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Abstract—We consider multiaccess, broadcast and interference
channels with additive Gaussian noise. Although the set of rate
pairs achievable by time-division multiple-access (TDMA) is not
equal to the capacity region, the TDMA achievable region con-
verges to the capacity region as the power decreases. Furthermore,
TDMA achieves the optimum minimum energy per bit.

Despite those features, this paper shows that the growth of
TDMA-achievable rates with the energy per bit is suboptimal in
the low-power regime except in special cases: multiaccess chan-
nels where the users’ energy per bit are identical and broadcast
channels where the receivers have identical signal-to-noise ratios.
For the additive Gaussian noise interference channel, we identify
a small region of interference parameters outside of which TDMA
is also shown to be suboptimal.

The effect of fading (known to the receiver) on the suboptimality
of TDMA is also explored.
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I. I NTRODUCTION

For both multipoint-to-point (multiaccess) and point-to-
multipoint (broadcast) links, the most important practical les-
son drawn from multiuser information theory is that superpo-
sition strategies (e.g. code-division multiple-access (CDMA))
where users transmit simultaneously in time and frequency
causing mutual interference offer, in general, higher capacity
than orthogonal strategies (e.g. time-division multiple-access
(TDMA)) provided that the inter-user interference is taken into
account at the receiver (e.g. [1]). However, from several
standpoints, TDMA is an attractive channel-sharing technol-
ogy. Foremost among the attractive features of TDMA is the
simplicity of the receiver design. Furthermore, the superior-
ity of superposition over TDMA demonstrated by information
theory is far from overwhelming. For example, in the absence
of fading, the maximum total aggregate rate that superposition
can achieve for a multiaccess channel subject to additive white
Gaussian noise is no higher than that achieved by TDMA. The
presence of fading tends to tilt the balance back in favor of su-
perposition. Indeed, when users are affected by independent
fading, they can achieve strictly higher total aggregate rate with
superposition than with TDMA, as a simple consequence of the
concavity of channel capacity as a function of signal-to-noise
ratio [2]. Other practical effects that favor superposition include
the presence of channel distortion (which destroys the orthogo-
nality of the TDMA signals) and out-of-cell interference [3].

In multiaccess, the most common practical embodiment of
the capacity-achieving superposition strategies is nonorthogo-

nal CDMA. Thus, in practice, superposition is particularly rele-
vant in the wideband low-power regime where the received en-
ergy per information bit may not be far from its minimum value.
Therefore, it is of considerable practical interest to compare the
capabilities of TDMA to the capabilities of superposition in the
low-power regime.

Let us consider the standard two-user multiaccess and broad-
cast Gaussian channels [1]. Plotting the rate regions achieved
by superposition and TDMA we see that for both the multi-
access channel (Figures 1 and 2) and for the broadcast chan-
nel (Figures 3 and 4) the proportion of the area achievable by
TDMA to the area achievable by superposition goes to 1 as the
signal-to-noise ratio goes to 0.
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Fig. 1. Multiaccess channel capacity region and TDMA achievable region
with with SNR� � � andSNR� � �.

The intutive explanation for the behavior shown in these fig-
ures is simple. As the background thermal noise becomes the
dominant component of the overall interference, the coupling
between the users weakens. As a consequence of this, it is easy
to prove that the minimum energy per bit (achieved at vanish-
ing signal-to-noise ratio) required by TDMA for either multi-
access, broadcast or interference channels is the same as in the
single-user channel. From this evidence, we would be justified
to suspect that the purported advantage of superposition over
TDMA may actually vanish in the low power regime. If this
is the case, then the increase in receiver complexity required to
realize the capacity achieved by superposition would be hardly
justified unless some of the other factors mentioned above (fad-
ing, out-of-cell interference, channel distortion) come into play.

The main conclusion of this paper is that, except in some
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Fig. 2. Multiaccess channel capacity region and TDMA achievable region
with with SNR� � ��� andSNR� � ���.
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Fig. 3. Capacity region and TDMA-achievable rate region of broadcast chan-
nel with SNR� � � andSNR� � �.

very special cases, and unless bandwidth is not a resource to be
conserved (such as in the ultrawideband regime) TDMA does
incur significant inefficiency. Our approach is to apply the low-
power analysis tools introduced in [4] to investigate the power-
bandwidth tradeoff of both superposition and TDMA. The min-
imum values of energy per bit are obtained in the limit of in-
finite bandwidth and therefore imply zero spectral efficiency.
As argued in the recent work [4], in addition to the normalized
minimum energy per bit��

�����
required for reliable communi-

cation, the key performance measure in the wideband regime is
the slope of the spectral efficiency vs��

��
curve (b/s/Hz/3 dB) at
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�����

. For a single-user channel, [4] shows that

�� ���
� ���

�
�

��
�
�
�

�� ���

�

�
��
��

�
�� �����

��
��
� �� �����

��
�����

�� ����� 	

� ���
	��

�

�
		 ��

�����

�



�
	
�
����

�

� ����

(1)

0.1 0.2 0.3 0.4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 4. Capacity region and TDMA-achievable rate region of broadcast chan-
nel with SNR� � ��� andSNR� � ���.

with
��

�� ���

�
���� 	
����

(2)

where����
��

 and��SNR denote the capacity as a function of
��
��

and per-symbolSNR respectively, and����, ���� are the
first and second derivatives of��SNR evaluated in nats.

