
1

Topology-Centric Look-Up Service
Keith W. Ross, Ernst W. Biersack, Pascal Felber, Luis Garces-Erice, Guillaume Urvoy-Keller

I. INTRODUCTION

Several important proposals have been put forth for pro-
viding a distributed P2P look-up service, including Chord
[1], CAN [2], Pastry [3] and Tapestry [4]. These look-up
services can be compared in many ways, including speed
of look-up, implementation complexity, symmetry, poten-
tial for caching, and resilience to faults and attacks.

It turns out that for many measures — including speed
of look-up and potential for caching — it is highly desir-
able that the look-up service takes the underlying IP-level
topological considerations into account. Acknowledging
the importance of topological considerations, researchers
have recently proposed a number of modifications to the
original look-up services that take topology into special
consideration [5][6][7].

It is our position that topological considerations are
of paramount importance in a P2P look-up service, and
therefore, when designing a look-up service, topology
needs to be built in from the ground up. Motivated by
this position, in this paper we explore the following is-
sues:

1) How can we design a P2P look-up service for which
topological considerations take precedence?

2) What are the advantages and disadvantages of such
a topology-centric design?

3) How can the topology-centric design be modified so
that the advantages of the original design are pre-
served but the disadvantages are abated?

To respond to the first question, we propose a new
look-up service, Topology-Centric Look-Up Service
(TOPLUS), that has been expressly designed from the
ground up to exploit the topological structure of the under-
lying Internet. In TOPLUS, nodes that are topologically
close are organized into groups. Furthermore, groups that
are topologically close are organized into supergroups,
and supergroups that are topologically close are organized
into hypergroups, etc. The groups within each level of the
hierarchy can be heterogeneous in size, and the fan-outs
from the groups can also be heterogeneous. The groups
are derived directly from the network prefixes contained in
BGP tables and elsewhere. TOPLUS has many strengths,

All the authors are with Institut Eurecom, Sophia Antipolis, France,
email:

�
ross,erbi,felber,garces,urvoy � @eurecom.fr

including:
� Stretch: Packets are routed to their destination along

a path that mimics the router-level shortest-path dis-
tance, thereby providing a small “stretch”.

� Caching: On-demand P2P caching of data is
straightforward to implement, and can dramatically
reduce average file transfer delays.

� Efficient forwarding: As we shall see, nodes
can use highly-optimized IP longest-prefix match-
ing techniques to efficiently forward messages to the
next hop.

� Symmetric: Although TOPLUS has been carefully
designed to reflect the underlying network topology,
all nodes have similar responsibilities.

TOPLUS is an “extremist’s design” to a topology-
centric look-up service. At the very least, it serves as a
benchmark against which other look-up services can com-
pare their stretch and caching performance. It admittedly
has some drawbacks with respect to non-uniform popula-
tion of the node id space, load balancing, and correlated
node failures. In the second half of this paper we will
describe how TOPLUS can be modified to alleviate these
problems.

A. Related Work

The paper [5] discusses how the original CAN design
can be modified to account for topological considerations.
The approach is to use online measurement techniques
to group nodes into “bins”. Although this measurement-
based, binning technique can significantly reduce CAN’s
stretch, the resulting stretch remains high in their simula-
tion results.

The paper [6] examines the topological properties of
a modified version of Tapestry. In this design, a mes-
sage typically takes small topological steps initially and
big steps at the end of the route. We’ll see that TOPLUS
does the opposite, initially taking a large step, then a se-
ries of very small steps. Although [6] reports significantly
lower stretches than other look-up services, it still reports
an average stretch of 2.2 when the Mercator topology [8]
model is used.

