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Abstract

We optimize the random-like ensemble of Irregular Repeat Accumulate (IRA)
codes for binary-input symmetric channels in the large blocklength limit. Our opti-
mization technique is based on approximating the Evolution of the Densities (DE)
of the messages exchanged by the Belief-Propagation (BP) message-passing decoder
by a one-dimensional dynamical system. In this way, the code ensemble optimiza-
tion can be solved by linear programming. We propose four such DE approxima-
tion methods, and compare the performance of the obtained code ensembles over
the binary symmetric channel (BSC) and the binary-antipodal input additive white
Gaussian channel (BIAWGNC). Our results clearly identify the best among the pro-
posed methods and show that the codes obtained by these methods are competitive
with respect to the best-known irregular Low-Density Parity-Check codes (LDPC)
codes, although both their design and their encoding/decoding are simpler.

1 Introduction

Since the discovery of Turbo codes [1], there have been several notable inventions in the
field of random-like codes. In particular, the re-discovery of the LDPC codes, originally
proposed in [2], the introduction of irregular LDPCs [3] and the introduction of the
Repeat-Accumulate (RA) codes [4].
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In [3] irregular LDPCs were shown to asymptotically achieve the capacity of the binary
erasure channel (BEC) under iterative message-passing decoding. Although the BEC is
the only channel for which such a result currently exists, irregular LDPC codes have
been designed for other binary-input channels (e.g., the BSC, the BIAWGNC [5], and the
binary-input ISI channel [6, 7, 8]) and have shown to achieve very good performance.

First attempts to optimize irregular LDPC codes ([3] for the BEC and other channels
[9]) used the DE technique that computes the expected performance for a random-like code
ensemble in the limit of infinite code blocklength. In order to reduce the computational
burden of ensemble optimization based on the DE, faster techniques have been proposed,
based on the approximation of the DE by a one-dimensional dynamical system (recursion).
These techniques are exact only for the BEC (for which DE is one-dimensional). The
most popular techniques proposed so far are based on the Gaussian approximation (GA)
of messages exchanged in the message passing decoder. GA in addition to the symmetry
condition of message densities implies that the Gaussian density of messages is expressed
by a single parameter. Techniques differ in the parameter to be tracked and in the
mapping functions defining the dynamic system [10, 11, 12, 13, 14, 15, 16].

The introduction of irregular LDPCs motivated other schemes such as Irregular RA
(IRA) [17], for which similar results exist (achievability of the BEC capacity) and Irregular
Turbo codes [18]. TRA codes are in fact special subclasses of both irregular LDPCs and
irregular Turbo codes. In IRA codes, a fraction f; of information bits is repeated i times,
for i = 2,3,.... The distribution {f; > 0,i = 2,3,... : >, fi = 1} is referred to as
the repetition profile, and it is kept as a degree of freedom in the optimization of the IRA
ensemble. After the repetition stage, the resulting sequence is interleaved and input to a
recursive finite-state machine which outputs one bit for every a input symbols, where a
is referred to as grouping factor and is also a design parameter.

IRA codes are an appealing choice because the encoder is extremely simple, their
performance is quite competitive with that of Turbo codes and LDPCs, and they can
be decoded with the lowest complexity of any iterative decoding scheme for random-like
codes.

The only other work that has proposed a method to design IRA codes is [17, 19]
where the design focuses on the choice of the grouping factor and the repetition profile.
The recursive finite-state machine is the simplest one which gives full freedom to choose
any rational number between 0 and 1 as the coding rate. We will also restrict our study
to IRAs that use the same simple recursion of [17], although it might be expected that
better codes can be obtained by including the finite-state machine as a degree of freedom

in the overall ensemble optimization. The method used in [17] to choose the repetition



profile was based on the infinite-blocklength GA of message passing decoding proposed
in [12]. In this work, we propose and compare four low-complexity ensemble optimization
methods. Our approach to design IRAs is based on several tools that have been noticed
recently: the EXtrinsic mutual Information Transfer (EXIT) function and its analytical
properties [10, 20, 21], reciprocal channel (duality) approximation [22, 20], and the non-
strict convexity of mutual information.

The rest of the paper is organized as follows. Section 2 presents the systematic IRA
encoder and its related decoder: the BP message-passing algorithm. Existing results
on the analysis of the decoder (i.e. DE technique) are summarized and applied to the
IRA code-ensemble. This leads to a two-dimensional dynamical system whose state is
defined on the space of symmetric distributions, for which we derive a local stability
condition. In Section 3 we propose a general framework in order to approximate the DE
(defined on the space of distributions) by a standard dynamical system defined on the
reals. We propose four low-complexity ensemble optimization methods as special cases of
our general framework. These methods differ by the way the message densities and the

BP transformations are approximated:
1. GA, with reciprocal channel (duality) approximation;
2. BEC approximation, with reciprocal channel approximation;
3. GA, with EXIT function of the inner decoder;
4. BEC approximation, with EXIT function of the inner decoder.

All four methods lead to optimization problems solvable by linear programming. In Sec-
tion 4 we show that the first proposed method yields a one-dimensional DE approximation
with the same stability condition as the exact DE, whereas the exact stability condition
must be added to the ensemble optimization as an explicit additional constraint for the
second method. Then, we show that, in general, the GA methods are optimistic, in
the sense that there is no guarantee that the optimized rate is below capacity. On the
contrary, we show that for the BEC approximation methods rates below capacity are
guaranteed. In Section 5 we compare our code optimization methods by evaluating their
iterative decoding threshold (evaluated by the exact DE) over the BIAWGNC and the
BSC.



2 Encoding, decoding and density evolution

Fig. 1 shows the block-diagram of a systematic IRA encoder. A block of information
bits b = (b1, ...,b;) € F5 is encoded by an (irregular) repetition code of rate k/n. Each
bit b; is repeated r; times, where (rq,...,r;) is a sequence of integers such that 2 <
r; < d and Z?Zl r; = n (d is the maximum repetition factor). The block of repeated
symbols is interleaved, and the resulting block x; = (x1,,...,%1,) € F} is encoded by an

accumulator, defined by the recursion

a—1
Tojr1 = T +Z¢T1,a]‘+i, j=0,....m-—1 (1)
i=0
with initial condition x5 = 0, where xo = (23,1, ..., Z2m) € FJ is the accumulator output

block corresponding to the input x;, ¢ > 1 is a given integer (referred to as grouping
factor), and we assume that m = n/a is an integer. Finally, the codeword corresponding
to the information block b is given by x = (b, x5).

The transmission channel is memoryless, binary-input and symmetric-output, i.e., its

transition probability py |y (y|z) satisfies

PY\X(Z/|0) = pY|X(_y|1) (2)

where y — —y indicates a reflection of the output alphabet. !

channel U
Repetition a1
b code 1 x Taj+1 = Ta5 + Disg Thajti X2 channel Up
— |
outer code inner code

Figure 1: IRA encoder.

IRA codes are best represented by their Tanner graph [23] (see Fig. 2). In general,
the Tanner graph of a linear code is a bipartite graph whose node set is partitioned
into two subsets: the bitnodes, corresponding to the coded symbols, and the checknodes,

corresponding to the parity-check equations that codewords must satisfy. The graph has

ITf the output alphabet is the real line, then —y coincides with ordinary reflection with respect to the

origin. Generalizations to other alphabets are immediate.



an edge between bitnode o and checknode f if the symbol corresponding to a participates
in the parity-check equation corresponding to /.

Since the IRA encoder is systematic (see Fig. 1), it is useful to further classify the
bitnodes into two subclasses: the information bitnodes, corresponding to information bits,
and the parity bitnodes, corresponding to the symbols output by the accumulator. Those
information bits that are repeated i times are represented by bitnodes with degree i, as
they participate in ¢ parity-check equations. Each checknode is connected to a information
bit nodes and to two parity bitnodes and represents one of the equations (for a particular
7) (1). The connections between checknodes and information bitnodes are determined
by the interleaver and are highly randomized. On the contrary, the connections between
checknodes and parity bitnodes are arranged in a regular zig-zag pattern since, according
to (1), every pair of consecutive parity bits are involved in one parity-check equation.

