQBHCHAHAC
]}

= log det
[

ρBQBH
]

+ EC log det
[

CHAHAC
]

Therefore the solution is given by

Q =
1

L
UUH , (9)

where U is the matrix of the eigenvectors of Σ

corresponding to the nonzero eigenvalues.

2. If M ≤ min{N, L}, by using the same technique
as above we get that

C ≈ log det{Q} + constant. (10)

Hence the solution is given by

Q =
1

M
I (11)

In these cases, the difference between the capacity
with channel and the capacity without any channel
knowledge is given by

min{M, L} log
M

min{M, L}
.

Therefore, when ρ >> 1, the gain obtained by us-
ing partial knowledge is important especially for large
number of transmit and receive antennas and small
number of multipaths.

When N is the minimum dimension, it is not possi-
ble to isolate Q from the random part of the channel,
because the approximation used in the previous cases
gives

C ≈ EC log det
[

ρACBQBHCHAH
]

.

Since N is the minimum dimension, this expression
can not be decomposed any further.

3.3 Waterfilling solution for the channel
covariance matrix

Since log det is a concave on the set of positive def-
inite matrices, the ergodic capacity for any transmit
covariance matrix Q may be upper bounded by

C = EC

{

log det
[

I + ρACBQBHCHAH
]}

≤ log det
[

I + ρQBHEC{C
HAHAC}B

]

= log det
[

I + ρQBHB
]

.

The optimal Q maximizing this upper bound corre-
sponds to the waterfilling solution applied to ρΣ [5]. It
can be shown that the waterfilling solution for ρ << 1
and ρ >> 1 matches the solutions given in equations
(7),(9) and (11).

3.4 Optimal solution

As mentioned above, log det is concave on the set of
positive definite matrices. The set of positive semidef-
inite matrices with trace equal to 1 is a convex set.
Therefore, the optimum transmit covariance matrix
may be found by using numerical methods. In prac-
tice, the object function has to be formed by averag-
ing over sufficient number of Monte Carlo realizations.
Note that the averaging preserves the concavity of the
objective function. We demonstrate the usage numeri-
cal methods in Section 5. The applied method is based
on projected gradient descent algorithm [7].

3.5 Solution for spatially separable chan-
nel model

The MIMO channel is often modeled as a spatially
separable channel model. In this channel model the



channel is given by

H = Σ
1/2

1
WΣ

1/2

2
,

where W is an N×M random matrix of i.i.d. complex
circular Gaussian elements with mean 0 and variance
1. The matrix Σ1 is the receive array covariance ma-
trix and Σ2 is the transmit array covariance matrix.
It can be shown that the pathwise channel model con-
verges in distribution to the spatially separable model
with appropriate covariance matrices, as the number
of multipaths tends to infinity [11]. The ergodic ca-
pacity for this channel model for the case Σ1 = I has
been considered e.g in [8, 9, 3, 10]. It has been shown
that for this case the optimal transmit covariance ma-
trix Q has the same eigenvectors as Σ2. The capacity
achieving power allocation (the eigenvalues of optimal
Q) have to be calculated by using numerical methods
(e.g. gradient descend algorithm). The method used
in [3] to show that the eigenvectors of Q correspond to
those of Σ2 is complex. Here we give a simpler proof of
that fact. Let Σ2 = UDUH be the spectral decom-
position of Σ2. The ergodic capacity for covariance
matrix Q is then given by

E log det[I + ρΣ
1

2

1
WUD

1

2 UHQUD
1

2 UHW HΣ
H

2

1
]

Since for any M ×M unitary matrix U , the distribu-
tion of W is the same as the distribution of WU , the
ergodic capacity may also be written as

EφEW log det
[

I + ρΣ
1

2

1
WΦD

1

2 Q′D
1

2 ΦHW HΣ
H

2

1

]

,

where Φ = diag{ejφ1 , ejφ2 , . . . , ejφM } with φi i.i.d.
and uniformly distributed on [0, 2π), and Q′ =
UHQU . Note that trace(Q′) = trace(Q). Since
log det is concave,

EφEW log det
[

I + ρΣ
1

2

1
WΦD

1

2 Q′D
1

2 ΦHW HΣ
H

2

1

]

≤ EW log det
[

I + ρΣ
1

2

1
WEφ{ΦD

1

2 Q′D
1

2 ΦH}W HΣ
H

2

1

]

= EW log det
[

I + ρΣ
1

2

1
WDdiag{Q′}W HΣ

H

2

1

]

.

The equality is achieved if and only if Q′ is a diagonal
matrix, and the result follows.

4 Results for channel models with lim-

ited reciprocity
In the case of limited reciprocity, the ergodic ca-

pacity for transmit covariance matrix PQ is

C = E
{

log det
[

I + ρD1WD2QDH
2

W HDH
1

]}

,

(12)

where the expectation is calculated with respect to D1

and D2.
By using the technique described in Section 3.5, it

is straightforward to show that in the case of Model 1
or Model 2 (only phases or Gaussian zero mean diag-
onal entries), the optimal transmit covariance matrix
has to be diagonal: Q = DQ. For the Model 1, the op-
timum solution may hence be derived by numerically
maximizing

C = log det
[

I + ρWDQW H
]

, (13)

which is a concave on DQ. We note that for given
DQ, (13) is an upper bound of the ergodic capacity
for Model 2.