In the case of a single user white Gaussian noise channel

� � �� �� (3)

where� is proper complex Gaussian noise with zero mean and
variance

���� �
� � �
 � ��� (4)

subject to the power constraint

���� �
� � 	 � SNR�
 (5)

and� a deterministic constant, we have

��SNR � ����� � ���
SNR (6)

��

�� ���
�

���� 	

���
 (7)

and
�� � 	 b/s/Hz/(3 dB)
 (8)

Note that (7) implies that the received energy per bit,� �

�, satis-
fies

��

�

�� ���

� ���� 	 � ��
�� dB


Whereas the conventional capacity region supplies the trade-
off of rates for fixed powers, in the low-power regime, it is more
illuminating to analyze both the minimum energy per bit re-
quired for reliable communication and the “slope region”���
that gives the tradeoff of individual user slopes for a fixed ratio
� with which the individual rates vanish. Although TDMA in-
curs no penalty in the minimum energy per bit, our comparative
analysis of the slope regions achieved by TDMA and superpo-
sition reveals important differences.
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II. T HE MULTIPLE ACCESSCHANNEL

We consider the complex-valued multiaccess channel

� � ���� � �
�
 �� (9)

where� is complex Gaussian with independent real and imag-
inary components with variance (4);�� and�
 are deterministic
complex scalars. The inputs in (9) are constrained to satisfy

������
� � 	� � SNR� �


 (10)

The capacity region is the Cover-Wyner pentagon [1]:

��� � ���

�
� � ����
SNR�

�
�
 � ���


�
� � ��
�
SNR


�
�� ��
 � ���


�
� � ����
SNR� � ��
�
SNR


�� (11)

In particular, we can conclude from (11) the celebrated result
that the total capacity (maximum sum of rates) of the multi-
access channel is equal to the capacity of a single-user channel
whose power is equal to the sum of the individual received pow-
ers, namely

�� ��
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SNR


�

 (12)

As is well known, the boundary (or, more precisely, the
Pareto-optimal points) of the capacity region (11) is achieved
by superposition. In contrast, TDMA achieves the region de-
scribed as the union of rectangles:
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where the parameter is equal to the fraction of time that the
first user is active. By letting the time sharing parameter be
equal to

 �
����
SNR�

����
SNR� � ��
�
SNR

� (14)

we obtain the well-known result that the total capacity achieved
by (13) is also equal to (12) (cf. Figure 1). In particular, TDMA
is optimal for the important special case,����
SNR� � ��
�
SNR


and�� � �
.
Moreover, as the noise level grows, we operate predomi-

nantly in the linear region of the logarithm, the multiaccess in-
terference becomes a secondary factor and the achievable rates
become decoupled. This is illustrated by comparing Figures 1
and 2, where we see that the TDMA achievable rate region oc-
cupies an increasingly large fraction of the capacity region as
the noise level increases. This can be formalized by showing
that the TDMA achievable region converges to the rectangle
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in the following sense:
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Define the transmitted and received energy per information
bit relative to the noise spectral level of user� � �� 	 by

��

��
�

SNR�

��

� (17)

and

��
�

��
�
����
SNR�

��

� (18)

respectively.1

One of the fundamental limits of interest in this paper is the
minimum energy per information bit, which is obtained with
asymptotically low power. To that end, we can apply the gen-
eral framework of capacity region per unit cost for multiaccess
channels developed in [6]. However, in the particular case at
hand it is instructive to give a self-contained derivation.

Several of the performance measures we will encounter later
depend on the ratio� with which both rates go to 0. As the
following result shows, this is not the case for the multiaccess
minimum energy per bit.

Theorem 1: For all � � ����
, the minimum energies per
information bit for the multiaccess channel are equal to

��
�

�� ���
�

��



�� ���
� ���� 	 � ��
�� dB
 (19)

Furthermore, (19) is achieved by TDMA.

Proof: Since the presence of interferers cannot lower the
minimum energy per bit and (19) is the minimum received
energy per bit, the result will follow by showing that TDMA
achieves the single-user transmitted energies per bit (7):
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 (20)

Consider a fixed time-sharing parameter� �  � �. Using
(13) we obtain
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and
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�Note that sometimes a “system” energy per bit is considered instead of the
individual per-user energies per bit defined in (17). For example, when all the
per-symbol energies are identical, [5] uses a system energy per bit which is
equal to the harmonic mean of the individual energies per bit.
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Since the convergence of the limits (21) and (22) is uniform
over, we can conclude that the result holds even if is not
held fixed and varies with the signal-to-noise ratio. (For exam-
ple, in order to enforce the constraint�� � ��
.)

Let us turn our attention to the slope regions achieved by
TDMA and superposition for the multiaccess channel. Fix the
rate ratio����
 � �. To define the slope region��� corre-
sponding to a region of achievable rate pairs��SNR�� SNR
, we
use (17) to obtain the set of achievable rate pairs for given en-
ergies per bit. Because of the fixed ratio between the rates it is
enough to consider the achievable segment of rates for user 1:
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The slope region��� is the set of slope pairs that result from

�� � ���
��
��

�
��
�� ���

��

�� �����
��

��
� �� �����

��

�����

�� ����� 	

�
 �
�

�
���

��
��

�
��
�� ���

��

�� �����
��

��
� �� �����

��

�����

�� ����� 	

for ���� ���� vanishing with ��

��
� ��

�����
,��

��
� ��

�����
re-

specting the membership�� 	 �	

�
��

��
� ��

��

�
. It can be seen

that this is equivalent to
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where
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Theorem 2: For all� � ����
, the multiaccess slope region
achieved by TDMA is:

������
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� �� � �
 � 	�

Proof: Fix � �  � �. Applying (1) to the individual rate

constraint equations in (13),
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we obtain
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Thus, if the rate pair belongs to the boundary of the achievable
region, then�� � 	 and�
 � 	� 	. Taking the union over
all possible time-sharing parameters gives the desired result.

