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Adaptive Replication and Replacement in P2P
Caching

Jussi Kangasharju Keith W. Ross

Abstract—Caching large audio and video files in a com-
munity of peers is a compelling application for P2P. Assum-
ing an underlying DHT substrate for the caching commu-
nity, we propose adaptive object replication and replace-
ment strategies for P2P caches. One such strategy, Top-K
MFR, is shown to provide near optimal performance.

I. INTRODUCTION

Web caches are often deployed by institutions (corpora-
tions, universities, and ISPs) to reduce perceived user re-
sponse time and to reduce traffic on access links between
the institution and its upstream ISP. Web caching has re-
ceived significant attention in both industry and research,
with numerous companies including Microsoft and Cisco
selling Web cache products.

In this paper we explore the design of a similar
caching service, but with the objects being cached in
intermittently-connected peers rather than in always-on
servers. The P2P caching system could be used for
caching Web objects, for caching large music and video
files emanating from P2P file-swapping services [1], or
for caching files emanating from global persistent P2P file
storage systems [2] [3] [4]. In a P2P caching system, when
a peer in the community wants to obtain an object, it first
searches the peers in its community for the object; if the
object is not found in the community, then the community
retrieves the object from the “outside” (for example, from
the Web, from a P2P file-swapping service, or from a per-
sistent P2P global file storage), possibly caches the object
in peers in the community, and forwards the object to the
requesting peer.

As is the typically the case for Web-caching environ-
ments, we assume that the intra-community file transfers
occur at relatively fast rates, whereas file transfers into the
community occur at relatively slow rates. As an example,
the community may be a university or corporate campus,
with tens of thousands of peers in the campus community
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interconnected by high-speed LANs, but with connections
to the outside world occurring over congested campus ac-
cess links. The advantages of a serverless, P2P cache de-
sign over the traditional server-centric design include in-
creased storage capacity (important for large music and
video files), increased file transfer capacity, improved re-
silience to faults and attacks, and server cost reduction.

As in a traditional Web caching system, the principal
measures of performance are thehit rate and thebyte hit
rate, as they typically correlate directly to user perceived
response time and to access link traffic. Assuming that
intra-community file transfers occur at faster rates than
transfers from outside the community, a higher hit rate di-
rectly correlates to lower average file transfer times and to
reduced stress on access links. There are two big-picture
issues in maximizing the hit rate in a P2P caching sys-
tem.

� Replication: Because peers connect and disconnect
to the network (or to the “application”), to provide
satisfactory hit rates, the popular content needs to
be replicated across multiple peers in the commu-
nity. At the same time, content should not be ex-
cessively replicated, wasting bandwidth and storage
resources.1

� Object Replacement Policies:In a P2P caching sys-
tem, each participating peer has a limited about of
storage that it can offer to the caching community.
When this storage fills at some peer, the peer needs
to determine which objects it should keep and which
it should evict.

The principal contribution of this paper is a set of dis-
tributed algorithms for dynamically managing cached
content in a P2P community. These algorithms repli-
cate and replace content in a near-optimal manner. Im-
portantly, the algorithms make noa priori assumptions
about object request probabilities nor about the up-down
dynamics of the peers. The algorithms are adaptive and
fully distributed.

The primary assumption behind our algorithms is that

1It is problematic when thousands of students on the same campus
download and store the same recently-released movie [12].
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peers in the community are tied together with an under-
lying P2P look-up service, such as CAN [8], Chord [9],
Pastry [6], or Tapestry [13]. Thus, any participating peer
in the P2P cache can give the look-up API the identifier
for the object, and the look-up service returns the IP ad-
dress of the up peersin the communitythat are thewinners
for the object.

We first propose theTop-K Least Recently Usedal-
gorithm, which provides significantly better performance
than non-coordinated schemes. We then propose an alter-
native algorithm calledTop-K Most Frequently Requested
(Top-K MFR), which through simulation is shown to give
nearly optimal performance.

II. RELATED WORK

Squirrel [5] is a recent proposal and implementation of
a distributed, serverless, P2P Web caching system. Squir-
rel, which is built on top of the Pastry [6] look-up sub-
strate, has been carefully designed to serve as a replace-
ment for a traditional Web cache. While such detailed
protocol design and implementation issues are clearly im-
portant, the work [5] has not focused on the critical issues
of replication and object replacement policies for a P2P
cache.