Cluster-based Architecture for P2P (CAP) [9] is a P2P
architecture that has built from the ground up with topo-

2

logical considerations. However, TOPLUS differs from
CAP in many ways. Most importantly, CAP is an un-
structured P2P architecture whereas TOPLUS is a struc-
tured DHT-based architecture. Also, CAP uses a two-
level hierarchy whereas TOPLUS uses a multi-level hier-
archy, and CAP uses “supernodes” for managing groups
whereas TOPLUS uses a symmetric design. Neverthe-
less, although TOPLUS does not mandate a specific clus-
tering technique, we believe the clustering procedures of
Krishnamurthy and Wang [10] [11] are currently among
the most promising techniques to create the groups in
TOPLUS.

II. OVERVIEW OF TOPLUS

In a P2P lookup service, each key is under the respon-
sibility of some up node. Given a message containing key�

, the P2P look-up service routes the message to the cur-
rent up node that is responsible for

�
. The message travels

from source node ��� , through a series of intermediate peer
nodes �������
	������������� , and finally to the destination node,
�
� , which is the node responsible for

�
.

The principal goals of TOPLUS are as follows: (1)
Given a message with key

�
, source node � � sends the

message (through IP-level routers) to a first-hop node ���
that is “topologically very close” to ��� ; (2) After arriving
at ��� , the message remains topologically very close to ���
as it is routed through the subsequent intermediate nodes,
until it finally reaches ��� . Clearly, if the look-up service
satisfies these two goals, the stretch should be very close
to 1. We now formally describe TOPLUS in the context
of IPv4.

Let � be the set of all 32-bit IP addresses.1 Let � be
a collection of sets such that ����� for each ����� .
Thus, each set ����� is a set of IP addresses. We refer
to each such set � as a group. Any group ����� that
does not contain another group in � is said to be an inner
group. We say that the collection � is a proper nesting
if it satisfies all the following properties:

1) � �!� .
2) For any pair of groups in � , the two groups are ei-

ther disjoint, or one group is a proper subset of the
other.

3) For each �"�#� , if � is not an inner group, then �
is the union of a finite number of sets in � .

4) Each �$�%� consists of a set of contiguous IP ad-
dresses that can be represented by an IP prefix of
the form w.x.y.z/n (for example, 123.13.78.0/23).&

For simplicity, we assume that all IP addresses are permitted. Of
course, some blocks of IP addressed are private and other blocks have
not been defined. TOPLUS can be refined accordingly.

The collection of sets � could be created by collect-
ing the IP prefix networks from BGP tables and/or other
sources [10] [11]. In this case, many of the sets � would
correspond to ASes, other sets would be subnets in ASes,
and yet other sets would be aggregations of ASes. This ap-
proach of defining � from BGP tables, although promis-
ing, would likely require that sets be massaged so that the
four properties of a proper nesting are satisfied. Addition-
ally, some of the inner groups may be combined, or ab-
sorbed into larger groups, in order to reduce the number
of groups and to make sure that each of the inner groups
almost always contains several up nodes (although these
up nodes can change over time). And yet additionally, it
may be desirable to eliminate all the groups in the top one
or two tiers, in order to improve look-up speed (see be-
low). As part of our on-going research, we are using BGP
prefixes to build a proper nesting that is optimized for P2P
look-up.

Note that the groups differ in size, and that the number
of groups within a group (the fanout) is also different from
group to group.

It is straightforward to see that if � be a proper nesting,
then the relation ��'(�*) defines a partial ordering over
the sets in � . This partial ordering defines a partial-order
tree with tiers. The set � is at tier- + , the highest tier. A
group � belongs to tier 1 if there does not exist a �,) (other
than �) such that �-'.�) . We define the remaining tiers
in the obvious manner (see Figure 1). Let / denote the
number of tiers. Note that each of the leaf groups in the
partial order tree is an inner group.