A random IRA code ensemble with parameters ({\;}, a) and (information) blocklength
k is formed by all graphs of the form of Fig. 2 with k£ information bitnodes, grouping
factor @ and A\;n edges connected to information bitnodes of degree i, for i = 2,...,d.
The sequence of non-negative coefficients {\;} such that Zfzg A; = 1 is referred to as the
degree distribution of the ensemble. The probability distribution over the code ensemble
is induced by the uniform probability over all interleavers (permutations) of n elements.

The information bitnodes average degree is given by d = 1/(32%, \i/i). The number of
edges connecting information bitnodes to checknodes is n = k/(zgi:2 Ai/1). The number

of parity bitnodes is m = k/(a Y0, \i/i). Finally, the code rate is given by

R — ko GZ?:Q)‘i/i
kE+m 1+CLZ?:2)\Z/Z

(3)

1 T9 r3 Th_1 Tk information bitnodes

checknodes

parity bitnodes

Figure 2: Tanner graph of an IRA code.



2.1 Belief propagation decoding of IRA codes

In this work we consider BP message-passing decoding [24, 25, 26]. In message-passing
decoding algorithms, the graph nodes receive messages from their neighbors, compute
new messages and forward them to their neighbors. The algorithm is defined by the code
Tanner graph, by the set on which messages take on values, by the node computation
rules and by the node activation scheduling.

In BP-decoding messages take on values in the extended real line RU {—o00, 00}. The
BP decoder is initialized by setting all messages output by the checknodes equal to zero.

Each bitnode « is associated with the channel observation message (log-likelihood ratio)

pY\X(yaLTa =0)
pY\X(ya|xa =1)

(4)

U, = log

where y, is the channel output corresponding to the transmission of the code symbol z,.

The BP node computation rules are given as follows. For a given node we identify an
adjacent edge as outgoing and all other adjacent edges as incoming. Consider a bitnode
a of degree i and let mq,..., m; 1 denote the messages received from the 7 — 1 incoming
edges and u, the associated channel observation message. The message m, , passed along

the outgoing edge is given by
Mo =M1+ -+ +Mi1 + Uq (5)

Consider a checknode [ of degree ¢ and let my,..., m;_; denote the messages received
from the ¢ — 1 incoming edges. The message m, g passed along the outgoing edge is given
by

Mo =71 (Y(m1) + -+ y(mi-1)), (6)

where the mapping 7 : R — Fy X R, is defined by [9]

y(2) = (sign(z), — log tanh %) (7)

and where the sign function is defined as [9]

if 2 >0
with prob. 1/2if 2 =0
with prob. 1/2if z =0
itz <0

sign(z) =

_— - O O

Since the code Tanner graph has cycles, different schedulings yield in general non-equivalent

BP algorithms. In this work we shall consider the following “classical” schedulings:



e LDPC-like scheduling [17]. In this case, all bitnodes and all checknodes are acti-
vated alternately and in parallel. Every time a node is activated, it sends outgoing
messages to all its neighbors. A decoding iteration (or “round” [29]) consists of the

activation of all bitnodes and all checknodes.

e Turbo-like scheduling. Following [27], a good decoding scheduling consists of isolat-
ing large trellis-like subgraphs (or, more generally, normal realizations in Forney’s
terminology) and applying locally the forward-backward BCJR algorithm [28] (that
implements efficiently the BP algorithm on normal cycle-free graphs), as done for
Turbo codes [1]. A decoding iteration consists of activating all the information
bitnodes in parallel (according to (5)) and of running the BCJR algorithm over the
entire accumulator trellis. In particular, the checknodes do not send messages to

the information bitnodes until the BCJR iteration is completed.

Notice that for both of the above schedulings one decoder iteration corresponds to the

activation of all information bitnodes in the graph exactly once.

2.2 Density evolution and stability

The BER performance of BP decoding averaged over the IRA code ensemble can be
analyzed, for any finite number ¢ of iterations and in the limit of £ — oo, by the DE
technique [9].

For a given bitnode « and iteration ¢, the message sent over an outgoing edge (say edge
e) is a random variable that depends on the transmitted codeword, the channel noise and
the interleaver (uniformly distributed over the set of permutations of n elements). The DE
method finds the distribution of this random variable averaged over the channel noise and
the interleaver, assuming that the blocklength goes to infinity. Under such assumption,
the probability that an oriented neighborhood of depth 27 of the edge e contains cycles
vanishes. Therefore, DE can be computed under the cycle-free condition, implying that
the input messages at any node in the BP algorithm are statistically independent. For
binary-input symmetric-output channels, the average message distributions do not depend
on the transmitted codeword [29], so the transmission of the all-zero codeword can be
assumed.

The usefulness of the DE method stems from the Concentration Theorem [29, 3] which
guarantees that, with high probability, the BER after ¢ iterations of the BP decoder
applied to a randomly selected code in the ensemble and to a randomly generated channel
noise sequence is close to the BER computed by DE with high probability, for sufficiently
large blocklength.



Next, we formulate the DE for IRA codes and we study the stability condition of the
fixed-point corresponding to zero BER. As in [9, section III-B], we introduce the space of
distributions whose elements are non-negative non-decreasing right-continuous functions
with range in [0, 1] and domain the extended real line.

It can be shown that, for a binary-input symmetric-output channel, the distributions

of messages at any iteration of the DE satisfy the symmetry condition

/h(x)dF(x) = /emh(—x)dF(x) (8)
for any function h for which the integral exists. If F' has density f, (8) is equivalent to
f(z) =€ f(-) (9)

With some abuse of terminology, distributions satisfying (8) are said to be symmetric.
The space of symmetric distributions will be denoted by Fgym.
The BER operator Pe : Fg — [0,1/2] is defined by
Pe(F) = 5 (F~(0) + F(0)
where F'~(z) is the left-continuous version of F'(z). We introduce the “delta at zero” dis-
tribution, denoted by Ay, for which Pe(Ag) = 1/2, and the “delta at infinity” distribution,
denoted by A, for which Pe(A) = 0.

The symmetry property (8) implies that a sequence of symmetric distributions { F(9}°
converges to A, if and only if limy_, Pe(F(E)) = 0, where convergence of distributions is
in the sense given in [9, Sect. III-F].

The DE for IRA code ensembles is given by the following proposition whose derivation
is omitted as it is completely analogous to the derivation of DE in [9] for irregular LDPC

codes.

Proposition 1. Let P, [resp., ﬁg] denote the average distribution of messages passed
from an information bitnode [resp., parity bitnode] to a checknode, at iteration ¢. Let
Qy [resp., @g] denote the average distribution of messages passed from a checknode to an
information bitnode [resp., parity bitnode], at iteration ¢.

Under the cycle-free condition, P, ﬁg, Qv é[ satisfy the following recursion:

P = F,®MQ)
ﬁl = F® @é
Q= T (D(P )™ @T(P ) )

Q = T (NP @T(P1)™)

10
11

(10)
(11)
(12)
(13)

13



for £ =1,2,..., with initial condition Py = P, = Ay, where F), denotes the distribution of

the channel observation messages (4), ® denotes convolution of distributions, defined by

(F®G)(z) = / F(= — )dG () (14)
@m denotes m-fold convolution, A(F) =S¢ A, F®0-D T(F,) is the distribution of y =
v(x) (defined on Fy x Ry), when z ~ F,, and "' denotes the inverse mapping of T, i.e.,
I Y(@G,) is the distribution of z = v (y) when y ~ G, O
The DE recursion (10 — 13) is a two-dimensional non-linear dynamical system with
state-space FZ,, (i.e., the state trajectories of (10 — 13) are sequences of pairs of symmetric
distributions (P, P;)). For this system, the BER at iteration ¢ is given by Pe(P;).
It is easy to see that (A, Ay) is a fixed-point of (10 — 13). The local stability of this

fixed-point is given by the following result:

Theorem 1. The fixed-point (A, Ay) for the DE is locally stable if and only if

e'(e" —1)

Ag <
?Ta+l4e(a—1)

(15)
where r = —log( [ e */2dF,(2)).

