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Abstract

We propose a low complexity multiuser joint Parallel Interference Cancellation (PIC)

decoder and Turbo Decision Feedback Equalizer for CDMA. In our scheme, an estimate

of the interference signal (both MAI and ISI) is formed by weighting the hard decisions

produced by conventional (i.e., hard-output) Viterbi decoders. The estimated interference

is subtracted from the received signal in order to improve decoding in the next iteration.

By using asymptotic performance analysis of random-spreading CDMA, we optimize the

feedback weights at each iteration. Then, we consider two (mutually related) performance

limitation factors: the bias of residual interference and theping-pongeffect. We show that

the performance of the proposed algorithm can be improved by compensating for the bias

in the weight calculation, and we propose a modification of the basic PIC algorithm, which

prevents the ping-pong effect and allows higher channel load and/or faster convergence to
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Motorola, Swisscom, Texas Instruments, Thales, ST Microelectronics and Bouygues Telecom
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the single-user performance. The proposed algorithm is validated through computer simu-

lation in an environment fully compliant with the specifications of the time-division duplex

mode of 3rd generation systems, contemplating a combination of TDMA and CDMA and

including frequency-selective fading channels, user asynchronism, and power control. The

main conclusion of this work is that, for such application, Soft-Input Soft-Output (SISO)

decoders (e.g., implemented by the forward-backward BCJR algorithm) are not needed to

attain very high spectral efficiency, and simple conventional Viterbi decoding suffices for

most practical settings.

Keywords: Turbo Multiuser Detection, Turbo Equalization, CDMA.

1 Introduction and motivation

The recently proposed Universal Mobile Telecommunication Systems (UMTS) standard for

the 3rd generation (3G) of mobile communication systems adopts Wideband Code Division

Multiple Access (WCDMA) for the Frequency Division Duplex (FDD) mode and a combination

of TDMA and CDMA (TD-CDMA) for the Time Division Duplex (TDD) mode [1].

In both FDD and TDD modes, the UMTS basic receiver scheme contemplates the use of con-

ventional Single-User Matched Filtering (SUMF). Since Multiple-Access Interference (MAI) is

treated as additional background noise1, powerful and high-complexity channel coding such as

256-states convolutional codes and turbo codes [3] are envisaged in order to attain low Bit Error

Rates (BER) at low decoder input signal-to-interference plus noise ratio (SINR). In any case,

channel loads larger than 1 user/chip are practically very difficult if not impossible to attain by

the SUMF front-end and single-user decoding [4].

On the other hand, Information Theory shows that much larger channel loads can be achieved

provided that anon-linearmultiuser joint detector and decoder is employed [4, 5]. This may

range from the impractically complex optimal joint decoder to practically appealing successive

interference cancellation approaches [6, 7].

In practice, successive interference cancellation must cope with decision errors, which prevent

perfect cancellation of already decoded users. Then, severaliterativeschemes have been pro-

1Notice that the only difference between the SUMF and the linear MMSE filter is that the latter treats MAI as

colored noise while the former treats it as white noise [2].
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posed, which limit the deleterious effect of decision errors by feeding back soft-estimates of the

detected symbols (see for example [8, 9, 10]). These schemes require Soft-Input Soft-Output

(SISO) decoders, usually implemented by the forward-backward BCJR algorithm [11]. How-

ever, such SISO decoders represent a non-negligible factor in the complexity of whole receiver.

In real CDMA applications for either TDD and FDD modes, the maximum achievable chan-

nel load is often limited by synchronization and channel estimation issues, rather than by the

ultimate capability of the decoder itself [1]. Hence, it makes sense to investigate simpler joint

detection and decoding schemes, which outperforms the conventional linear SUMF, MMSE and

decorrelator, and non-linear Parallel Interference Cancellation (PIC) or Serial Interference Can-

cellation (SIC) receivers [12], and nevertheless yield performance similar to the SISO-based

schemes at lower decoding complexity.