01 2301 23 01 23 01 23 01 2 3 01 23
tier-1

01 23 01 23 01 23 01 2 3
tier-2

01 2 3 01 2301 23 tier-3
01 2 3 01 2301 23 01 2301 23 01 2 3 01 23465768 01 2301 23 01 23

01 2 3 01 2301 23 01 2 301 23 01 2301 2 3 01 23

9 9 9 9 9 9
9 9 9 9 9;: : : : : : : : : : : < < < < < <

< < < < < <
< : : : : : : : : : : :

= = = = = = = = = = = = = = = = = =
= = = =?> >

@ @ @ @ @ @ @ @ @ @ A A A A A A
A A A A @ @ @ @ @ @ @ @ @ @ A A A A A A

A A A A @ @ @ @ @ @ @ @ @ @A A A A A A
A A A A

n

BDC
BFE

BHG
I G

IFE

IDJ

Fig. 1. A TOPLUS hierarchy.

A. Node State

Each node (that is, peer) � (with its IP address) is
contained in a collection of telescoping sets K#LM��N.OPQSR � QSR;T � ��U�U�UV� Q �XW where

QYR ' QSR;T � 'ZU�U�U[' Q � for
some \]� P_^ ���������`/aW . Except for

QYR
(which is an inner

group), each set in K#LM��N has one or more direct descen-
dants in the partial-order tree (see Figure 1). (By “direct”
we mean one hop below in the partial-order tree.) Letb LM��N be the collection of all the direct descendants gener-
ated from the sets in KcLM��N , not including the sets in KcLM��N .

3

For each set � � b LM��N , node � should know the IP
address of a node �
) in � . Such a node �
) is said to be
� ’s delegate node in � . The list of all the IP addresses for
� ’s delegate nodes along with IP address of node � itself
is called node � ’s routing table. In the simple example of
Figure 1, node � has three IP addresses in its routing table:
the IP address of itself, of a node in

� 	 , and of a node
in
� � . Each node � should also know the IP addresses

of all the up nodes in its inner group. The list of all the
IP addresses in a node’s inner group is called the inner-
group table.

B. Prefix-Routing Look-Up

Each key
�) is required to be an element of �) , where �_)

is the set of all � -bit binary strings, where � is fixed and
������� . A key can be drawn uniformly randomly from �) ,
or it can be biased as we will describe later. For a given
key

�) � �) , denote
�

for the 32-bit suffix of
�) . Note

that
�

is in � and is hence an IP address. Throughout the
discussion below, we will typically refer to a key’s 32-bit
suffix rather than to the original key itself.

Each node � has a look-up API. Node 	 inputs into
the API a key

�
(that is, 32-bit suffix of

�)), and the API
returns the up node
 that, among all the up nodes, has
the closest IP address to the key.

Suppose node 	 wants to look-up
�

. Node 	 exam-
ines its routing table and performs a longest-prefix match,
comparing

�
with all the entries in 	 ’s routing table.

Suppose node) has the longest prefix. Then node 	
forwards the message to) . The process continues, us-
ing longest-prefix matching to forward the messages from
peer to peer. Thus, in TOPLUS, every peer mimics an IP
router.

The process continues until the message reaches a node�
such that the longest prefix match in

�
’s routing table

is with the IP address of
�

itself. When this occurs,
�

routes the message to the node in its inner-group table that
has the closest IP address to

�
.

When a new node 	 joins the system, 	 asks an arbi-
trary exiting node, say
 , to determine (using TOPLUS)
the closest node to 	 (using 	 ’s IP address as the key).
Denote this closest node by

�
. Node 	 then initializes

its routing and inner-group tables with
�

’s routing and
inner-group tables. Node 	 ’s routing table should then
be modified to satisfy a “diversity” property, which we’ll
discuss below. Also, a small fraction of existing nodes
tables should be modified when 	 joins.

Maintenance of the overlay network is relatively sim-
ple. Note that groups, which are virtual, do not fail; only
nodes can fail. Existing groups can be partitioned or ag-
gregated on a slow time scale, as need be.