Proof. See Appendix A.1. O
Here necessity and sufficiency are used in the sense of [9]. By following steps analogous
to [9], it can be shown that if (15) holds, then there exists & > 0 such that if for some
{ € N, Pe(RP)(Py, Py) + (1 — R)Py(Py, Py)) < € then Pe(RP, + (1 — R)P,) converges to
zero as ¢ tends to infinity. On the contrary, if ), is strictly larger than the RHS of (15),
then there exists & > 0 such that for all ¢ € N Pe(RPy(Py, By) + (1 — R)Py(Py, By)) > €.

3 IRA ensemble optimization

In this section we tackle the problem of optimizing the TRA code ensemble parameters
for a broad class of binary-input symmetric-output channels.

A property of DE given in Proposition 1 is that Pe(P;) for £ = 1,2,... is a non-
increasing non-negative sequence. Hence, the limit lim, ., Pe(P;) exists. Consider a
family of channels €(v) = {py,x : v € Ry}, where the channel parameter v is, for
example, an indicator of the noise level in the channel. Following [29], we say that C(v)
is monotone with respect to the IRA code ensemble ({)\;},a) under BP-decoding if, for
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any finite ¢, v < V' & Pe(P;) < Pe(P)), where P, and P, are the message distributions at
iteration ¢ of DE applied to channels p”Y‘ + and p;" +» respectively.

Let BER(v) = limy, Pe(FP), where {F} is the trajectory of DE applied to the
channel py. . The threshold v* of the ensemble ({A;},a) over the monotone family €(v)

is the worst-case channel parameter for which the limiting BER is zero, i.e.,
v* =sup{r >0 : BER(v) =0} (16)

Thus, for every value of v, the optimal IRA ensemble parameters a and {);} maximize R

subject to vanishing BER(v) = 0, i.e., are solution of the optimization problem

maximize a3 %, \;/i
subject to L, Ai=1, A\ >0V (17)
and to BER(v) =0

the solution of which can be found by some numerical techniques, as in [9]. However, the
constraint BER(v) = 0 is given directly in terms of the fixed-point of the DE recursion,
and makes optimization computationally very intensive.

A variety of methods have been developed in order to simplify the code ensemble
optimization [17, 22, 12, 30]. They consist of replacing the DE with a dynamical system
defined over the reals (rather than over the space of distributions), whose trajectories
and fixed-points are related in some way to the trajectories and fixed-point of the DE.
Essentially, all proposed approximated DE methods can be formalized as follows. Let
®: Fym = Rand ¥ : R — Fym be mappings of the set of symmetric distributions to
the real numbers and viceversa. Then, a dynamical system with state-space R? can be
derived from (10 — 13) as

v = ®(F,X(Q)) (18)
7 o= @ (Fu ® 6@) (19)
Q = I (T (2E-)™ O T ((re)*" ) (20)
Q = T (T(U(F)) ®T (W(w1))™") (21)
for £ =1,2,..., with initial condition zo = Ty = ®(A), and where (x4, T;) are the system

state variables.
By eliminating the intermediate distributions Q, and Q,, we can put (18 — 21) in the

form

Ty = ?(Ie—l, To_1) (22)

Ty = P(xp_1,20-1)
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For all DE approximations considered in this work, the mappings ® and ¥ and the

functions ¢ and 5 satisfy the following desirable properties:
1. ®(Ap) =0, P(Ay) = 1.
2. U(0) = Ay, U(1) = Awe.
3. ¢ and ¢ are defined on [0,1] x [0, 1] and have range in [0, 1].

4. ¢(0,0) > 0 and ¢(0,0) > 0.

5. ¢(1,1) = ¢(1,1) =1, i.e., (1,1) is a fixed-point of the recursion (22). Moreover, this
fixed-point corresponds to the zero-BER fixed-point (A, Ay) of the exact DE.

6. The function ¢(z,7) is monotonically increasing in Z for all = € [0,1], ¢(z,0) > 0
and g(x, 1) < 1. Therefore, the equation

T =¢(x,7)
has a unique solution in [0,1] for all = € [0,1]. This solution will be denoted by

It follows that all fixed points of (22) must satisfy

z = ¢(z,7(x)) (23)

and that in order to avoid fixed-points other than (1,1), (23) must not have solutions in

the interval [0,1), i.e., it must satisfy
v < o, F(@), ¥ 1e0,1) (24)

Notice that, in general, (24) is neither a necessary nor a sufficient condition for the
uniqueness of the zero-BER fixed-point of the exact DE. However, if the quality of the
DE approximation is good, this provides a heuristic for the code ensemble optimization.

By replacing the constraint BER(r) = 0 by (24) in (17), we obtain the approzimated

IRA ensemble optimization method as

maximize a3, \;/i
subject to Z?:z Ai=1, >0V (25)
and to = < ¢(z,z(x)), Vzel0,1)

Approximations of the DE recursion differ essentially in the choice of ® and ¥, and in
the way the intermediate distributions Q; and Q, and the channel message distribution
F,, are approximated. Next, we illustrate the approximation methods considered in this

work.
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3.1 EXIT functions

Several recent works show that DE can be accurately described in terms of the evolution
of the mutual information between the variables associated with the bitnodes and their
messages (see [10, 31, 11, 32, 21, 33, 16]).

The key idea in order to approximate DE by mutual information evolution is to de-
scribe each computation node in BP-decoding by a mutual information transfer function.
For historical reasons, this function is usually referred to as the EXtrinsic mutual Infor-
mation Transfer (EXIT) function.

EXIT functions are generally defined as follows. Consider the model of Fig. 3, where
the box represents a generalized computation node of the BP algorithm (i.e., it might
contain a subgraph formed by several nodes and edges, and might depend on some other
random variables such as channel observations, not shown in Fig. 3). Let my,...,m;_;
denote the input messages, assumed i.i.d. ~ Fj,, and let m, ~ Fg,; denote the output
message. Let X; denote the binary code symbol associated with message m;, for j =
1,...,2—1, and let X denote the binary code symbol associated with message m,. Since
Fin, Fout € Fgym, we can think of m; and m, as the outputs of binary-input symmetric-

output channels with inputs X; and X and transition probabilities

Plm; < 21X =0) = Ful2) (26)
P(m, <z|X =0) = F,u(2), (27)

respectively.

Channel (26) models the a prioriinformation that the node receives about the symbols
X;’s, and the channel (27) models the estrinsic information [1] that the node generates
about the symbol X.

We define the binary-input symmetric-output capacity functional J : Fgypy — [0, 1],
such that

JF)=1- /oo log, (1+e7%) dF(2) (28)

o0

Namely, J maps any symmetric distribution F into the capacity 2 of the binary-input
symmetric-output channel with transition probability py x(y|0) = F(y).
Then, we let
Iy = I(Xj;my) = I(F)
Ig = I(X;m,) =I3(Fou)

2Recall that the capacity of a binary-input symmetric-output memoryless channel is achieved by

uniform i.i.d. inputs.
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denote the capacities of the channels (26) and (27), respectively. The EXIT function of
the node of Fig. 3 is the set of pairs (14, Ig), for all I, € [0,1] and for some (arbitrary)
choice of the input distribution Fj, such that J(F},) = I4. Notice that the EXIT function
of a node is not uniquely defined, since it depends on the choice of F},. In general, different

choices yield different transfer functions.