Theorem 3: Let the rates vanish while keeping����
 � �.
The optimum multiaccess slope region (achieved by superposi-
tion) is:
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Furthermore,

closure
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(31)

Proof: As we showed in Theorem 1, when we let the powers
and rates vanish, both received energies per bit approach the
same value, and therefore (17) implies that in the limit

����
SNR�

��
�
SNR

�
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�

� �
 (32)

In the rest of the proof we will assume that (32) holds. While
this is only required in the limit, we can handle the more general
case invoking uniform convergence in the same way as in the
proof of Theorem 1.

Re-writing (11) as a union of rectangles�
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and using (32), the individual maximal achievable rates for
fixed and� resulting from the Pareto-optimal segment of the
Cover-Wyner pentagon become
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The first and second derivatives of the functions in (34)-(35)
at zero signal-to-noise ratio are equal to :

����� � ����
 (36)
��
�� � ��
�
 (37)

����� � ������
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 (39)

Plugging these results into (1) we obtain
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We can solve for in (40) and (41) and subtract the resulting
equations in order to obtain:
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�
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	�
� (42)

which is equivalent to the boundary condition in (30). The con-
ditions�� � 	, �
 � 	 follow immediately from the fact that
the existence of an interferer cannot improve the rate. More-
over, the points at which the lines�� � 	 and�
 � 	 intersect
with (42) correspond to � � and � �, respectively, i.e. to
the vertices to the Cover-Wyner pentagon.

To show (31) note that as either�  � or �  � the third
constraint in (30) becomes redundant.
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Fig. 5. Slope regions in the Gaussian multiaccess channel with TDMA and
superposition� � � and� � �.

Theorem 3 shows thatboth users can achieve slopes that
are arbitrarily close to the single-user slopes provided they use

superposition, optimum decoding, and their powers are suffi-
ciently unbalanced. Comparing this to the triangular region
achieved by TDMA we see that even in the simple setting of the
two-user additive Gaussian multiaccess channel the low-power
capabilities of TDMA are markedly suboptimal.

As a concrete example, let���� � ��
� � � and suppose we
constrain user 1 to have a small rate�� � � and

��
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� ��
���� �
����

whereas
�
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then the highest rate achievable by TDMA is

��
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�

whereas superposition achieves

�
 �
�

	
�

operating at the point� � 	, �� � �, �
 � 	 (Figure 5).
Theorem 4: If both users are constrained to have the same

received energy per bit, then TDMA achieves optimum slopes.

Proof: Identical received energies per bit imply that

��
�
 �

��

�

� �

which, when substituting the values found in (40) and (41), re-
quires � ��	. Furthermore, for every value of� the super-
position slope region “touches” the TDMA region at one point
(Figure 5), which corresponds to the mid point � ��	 in the
Pareto-optimal segment of the Cover-Wyner pentagon. To see
this, note that � ��	 achieves the minimum sum (equal to 2)
of the slopes in (40),(41):

	�

	� 	� �
�

	

� � 	�



It is easy to extend the above results to the more general case
where the channel is subject to fading known to the receiver.
The expressions for the capacity region and the region achieved
by TDMA simply boil down to expressions (33) and (13) re-
spectively where each of the rate constraints is averaged with
respect to�� and�
. We assume henceforth that the fading co-
efficients have finite fourth moments. Unless�� and�
 are de-
terministic, the total rate sum achieved by TDMA is no longer
optimum, and its achievability region only intersects the capac-
ity region at the trivial points where one of the users is silent.
This property, which is one of the multiuser diversity mecha-
nisms by means of which total capacity can be higher in the
multiaccess channel than in the single user channel with the
same aggregate power (e.g. [3]), is a straightforward conse-
quence of Jensen’s inequality and appears to have been pointed
out for the first time in [2]. Nevertheless, even in the presence
of fading with an arbitrary distribution, it is easy to show that
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Theorem 1 holds, and thus TDMA is optimum as far as requir-
ing the same minimum energies per bit as superposition.

In order to extend Theorem 2 to the fading channel all we
need to do is take the expectation of the right sides of (26)-(29)
with respect to�� and�
. The resulting slope region for TDMA
is the same as that in Theorem 2 except that the former individ-
ual slopes now become��������, ����
��
 respectively, i.e.,


�����
 � � � ��� � � �
� ��
�����
�

�
�

�����
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�
(43)

where the kurtosis of the fading coefficients is denoted by

����� � �������
�
����
� (44)

and the slope of the coherent single-user fading channel found
in [4], [5] is denoted by:

�����
� �
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 (45)

To generalize Theorem 3 we need to proceed a bit more care-
fully. Since we are assuming that the transmitters are not in-
formed of the fading coefficients, the asymptotic equality of
received energies per bit translates into
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Using (46), the fading counterparts of (34),(35) become
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where
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Assuming that the users fade independently, the derivatives of
(47) and (48) are
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This leads to the generalization of (41):
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which leads to the following generalization of (30):
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Fig. 6. Normalized slope region for the fading channel with� � � and
different fading statistics.