That completes our description of TOPLUS. TOPLUS
is fully distributed, and is also symmetric in the sense that
no node is a supernode. Because the groups and their
nestings have been derived directly from the underlying
topology, it is topology centric. If the set of groups form a
proper nesting, then it is straightforward to show that the
number of hops in a look up is at most /� ^ , where / is
the depth of the partial-order tree. Typically, big topologi-
cal jumps will be made initially (for example, going from
source AS to destination AS); subsequent jumps will typ-
ically be decreasingly shorter as the message converges
on the target subnet. Note that TOPLUS satisfies the two
goals described at the beginning of the section. In the first
hop the message will be sent to a node �[� that is in the
same group, say � , as ��� . The node ��� will likely be
topologically close to ��� , particularly if top tiers of the
partial-order tree are eliminated from the nesting. Once
the message arrives at � , it will remain in � until it ar-
rives at �
� .

As mentioned above, each node in TOPLUS mimics
a router in the sense that it routes messages based on
longest-prefix matching of IP addresses. To this end,
nodes can use highly-optimized longest-prefix matching
schemes [12] deployed in high-speed routers for routing
messages. Now consider how many IP addresses are in
a node’s routing table. Assuming that the node’s inner
group is in the lowest tier, / , let ��� T ������� T 	 �������V��� � , be
the number of direct descendants derived from the partial
order tree. Then the total number of IP addresses in the
node’s routing table is �YO ^ ��� � � U�U�U���� � T � . During
the formation of the nested groups, it is desirable to pre-
vent � from becoming too large in order to minimize nodal
storage and computation. At the same time, is also desir-
able to prevent a node’s inner-group table from becoming
too large.

TOPLUS bears some resemblance to Pastry [3] [6] and
Tapestry [4]. In particular, Pastry and Tapestry also use
delegate nodes and prefix (or suffix) matching to route
messages. However, unlike Tapestry, we map the groups
directly to the underlying topology, resulting in an unbal-
anced tree without a rigid partitioning, and in a routing
scheme that initially makes big physical jumps rather than
small ones.

C. On-Demand P2P Caching

An ISP (such as a university, a corporate campus, or a
residential ISP) often deploys a Web cache to improve file
transfer times. In a similar manner, TOPLUS can provide
a powerful caching service.

Suppose that a node 	 wants to obtain the file � associ-
ated with key

�
. Once 	 learns from the look-up service

4

that another up node
 is responsible for a key
�

, node 	
asks
 to send it the file directly. Unfortunately, there may
be bottleneck physical links (for example, ISP peering in-
terfaces) between 	 and
 . It would then be preferable
if 	 could obtain a cached copy � from a topologically
close node, perhaps from a node on the same high-speed
LAN as
 .

To this end, suppose that some group � � � wants to
provide a caching service to the nodes in � . (� could be
an inner group, or it could be a group higher up in the hi-
erarchy.) Further suppose all pairs of nodes in � can send
files to each other relatively quickly. (For example, all
the nodes in � may be interconnected with a high-speed
LAN.)

In this distributed caching service, all the nodes in �
are “configured” to first contact “the cache” in � before
attempting to download the desired file from the global
look-up service. This is done as follows. Let the network
prefix for � be denoted by w.x.y.z/r. Now suppose some
node 	 � � wants to find the file � associated with key� �.� . Then 	 creates a new key,

���
, which is

�
but

with the first � bits of
�

replaced with the first � bits of
w.x.y.z/r. Node 	 then inserts a message with key

���
into

TOPLUS. The look-up service will return to 	 the node

 � that is responsible for

� �
. Node
 � will be in � , and

all the messages traveling from 	 to
 � will be confined
to � . 	 then asks
 � for � . If
 � has � (cache hit), then

 � will send � to 	 at a relatively high rate. If
 � does
not have � (cache miss),
 � will use TOPLUS to obtain
� from the global look-up service. After obtaining � ,
 �
will cache � in its local shared storage and pass a copy of
� to 	 . (does not make � available through caching
since it is not responsible for

�
within � or globally.)