Mo

Figure 3: EXIT model.

The approximations of the DE considered in this work are based on EXIT functions,
and track the evolution of the mutual information between the messages output by the

bitnodes and the associated code symbols.

Remark: Two properties of binary-input symmetric-output channels. Before
concluding this section, we take a brief detour in order to point out two properties
of binary-input symmetric-output channels. Consider a binary-input symmetric-output
channel with py|x(y|0) = G(y), where G is not necessarily symmetric (in the sense of

(8)). Tts capacity can be written as

C=1- /_OO log, (1 - %{3) dG/(z) (29)

oo

py|x (y[0)
pyx (y[1)
obtain a new binary-input symmetric-output channel with pj; y(u|0) = F(u) such that

By concatenating the transformation y — u = log to the channel output, we
F € JFgym. Moreover, since U is a sufficient statistics for Y, the original channel has the
same capacity as the new channel, given by C = J(F'). Therefore, by defining appropri-
ately the channel output, the capacity of any binary-input symmetric-output channel can
always be put in the form (28).

Another interesting property is the following:

Proposition 2. The mutual information functional is not strictly convex on the set of

binary-input symmetric-output channels with transition probability py x(y[0) € Fsym.
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Proof. See Appendix A.2. O

3.2 Method 1

The first approximation of the DE considered in this work assumes that the distributions
at any iteration are Gaussian. A Gaussian distribution satisfies the symmetry condition
(9) if and only if its variance is equal to twice the absolute value of its mean. We
introduce the short-hand notation Ngym (1) to denote the symmetric Gaussian distribution
(or density, depending on the context) with mean s, i.e., Ngym (1) 2 N(p, 2|ul).

For a distribution F' € Fyyp,, we let the mapping ® be equal to J defined in (28), and
for all x € [0, 1] we define the mapping

Uz Nogm(J () (30)
where
A 1 [re o
J(1) = INgym(p)) =1 — ﬁ/_ e log, (14 e 2V 1) dz, (31)

Namely, ¥ maps x € [0, 1] into the symmetric Gaussian distribution Ngym(zt) such that
the BIAWGNC with transition probability py|x (y|0) = Nsym(x) has capacity x.
The first key approximation in Method 1 is

Qé ~ Nsym (/l’é)

Q ~ Nyml(fie) (32)

Q

for some i, 1y > 0.

In order to compute u, and g, we make use of the reciprocal channel approximation
[22] also called approzimate duality property of EXIT functions in [20]. This states that
the EXIT function of a checknode is accurately approximated by the EXIT function of a
bitnode with the same degree after the change of variables [y +— 1 — 14 and Ig — 1 — Ig
(see Fig. 4). Using approximate duality, we replace the checknode by a bitnode and

Iy Ig 1—14 1—1Ig
+ . /Q

[A 1_IA

original equivalent flow

Figure 4: Reciprocal channel approximation.
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change (2 1,7, 1) into (1 —xy 1,1 =2, 1). Since for a bitnode the output message is the
sum of the input messages (see (5)), and since the input distributions ¥(1 — x, ;) and

U(1 —Z4_1)) are Gaussian, also the output distribution is Gaussian, with mean
(a—1)J 1 —2pq) +2J 11— Tpy)
for messages sent to information bitnodes and
al "1 =z )+ (1 =T y)
for messages sent to parity bitnodes. Finally, u, and i, are given by

pe = J (1 =T ((a=1)J" (1= mer) + 277 (1 = Zn)))
e = JH(1=J(a (1 —ze0)+ T (1= 20))) (33)

The second key approximation in Method 1 is to replace F, with a discrete (symmetric)
distribution such that

D
Fu~ ) piA, (34)
7=1

for some integer D > 2, v; € R and p; € R, such that Z]D:lpj = 1.
With this assumption, from the definition (28) of the operator J and since [9]: a) the
convolution of symmetric distributions is symmetric, and b) the convex combination of

symmetric distributions is symmetric, it is immediate to write (18) and (19) as

d D

Ty = 1— Z Z )\Zp] \/_/ log2 1 +e —24/ (iil)ﬂlzf(ifl)l%*”j) dz

i=2 j=1
D

~ 1 o0 2 S 2 —Tir—vs

T, = 1-— E pj—/ e~ % log, (1+e‘2 “‘z_’”_”f) dz (35)
j:l \/7_T — 00

The desired DE approximation in the form (22) is obtained (implicitly) by combining (33)
and (35). Notice that (35) is linear in the repetition profile and the optimization problem
(25) can be solved as linear programming.

Example 1: discrete-output channels. In general, when the channel output is dis-
crete then the approximation (34) holds exactly. For example, for the BSC with transition
probability p we have

F, =pA_

log == p + (1 p)Alogl;fp
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Example 2: The BIAWGNC defined by y = (—1)* + 2, where 2z ~ N(0,0?), is a
channel such that
P = Nogm(2/0%) (36)

In this case, since convolving symmetric Gaussian distributions yields a symmetric Gaus-
sian distribution whose mean is the sum of the means, the discretization approximation

(34) is not necessary and we have

Fu@MQ) = Y AiNgym(2/0” + (i — L))

=2

F,®Q = Now(2/0” + fir) (37)

By applying the operator J and using (31) we obtain the DE approximation for the
BIAWGNC as

re = Y NJ (% +—-1)J 1= ((a— 1T (1 = mem) + 2771 - @_1)))>
T, = J % +J =T (a1 —zey)+ T (1 - @g))) (38)

¢

3.3 Method 2

The second approximation of the DE considered in this work assumes that the distri-
butions of messages at any iteration consist of two mass points, one at zero and the
other at +o0o. For such distributions, we introduce the short-hand notation Egyp(€) 2
eAg+ (1 —€)An.

We let the mapping ® be equal to J defined in (28) and the mapping ¥ be
Uz Eym(l — ) (39)

for all z € [0,1].
With these mappings, (20 — 21) can be put in the form

Q= Eqym(l — 277,77 )

- 40
Qr = Eym(l —2f_,70 ) (40)

where we used the fact that, as it can be easily seen from the definitions of I' and I'"! in
(46 — 48),
D™ (D (Exym(€1)) ® T(Eqym(€2)) = Egyn(L — (1 — 1) (1 — €2))
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Notice that, while in Method 1 we assumed Q, and (NQg to be symmetric Gaussian (see
(32)), here (40) holds exactly.

As a consequence of these mappings, the communication channel of the parity bits,
with distribution F,, is replaced by a BEC with erasure probability e = 1 — J(Fy,).

Furthermore, for any F' € Fgn we have
J(F ® Esym(€)) =1 = (1 =I(F))e
. From this result, it is immediate to obtain the approximated DE recursion as

v =1- (1= 3(F) SN (-5 32,)"

To =1—(1=9(F,)) (1 —2¢_,T¢1) (41)

Notice that (41) is the standard (exact) DE for the IRA ensemble ({);},a) over a BEC
(see [17]) with the same capacity of the actual binary-input symmetric-output channel,
given by J(F,). We point out here that this method, consisting of replacing the actual
channel with a BEC with equal capacity and optimizing the code ensemble for the BEC,
was proposed in [22] for the optimization of LDPC ensembles. Interestingly, this method
follows as a special case of our general approach for DE approximation, for a particular
choice of the mappings ® and V.

In this case, the fixed-point equation corresponding to (23) is obtained in closed form

as
d

st D ()

=2

(for the details, see [17]).

3.4 Methods 3 and 4

Methods 1 and 2 yield (almost) closed-form DE approximations at the price of some
approximations of the message distributions and, above all, of the checknodes output
distributions Q, and 6@.

In much of the current literature on randomlike code ensemble optimization, the EXIT
function of a decoding block is obtained by Monte Carlo simulation, by generating i.i.d.
input messages, estimating the distribution of the output messages and computing a one-
dimensional quantity [10, 11, 12, 13, 14, 15, 16]. Following this approach, we shall consider
the IRA decoder with turbo-like scheduling (see Fig. 5) and obtain the EXIT functions

of the inner and outer decoders.
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Figure 5: Turbo-like IRA decoder.