Taking the closure of the union of (55) over all values of
� � �, we again get the result that single-user slopes are si-
multaneously achievable with superposition, in contrast to the
triangular region achieved by TDMA.

As we can see in Figure 6, in the presence of fading TDMA
no longer achieves optimum slopes when the energies per bit
are required to be equal for nonzero rates. In the symmetric case
of equal received energies per bit and equal spectral efficiencies
(i.e.,� � �), we define the max-min slope of the system as

� � ���
������������

��������
� (56)

where the slope region is given either by Theorem 2 or by
Theorem 3 for TDMA and superposition coding, respectively.
Clearly,� is given by the intersection of the slope region bound-
ary with the line�� � �
. The bandwidth expansion factor
incurred by TDMA in the low power regime is given by ratio
of � achieved by superposition over� achieved by TDMA. It
is easily seen from (43) and (55) that this is given by
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�

� �

�
����
�
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�
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����
�

which is strictly larger than 1 for any non-constant fading (i.e.,
with kurtosis larger than 1).
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III. T HE BROADCAST CHANNEL

We consider the simple complex-valued two-user broadcast
Gaussian channel where users 1 and 2 receive the same signal
from the transmitter embedded in independent Gaussian noise
with different signal-to-noise ratios:

�� � ��� ���

�
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� ��
 (57)

where�� and�
 are deterministic and the various random vari-
ables are proper complex with

���� �
� � 	�

������
� � �
�

and

SNR �
	

�




We will assume����
 � ��
�
 as in the case����
 � ��
�

TDMA is trivially optimal. The capacity region of this chan-
nel (achieved by superposition and stripping) is equal to [1]�

�����

��� � ���

�
� �  ����
SNR

�

�
 � ���


�
� �

��� ��
�
SNR

����
SNR � �

	
� (58)

whereas the region achievable by TDMA is�
�����

��� �  ���

�
� � ����
SNR

�
�
 � ���  ���


�
� � ��
�
SNR

�� (59)

As for multiaccess channels, it appears from Figures 3 and 4
that as the power decreases, the TDMA-achievable region oc-
cupies a larger fraction of the capacity region. This has been
shown in [7] for a variety of broadcast channels in the sense
that for every pair���� �
 in the boundary of the broadcast
capacity region,

��� ���
SNR��

��

���
 �� � ����
SNR
�

�


���
 �� � ��
�
SNR
� �
 (60)

Analogously to (17) we define the transmitted and received
energies per bit as

��

��
�

SNR

��


 (61)

��

�

��
�
����
SNR

��


 (62)

Theorem 5: Suppose that����
 � �. Then, the minimum
received energies per bit achieved by both TDMA and superpo-
sition are:

��
�

��
�

�
� �

����

��
�
�

	
���� 	 (63)

��



��
�

�
� �

���
�

����


	
���� 	 (64)

Proof: Let us start with TDMA. Enforcing the constraint on
the ratio of the rates in (59), pins down the value of the time-
sharing parameter and we obtain that the rate achieved by user
1 is

�� �
� ���


�
� � ����
SNR

�
���


�
� � ��
�
SNR

�
���
 �� � ����
SNR � � ���
 �� � ��
�
SNR


 (65)

The reciprocal of the derivative of (65) with respect toSNR at
SNR � � is equal to

�

���
�
 �
�

����


which upon multiplication by���� 	 yields the transmitted en-
ergy per bit. Multiplying by����
, we obtain the desired for-
mula (63). Formula (64) is obtained in an entirely analogous
way or simply by noticing from (62) that

��
�

��



�
����

���
�
 
 (66)

Let us analyze now the capacity region (58). Define	�SNR to
be the solution to

���SNR
���
� ���


�
� � 	�SNR����
SNR

�
� � ���


�
� �

��� 	�SNR��
�
SNR

	�SNR��
�
SNR � �

	
(67)

���
� ��
�SNR (68)

Although an explicit solution for	�SNR does not seem feasi-
ble, we will be able to compute its value atSNR � �, as well as
that of its derivative. By taking the first and second derivative
at SNR � � of ���SNR and�
�SNR we get

����� � ����
 	�� (69)
����� � ������	��
 � 	����
 �	�� (70)
��
�� � ��
�
 ��� 	�� (71)
��
�� � ���
�� � ��
��	��
 � 	��
�
 �	�� (72)

By recalling that���SNR � ��
�SNR for all SNR and by
equating the derivatives (69)-(71) and (70)-(72) we obtain

	�� �
� ��
�


����
 � � ��
�
 (73)

	 �	�� � ����
������
 ����

��� � � 	���
�

�����
 � � ��
�
� (74)

Multiplying the reciprocal of (69) by����
 ���� 	, (63) follows,
and so does (64) by applying (66).