For Model 2, the optimal solution can be found by
using numerical methods described in Section 3.4, but
the optimization is simpler because it has to be done
only for diagonal matrices. For Model 3, optimization
is performed as described in Section 3.4.

In addition to the optimal solutions, sub-optimal
solutions may be derived by considering the upper
bound on ergodic capacity as was done in the case
of pathwise model in Section 3.3. For Models 1 and 2,
this leads to waterfilling on

ρdiag{W HW },

when for Model 3, it leads to waterfilling on

ρ
(

(1 − ε2
1
)W HW + ε2

1
diag{W HW }

)

.

For Model 2, a tighter upper bound is given by (13).
Therefore, a better solution may be given by apply-
ing the optimal solution for Model 1. For Model 3,
waterfilling on ρW HW can also be used.

5 Simulation results
5.1 Pathwise model

We first present results of a simulation study for
pathwise model. In the simulations, we used Uniform
Linear Arrays (ULAs) with half wavelength inter ele-
ment spacing both at the transmitter and the receiver
side. The path variances were generated randomly
from exponential distribution with mean 1. At the re-
ceiver, the Directions of Arrival (DOA) were generated
from uniform distribution on the interval [−π, π]. At
the transmitter side, the directions of departure were
generated from Gaussian distribution with mean 0◦

(array broadside) and standard deviation σ = 5◦. In
all the simulations the trace of the channel covariance
matrix at the transmitter was normalized to be equal
to 1.

We compare seven different cases.



0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

ρ [dB]

C
ap

ac
ity

 [n
at

s]
Instantaneous waterfilling
Optimum
Appr waterfilling
Separable model
Large SNR
Beamforming
No channel knowledge

Figure 1: Result for M = N = 4, L = 2.

1. Instantaneous waterfilling: waterfilling solution
for every realization of the channel. This gives
an upper bound for the ergodic capacity with any
transmit covariance matrix.

2. Optimum: solution obtained by the numerical
method described in Section 3.4.

3. Approximate waterfilling: waterfilling on the
channel covariance matrix (Section 3.3).

4. Separable model: solution based on the spatially
separable channel model.

5. Large SNR: large SNR approximation in (9) or
(11) depending on the dimensions.

6. Beamforming: optimal solution for low SNR in
(7).

7. No channel knowledge: Q = 1

M I .

In the first experiment, the number of paths is small
(poor scattering environment). We use M = N = 4
and L = 2. Figure 1 presents the result averaged
over 100 Monte-Carlo realizations for the angles, and
for each set of angles, 1000 Monte-Carlo realizations
for the path amplitudes. The results show that the
approximate waterfilling gives nearly optimal results,
especially for small values of ρ. It can also be seen
that the difference between the high SNR approxima-
tion and optimum solution decreases as ρ increases.
The capacity for the transmit covariance matrix that
is optimal for separable channel model is very low. In
the second experiment the number of paths is changed
to 10 (rich scattering environment). In this case the
capacity for the transmit covariance matrix obtained
from separable channel model is much better than in
the previous experiment. This is due to the fact that
the pathwise channel model converges in distribution

to the spatially separable channel model as L tends to
infinity [11].
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Figure 2: Result for M = N = 4, L = 10.

5.2 Limited reciprocity

In case of limited reciprocity, we use N = M = 4
for all simulations. The presented results are averaged
over 100 realizations for W , for which every element
was generated independently from CN (0, 1) distribu-
tion. For every realization of W the capacities were
averaged over 1000 Monte-Carlo realizations for D1

and D2. For Model 3, we use ε2
1

= ε2
2

= 0.1.
Simulation results are presented in Figure 3. It can

be seen that for Model 1 and Model 2, approximated
waterfilling gives near optimal results. Therefore, as
in the case of pathwise model, waterfilling on the co-
variance matrix seen from the transmitter is almost
sufficient. The same observation can be made also
from the result for Model 3.

6 Conclusion
We studied the ergodic capacity of two models

for partial channel knowledge: the pathwise channel
model with knowledge of the slow varying parameters
at the transmitter and the limited reciprocity channel
model. The simulation studies and the theoretical re-
sults show that waterfilling on the channel covariance
matrix at the transmitter leads to almost optimal ca-
pacity. As a conclusion we may therefore state that
the additional information obtained seems not to be
very significant; to achieve closely optimal capacity,
only the covariance matrix information is required at
the transmitter.

The simulation results for the pathwise model also
show that the use of the spatially separable channel
model to optimize the transmit covariance matrix re-
sults in loss of performance especially for small number
of multipaths. Beamforming used in the multipath en-
vironment gives close to optimum performance for low
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Figure 3: Results for limited reciprocity, N = M = 4. From left to right: Model 1, Model 2 and Model 3.

and middle range SNRs.
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