The inner (accumulator) and outer (repetition) decoders are characterized by an EXIT
function as defined in Section 3.1, for some guess of the (symmetric) distribution Fj,. In

general, the EXIT function of the decoders can be obtained as follows:
1. Let the channel observation messages be i.i.d., ~ Fj,.
2. Assume the decoder input messages are i.i.d., ~ Fj,.

3. Obtain either in closed form or by Monte Carlo simulation the corresponding marginal

distribution Fy,; of the decoder output messages.
4. Let Iy = I(Fy), I = I(F,u) be a point on the EXIT function curve.

Our Methods 3 and 4 consist of applying the above approach under the assumptions
Fin = Ngym(J 1(14)) and Fy, = Egym(1 — I4), respectively.

Let the resulting EXIT functions of the inner and outer decoders be denoted by Ip =
g(I14) and by Ig = h(14), respectively, and let x denote the mutual information between
the messages at the output of the outer decoder (repetition code) and the corresponding
symbols (information bitnodes).

The resulting approximated DE is given by

ze = h(g(ze-1)) (43)

The corresponding fixed-point equation is given by x = h(g(x)), and the condition for
the uniqueness of the fixed-point at © = 1, corresponding to (24), is x < h(g(x)) for all
x € [0,1). The resulting IRA optimization methods are obtained by using this condition
in (25).

While for the inner decoder (accumulator) we are forced to resort to Monte Carlo

simulation, it is interesting to notice that, due to the simplicity of the repetition code,
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for both Methods 3 and 4 the EXIT function of the outer decoder (Ig = h(I4)) can be
obtained in closed form.

For Method 3, by discretizing the channel observation distribution as in (34), we have

d D
1 > —z2 — i—1)J—1 z—(i—1)J~1! —v;
h([A):1_ZZAipjﬁ/_ooe log, (1 + ¢ 2V/E DT 00T 000 ) - (44)

i=2 j=1

For Method 4 we have
d

h(Ia)=1—(1=3(F)) Al — L) (45)

4 Properties of the approximated DE

In this section we show some properties of the approximated DE derived in Section 3.

4.1 Stability condition.

Consider the DE approximation of Method 1. As said in Section 3.2, (z,Z) = (1,1) is a
fixed-point of the system (33-35). We have the following result:

Theorem 2. The fixed-point at (1,1) of the system (33 — 35) is stable if and only if the
fixed-point (A, Ay) of the exact DE (10 — 13) is stable.

Proof. See Appendix A.3. O

For other DE approximations, stability does not generally imply stability of the cor-
responding exact DE. Consider the DE approximation of Method 2. (1,1) is a fixed point
of the system (41). We have the following result:

Proposition 3. The local stability condition of the approximated DE with Method 2
is less stringent than that of the exact DE.

Proof. See Appendix A.4 O

If an approximated DE has a less stringent stability condition, then the exact stability
condition must be added to the ensemble optimization as an explicit additional constraint.
It should be noticed that the DE approximations used in [22, 12, 17] require the additional
stability constraint. For example, the codes presented in [17] for the BIAWGNC and for
which Ay > 0 are not stable. Therefore, the BER for an arbitrary large number of

iterations is not vanishing.
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4.2 Fixed-points, coding rate and channel capacity.

An interesting property of optimization Methods 2 and 4 is that the optimized ensemble
for a given channel with channel observation distribution F, and capacity C' = J(F,)
has coding rate not larger than C. In fact, as a corollary of a general result of [21] (see
Appendix A.5), we have that

Theorem 3. The DE approximations of Methods 2 and 4 have unique fixed-point (1, 1)
only if the IRA ensemble coding rate R satisfies R < C' = J(F,).

Proof. See Appendix A.5 0]

We show in Section 5.1 through some examples that this property does not hold
in general for other code ensemble optimization methods, for which the ensemble rate
R might result to be larger than the (nominal) capacity J(F,). This means that the
threshold v*, evaluated by exact DE, is worse than the channel parameter v used for the

ensemble design.

5 Numerical results

5.1 Design example for rate 1/2 codes

In this subsection we present the result of optimization for codes of rate 1/2 and give
examples for the BSC with cross-over probability p and the BIAWGNC with

A ES 1
SNR = N, 32

In Fig. 6 the curve is the fixed-point equation used for the optimization in method 1 i.e.
the function ¢(x,x(z)). The fixed-point equation curves for the other three methods are
very similar.

In Fig. 6 the curve (solid line) shows ¢(z,z(z)) as a function of z € [0, 1] for method
1. The solutions of the fixed-point equation (23) correspond to the intersection of this
curve with the main diagonal (dotted line). Tables 1 and 2 give the degree sequences,
the grouping factors and the information bitnode average degrees for the four methods,
for codes of rate 1/2 over the BIAWGNC and the BSC, respectively. We compute the
true iterative decoding thresholds (by using the exact DE) for all the ensembles (denoted
by SNR(DE) or p (DE) in the Tables) and report also the gap of these thresholds with
respect to the Shannon limit (denoted by SNRyq,(DE) or p (pgep(DE) in the Tables).
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Figure 6: Mutual information EXIT functions for BIAWGNC and Method 1.

Then, we compare it to the threshold of the approximated DE (SNR,,,(approx.) and
Pgap(approx.)). We observe that the codes designed by using methods 2 or 4 have rate
below capacity, which is consistent with Theorem 3. On the contrary the codes designed
by using methods 1 or 3 have rate possibly larger than the capacity corresponding to the
channel parameter used for design. It can easily be checked that all the designed codes

are stable.

5.2 Thresholds of IRA ensembles

In this section we present results for codes designed according to the four methods, for
rates from 0.1 to 0.9, and we compare the methods on the basis of the true thresholds
obtained by DE. We present the code rate, the grouping factor, the average repetition
factor and the gap to Shannon limit, for both BSC and BIAWGNC.

Tables 3 and 4 show the performance of IRA codes on the BIAWGNC. Tables 5 and
6 show the performance of IRA codes on the BSC.

For all rates, and for both channels, IRA codes designed assuming GA (Methods 1
and 3) perform much better than those designed assuming BEC a priori (Methods 2 and
4). Nevertheless, Method 4 yields better codes than Method 2, especially at low rates.

This is due to the fact that, in Method 2, the communication channel is replaced with a
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Method 1 Method 2 Method 3 Method 4
i A i A i A i A
2 | 0.04227 | 2 | 0.05554 | 2 | 0.05266 | 2 | 0.05554
3 |0.16242 | 3 | 0.16330 | 3 | 0.11786 | 3 | 0.14480
7 1006529 | 8 | 0.06133 | 5 | 0.05906 | 7 | 0.18991
8 | 0.06489 | 9 | 0.19357 | 6 | 0.06517 | 8 | 0.00996
9 | 0.06207 | 25 | 0.14460 | 8 | 0.03615 | 19 | 0.03721
10 | 0.01273 | 26 | 0.08842 | 9 | 0.11288 | 20 | 0.25894
11 | 0.13072 | 100 | 0.29323 | 13 | 0.06068 | 100 | 0.30366
14 | 0.04027 14 | 0.04650
25 | 0.00013 22 | 0.08606
26 | 0.05410 23 | 0.01610
36 | 0.13031 34 | 0.11019
37 | 0.13071 35 | 0.11919
100 | 0.10402 100 | 0.11751
Rate 0.50183 0.49697 0.50154 0.49465
a 8 8 8 8
d 7.94153 8.09755 7.95087 8.17305
SNR/(DE) -2.739 -2.457 -2.727 -2.588
SNR 4, (DE) 0.059 0.406 0.075 0.306
SNRg,p (approx.) -0.025 0.040 -0.021 0.071

Table 1: Optimization for the BIAWGNC

BEC with the same capacity, while this is not the case in Method 4. This difference of
performance decreases as the rate increases.