Let us direct our attention to the analysis of the slope regions
for the broadcast channel. The definition of the slope region
��� is parallel to that of the multiaccess channel. Starting from
a region of achievable rate pairs��SNR, we use (61) to define

�	

�
��

��

	
� ��� 	 � � ���� ���� 	 �

�
��

��

��

	
� (75)
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The slope region��� is the set of slope pairs

�� � ���
��
��

�
��
�� ���

��

�� �����
��

��
� �� �����

��

�����

�� ����� 	

�
 �
�

�
�� (76)

for�� vanishing with��

��
� ��

�����
within �� 	 �	

�
��

��

�
. Al-

ternatively we can write

��� �

�
�����
 	 �


 � �� � ��
� �� � �

�

�	�


�
(77)

where

�	�
 � ������ � �� 	 �	

�
		

��

�� ���

	
� (78)

Theorem 6: Let the rates vanish while keeping����
 � �.
The broadcast slope region achieved by TDMA is:

������
 � � � �� � 	�

� � �
� � � �
 � 	

� � �
�
 (79)

Proof: The fact that if we operate on the boundary of the ca-
pacity region we get�� � ��
 can be readily seen from the
fact that the numerator in the definition of slope has a factor
of � because�� � �
�, whereas the denominators are identi-
cal: the ��

��
’s differ by a multiplicative constant (66) which is

immaterial in the definition of slope (left side of (1)).
As in the proof of Theorem 5, enforcing the constraint� � �

��
, we obtain the value of the time sharing parameter and the
value of the individual rates. Fix� and let��SNR � ���SNR �
�� �
�SNR be the solution of

��SNR ���
��� ����
SNR � ���� ��SNR ���
��� ��
�
SNR


Although we are unable to find an explicit solution for��SNR,
we are be able to compute its derivative atSNR � �. Taking the
derivatives of the rate function

���SNR � ���SNR ���
�
� � ����
 SNR

�
we obtain

����� � ����
 ���� (80)
����� � ���������� � 	����
 ����� (81)

For rate�
�SNR just exchange subscripts 1 into 2 in the above
expressions. Since���SNR � �
�SNR � � and���SNR �
��
�SNR for all SNR and by equating the derivatives we obtain

��� �
� ��
�


����
 � � ��
�
 (82)

	 ���� � �����
��
�
 ����
 � ��
�

������ ���
�

 (83)

After substitution we get

����� � � ��
�� � �
����
 ��
�


����
 � ���
�
 (84)

� ����� � �� ��
�� �
� � �

�

�
�����

�

(85)

The result now follows by applying (1) to (85).

Theorem 7: Let the rates vanish while keeping����
 � �.
The optimum broadcast slope region (achieved by superposi-
tion) is:

������
 � � � �� � 	� �� � ����
���
�

�
 � 	� � ����
���
�
 �

� � �
 � ��
�
�
 (86)

Proof: As before it is sufficient to justify the slope of user 1
because as we saw above�� � ��
. We have already done the
main calculation needed here in the proof of Theorem 5. From
expressions (69), (70), (73) and (74) it follows that

	 �����

� �����
�

	� �� � ����
���
�

�
 � 	� � ����
���
�


and the theorem follows.

Comparing the results of Theorems 6 and 7 we see that un-
less����
 � ��
�
 (in which case TDMA is optimal), TDMA
is wasteful of channel resources. For given power and rates
�� and�
 � ����, the bandwidth expansion factor incurred
by TDMA in the low power regime is equal to the ratio of the
slopes obtained in Theorems 6 and 7:

�� � ��� � ����
���
�

�
 � 	� � ����
���
�
 � (87)

a function which is monotonic in����
���
�
 � � and achieves
a maximum (over�) equal to

����
���
�
 � �� � ����
���
�
������
�
	��
�

����
���
�
 � �������
�
Figure 7 plots the TDMA bandwidth expansion factor as a

function of� when the users are��dB apart. Note that TDMA
can be quite wasteful of bandwidth.

2 4 6 8 10

1.2

1.4

1.6

1.8

2

Fig. 7. Bandwidth factor penalty incurred by TDMA as a function of
����� � � for ����� � �������

The extension of the above results to the case of broadcast
channels subject to fading known to the receivers only is not as
straightforward as for multiaccess channels. When the informa-
tion bearing signal� fades, the channel from the input to one
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of the outputs is no longer adegraded version [16] of, normore
capable [15] than, the channel from the input to the other out-
put. The capacity region of general broadcast channels is still
an open problem, and only inner and outer bounds are available.
The best known inner bound was derived by Marton in [14]. In-
terestingly, the Marton region yields the capacity region for all
the classes of broadcast channels for which a coding theorem is
currently available.

In the following, we shall make use of an inner bound to the
fading broadcast channel capacity region obtained by a partic-
ular choice of the auxiliary variables in the Marton region. We
assume that�� and�
 in (57) are ergodic random processes with
finite fourth moment, perfectly known to the corresponding re-
ceiver. Then, we obtain the achievable region

�
�����

������
�����

�� � �
�
���

�
� � ����
SNR

�
�� ��
 � �

�
���

�
� �

��
�
��� SNR

� � ��
�
SNR

	�
��

�
���

�
� � ����
 SNR

�
�� ��
 � �

�
���

�
� � ����
 SNR

�
(88)

by setting� � � � � ��� �� � 	 , � � � � � ��� 	 
and���� �� � ���� �
� � �� � 	 with  	 ��� �� in [14,
Theorem 2]. On the other hand, TDMA achieves

�
�����

�
�� � � �

�
���

�
� � ����
SNR

�
�
 � ��� ��

�
���

�
� � ��
�
SNR

� (89)

Next, we show that the achievable regions in (88) and (89) yield
the same minimum energies per bit (which, in absence of a con-
verse coding theorem, cannot be claimed to be the minimum
energies per bit required for reliable communication). Further-
more, we obtain the slope regions corresponding to the achiev-
able regions (88) and (89), and we show that the TDMA slope
region is strictly suboptimal.