FarSite [15] (see also [16] [17]) is a P2P file system
with the strong persistence and availability of a traditional
file system. The FarSite filesystem uses the same number
of replicas for each object. In contrast with a file sys-
tem, the goal of a P2P cache is not to provide strong file
persistence and availability, but instead maximal content
availability. Thus, in a P2P cache, the number of replicas
of an object depends on the popularity of the object.

Lv et al [10] and Cohen and Shenker [11] studied op-
timal replication in an unstructured peer-to-peer network
in order to reduce random search times. Our work dif-
fers in that our goal is to replicate content to maximize hit
probabilities in P2P caches, taking intermittent connec-
tivity explicitly into account. There has also been recent
work comparing replication and erasure coding in persis-
tent P2P storage infrastructures [7].

III. A DAPTIVE MANAGEMENT OF A P2P CACHE

A P2P cache consists of a community of peers that
collectively provide a distributed content cache. The
peers providing the caching service could be workstations,
desktop PCs, and portables.2 Each participating peer al-
locates a fraction of its storage to the P2P cache. We sup-
pose that the content in a peer’s shared storage is not lost

2However, PDAs, and other low-bandwidth, low-storage devices
would not likely be included in the cache community (although they
may be permitted to use the caching service).

when a peer disconnects; when a peer comes back up, all
the content in its shared storage is again available. (This
is generally the case in P2P file-swapping systems such as
KaZaA and Gnutella.)

A. Location substrate

We suppose that each peer has a persistent name, which
is assigned when the peer initially subscribes to the appli-
cation. (Because peers typically change their IP addresses
each time they come up, the IP address cannot be used as
the persistent name.)

Our algorithms assume the existence of a substrate with
the following functionality. The substrate has a function
call that takes as input an object namej and creates in-
ternally an ordered list of all the up peers. The substrate
then returns for a desired value ofK the firstK peers on
the list,i1; i2; : : : ; iK . The peeri1 is said to be the current
first place winner forj; the peeri2 is said to be the current
second-place winner forj, etc.

We assume that each peer has access to an API for this
substrate. Thus an application running on a peer can give
the API an object namej and get from the API the current
ordered list of peersi1; i2; : : : ; iK . There are number of
substrates today that provide this functionality for first-
place winners, including CAN [8] Chord [9], Pastry [6]
and Tapestry [13]. These substrates are easily extended to
provide the topK winners.

B. Top-K LRU Algorithm

Our adaptive replication algorithms replicate objects
on-the-fly, at times of object requests. Moreover, each of
the algorithms layer on top of the object location substrate.
Consequently, our adaptive algorithms not only replicate
content in a coordinated fashion, but also provide each
peer with a means of locating a copy of a desired object.

We begin with a simple, intuitive algorithm for repli-
cating content on the fly. SupposeX is a peer that wants
objectj. X will get access toj as follows:

Top-K LRU Algorithm

1) X uses the substrate to determinei1, the current
first-place winner forj.

2) X asksi1 for j.
� If i1 doesn’t havej, i1 determinesi2; : : : ; iK

and pings each of theK � 1 peers to see if any
of them havej.

� If any of i2; i3; : : : ; iK have j, i1 retrievesj
from one of them and puts a copy in its shared
storage. If none of them havej (a “miss”
event),i1 retrievesj from outside the commu-
nity and puts a copy in its shared storage.



3

� If i1 needs to evict an object to make room for
j in its shared storage,i1 uses the LRU (least
recently used) replacement policy.

3) i1 makesj available toX (either for streaming or
for downloading intoX ’s private storage). Note that
X does not putj in its shared storage unlessX =

i1.

We see that the Top-K LRU Algorithm possesses many
desirable properties. It replicates content on-the-fly with-
out anya priori knowledge of object request patterns or
nodal up probabilities. It is fully distributed. It is possible
that there will be a miss even when the desired object is in
some up peer in the community; however, we shall show
that if K is appropriately chosen, the probability of such
a miss is low.