Fig. 7 compares the performance of IRA ensembles with the best known LDPC en-
sembles [5] on the BIAWGNC. As expected, the performance of IRA ensembles is inferior
to that of LDPC ensembles. However, in view of the simplicity of their encoding and
decoding, IRA codes, optimized using Methods 1 or 3, emerge as a very attractive design
alternative.

Fig. 8 compares the performance of IRA ensembles obtained via the proposed methods
for the BSC. The best codes are those designed with Method 3.

6 Conclusions

This paper has tackled the optimization of IRA codes in the limit for large code block-
length. This assumption allows to consider a cycle-free graph and enables to evaluate the

threshold of the code by iteratively calculating message densities (DE). For the sake of
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Method 1 Method 2 Method 3 Method 4

i A i A i A i A

2 10.03545 | 2 | 0.04732 | 2 | 0.03115| 2 | 0.04657
3 1014375 | 3 | 0.17984 | 3 | 0.14991 | 3 | 0.14932
6 |0.03057 | 9 | 0.19715| 6 | 0.04630 | 7 | 0.07693
7 | 0.10963 | 10 | 0.06259 | 7 | 0.06217 | 8 | 0.16249
9 |0.10654 | 26 | 0.16429 | 8 | 0.08666 | 20 | 0.07001

10 | 0.02388 | 27 | 0.05676 | 10 | 0.12644 | 21 | 0.20550
11 | 0.04856 | 100 | 0.29205 | 17 | 0.03430 | 100 | 0.28919

12 | 0.00461 18 | 0.01506

21 | 0.03035 26 | 0.00228

28 | 0.22576 27 | 0.02258

29 | 0.09453 28 | 0.21774

100 | 0.14635 29 | 0.08021

100 | 0.12521
Rate 0.48908 0.49620 0.49226 0.49091

a 8 8 8 8

d 8.35724 8.12253 8.25157 8.20627
p(DE) 0.1091 0.0938 0.1091 0.1009
Pgap(DE) 0.0046 0.0175 0.0035 0.0122
Pgap(approx.) 0.0037 0.0013 0.0026 0.0018

Table 2: Optimization for the BSC

tractable analysis, we proposed four methods to approximate those densities as a one-
dimensional parameter. These approximations were motivated by recent results in the
field of code design (EXIT functions, reciprocal channel approximation, and the non-
strict convexity of mutual information) and have led to four optimization methods that
can all be solved as a linear program.

We found a general stability condition for IRA codes under exact DE. We showed for-
mally that one of the proposed methods (Gaussian approximation, with reciprocal channel
approximation) yields a one-dimensional DE approximation with the same stability con-
dition, whereas the exact stability condition must be added to the ensemble optimization
as an explicit additional constraint for another method (BEC a priori, with reciprocal
channel approximation). We derived also results related to the rates of the codes: in gen-
eral the Gaussian a priori methods are optimistic, in the sense that there is no guarantee
that the optimized rate is below capacity. On the contrary, the BEC a priori methods
have always rates below capacity.

Our numerical results show that, for the BIAWGNC and BSC, the Gaussian a priori
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Method 1 | Method 3
Rate a d SNRgap Rate a d SNRgap
0.10109 | 2 | 17.78 0.151 0.10133 | 2 | 17.74 0.163
0.20191 | 3 | 11.86 0.096 0.20199 | 3 | 11.85 0.126
0.30153 | 4 9.27 0.081 0.30175 | 4 9.26 0.111
0.40196 | 6 8.93 0.057 0.40401 | 6 8.85 0.067
0.50184 | 8 7.94 0.059 0.50154 | 8 7.95 0.075

0.60188 | 11 | 7.28 0.065 0.60147 | 11 | 7.29 0.065
0.70154 | 16 | 6.81 0.067 0.70093 | 16 | 6.83 0.068
0.79904 | 29 | 7.29 0.066 0.79912 | 29 | 7.29 0.062
0.89677 | 61 | 7.02 0.088 0.89712 | 61 | 7.00 0.083

Table 3: TRA codes, designed with Methods 1 and 3, for BIAWGNC

‘ Method 2 H Method 4 ‘

Rate d | SNRgp || Rate d | SNRgap
0.09407 19.26 | 0.906 || 0.09752 18.51 | 0.316
0.19842 12.12 | 0.573 || 0.19725 12.21 | 0.293

a a
2 2
3 3

0.29767 | 4 | 9.44 0.529 0.29671 | 4 | 9.48 0.336
6 6
8 8

0.39703 9.11 0.466 0.39445 9.21 0.343
0.49697 8.10 0.406 0.49465 8.17 0.306
0.59689 | 11 | 7.43 0.362 0.59577 | 11 | 7.46 0.338
0.69580 | 16 | 7.00 0.323 0.69584 | 16 | 6.99 0.296
0.79737 | 26 | 6.61 0.272 0.79678 | 26 | 6.63 0.271
0.89827 | 56 | 6.34 0.212 0.89826 | 56 | 6.34 0.214

Table 4: IRA codes, designed with Methods 2 and 4, for BIAWGNC

approximation is more attractive since the codes designed under this assumption have
the smallest gap to Shannon limit. Depending on the desired rate, the EXIT function
of the inner decoder has to be computed either with Monte-Carlo simulation (Method
3) or with the reciprocal channel approximation (Method 1). At least in the BIAWGNC
there is some evidence that the best LDPC codes [5] slightly outperform our designed
codes. However, the performance-complexity tradeoff of the optimized IRA codes is quite

impressive.

APPENDIX
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Method 1 | Method 3
Rate a d Dgap Rate a d Dgap
0.10042 | 2 | 17.92 | 0.0032 || 0.10137 | 2 | 17.73 | 0.0036
0.19910 | 3 | 12.07 | 0.0037 || 0.20086 | 3 | 11.94 | 0.0041
0.29573 | 4 | 9.53 | 0.0044 || 0.29897 | 4 | 9.38 | 0.0031
0.39298 | 6 | 9.27 | 0.0044 || 0.39621 | 6 | 9.14 | 0.0032
0.48908 | 8 | 8.36 | 0.0046 || 0.49226 | 8 | 8.25 | 0.0035
0.58590 | 12 | 8.48 | 0.0044 || 0.58815 | 12 | 8.40 | 0.0040
0.68271 | 17 | 7.90 | 0.0044 || 0.68409 | 16 | 7.39 | 0.0039
0.78155 | 28 | 7.83 | 0.0038 || 0.78235 | 28 | 7.79 | 0.0035
0.88437 | 59 | 7.71 | 0.0026 || 0.88457 | 63 | 8.22 | 0.0025

Table 5: IRA codes, designed with Methods 1 and 3, for BSC.

‘ Method 2 H Method 4 ‘
Rate a d Dgap Rate a d Dgap
0.09406 | 2 | 19.26 | 0.0194 || 0.09952 | 2 | 18.10 | 0.0121
0.19833 | 3 | 12.13 | 0.0175 || 0.19842 | 3 | 12.12 | 0.0101
0.29743 | 4 | 9.45 | 0.0190 || 0.28836 | 4 | 9.87 | 0.0114
0.39650 | 6 | 9.13 | 0.0187 || 0.38865 | 6 | 9.44 | 0.0149
0.49620 | 8 | 8.12 | 0.0175 || 0.49091 | 8 | 8.30 | 0.0122
0.59580 | 11 | 7.46 | 0.0155 || 0.59349 | 11 | 7.53 | 0.0124
0.69559 | 16 | 7.00 | 0.0126 || 0.69107 | 16 | 7.15 | 0.0116
0.79583 | 26 | 6.67 | 0.0091 || 0.79283 | 26 | 6.79 | 0.0090
0.89692 | 57 | 6.55 | 0.0049 || 0.89337 | 57 | 6.80 | 0.0051

Table 6: IRA codes, designed with Methods 2 and 4, for BSC.