Driven by this consideration, this paper proposes a low complexity iterative multiuser receiver,

where SISO decoders are replaced by simpler standard (i.e. hard-output) Viterbi decoders. The

Viterbi hard decisions are weighted and fed back to the interference cancellation stage. By

using large-system analysis of random CDMA [13] we optimize the feedback weights at each

iteration such that the SINR at the decoders input of the next iteration is maximized.

We address the problem of bias of residual interference [14, 15] and of theping-pongef-

fect [12, 16] and we show that the performance of the proposed algorithm can be improved

by compensating for the bias in the weight calculation and by modifying the basic PIC algo-

rithm in order to prevent the ping-pong effect. These modifications allow higher channel load

and/or faster convergence to the single-user performance at almost no additional computational

cost.

We validate the proposed receiver algorithm in UMTS-TDD realistic scenarios, including asyn-

chronous transmission, frequency selective fading channels and power control. In this regime,

the proposed receiver performs very close to the single user (i.e., MAI-free) Matched Filter

Bound (i.e., ISI-free) performance, even for large channel load.

The remainder of this paper is organized as follows: Section 2 gives a description of the system

model. Section 3 describes the large system asymptotic analysis. Based on the latter, the feed-

back optimal weights are derived in Section 4 for synchronous and flat channels, taking into

account the bias on the residual interference and ping-pong effect for large channel load. Sec-

tion 5 deals with asynchronous transmission and frequency selective fading channels. Finally
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in Section 6, conclusions are pointed out.

2 System model

We consider the uplink of a DS-CDMA system whereU users sendencodedinformation to a

common receiver. The baseband transmission chain for theuth user is depicted in Figure 1(a).

Source bits are channel-encoded and organized in codewords of lengthN bits. The codewords

are then interleaved and modulated with transmitted energy per symbolEu. For simplicity we

assume that all users make use of convolutional coding and BPSK modulation. Letau[n] be the

nth symbol generated by theuth user, is in the setf�1;+1g, andau = [au[0]; au[1]; : : : ; au[N �

1]]T represent the code word of useru after interleaving. The symbols are then spread by

the spreading sequencesu = [su[0]; su[1]; : : : ; su[L � 1]]T. We assume all the users have the

same spreading factor (number of chips per symbol)L and unitary energy sequences, that is,

sH
usu = 1; 8u = 1; : : : ; U . If the chip pulse-shaping filter is (t) and is common to all the users,

then theuth baseband continuous-time transmitted signal is

xu(t) =
p
Eu

N�1X
n=0

L�1X
l=0

au[n]su[l] (t� lTc � nT ) (1)

whereTc is the chip period andT = LTc is the symbol period.

In this paper we focus on UMTS-TDD, where users are synchronous at the slot level but asyn-

chronous at the chip level. The channels are considered random but slowly varying and constant

over one slot. Moreover, for the sake of simplicity, we assume that the convolutional codewords

span a single slot.

Thus, theuth user signal is sent through the channelcu(t) with impulse response given by

cu(t) =
Pu�1X
p=0

cu;pÆ(t� �u;p) (2)

wherePu is the number of resolvable paths,�u;p is thepth path delay, andcu;p is thepth path

coefficient. The coefficientscu;p are assumed Gaussian complex circularly symmetric random

variables with distributionNC(0; �
2
u;p) where�2p = E[jcu;pj

2]. This model takes into account

also users’ asynchronous transmission, where the relative delays between users are included

into the channel path delays.
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The signal at the receiver is given by

y(t) =
UX
u=1

Z +1

�1

xu(�)cu(t� �) d� + n(t) (3)

=
UX
u=1

N�1X
n=0

au[n] gu(t� nT ) + n(t) (4)

wheren(t) is the Gaussian noise andgu(t) is defined by

gu(t) =
p
Eu

L�1X
l=0

Pu�1X
p=0

su[l] cu;p  (t� lTc � �u;p) (5)

and represents the overall channel impulse response for theuth user as depicted in Figure 1(b).