Notice that the only effective sum-rate constraint in (88) is

�

�
���

�
� �

��
�
��� SNR

� � ��
�
SNR

	�
��

�
���

�
� � ����
 SNR

�

if ����� � ��
�� in the interval� 	 ��� SNR� where

���� � �
�
���

�
� � ����
 �

�
is the single-user capacity for user�. Without loss of generality,
we assume that in a sufficiently small right interval of� � �
the single-user capacities satisfy���� � �
�� and ����� �
��
�� (otherwise swap the role of the users).2 Therefore, in the

low-power regime, it is enough to consider the simpler region
defined by

�
�����

�
�� � ��� SNR
�
 � �
�SNR� �
� SNR

(90)

�The condition����� � ����� in a right interval of� � � is equivalent
to �������	 	 �������	 or �������	 � �������	 and�������	 
 �������	.
If �������	 � �������	 and�������	 � �������	 then for the purpose of this
analysis the channel to user 1 isstatistically equivalent in the low-power regime
to the channel to user 2. In this case the region (88) boils down to the TDMA
region in the low-power regime.

It is worth pointing out that the region (90) is an inner bound
for the general fading broadcast channel only in the interval of
SNR on the right of� for which ����SNR � ��
�SNR and not
for everySNR. It is an inner bound for everySNR if the overall
channel is degraded and is the capacity region for the class of
degraded fading broadcast channels analyzed in [7], as proved
in [17].

In order to extend Theorems 5, 6 and 7 we need to take the
expectation of the right hand sides of (69)-(72) and of (80)-(81)
with respect to�� and�
 with

	�� � ��� �
� ����
�
�

������
� � � ����
�
�
	 �	�� �


	����������� ���� 
	������
���
������
� � � ����
�
�

	 ���� �
������������ ���� �������
���

������
� � � ����
�
�
whose derivation follows that of (73)-(74) and of (82)-(83).

By substitution of the first and second derivatives atSNR � �
of the rate functions in (2) and (1), we see that the minimum
received energies per bit are

��
�

��
�

�
� �

������
�
����
�
��

	
���� 	 (91)

��



��
�

�
� �

����
�
��
������
�

	
���� 	 (92)

achieved by both TDMA and (88). The slope region boundary
achieved by TDMA is the following generalization of (79)):

�� � ��
 �
	�

������� � ����
� (93)

while the slope region boundary achieved by (88) is the follow-
ing generalization of (86)

�� � ��
 �
	��� � �

�
������ � �	� � �����
� (94)

where

� �
������
�
����
�
� 


The bandwidth expansion factor incurred by TDMA is given by

�������� � ����
��� � �

�
������ � �	� � �����
�
Interestingly, if the fading distributions have the same kurtosis
this factor is independent of the fading distribution and coin-
cides with the bandwidth expansion factor found in the absence
of fading (87).

IV. T HE INTERFERENCECHANNEL

Unlike the multiuser channels considered above, the capac-
ity of the interference channel in additive white Gaussian noise
remains unknown. However, using the available results we can
prove the low-power suboptimality of TDMA in all but a small
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region of interfering parameters. The (non-canonical) channel
model is

�� � ����� � ��
�
 ��� (95)

�
 � �
��� � �

�
 ��
 (96)

where the coefficients��� � �� � � �� 	� are deterministic
scalars,��, �
 are proper-complex Gaussian with zero mean
and variance�
 and

������
� � SNR� �




The receiver that observes�� is only interested in recovering
the information sent by user�. The canonical model assumes
��� � �

 � �.

TDMA achieves the same region as for the multiaccess chan-
nel (13)

�
�����

��� �  ���


�
� �

�����
SNR�



	

�
 � ���  ���


�
� �

��

�
SNR


�� 

	
� (97)

Thus, Theorems 1 and 2 on the��
�����

and slope region
achieved by TDMA also hold for the interference channel,
namely the minimum received energies per bit are

��
�

�� ���

�
��



�� ���

� ���� 	 � ��
�� dB

the minimum transmitted energies per bit are

��

�� ���

�
���� 	

�����
 � � �� 	

and the slope region3 is

�� � �
 � 	

Since the received��
�����

achieved by TDMA does not depend
on the interference parameters, it is equal to the optimum one.
Equivalently, the convergence of the TDMA-achievable region
to the (rectangular) capacity region in the sense of (16) holds
verbatim for the interference channel.

Although a general expression for the optimum slope region
of the interference channel is unknown at this time, we can use
existing results on the capacity of interference channels to draw
the following conclusions:

1) �����
�

������
� � and �����

�

������
� �:

The capacity region is the intersection of the Cover-
Wyner pentagons corresponding to both multiaccess
channels [8]

�� � ���

�
� � �����
SNR�

�
�
 � ���


�
� � ��

�
SNR


�
�� ��
 � �������


�
� � �����
SNR� � ���
�
SNR


�
�

���

�
� � ��
��
SNR� � ��

�
SNR


��
(98)

�For the interference channel, the slope region associated with a given achiev-
able rate region is defined exactly as for the multiaccess channel.

Because the interference coefficients��� � are strictly
larger than�����, � � �� 	� � �� �, for sufficiently small
SNR� andSNR
 the constraint on����
 in (98) is strictly
larger than the sum of the single-user capacities and the
capacity region reduces to a rectangle, regardless of ratio
between the rates. Effectively, for��
�������� � � and
���
����

� � � thevery large interference condition [9]
is always in effect in the low-power regime. Since the ca-
pacity region is a rectangle, the optimum slope region for
any� 	 ���� is

��� � ��� 	�� ��� 	� (99)

in contrast with the triangular slope region achieved by
TDMA for any � 	 ����.