A Proofs

A.1 Proof of Theorem 1

We follow in the footsteps of [9] and analyze the local stability of the zero-BER fixed-point

by using a small perturbation approach. In order to do this, we need more details on the

mapping [ and its inverse.

Given a random variable x with distribution F,(z), the distribution of v(z) is given

by:

L(F2) (s, 2) = Xs=0yTo(F2) (2) + xs=1y 1 (F2) ()

where

To(F,)(2) =1 — F(— Intanh g),

(46)
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Figure 7: Gap to Shannon limit vs. rate for BIAWGNC.

I\ (F,)(z) = F,(Intanh g),

and where x4 denotes the indicator function of the event A.

In particular, the mapping I' applied to Ay and A, yields

MA(5:2) = 35X Be(2) + 3X(om A (2)
M(Ax)(5:2) = Yoo o(2). 1)

Given G(s, 2) = X{s=01Go(2) + Xx{s=13G1(2), applying I'"! yields

z —z
I~1G)(2) = X{z>0}(1 = Go(— log tanh 5)) + X{z<03G1(— log tanh 7) (48)

For the sake of brevity, we introduce the short-hand notation

G(s,2) = X{s=0yGo(2) + Xs=13G1(2) = x0Go + x1G1

The m-fold convolution of G(s, z) by itself is given by

(x0Go(2)+x1G1 ()™ = X0 ( >, (W& e G;@f) +x1 ( > (M e G?ﬂ')
j even,j=0 j odd,j=1
(49)
In order to study the local stability of the fixed-point (A, Ay ), we initialize the DE
recursion at the point
P[] = (1 - QG)AOO + QGAO
Py = (1—20)An +20A,
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for some small €, > 0, and we apply one iteration of the DE recursion (10 — 13). The
step-by-step derivation is as follows. From (47) we have

{ T(P) = xo((1—26)A¢+eAs) + x1 (€As)
T(Py) = xo((1=28)Ag+06Ax) 4 x1 (6A)

By applying (49) we obtain

{ D(P)®™ = xo0((1—2n€)Ag +neAy) + x1 (neAs) + O(€?)
T(P)®2 = xo((1—46)A¢ +26A) + x1 (20A4) + O(82)

By applying I'"! we get
Q =T (F(PO)®(a—1) ® P(ﬁo)m)
Q=1"" (T(P)** & T(Fy))

Hence, by noticing that

n

(1—2(a—1)e —40)As + (2(a — 1)e + 40)Ag + O(€2,6?)
(1 — 2a€e — 26) Ao + (2a€ + 28) Ay + O(€2, 6%)

QP = ()1 20— 1e =49 (2(a— Ve + 1P AT @ A + O(e, 8)

J=0

{ Ay + O(€2,6%), for n > 2

(1—2(a—1)e —40)As + (2(a — 1)e + 46)Ag + O(€%,6?), forn =1

we have

)\(Ql) = (]_ — 2(a — 1))\26 — 4)\25)Aoo + (2(@ - 1))\26 + 4)\25)A0 + 0(62, 52)
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Finally, by using the fact that P, = F, ® A(Q;) and that ﬁl =F® @1, the message
distributions after one DE iteration are given by

2
5 _ 2¢ Pt 1 A 2¢ At O(€e%)
P, 20 1 20 0(62)
where
a 1
After ¢ iterations we obtain
P, o | 2e€ 1 2¢ (€?)
Ll=A F®t 4 — A’ Ag + 51
Pl e (1] -2 ool e

From the large deviation theory we get that [9]

1
r = — lim - log Pe(F%)

£—00

= —log (igg / e“dFu(z)>
= —log (/ ez/2dFu(z)> (52)

where the last equality follows from the fact that F,(z) € Feym.
Then, by applying Pe(-) to P in (51) we obtain that lim, . Pe(P;) = 0 (implying
that limy_,., P = A) if the eigenvalues of the matrix Ae™" are inside the unit circle.
The stability condition is obtained by computing explicitly the largest (in magnitude)

eigenvalue. We obtain

%<1+)\2(a—1)+\/1+(2+66L))\2+(@— 1)”%) <e. (53)

Since the LHS of (53) is increasing, condition (53) is indeed an upperbound on Ay, given
explicitly by (15).

A.2 Proof of Proposition 2

Let S be a discrete random variable taking on the values {1,...,m} with probabilities

Q- Gm- Let {F1,..., F,} be a collection of symmetric distributions, and let

F(y) = Z 0 F(y)
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Then, define the collection of binary-input symmetric-output channels {pyxs : s =
1,...,m} such that

pyix,s(yl0,s = 1) = Fi(y)

and where S and X are independent. Let X ~ (p,1 — p). For simplicity, we assume that
the distributions {F;} have densities {f;}.
The assertion of Proposition 2 is proved by showing that I(X;Y) = I(X;Y|S):

. _ o f(y)
106Y) = p [logy o B )y
f(=y)
- 00 [ lon

= p/log2p+(1 ip)eyf(y)dyﬂl—p)/logz e _p)f(y)dy
= [ (o e 00 0w ) S
] i"/ (1ot s 1) f o0 ) S
) iq (v 105 s oy

(1= p) [log, SV ﬁ(—y)dy)

pfi(y) + (1 = p)fi(-y)
= I(X;Y]S) (54)

A.3 Proof of Theorem 2

The local stability condition for the system ((33) and (35)) is given by the eigenvalues of
the Jacobian matrix for the functions (¢, @) in the fixed point (x,%) = (1,1). The partial

derivatives of ¢ and ¢ are



where

Note that Jo(p) = J(u).
for .J', (1) and J'(p).
The derivative of J,,

Iy, () =

30

- » 01— 1)(a — im M
_ ;;Azm( Dia—1) lim i (55)
1t P D)
; jz:;)\z’pj(l ~1)2 lim_ S (56)
> nlim T -
- ijaugﬁo J;:j(/gl;) (58)
29 % /*OO o7 log (1 + 672\/;7%#7@]-) I (59)

Since both limits tend to 0, we derive an asymptotic expansion

is given by
log(e) 1 +o00 o ef(z+\/ﬁ)2
NG N (z + e T = dz

Since F;, is symmetric, the sum over j can be rewritten as:

D D'
D 00 (1) = poT o (1) + > oy (T (1) + €Ty (1))
j=1 7=1

Let us define

=

fo (1) = logl(e)
_ L +o00
VT )

v 1
11 o2V | 1 o2ty

) d2(60)
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Following [34], (60) can be rewritten as

1 (™1 VEY -(=+4) e Y 1
ij (IU’) - —/_oo ﬁ <Z+ T) e 1 _+_672\/;_LZ7’U]‘ + 1 _'_672\/}_124“1}]‘ dZ

™
1 Z  __w_ Y ( 1 1 >
- —e 4" 72 > — + o Iy dz
\/7_1' —00 \//_L @\/ﬁz'i'T] + e_\/ﬁz_T] @\/HZ_TJ + e_\/ﬁz‘i'Tj
1

Tl v 1 1
4+ — —e ¥ TIT3 o o o3 s dz
\/7_1' — 00 2 e\/ﬁz‘i'il + @_\/ﬁz_il e\/ﬁz__él + @_\/ﬁz'i'_él
i e, 1 1
= e o T o | dz
YAVZ I ch(y/pz +5)  ch(y/nz — )
Y + _(2*%)2 _(2+%)2

e e L Hte n g (61)

N T . ch(z) ‘
The first equality in (61) is obtained by the change of variable 2’ = z 4 /i/2. The
third equality is due to the fact that the first and second integrands in the second line of

(61) are odd and even functions of z, respectively. Then we use the changes of variable
7= /pz+ % and 2 = \Juz — 3.

