
Institut EURECOM
Research Report No 73 — RR-03-073

Data Indexing and Querying in DHT Peer-to-Peer Networks

P.A. Felber, E.W. Biersack, L. Garcés-Erice, K.W. Ross, G. Urvoy-Keller

January 15, 2003

2

Data Indexing and Querying in DHT Peer-to-Peer Networks

P.A. Felber, E.W. Biersack, L. Garcés-Erice, K.W. Ross, G. Urvoy-Keller
Institut EURECOM, 06904 Sophia Antipolis, France
{felber|erbi|garces|ross|urvoy}@eurecom.fr

November 1, 2002

1 Introduction

Peer-to-peer DHT systems, such as Chord [8],
CAN [5], Pastry [6], or Tapestry [11], make
it simple to discover specific data when their
complete identifiers—or keys—are known in ad-
vance. In practice, however, users looking up re-
sources stored in peer-to-peer systems often have
only partial information for identifying these re-
sources and tend to submit broad queries.

In this paper, we describe techniques for in-
dexing data stored in peer-to-peer networks, and
discovering the resources that match a given user
query. Our system creates multiple indexes,
organized hierarchically, which permit users to
access data in many different ways. Indexes
are distributed across the nodes of the network
and contain key-to-key (or query-to-query) map-
pings. Given a broad query, a user can look up
the more specific queries that match the original
query; the DHT can be recursively queried until
the user finds the desired data items. The data
itself is stored on only one (or few) of the nodes.

Our indexing techniques have several interest-
ing properties, such as good scalability, loose
coupling between data and indexes, decentral-
ized architecture, and reasonably-small space re-
quirements. Look-up times depend on the “pre-

cision” of the initial query: broad queries in-
cur higher lookup times than specific queries.
Note that we do not aim at answering com-
plex database-like queries, but rather at provid-
ing practical techniques for searching data using
more advanced tools than exact or simple key-
word lookups.

2 Related Work

INS/Twine [1] is an architecture for intentional
resource discovery, which allows client applica-
tions to easily locate services and devices in large
scale environments. INS/Twine works by setting
up a number of resolvers, which collaborate as
peers to distribute resource information and to
resolve simple queries. As resources are expected
to be rather volatile, they must refresh their de-
scriptions periodically. Furthermore, nodes limit
the number of resources that are registered using
popular keys, to avoid being overwhelmed with
advertisements.

INS/Twine builds on top of a distributed hash
table (DHT), such as Chord [9]. Given a semi-
structured resource description, INS/Twine ex-
tracts prefix subsequences of attributes and val-
ues, called “strands”. INS/Twine then computes
the hash values for each of these strands, which

3

constitutes numeric keys used to map resources
to resolvers. The resource and device informa-
tion are stored redundantly on all peer resolvers
that correspond to the numeric keys. When
looking up some resource, INS/Twine sends the
query to the resolver node identified by one of the
longest strands; the query is further processed
by the resolver, which returns the matching re-
source descriptions.

In [4], the authors discuss techniques for per-
forming complex queries in DHT-based peer-
to-peer networks, using traditional relational
database operators (selection, projection, join,
grouping and aggregation, and sorting) and elab-
orate text retrieval techniques. For instance, the
authors propose to achieve substring matching
by splitting each strings into distinct n-grams
(a sequence of n consecutive characters) used
as keys to store file IDs in the DHT. Upon
lookup, the query string is also split into n-grams
that are looked-up individually; a file ID that
is returned by each n-gram lookup is a possi-
ble match. According to the research directions
outlined in [4], complex query processing in peer-
to-peer networks is still a very open issue.

In [3], the authors develop a P2P data sharing
architecture for computing approximate answers
for complex queries by finding data ranges that
are similar to the user query. Relevant data is
located using “locality sensitive hashing” tech-
niques. In [7], the same authors extend the
CAN [5] system to support the basic range oper-
ation on data shared in the form of database re-
lations. This work represents an important step
toward advanced, database-like query processing
in peer-to-peer systems.

3 System Overview

3.1 System Model and Definitions

A distributed hash table (DHT) system maps
keys to nodes in a peer-to-peer infrastructure.
For a given key k, any node n can use the DHT
substrate to determine the current live node n′

that is responsible for k.
We consider a distributed data storage system,

in which each data item (or file) is mapped to one
or several peer nodes. Files are identified by de-
scriptors, which are textual, human-readable de-
scriptions of the file’s content. We assume that
descriptors are semi-structured XML data. Ex-
amples of descriptors for a music file sharing sys-
tem are given in Figure 1.

Let h(descriptor) be a hash function that
maps identifiers to a large set of numeric keys.
The peer node responsible for storing a file f is
determined by transforming the file’s descriptor
d into a numeric key k = h(d) . This numeric
key is used by the DHT substrate to determine
the node responsible for f . In order to find f ,
a node n has to know the numeric key or the
complete descriptor.