Thus all the nodes in � cooperate to provide a dis-
tributed cache with storage aggregated across all the nodes
in � . Each node would employ a file replacement pol-
icy, such as least recently used. As with an ordinary Web
cache, the more popular files are more likely to be cached
in � . The techniques in [13] can be used to optimally
replicate files throughout � to handle intermittent nodal
connectivity. Also, this distributed caching idea can be
extended to distributed cache hierarchies (analogous to
Web cache hierarchies). Finally, files can be pushed into
groups, creating distributed set of CDN nodes in each of
the designated groups.

D. Node Joins and Departures

When a node joins or leaves, tables need to be updated
for a small fraction of the other existing nodes. These
update operations can be done aggressively or lazily, with
many different variations [1], [2], [4], [3]. The particular

update scheme is not central to TOPLUS.
However, for robustness to node failures, a “diversity”

property should be maintained across the tables in differ-
ent nodes. To describe this diversity property, consider
two arbitrary nodes � and � in the same inner group. For
these two nodes, we have

b L�� N O b LM��N , and thus both
nodes will have the same number of entries in their rout-
ing tables. For a given group ��� b L�� N , node � will
have in its routing table the IP address of a delegate node
�) � � , and node � will the IP address of a delegate node��) � � . The diversity property is that � and �) are dif-
ferent with high probability. This diversity property can
be maintained by providing nodes replacement delegates,
either at node arrivals or during the look up process itself.

III. DRAWBACKS AND SOLUTIONS

Because the TOPLUS design gives precedence to topo-
logical considerations, TOPLUS should exhibit excellent
stretch and caching performance. But admittedly, these
features come by sacrificing other desirable properties in
P2P look-up service. We now discuss some of the draw-
backs of the TOPLUS design. We’ll modify the TOPLUS
design to address these drawbacks.

Non-uniform population of id space: The number of
keys assigned to an inner group will be approximately
proportional to the number of IP addresses covered by
the inner group. However, the number of active nodes
in an inner group is not necessarily proportional to its size
(in terms of IP address coverage). This means that some
nodes will be responsible for a disproportionate number
of keys.

Lack of virtual nodes: Because nodes have different
storage, processing, and bandwidth, it is desirable to as-
sign larger proportion of keys to more powerful nodes.
The look-up services CAN, Chord, Pastry and Tapestry
can handle heterogeneous nodes by assigning virtual
nodes to the more powerful peers. TOPLUS, as currently
defined, does not facilitate the creation of virtual nodes.

Correlated node failures: Many applications built on top
of a look-up service, including persistent file storage, re-
quire that key/data pairs be replicated on multiple nodes.
As with Chord, Pastry. and Tapestry, TOPLUS can repli-
cate key/data pairs on successor nodes within the same
inner group. However, when replicating in this manner, if
an entire inner group fails (for example, if an access link
crashes), then all copies of the data for the key are lost.
Because in the other look up services there is no correla-
tion between node id and locality, these services are not
as sensitive to correlated node failures.

5

We now outline a number of enhancements to TOPLUS
that solve or partially solve the problems listed above.
The first enhancement is to use a non-uniform distribu-
tion when creating keys. Specifically, suppose there are

�
inner groups, and we estimate the average fraction of ac-
tive nodes in inner group � to be ��� . Then when assigning
a key, we first choose an integer (deterministically) fromP_^ � � ��������� � W using the weights � �������������� . Suppose we
choose group � , and group � has prefix w.x.y.z/n . We
then choose a key uniformly from the set of IP addresses
covered by w.x.y.z/n .

In order to address the lack of virtual nodes and other
issues resulting from the tight coupling of node ids to IP
address, we assign each node a permanent “virtual id,”
where the “virtual id” is uniformly distributed over the
IPv4 address space. More powerful nodes are assigned
multiple permanent virtual ids, thereby creating virtual
nodes. In the inner group table, for each IP address in the
table we also list all the virtual ids associated with the IP
address. After making this change, we modify TOPLUS
as follows. As before, the look-up process continues until
the message reaches a node

�
such that the longest pre-

fix match is with the IP address of
�

itself. But once the
message is at

�
, node

�
now determines, among all the

virtual ids in its inner group table, the virtual id that is the
closest to the key.