The signaly(t) is sampled by the receiver at rateW=Tc, an integer multiple of the chip-rate,

whereW is a suitable integer chosen in order to satisfy the Nyquist criterion.

The discrete time version ofgu(t), sampled at rateW=Tc, may have an infinite support but

most of its energy is concentrated in a finite interval. This interval depends on the channel

maximum delay spread, on the pulse-shaping filter (t), and on the spreading factorL. After

a suitable truncation we can represent the discrete-time channel impulse response as a vector

gu = [gu[0]; : : : ; gu[Ng � 1]]T, 8u = 1; : : : ; U whereNg is the maximum discrete-time channel

length of all user channels. Subject to these assumptions, the received discrete-time baseband

signal can be written as follows

y =
UX
u=1

Guau + � = Ga+ � (6)

where

� y = [y[0]; : : : ; y[(N � 1)LW +Ng]]
T is the vector of the received signal samples.

� G is a((N � 1)LW +Ng)� UN matrix given byG = [G1; : : : ;GU ] where the((N �

1)LW +Ng)�N matricesGu contain, in each column, a shift of the vectorgu as shown

in Figure 2.

� a = [aT
1 ; : : : ; a

T
U ]

T is the concatenation of theU user’s codewords.

� � = [�[0]; : : : ; �[(N � 1)LW +Ng]]
T contains the noise samples where the�[i]’s are

i.i.d. circularly symmetric complex Gaussian random variables with distribution� �

NC(0; N0I). (I denotes the identity matrix)
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For the sake of simplicity, the receiver front-end is constrained to be the conventional SUMF [2]

given by the matrixGH.2 The matched filter performs at the same time pulse-shape matched

filtering, channel matched filtering, and despreading. The output of the bank of SUMFs is given

by [2]

z = Re
�
GHy

	
= Re

�
GHGa+GH

�

	
= Ra+ v (7)

where

� z = [zT
1 ; : : : ; z

T
U ]

T andzu = [zu[0]; : : : ; zu[N � 1]]T for u = 1; : : : ; U is the concatenation

of theU matched filter outputs.

� R is theUN�UN cross-correlation matrix given byR = Re
�
GHG

	
where(�)H denotes

the Hermitian operator.

� the noise term,v = [vT
1 ; : : : ;v

T
U ]

T is given byv = Re
�
GH

�

	
and has distribution

v � N (0; N0

2
R). The vectorvu = Re

�
GH

u�
	
= [vu[0]; : : : ; vu[N � 1]]T represents the

additive colored noise contribution after theuth matched filtering.

In particular, the SUMF output for thenth symbol of theuth user is given by

zu[n] = z[uN + n] =
UN�1X
k=0

R[uN + n; k]a[k] + v[UN + n] (8)

The matrixR is Hermitian and containsU2 blocks of sizeN �N each. In the following,Ru;v

indicates the(u; v)th block given by

Ru;v = Re
�
GH

uGv

	
(9)

The[i; j] entry ofRu;v is given by

Ru;v[i; j] = R[uN + i; vN + j] =

NgX
k=0

Re fg�u[k]gv[k + (j � i)LW ]g (10)

From the structure ofGu, depicted in Figure 2, and from Equation (10) it is clear that the

matricesRu;v are banded with2D + 1 non-zero diagonals where

D =

�
Ng

LW

�
(11)

2Some works as for example [9] and [10] consider linear MMSE front-end.
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Notice that sinceRu;v[i; j] depends only on the difference(j � i), Ru;v is uniquely defined by

the vectorru;v = [ru;v[�D]; : : : ; ru;v[0]; : : : ; ru;v[+D]]T where

ru;v[j � i] = Ru;v[i; j]

Hence, using Equation (7) and the above considerations it is possible to rewrite Equation (8) as

zu[n] =
U�1X
v=0

N�1X
k=0

Ru;v[n; k]av[k] + vu[n]