To lookup data stored in the peer-to-peer sub-
strate, we use a subset of the XPath XML ad-
dressing language [10]. XPath treats XML doc-
uments as a tree of nodes and offers an expres-
sive way to specify and select parts of this tree.
An XPath expression contains one or more lo-
cation steps, separated by slashes (/). In its
more basic form, a location steps designate an
element name followed by zero or more predi-
cates specified between brackets. Predicates are
generally specified as constraints on the pres-
ence of structural elements, or on the values of
XML documents using basic comparison opera-
tors. XPath also allows the use of wildcard (*)

4

<song>

<artist>David Bowie</artist>

<title>Changes</title>

<album>Hunky Dory</album>

<size>3156354</size>

</song>

d1

<song>

<artist>David Bowie</artist>

<title>Amsterdam</title>

<album>At the Beeb</album>

<size>4123523</size>

</song>

d2

<song>

<artist>Jacques Brel</artist>

<title>Amsterdam</title>

<album>Olympia 1964</album>

<size>2598273</size>

</song>

d3

Figure 1: Sample File Descriptors.

and ancestor/descendant (//) operators, which
respectively match exactly one and an arbitrarily
long sequence of element names. We say that an
XML document (i.e., a file descriptor) matches
an XPath expression when the evaluation of the
expression yields a non-null object.

For a given descriptor d, we can easily con-
struct an XPath expression (or query) q that
tests the presence of all the elements and values
in d.1 We call this expression the most specific
query for d. Conversely, given q, one can easily
construct d, compute k = h(d), and find the file.
For instance, query q1 in Figure 2 is the most
specific for descriptor d1 in Figure 1.

q1 = /song[artist/David Bowie][title/Changes] · · ·
· · · [album/Hunky Dory][size/3156354]

q2 = /song[artist/David Bowie][title/Amsterdam]

q3 = /song/artist/David Bowie

q4 = /song/title/Changes

q5 = /song/title/Amsterdam

q6 = //David Bowie

Figure 2: Sample File Queries.

Given two queries q and q′, we say that q′ cov-
ers q (or q is covered by q′), denoted by q′ w q, if

1In fact, we can create several equivalent XPath ex-
pressions for the same query. We assume that equivalent
expressions are transformed into a unique normalized for-
mat.

any descriptor d that matches q also matches q′.
Abusing the notation, we often use d instead of
q when q is the most specific query for d; in par-
ticular, we say that q′ covers d when q′ w q and
q is the most specific query for d. Abusing the
terminology, we often use the term “key” instead
of “query”when the context is clear.

In Figure 2, omitting self-covering relations,
we have: q3 w q1, q3 w q2, q4 w q1, q5 w q2,
q6 w q1, q6 w q2, q6 w q3. Given the descriptors
of Figure 1, q1 and q4 cover d1; q2 covers d2; q3

and q6 cover d1 and d2; and q5 covers d2 and d3.

3.2 Indexing

When the most specific query for the descriptor
d of a file f is known, finding the location of
f is straightforward using the key-to-node (and
hence key-to-data) lookup service provided by
DHT. The goal of our architecture is to also offer
access to f using less specific queries that cover
d.

Similarly to INS/Twine, we generate multiple
keys for a given descriptor. Unlike Twine, we
do not replicate data at multiple locations; we
rather provide a key-to-key service, or more pre-
cisely a query-to-query service. In addition, we
do not restrict queries to be prefix subsequences
of the descriptors and we allow for multiple levels

5

of indexing, in order to increase scalability.
Roughly speaking, our system works as fol-

lows: Given a file f and its descriptor d, with
a corresponding most specific query q, we first
store f at the node identified by the key k =
h(q). We generate a set of “plausible” queries
Q = {q1, q2, . . . , ql} such that each qi w q. The
way in which we choose these queries will be dis-
cussed later. We then compute the numeric key
ki = h(qi) for each of the queries, and we store
a tuple (qi; q) at the node identified by ki in the
DHT. We apply the process shown for q to every
qi, and we continue recursively until the resulting
queries become too “generic”.

Note that the “covered-by” relationship cre-
ates a partial order on all the queries that match
a given file descriptor. One way for representing
these queries is to organize them hierarchically in
a rooted directed acyclic graph. The file’s most
specific query is located at the root, and each
edge represents an index entry that maps the
child query to the parent query. Multiple paths
lead to the root, and the number of lookups nec-
essary to locate a file are the number of nodes
along the shortest paths from the initial query
to the root.

3.3 Lookups

When looking up a file f using a query q0,
a user first contacts the node n associated to
h(q0). That node may return f if q0 is the most
specific query for f , or a list of queries Q =
{q1, q2, . . . , qn} such that the tuples (q0; qi), qi ∈
Q are stored at n. The user can then choose one
or several of the qi and repeat this process re-
cursively until the desired files have been found.
The user effectively follows an “index path” that
lead from q0 to f .