2) �����
�

������
� � and �����

�

������
� � or �����

�

������
� � and �����

�

������
� �:

The capacity region is still given by (98) but in this case
it reduces to the standard multiaccess region

�� � ���

�
� � �����
SNR�

�
�
 � ���


�
� � ��

�
SNR


�
�� ��
 � ���


�
� � �����
SNR� � ��

�
SNR


�
(100)

which, as we saw, leads to the slope region (30). Com-
paring (99) and (30), we see that��� is not continuous
in the interference parameters.

3) �����
�

������
� � and �����

�

������
� �:

The following rate-pair is achievable

�� � ���

�
� � �����
SNR�

�
�
 � ���


�
� �

��

�
SNR


� � ��
��
SNR�

	
(101)

as long as the receiver of user 1 can decode user 2, or
equivalently if

��

�
SNR


� � ��
��
SNR�
� ���
�
SNR


� � �����
SNR�

which is guaranteed to hold for sufficiently smallSNR� if

���
�

��

�
 � � (102)

In fact, it was shown in [9], that (101) is a Pareto-
optimal pair for thedegraded interference channel, i.e,
�����

�

������
�����

�

������
� �. The the Pareto-optimality in the more

general case (102) can be derived from [18, Theorem
2]. Clearly the optimal minimum energies per bit are
achieved by this rate-pair.
By fixing the received SNR ratio to

�����
SNR�

��

�
SNR

� �

and by defining

� �
��

�

�����
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the achievable rates become

���SNR� � ���
�
� � �����
SNR�

�
�
�SNR
 � ���

�
� �

��

�
SNR


� � ��
��
 � � ��

�
SNR


	

whose first and second order derivatives at zero SNR are
(in nats)

����� � �����
 (103)

� ����� � ������ (104)
��
�� � ��

�
 (105)

� ��
�� � ��

�� � 	��
��
 ��

�
 � � (106)

The corresponding (optimum) slope-pair is

�� � 	� �
 �
	

� � 	 �����
�

������
�

Notice that for every value of� � � this slope region is
strictly superior to the TDMA slope region and the union
over� gives again��� 	�� ��� 	�

4) �����
�

������
� � and �����

�

������
� �:

Proceeding entirely analogously to the previous case but
with the role of the user exchanged, we obtain that the
following (optimum) slope-pair is achievable

�� �
	

� � 	 �����
�

������
�
	

� �
 � 	

5) �����
�

������
� � and �����

�

������
� �:

By treating the interfering signal as noise it is possible to
achieve the rate-pair

�� � ���


�
� �

�����
SNR�

� � ���
�
SNR


	

�
 � ���


�
� �

��

�
SNR


� � ��
��
SNR�

	

which leads to optimum��
�����

. By defining� and� as
before, by expressing�� as function ofSNR� only and�


as function ofSNR
 only, the relevant derivatives are

����� � �����
 (107)

� ����� � ������ � 	���
�
 �����
 �

� �
(108)

��
�� � ��

�
 (109)

� ��
�� � ��

�� � 	��
��
 ��

�
 � � (110)

The achievable slope-pair is then

�� �
	

� � 	 �����
�

������
�
	

� �
 �
	

� � 	 �����
�

������
�

By eliminating� from the above expression we obtain the
achievable slope region

�� 	 ��� 	��

�
	

�� � �

	�
	

�
 � �

	
� �

���
�

��

�


��
��

�����


which is strictly larger than the TDMA slope region if

���
�

��

�


��
��

�����
 �

�

�
(111)

On the contrary, if �����
�

������
� �, �����

�

������
� � (excluding

�����
�

������
� �����

�

������
� �) and �����

�

������
�����

�

������
� �

� (see the re-
gion in Figure 8), we do not know of any strategy that
achieves both the optimum��

��
and a slope pair outside

the TDMA region.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Fig. 8. Region of the interference parameters�����
�����

, �����
�����

for which no strat-
egy is known to provide better slopes than TDMA.

All the above results can be replicated in the case the coef-
ficients��� � �� � � �� 	� are ergodic independent random pro-
cesses with����� ��
 known at receiver 1 and��
�� �

 known
at receiver 2. As in the absence of fading, the minimum energy
per bit and slope region achieved by TDMA are as those ob-
tained for the multiple-access channel, i.e. the minimum energy
per bit achieved by TDMA is optimum and the slope region is
the triangle (43). A variety of multiaccess strategies are now
shown to achieve slope pairs outside the TDMA region:

1) �������
��

���������
� � and�������

��
���������

� �:
If the users transmit at the capacity of their respective
hypothetical single-user channels in the absence of inter-
ference, they are still decodable with arbitrary reliability
in the presence of interference for sufficiently smallSNR�

and SNR
, because each interferer can be decoded with
arbitrary reliability and then subtracted out. Thus, the
capacity region is the rectangle composed of single-user
capacities and the slope region is the rectangle

��� � ��������
� �� ��������


 �

where�����
� � 	��������, for � � �� 	, are the individual

single-user slopes.

2) �������
��

���������
� � and�������

��
���������

� �:
The following rate-pair is achievable

�� � �
�
���


�
� � �����
SNR�

�
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�
 � �

�
���


�
� �

��

�
SNR


� � ��
��
SNR�

	�
(112)

as long as the receiver of user 1 can decode user 2, which
is guaranteed to hold for sufficiently smallSNR�. This
strategy achieves optimum minimum energy per bit and
the (not necessarily optimal) slope-pair

�� �
	

������� � �
 �
	

����

� � 	���������
���������

�
�

which lies outside the TDMA triangle.