=
U�1X
v=0

DX
d=�D

Ru;v[n; n + d]av[n+ d] + vu[n]

=
U�1X
v=0

DX
d=�D

ru;v[d]av[n+ d] + vu[n]

= jguj
2 au[n] +

DX
d=�D
d6=0

ru;u[d]au[n+ d]

| {z }
ISI

+
U�1X
v=0
v 6=u

DX
d=�D

ru;v[d]av[n + d]

| {z }
MAI

+vu[n] (12)

where the first term is the useful symbol, the second term denotes the Inter Symbol Interference

(ISI) the third term is the MAI and the last term is the colored noise.

The SUMF output feeds the proposed iterative multiuser detector-decoder depicted in Figure 3.

After SUMF, the signalz passes through an Interference Cancellation (IC) stage that uses the

estimateŝa(m)
u [n] of the symbolsau[n] to remove ISI and MAI (the superscript(m) denotesmth

iteration). The hard decisionŝa(m)
u [n] 2 f�1g are provided by a bank of Viterbi decoders,

whose outputs are weighted by a factors�
(m)
u 2 [0; 1]. Thus, the signal at the output of the IC

stage in themth iteration is given by

z(m)
u [n] = zu[n]�

0B@ DX
d=�D
d6=0

ru;u[d]�
(m)
u â(m)

u [n + d] +
U�1X
v=0
v 6=u

DX
d=�D

ru;v[d]�
(m)
v â(m)

v [n+ d]

1CA
= jguj

2 au[n] + �(m)
u [n] + vu[n] (13)

where

�(m)
u [n] =

DX
d=�D
d 6=0

ru;u[d]
�
au[n+ d]� �(m)

u â(m)
u [n+ d]

�

+
U�1X
v=0
v 6=u

DX
d=�D

ru;v[d]
�
av[n+ d]� �(m)

v â(m)
v [n + d]

� (14)
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is the residual MAI+ISI at iterationm, andvu[n] � N
�
0; N0jguj2

2

�
.

Equation (13) shows that the IC stage performs at the same time MAI suppression and also

non-causal Decision Feedback Equalization (DFE) by removing from thenth symbol the con-

tributions due to the past and future symbols of the same user.

At the first iteration, the initial estimated symbols are set to zero,â
(0)
u [n] = 0, u = 0; 1; : : : ; U�1

andn = 0; : : : ; N � 1 so thatz(0)u [n] = zu[n]. In the case of perfect symbol estimates and

�
(m)
u = 1, equation (13) reduces to

z(m)
u [n] = jguj

2 au[n] + vu[n] (15)

where the MAI and ISI are completely removed and the single-user Matched Filter Bound

(MFB) performance for useru is attained. For later use, we define the normalized received

instantaneous channel energy for useru as
u = jguj2

Eu
, such thatE[
u] = 1, and the single-user

MFB instantaneous SNR for useru as

SNRMFB
u =

2Eu
N0


u (16)

Intuitively, the weighting factors�(m)
u should depend on the reliability of the estimated symbols

â
(m)
u [n] and be equal to 1 or to 0 in the case of completely reliable or completely unreliable

symbol estimates, respectively. In the next Section we make this statement precise by studying

the performance of an idealized synchronous system in the large-system limit.

3 Large system asymptotic analysis

Rigorous asymptotic analysis of this iterative scheme in the large-system limit (i.e., forN;U; L!

1 with finite ratioU=L = � andU=N ! 0), for single-path channels and synchronous users

is proposed in [14]. This analysis is based on the general approach of density evolution over

graphs: a standard analysis tool for evaluating the asymptotic performance of message-passing

iterative decoders [17], and makes use of results from the theory of large random matrices devel-

oped in [13] for the analysis of linear receivers with randomly spread CDMA in the large-system

limit. In [14] it is also shown that this analysis holds only if the symbol estimatesâ(m)
u [n] are

functions of the decoderextrinsic information[18]. The decoder extrinsic information is defined

for a SISO decoder based on the sum-product algorithm [19], such as the BCJR algorithm, but

8
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it is not defined for a ML decoder such as the Viterbi algorithm. Hence, we shall optimize the

weights�(m)
u for afictitiousreceiver where the Viterbi decoders are replaced by BCJR decoders

and the hard decisionŝa(m)
u [n] are obtained by one-bit quantization of the extrinsic likelihood

ratios produced by the latter.