To study the hit probability performance, we have per-
formed simulation experiments with 100 peers and 10,000
objects. All object sizes are of the same sizeb. (We also
did extensive experiments with heterogeneous object sizes
and obtained similar results.) For each experiment, each
peer contributes the same amount of shared storage to the
community. (We also did extensive experiments with het-
erogeneous storage, and obtained similar results.) Our ex-
periments run from 5 objects per peer to 30 objects per
peer. We suppose that the request probabilities for the
various objects follow a Zipf-like distribution; our experi-
ments use parameter1:2 [14].

For the case of homogeneous up probabilities, we can
derive a tight upper bound (over the set of all replica-
tion/replacement policies). We do not discuss this bound-
ing technique here, due to lack of space. Because such a
bound is available, the experimental results we report all
use homogeneous up probabilities for the peers. We have
considered two up probabilities::2 and:9. We have also
performed extensive testing with heterogeneous up prob-
abilities, and have found that our algorithms have similar
performance behavior.

Figure 1 shows two graphs, one for each of the up prob-
abilities. Each graph plots hit probabilities as a function
of peer storage. The top curve in each of these figures is
the upper bound (optimal). Each figure has a curve for
K = 1 andK = 5. The bottom curve is the hit proba-
bility for the case when each peer independently retrieves
and stores content (in its shared storage) without regard to
the other peers in the community. The figure also includes
curves for the MFR algorithm, which will be discussed
shortly. We observe from the figure that the adaptive al-
gorithm withK = 1 performs significantly better than the
non-coordinated algorithm, but significantly worse than
the theoretical optimal.

Examining how objects are replicated provides impor-
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Fig. 1. Hit-rate as function of node storage capacity, top is node up
probability .2 and bottom is .9

tant insight. Figure 2 shows, as a function of object popu-
larity, the number of replicas per object for the theoretical
optimal and for the adaptive LRU algorithm withK = 1.
For the adaptive algorithm, the number of replicas per ob-
ject is changing over time; the graphs therefore report the
average values. The difference in how the theoretical op-
timal and the adaptive algorithm replicate objects is strik-
ing. The optimal algorithm replicates the more popular
objects much more aggressively than does the adaptive al-
gorithm. Furthermore, it doesn’t store the less popular ob-
jects, whereas the adaptive algorithm provides temporary
caching to the less popular objects.

C. Top-K Most Frequently Requested Algorithm

The top-K LRU algorithm is simple and intuitive, and
has reasonably good performance in terms of hit proba-
bilities. But can we do better? To this end, we make two
observations:

� LRU lets unpopular objects linger in peers. When an
unpopular object is requested, it gets stored in one
of the peers and remains there until it is evicted with
LRU. Intuitively, if we do not store the less popu-
lar objects, the popular objects will grab the vacated
space and there will be more replicas of the popular
objects.

� Searching more than one peer (that is, the top-K pro-
cedure) is needed to find objects in the aggregate
storage.

Based on these observations, we will now create a new
adaptive algorithm, which will be shown to have near op-



4

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30
Object replicas − Zipf 1.2 − Storage 10 objects − Up prob 0.2 − LRU

Object popularity rank

N
um

be
r 

of
 c

op
ie

s

Optimal              
Average in simulation

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
Object replicas − Zipf 1.2 − Storage 10 objects − Up prob 0.9 − LRU

Object popularity rank

N
um

be
r 

of
 c

op
ie

s

Optimal              
Average in simulation

Fig. 2. Number of replicas per object with 10 objects of per-node
storage capacity and LRU replacement policy, top .2 up probability,
bottom .9

timal performance. To this end, we introduce the Most
Frequently Requested (MFR) retrieval and replacement
policy:

MFR retrieval and replacement policy

� Each peeri maintains a table for all objects for which
it has received a request. For an objectj in the table,
the peer maintains an estimate of�j(i), the request
rate for the object. In the simplest form,�j(i) is the
number of requests peeri has seen for objectj di-
vided by the amount of time peeri has been up.

� Each peeri stores the objects with the highest�j(i)

values, packing in as many objects as possible.

Thus when peeri receives a request (from any other peer)
for object j, it updates�j(i). It then checks to see if it
currently hasj in its storage. Ifi doesn’t havej and MFR
says it should, theni retrievesj from the outside, putsj in
its storage, and possibly evicts one or more objects from
its storage according to MFR.