For instance, given the descriptors and queries

of Figures 1 and 2, we can create the following
index entries: (q2; d2), (q3; q2), (q3; d1), (q4; d1),
(q5; q2) (q5; d3), and (q6; q3). Given q3, a user
will first obtain q2 and d1; the user will query
the system again using q2 and obtain d2; the
user can finally retrieve the two files matching
its query using d1 and d2.

Lookups require several iterations when the
most specific query for a given file is not known.
On the one hand, the higher the index hierarchy,
the more iterations are necessary to find a file.
On the other hand, higher index hierarchies are
generally also more space-efficient, as each index
factorizes in a compact manner the queries of
its child indexes. There is therefore a tradeoff
between space requirements and lookup time.

When a user wants to look up a file f using a
query q0, it may happen that q0 is not present
in any index, whereas f exists in the peer-to-
peer system and q0 is a valid index key for f .
To locate f , one can (automatically) look for a
query qi such that qi w q0, qi w qj , q0 w qj , and
qi and qj are on some index path that leads to
f .

For instance, given the descriptors and queries
of Figures 1 and 2 and the sample index entries
given above, the query:
q0 = /song[artist/David Bowie][album/Hunky Dory]

is not present in any index. We can however find
q3, such that q3 w q0 and there exists an index
entry (q3; d1). Therefore, the file associated to
d1 can be located, although at the price of a
higher lookup cost. We believe that it is natural
for more effort to be required when lookups are
performed with less information.

6

4 Building and Maintaining In-
dexes

When a file is inserted in the system for the first
time, it has to be indexed. The choice of the
queries under which a file is indexed is arbitrary,
as long as the covering relation holds. As files
are discovered using the index entries, a file is
more likely to be located rapidly if it is indexed
“enough” times, under “likely” names. The
quantity and likelihood of index queries are hard
to quantify and are often application-dependent.
For instance, in our music file sharing example,
indexing a file by its size is useless, as users are
unlikely to know the size beforehand. However,
indexing the files under the artist, title, and/or
album are appropriate choices.

Note that the length of the index paths that
lead to a given file is arbitrary, although it di-
rectly affects the lookup time. Less popular con-
tent may be indexed using a deeper index hierar-
chy, to reduce space requirements. In contrast, a
very popular file can be linked to high in the hi-
erarchy to short-circuit some indexes and speed
up lookups. For instance, given the descriptors
and queries of Figures 1 and 2, one can add both
the (q6; q3) and (q6; d1) index entries at the node
identified by h(q6) to speed up searches for the
popular file described by d1.

Note also that more generic queries can be ob-
tained from more specific queries by removing
only portions of element names. For instance,
one can create an index with all the files of an
artist that start with the letter “A”, the letter
“B”, etc. One can also envision to use techniques
similar to those discussed in [4] for substring
matching.

In general, determining good decompositions
for indexing each given descriptor type (e.g., mu-

sic files, movies, pictures, etc.) requires human
input. However, if we have information about
the nature of the user queries—for instance, we
can construct a synopsis of the users queries ob-
served over a period of time—then we can use
automated tools to determine the combinations
of elements in the descriptor type that are likely
to be used for queries, and construct indexes ac-
cordingly. These issues are open for further re-
search.

In a system model where files are injected in
the system, but are never deleted (write-once se-
mantics), index entries never need to be updated.
If a file has to be deleted, then we have to re-
cursively find all the indexes that refer to the
descriptor of that file, and remove those entries
that do not refer to any other file. Locating the
index entries can be achieved straightforwardly
by using the same process used to generate them
in the first place when the file was injected in the
system.

5 Evaluation

Our data indexing techniques have several in-
teresting properties. We outline some of these
properties below:

• Space efficient: The hierarchical organi-
zation allows for space-efficient data in-
dexing. First, as indexes contain key-
to-key mappings, the data items are not
stored on multiple nodes (unlike for in-
stance INS/Twine). Second, although data
items may be reached through multiple in-
dex paths, the space requirements remain
reasonably small because coarse-level in-
dexes are shared by many data items (e.g.,
given the descriptors and queries of Fig-

7

ures 1 and 2, the index entry (q6; q3) is on
index paths to both d1 and d2).

• Scalability: As data items may be accessed
through distinct paths and are referred to in
distinct indexes, the lookup load is expected
to be spread across multiple indexes (and
thus multiple nodes). In addition, since in-
dexes are stored as regular data item, they
can benefit from the mechanisms imple-
mented by the DHT substrate for increas-
ing availability and scalability, such as data
replication or caching.