3) �������
��

���������
� � and�������

��
���������

� � :
analogous to the previous case, by switching the indices
1 and 2.

4) ��� and �
� have identical distribution (including scale)
for � � �� 	:
The channels seen by both receivers are statistically iden-
tical and the optimal slope region is that of the multiple-
access channel with fading, which, as we saw, is strictly
larger than the TDMA slope region.

5) �������
��

���������
� � and�������

��
���������

� �: by treating the interfering
user as noise, the rate-pair

�� � �

�
���


�
� �

�����
SNR�

� � ���
�
SNR


	�

�
 � �

�
���


�
� �

��

�
SNR


� � ��
��
SNR�

	�

is achievable. This leads to optimum��
�����

and to the
slope region

�� 	 ��������
� ���

�

�� �
�

�����
�

��
�

�
 �
�

�����



�
�

����
��
�
�������
�

�����
�
�
����

�
�

(113)

The TDMA slope region

��
�����
�

�
�

�����



� �

is strictly included in (113) if

����
��
�
�������
�

�����
�
�
����

�
� �

�

�����
� �����




(114)

which necessarily holds in the case

�����
� �����


 � �


6) Rayleigh fading (��� proper Gaussian random variables):

Since in this case�����
� � �����


 � �, depending on the
relative strength of the interference coefficients, one of
the above cases must hold. Thus, in this case, TDMA is
strictly suboptimal.

7) Unsolved case:
No transmission strategy is known to be better than
TDMA in the low power regime for

����
��
�
�������
� � ��

�����
�
�
����

�
� � ��

����
��
�
�������
�

�����
�
�
����

�
� �

�

�����
� �����




except in those cases of identical fading (4 and 6) for
which TDMA is indeed suboptimal.

V. CONCLUSION

In the hypothetical ultrawideband regime where bandwidth
is not a commodity to be conserved, minimum energy per bit is
achieved by avoiding interference altogether by assigning users
to nonoverlapping frequency bands. Not surprisingly, we have
seen that the same result can be obtained using TDMA for mul-
tiaccess, broadcast and interference channels. References [10],
[7] analyze the broadcast channel in the wideband regime and
based on a first order analysis, such as (60), conclude that in
low-power wideband channels very little is to be gained from
the complexity incurred by superposition schemes. However,
we have shown in this paper that this conclusion is unwarranted
as long as bandwidth is not a free commodity. In that case, the
minimum energy per bit is not the only figure of merit of in-
terest; indeed, one needs to assess the growth of the achievable
rates as the energy per bit grows from its minimum value. For
multiuser channels, we have seen that, revealing differences in
efficiency that are transparent to other figures of merit, the slope
region is a convenient analysis tool in the low-power regime.

Interestingly, the information-theoretic suboptimality of
TDMA is more pronounced in the near-far scenario where users
have imbalanced signal-to-noise ratios. In that case, superposi-
tion and a stripping receiver can achieve essentially single-user
capacity for both users simultaneously in marked contrast to
TDMA. In terms of the Cover-Wyner pentagon, consider the
case where user 1 (in the�-axis) is much more powerful than
user 2; then as far as the rate achieved by user 2 is concerned
it is much more preferable to operate at the upper vertex of the
pentagon than at the TDMA-achieved maximum rate-sum rate
pair.

Only when the received energies per bit are required to be
not only close to��
��dB but identical for all users, is TDMA
as good as superposition in the multiaccess channel, but then
only in the absence of fading. With fading, the TDMA slope
region is strictly inside the optimum region. Other results on
the suboptimality of TDMA for fading multiaccess channels in
the presence of delay constraints are given in [11].

To translate the conclusions of this paper into practical
lessons that apply to real-world embodiments of TDMA and
CDMA, it should be emphasized that the advantages of super-
position strategies over orthogonal strategies we have shown
may not hold unless the receiver uses multiuser detection to
take into account inter-user interference.

For the broadcast channel without fading, our analysis was
based on the well-known capacity of the degraded Gaussian
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channel. If the receivers see identical signal to noise ratios, then
TDMA is trivially capacity-achieving for all signal-to-noise ra-
tios. Otherwise, TDMA incurs a bandwidth expansion whose
severity increases with the power imbalance. In the presence
of fading, although the capacity region is unknown we were
able to obtain the minimum energy per bit and optimum slope
region. In particular we showed that the TDMA bandwidth ex-
pansion penalty does not depend on the fading distribution if
the users are subject to the same fading distribution.

For the interference channel, the TDMA slope region is the
same triangular region as in the multiaccess channel. In the case
of large interference, the optimum single-user slopes are simul-
taneously achievable. In the imbalanced case where one of the
interference coefficients is larger than 1 and the other is smaller
than 1, we can also identify optimum slope pairs that lie strictly
outside the TDMA triangle regardless of the desired rate ratio.
In the case of small interference, neglecting the interference at
both receivers results in slope pairs outside the TDMA triangle.
However, depending on the fading kurtosis, a small region of
interference parameters remains for which we do not know of
any strategy that beats TDMA in the low-power regime. Inter-
estingly, in the important case of independent Rayleigh fading,
TDMA is suboptimal regardless of the strength of the interfer-
ence coefficients.

Finally, we note that for the degraded Gaussian relay channel
[12], it is easy to show that TDMA does not achieve��

�����
[13].

On the contrary, finding��
�����

for more general networks with
relays appears to be a challenging problem.
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