We hasten to say that the fictitious receiver is used in this paper as a reference but has no

practical relevance, for the obvious reason that if BCJR decoders are used, then much more

efficient soft-estimation of the interfering symbols as in [8, 9, 10] is possible. However, as

it will be clear from the rest of this section, the weight optimization based on the asymptotic

analysis of the fictitious receiver allows us to derive a very simple expression for the optimal

weights, independent of the user sequences and their mutual correlations, and a very simple

practical algorithm for calculating these weights.

We make the following assumptions:

� complex random spreading sequences formed by i.i.d. chips uniformly distributed over

the QPSK constellation;

� users are slot and chip synchronous;

� equal received expected energy per symbolE for each user;

� frequency-flat identically distributed propagation channels;

� we letN;U; L!1 with U=L = � (� denotes thechannel load);

� the empirical distribution of the user received normalized powers, defined by [13]

F (U)

 (z) =

1

U

UX
u=1

1f
u � zg (17)

converges weakly to a given non-random cumulative distribution functionF
(z), forU !

1.

With the above assumptions, for a useru randomly selected with uniform probability in the user

population, we have SNRMFB
u = 2E

N0

u where
u is a random variable distributed (in the limit of

largeU ) according toF
(z).

Under these conditions, the SINR at the decoders input in themth iteration for the fictitious

receiver can be written as follows [14]

SINR(m)
u = �(m)SNRMFB

u = �(m) 2E

N0

u (18)

9
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where

�(m) =
1

1 + � E
N0
�(m)

(19)

is the degradation factor payed by any user with respect to its single-user MFB performance,

and where

�(m) = E
h


��a� �(m)â(m)

��2i (20)

is the average variance of the residual interfering symbols. In (20),a denotes a coded symbol

of a generic user received at instantaneous power
, andâ(m) denotes the hard decision relative

to a at the decoder output. Expectation in (20) is with respect toa � uniform overf�1g, â(m)

distributed as the hard decision abouta at the decoder output, and
 � F
(z). We refer to�(m)

as the Multiuser Efficiency (ME) [2] at iterationm. Clearly, the single-user MFB performance

is achieved for all users iflimm!1 �(m) = 1.

We can optimize the weighting factor�(m) as a function of the channel energy
 in order to

minimize the expected interference variance�(m) at every iteration. Therefore, for each iteration

m we seek the solution of the simple optimization problem

min
�=�(
)

E
h��a� �â(m)

��2��� 
i (21)

By expanding the above conditional expectation, we get

1 + �2 � 2�E[aâ(m)j
]

1 + �2 � 2�
�
(+1)(1� �(m)(
)) + (�1)�(m)(
)

�
1 + �2 � 2�

�
1� 2�(m)(
)

�
(22)

where�(m)(
) is the Symbol Error Rate (SER) of a decoder with an input signal-to-noise ratio

SINR(m�1) = �(m�1) 2E
N0

. The solution of (21) is easily obtained as

�?(
) = 1� 2�(m)(
) (23)

Assuming that the residual interference plus noise at iterationm is Gaussian3 the SER is a

known functionf(�) of the decoder input SINR. We shall refer tof(�) as theSER characteristic

3In the large-system limit and under mild technical conditions this assumption is valid, as shown rigorously

in [20].

10
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of the user code (see Appendix A). Thus, for useru at iterationm the optimal weighting factor

is given by

�(m)
u = �?(
u) = 1� 2f

�
�(m�1)

2E

N0

u

�
(24)

The resulting minimized average interference variance is given by

�(m) = 4E

�

f

�
�(m�1)

2E

N0



��
1� f

�
�(m�1)

2E

N0



���
(25)

where expectation is with respect to
 � F
(z).