Lebesgue’s dominated convergence theorem completes the proof. Since the sequence
of measurable functions verifies:

22

VzeR ¢t !
“ch(z) T ch(z)

and since these functions are bounded by an integrable function independent of yu:

22

e & 1
Vu>0,Vz € R < L*(R).
p> 0¥z e R, ch(z) | ~ ch(z) €L®)

Thus Lebesgue’s dominated convergence theorem applies and

/+°° ¢’ g /+°° L 12 = 2arctan(e?)] " =
oo Ch(2) ? ch(z) ° T EATAIE oo = T

o0 — 00

Therefore for large p

\/7_r e*% *%
f’Uj(/‘L) ~ T - =

7;('5

Similarly we get

=5
St

fo(p) ~
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And thus, forn > 1

S, (np) 2e=F if n=1
lim =
p—+oo  fo(p) 0 if n>1
and
. fo(np) 1 if n=1
lim =
p—+oo  fo(p) 0 if n>1

The partial derivatives of ¢ and ¢ are

¢ u y
5 (1) = Adela—1)(po+ ]Zl 2pje2)
D y
= Xla—1)) pe >
j=1
= M(a—1)e ™ (62)
where 7 is defined in (52). Similarly,
0¢ _
—(1,1) = X2e™"
G = da (63)
¢ I
8_%(1’ 1) = ae (64)
0¢ B
A1) = e
P = e (65)

We get the Jacobian matrix as:

5 [ (a—1)N(0) 2X(0) ]

a 1

In order to be stable the eigenvalues of J should be inside the unit circle. Therefore

the stability condition reduces to:

1
- (1 +N(0)(a—1) + \/1 +2X(0) + 6X(0)a + N (0)*(a — 1)2> <e’.  (66)
2

Notice from (53) and (66) that the stability conditions under DE and approximated
DE are the same.
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A.4 Proof of proposition 3

The Jacobian matrix of the approximated DE (41) about the fixed point [z,z] = [1, 1],

for a given input channel distribution Fj, is

(a—1)N(0) 2X(0)
a 1

J = (1 =3(F,)) = A1 = I(F,))

where A was already defined in (50). The stability of the exact DE is given by the
eigenvalues of Ae™" (where 7 is defined in (52)) while it is given by those of A(1 —J(F},))
for the approximated DE. From the inequality

Vze R log, (1 +e7?) < e™%/2,

we obtain for all distribution £,

/ log,(1 + e=*)dF, () < / =2 dF, (2).

Under the assumption that F;, is symmetric and from the definition of J(F') given in (28),

we get
VF, € Foym 1-I(F,) <e™

and the conclusion follows.

A.5 Proof of Theorem 3

Theorem 3 follows as a corollary of a result of [21] that we state here for the sake of
completeness as Lemma 2 below. In order to introduce this result, we consider the model of
Fig. 9, where b, x; and x are binary sequences and where Channel 1 is the communication
channel with output y and Channel 2 is a BEC channel with output z. Let the decoder
be a MAP symbol-by-symbol decoder, producing for all =1, ..., n, output messages of

the form
P(z1; = 0]y, zq)

P(x1; =1y, zp)

My = IOg (67)

’

where z;) 2 (21, -+ Zi1,Zit1,- - -, 2n). Following [21], we generalize the definition of I
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Encoder 1 Channel 1

Decoder ———

Encoder 2 Channel 2

X1 z

Figure 9: General decoding model.

and I given in Section (3.1) to the case of sequences as
o= Y e
= - L1,i5 Zi
A P 1,

1 n
Ip = - ; I(z1,:5m0,)

[

1 n
- > Iy, 2) (68)
=1

where (a) follows from the fact that the decoder is MAP. Again, the decoder EXIT function
is the set of points (14, Ig) for all I, € [0,1].
For the setup of Fig. 9 with the above assumptions, the following result applies:

Lemma 2 [21] Let b be uniformly distributed and i.i.d.. If Encoder 2 is linear with
generator matrix having no all-zero columns, then the area under the EXIT characteristic
satisfies

Al /0 In(z)dz = 1 — %H(xﬂy) (69)

O

We start by proving Theorem 3 for the approximated DE of Method 4. Consider the
IRA encoder of Fig. 1 and the turbo-like decoder of Fig. 5.

The inner MAP decoder receives channel observations u, for the parity bits and input
messages for the symbols of x;, and produces output messages for the symbols of x;. The
general decoding model of Fig. 9, applied to the inner decoder, yields the model of Fig. 10
(a).

The outer MAP decoder receives channel observations u, for the information bits and
input messages for the symbols of x;, and produces output messages for the symbols of
x1. The general decoding model of Fig. 9, applied to the outer decoder, yields the model
of Fig. 10 (b).



35

b -
X1 Inner | *2 Up .
channel Identity ——={ channel

encoder (1)
Inner | Ext(xq) Ext(xq

Outer

decoder decoder

. Outer | X1
Identity BEC ——= BEC
encoder

(a) (b)

Figure 10: Model of inner and outer decoders Method 4

The upper channel is the communication channel with capacity J(F,). Since we con-
sider approximation Method 4, we let lower channel to be a BEC in both Figs. 10 (a)
and (b). Let k, n and m denote the number of information bits (length of b and of uy),
the number of repeated information bits (length of x;) and the number of parity bits
(length of x5 and of u,), respectively. The inner and outer coding rates are R, = n/m
and Roy; = k/n, and the overall IRA coding rate (3) is given by

k Rin Rout

R pug =
k +m 1+ RinRout

By applying Lemma 2 to the inner code model (Fig. 10 (a)), we obtain

1
-Ain = 1- EH(X1|HP)

1

= 1— E(H(xl) — I(x1;14,))

a 1

= ﬁ[(xl; u,)

m
2 E](ﬁzz'; Up,z’) = j(Fu)/Rin (70)

where (a) follows from the fact that, by the model assumption, x; is an i.i.d. uniformly
distributed binary sequence, and (b) follows from the fact that the accumulator (inner
code) generates x, with uniform probability (and uniform marginals) if driven by the i.i.d.
uniform input sequence x;.

By applying Lemma 2 to the outer code model ((Fig. 10 (b)), we obtain

1
Aout = 1——H(X1|115)
n

= 1= l(H(Xl) — I(XISU-S))

n
. k1
= 1——+—I(X1§us)
n n
) kook
= 1 - E + El(bz, Us,i) =1- Rout + Routj(Fu) (71)
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where both (a) and (b) follow from the fact that the repetition code is an invertible
mapping, so the entropy H(x;) is equal to the entropy of the information sequence b
(equal to k bits) and I(xy;uy) = I(b;u,) = kI(bi;us;) = kI(Fy).

As seen in Section 3.4, the approximated DE has no fixed-points other than (1,1) if
and only if g(x) > h™'(z) for all € [0,1), where g(x) and h(x) denote the inner and
outer decoder EXIT functions. This implies that

1 1
Ain = / g(x)dx > / hHz)dr =1 — Aow
0 0
By using (70) and (71), we obtain

j(Fu)/Rm > Rout - Routj(Fu)

U
RinRout
IFy) > —————=R 72
( ) 1 + Rinerout ( )
For Method 2, the above derivation still holds, since the communication channel in
Fig.9 is replaced by a BEC with erasure probablity e = 1 — J(F). In fact, the inner and

outer decoder EXIT functions can be rewritten as

hz) = 1—(1—9(F,)) Z)\ (1—x)"
l‘aflj(Fu)227
(1= (1 —I(Fu))z)?

and the area under these functions are again

Ay = /1 Ba)dz =1 — (1= 3(F)) S Afi = 1= Ry + RouI(F)

=2

1
Ao = [ glwde =3(F)/a=IE)/ B,
0
Therefore, the final result (72) holds also for Method 2.
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