• Loose coupling between data and indexes:
When the data items change, only the nodes
corresponding to the complete key of the
data need to be updated. Indexes do not
need to be updated. This is consequence of
the key-to-key mapping technique.

• Versatility: It is possible not to index some
data, and enforce access using the complete
key. Conversely, some popular data may
be indexed in many different manners, or
short-circuits some levels in the indexing hi-
erarchy.

• Decentralized architecture: Indexes are uni-
formly distributed across all nodes. The
lookup load is therefore balanced among all
the nodes.

• Resilient to arbitrary linking: When insert-
ing a file in the system, it can only be in-
dexed at locations that corresponds to keys
covering the file’s key. Arbitrary links (or
aliases) to a file cannot be inserted in the
system. This makes it harder for a user to
inject a file with malicious or offensive con-
tent and masquerade it as a genuine file by
advertising it under many different names.

Although there are similarities between our in-
dexing scheme and INS/Twine, there are also
several notable differences between both ap-
proaches to resource discovery.

In particular, INS/Twine proposes an ap-
proach specialized for the discovery of services
and devices using intentional descriptions and its
design has been driven by the nature of the data
that is registered in the DHT. In contrast, we
aim at providing generic mechanisms for index-
ing any kind of data. As data items may be very
large (e.g., music files), we maintain key-to-key
(instead of key-to-data) mappings. For improved
scalability, index entries can be organized hier-
archically based on query containment relation-
ships. This architecture allows for space-efficient
indexing, helps to avoid the “node overwhelm-
ing” problem, and makes data updating easier
(although lookups become slower as queries be-
come less specific).

In addition, we do not introduce dedicated re-
solvers in our architecture; we only require the
underlying distributed data storage system to al-
low for the registration of multiple entries using
the same key. As we allow index keys to be tree-
structured or non-prefix sub-keys (as long as cov-
ering relationships are preserved), data can be
looked up using more expressive and selective
queries that do not, we believe, require the pres-
ence of a resolver.

6 Final Notes

A major limitation of DHT peer-to-peer system
is that they only support exact-match lookups:
one needs to know the exact key of a data item to
locate the node responsible for storing that item.
Since peer-to-peer users tend to submit broad
queries to look up data items, DHT peer-to-peer

8

systems need to be augmented with mechanisms
for locating data using incomplete information.

In this paper, we have proposed techniques for
indexing the data stored in the peer-to-peer net-
work. Indexes are distributed across the nodes
of the network and contain key-to-key (or query-
to-query) mappings. Given a broad query, a
user can look up the more specific queries that
match its original query; the DHT can be re-
cursively queried until the user finds the desired
data items. This process can either be driven
interactively by the user, or all matching data
items can be recursively collected automatically.

Although our data indexing techniques per-
mit looking up data based on incomplete infor-
mation, they still depend on the exact match-
ing facilities of the underlying DHT. “Fuzzy”
matching techniques offer interesting research
perspectives for dealing with misspelled data de-
scriptors or queries. Misspellings can also often
be taken care of by validating descriptors and
queries against databases that store known file
descriptors, such as CDDB [2] for music files.

References

[1] M. Balazinska, H. Balakrishnan, and D. Karger.
INS/Twine: A scalable peer-to-peer architec-
ture for intentional resource discovery. In Pro-
ceedings of the First International Conference
on Pervasive Computing, August 2002.

[2] Gracenote. CDDB. http://www.cddb.org.

[3] A. Gupta, D. Agrawal, and A. Abbadi. Ap-
proximate range selection queries in peer-to-peer
systems. Technical Report UCSB/CSD-2002-23,
University of California at Santa Barbara, 2002.

[4] M. Harren, J. Hellerstein, R. Huebsch, B. Loo,
S. Shenker, and I. Stoica. Complex queries in
dht-based peer-to-peer networks. In Proceedings
of IPTPS02, Cambridge, USA, March 2002.

[5] S. Ratnasamy, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable net-
work. In Proc. ACM SIGCOMM, 2001.

[6] A. Rowstron and P. Druschel. Pastry: Scal-
able, distributed object location and routing for
large-scale peer-to-peer systems. In Proceedings
of Middleware, Nov 2001.

[7] O.D. Sahin, A. Gupta, D. Agrawal, and A. Ab-
badi. Query processing over peer-to-peer data
sharing systems. Technical Report UCSB/CSD-
2002-28, University of California at Santa Bar-
bara, 2002.

[8] I. Stoica, R. Morris, D. Karger, M. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications.
In Proc. ACM SIGCOMM, 2001.

[9] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM ’01 Con-
ference, San Diego, California, August 2001.

[10] W3C. XML Path Language
(XPath) 1.0, November 1999.
http://www.w3.org/TR/xpath.

[11] B.Y. Zhao, J. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Re-
port UCB/CSD-01-1141, University of Califor-
nia, Berkeley, Apr 2001.

9