Now that we have defined the retrieval and replacement
policy, we need to define the request dynamics. We want
the request dynamics to influence the rates so that the
replicas across all peers become nearly optimal. One ap-
proach might be forX (the peer that wants the object) to
ping the top-K winners in parallel, and then retrieve the
object from any peer that has the object. Each of the pings
could be considered a request, and the peers could update
their request rates and manage their storage with MFR ac-
cordingly. But it turns out that this approach doesn’t give

better performance than Top-K LRU.
It turns out that the correct approach is forX to se-

quentiallyrequestj from the top-K winners, and stop the
sequential requests oncej is found. Sequential requests
influence the locally-calculated request rates in a manner
such that the global replication is nearly optimal. In par-
ticular the value of�j(i) at any peeri will be reduced
by hits at “upstream” higher-placed peers forj. We now
summarize the algorithm. SupposeX wants objectj. Ini-
tialize k = 1.

Top-K MFR Algorithm

While k � K andX has not obtainedj:

1) X uses substrate to determinei, thekth place win-
ner forj.

2) X requestsj from i.
� Peeri updates�j(i).
� If peeri already hasj, peeri sendsj toX; stop.
� If peeri does not havej but it should (according

to MFR), i getsj, storesj and evicts objectso
with low �o(i) values if necessary. Peeri sends
j to X.

3) k = k + 1

If after K iterations,X still does not havej, X getsj
from the outside directly (but does not putj in its shared
storage).3

Figure 3 shows, as a function of object popularity, the
number of replicas per object for the theoretical optimal
and for Top-K MFR Algorithm withK = 5. We see that,
in contrast with LRU, the number of replicas given by the
MFR algorithm is very close to the optimal. In fact for
most objects, the number of replicas given by the Top-5
MFR algorithm is equal to the optimal; a small fraction
of objects are off by one replica (or less on average) from
the optimal. Figure 1 compares the hit rate of MFR (with
K = 1 andK = 5) with the adaptive LRU algorithms
and with the optimal hit rate. We see from Figure 1 that
the MFR algorithms give hit rates that are very close to
optimal over the entire parameter space considered.

We have also developed a performance evaluation tech-
nique for MFR, and have used it to show that Top-I MFR
generally provides near optimal results (whereI is total
number of nodes). The small and insignificant differences
between MFR and optimal replication/replacement (when
they occur) are due to imperfect load-balancing in the lo-
cation substrate and to packing non-constant-size objects

3There is a subtlety in howi getsj at the end of Step 2. The peeri
could simply retrievei from the outside. The peeri could also ping the
remaining internal winners for the object, which improves marginally
the hit probability. (But in this latter approach, it is important not to
count the pings as requests.)
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Fig. 3. Number of replicas per object with 10 objects of per-node
storage capacity and MFR replacement policy withK = 5, top .2,
bottom .9 up prob.

into the peers’ storage. Because of lack of space, we not
present the performance modeling technique.

IV. D EALING WITH HOT SPOTS

Up until this point our focus has been on replicating
content to maximize the probability of having a hit in the
community. However, consider the case when a very pop-
ular objectj has a first-place winneri that is almost al-
ways up, that is,pi � 1. In this case, our algorithms will
only create one copy of objectj, which will be perma-
nently stored on peeri. If the demand for this object is
very high, then peeri will become overloaded with file
transfers. In this section we outline some solutions to this
hot-spot problem.

One simple solution to this problem is to segment all
objects (or just popular objects) into multiple pieces, and
give each piece a unique name. Each piece is then treated
as a separate object in the Top-K MFR algorithm, and the
file-transfer load imposed by this popular object is spread
over many peers. One drawback to this above approach is
that, with multiple pieces per object, a hit requires having
a hit for each of the individual pieces. A further refine-
ment of the approach is to use redundant pieces, that is,
to createm + n pieces for the popular objects in a man-
ner such that the original object can be reconstructed from
anym of them+n pieces. We are currently studying this
approach in more detail.

V. CONCLUSION

Institutional P2P caching of large multimedia files is
a compelling P2P application. A fundamental charac-
teristic of a large-scale P2P caching system is that the
participating peers are intermittently connected. In con-
trast with traditional server-centric Web caching, LRU
performs poorly in in P2P caching. In this paper we
have introduced a distributed, adaptive algorithm, Top-
K MFR, which gives essentially optimal performance for
P2P caching. We have briefly outlined how hot spots
could be handled in a P2P cache. We are currently ex-
ploring this research direction in more depth.
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