�
then sends the message to the node

corresponding to this virtual id. Note that this enhance-
ment also provides load balancing across the inner group.

Another variation is for each inner group to use its own
look-up service locally within the inner group. For ex-
ample, Chord, CAN, Pastry, or Tapestry could be used in
each inner group. For sake of discussion, suppose that
Chord is used in each inner group. When the message
with key

�
arrives at

�
in inner group � , TOPLUS passes�

to the “local Chord look-up service” to determine the
node in � responsible for

�
. All the functionality and fea-

tures of Chord could be used in this local group.
Finally, we address the issue of correlated node fail-

ures. To solve this problem, when we replicate key/data
pairs, we need to distribute the replicas over multiple inner
groups. And when one inner group fails, we need to detect
the failure and move copies of key/data pairs to new inner
groups. TOPLUS can be modified to solve this problem,
but comprehensive solutions are fairly involved. Due to
lack space, we only sketch a partial solution here. For a
given key

�
, it is possible to define for

�
a first-place in-

ner group, a second-place inner group, etc, all of which
can be determined directly from

�
using TOPLUS. The

key data pair would then be replicated in multiple nodes
in each of the, say, top � groups. These top- � groups can
track each other, so that if one fails, a new top group can

be identified and the key/data pairs can be copied into the
new group. There will not be separate clique of � groups
for each key, since each clique will typically cover a large
number of keys.

IV. FINAL REMARKS

TOPLUS takes an extreme approach for integrating
topological consideration into a P2P service. It serves
as a benchmark for measuring the performance of other
look-up services, and it raises many issues for debate. In
the spirit of the workshop, we have introduced TOPLUS
as a work in progress. We are currently building proper
nestings and testing the performance of TOPLUS for the
nestings. (Many of these results will be available before
the date of the workshop.) We are also comparing in more
detail TOPLUS to the recent proposals for adding topo-
logical considerations to Tapestry and CAN [5][6].

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proc. ACM SIGCOMM, 2001.

[2] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A scalable
content-addressable network,” in Proc. ACM SIGCOMM, 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems,”
Lecture Notes in Computer Science, 2001.

[4] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location and routing,”
Tech. Rep. UCB/CSD-01-1141, Computer Science Division,
University of California, Berkeley, Apr 2001.

[5] S. Shenker, S. Ratnasamy, M. Handley, and R. Karp,
“Topologically-aware overlay construction and server selection,”
in Proceedings of Infocom’02, (New York City, NY), 2002.

[6] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Topology-
aware routing in structured peer-to-peer overlay networks,” Tech.
Rep. MSR-TR-2002-82, Microsoft Research, One Microsoft
Way, Redmond, WA 98052, 2002.

[7] A. D. Joseph, B. Y. Zhao, Y. Duan, L. Huang, and J. D. Kubi-
atowicz, “Brocade: Landmark routing on overlay networks,” in
Proceedings of IPTPS’02, (Cambridge, MA), Mar. 2002.

[8] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin,
“The impact of routing policy on internet paths,” in INFOCOM,
pp. 736–742, 2001.

[9] B. Krishnamurthy, J. Wang, and Y. Xie, “Early measurements
of a cluster-based architecture for P2P systems,” in ACM SIG-
COMM Internet Measurement Workshop, (San Francisco, CA),
Nov. 2001.

[10] B. Krisnamurthy and J. Wang, “On network-aware clustering of
web sites,” in Proc. SIGCOMM 2000, Aug. 2000.

[11] J. Wang, Network Aware Client Clustering and Applications.
PhD thesis, Cornell University, May 2001.

[12] M. Waldvogel, Fast Longest Prefix Matching: Algorithms, Anal-
ysis, and Applications. Aachen, Germany: Shaker, Apr. 2000.

[13] J. Kangasharju and K. W. Ross, “Adaptive replication and re-
placement strategies for P2P caching.” unpublished, July 2002.