The behavior of the asymptotic system is described by the evolution of the ME and it can be

represented by the one-dimensional non-linear dynamical system�(m) = 	(�(m�1)) with initial

condition�(0) = 1
1+�E=N0

, and where mapping function	(�) is defined by

	(�) =
1

1 + 4� E
N0
E
h

f
�
� 2E
N0


� �

1� f
�
� 2E
N0


��i (26)

It can be easily checked that, sincef(�) has range[0; 1=2] and it is non-increasing, then	(�) has

range[�(0); 1] and it is non-decreasing. Therefore, the dynamical system defined by	(�) with

initial condition�(0) has at least one stable fixed point in the interval[�(0); 1], and the sequence

f�(m)g1m=0 is non-decreasing and upper bounded by 1. The limit�� = limm!1 �(m) � 1 exists

and is equal to the left-most stable fixed point of the system in the interval[�(0); 1].

As an example, Figure 4 shows the function	(�) for channel load� = 2, Eb=N0 = 5dB,

constant instantaneous received power (i.e.
u = 1 for all users), and the 4-states convolutional

code of rate1=2 and octal generatorsf5; 7g (denoted in the following by CC(5; 7)). For the

sake of comparison, we show also the evolution of the same system when the BCJR decoder

provides soft extrinsic estimates as proposed in [8]. The	(�) function in this case is derived

in [14]. The limit�� in this case is very close to 1, meaning that all users attain near-single-user

performance. Notice that soft feedback assures a faster decoder convergence to the single-user

performance.

When the channel load is increased, the	 curves are modified so that for a certain threshold

channel load�, the curve corresponding to weighted hard decisions is tangent to the diagonal,

as shown in Figure 5. This means that the system has reached its maximum load and is not able

to converge to near-single-user performance. On the contrary, the system using soft decisions

still converges to single user performance. This shows that SISO decoding and soft feedback

also provides a higher threshold channel load, i.e., a larger overall maximum achievable spectral

efficiency of the system.

11
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4 Implementation of the proposed receiver

4.1 The basic algorithm

The performance of the proposed receiver depends on the computation of the weighting factors

�(m)
u which do depend on a reliable SINR estimation. Driven by the asymptotic analysis of the

previous section, we propose to compute the weighting factor for theuth user at iterationm as

�(m)
u = 1� 2 f

�
ScINR(m�1)

u

�
(27)

wheref(�) is the (known) SER code characteristics, andScINR(m)
u is the estimated SINR at

theuth decoder input of themth iteration. In order to estimate the input SINR, we can use the

estimator proposed in [21], given by

ScINR(m)
u =

1

1
N

PN
n=0

���~z(m)
u [n]

���2 � 1
(28)

where~z(m)
u = z

(m)
u

jguj2
.

In [21] it is shown that

�(m)
u =

1

N

NX
n=0

��z(m)
u [n]

��2 � jguj2
is an unbiased estimator of the residual MAI plus ISI plus noise variance at the decoder input

if �(m)
u [n] is uncorrelated with the desired variableau[n]. Remarkably, in this case, the MSE of

this estimator is very close to that of the ML estimator assuming known useful symbols, given

by 1
N

PN
n=0

���z(m)
u [n]� jguj2au[n]

���2 (which is not applicable here, since the symbolsau[n] are

unknown).

When the symbol estimateŝa(m)
u [n] are provided by a decision statisticscontainingthe current

observation interval, such as in the Viterbi decoder, then the residual interference term given by

Equation (14) is conditionally biased givenau[n], that is,

E
�
�(m)
u [n]jau[n]

�
= Æ(m)

u au[n] (29)

where the bias coefficientÆ(m)
u is non-positive and depends on the system parameters and on the

user and iteration indexes as shown in [14, 15]. The bias is not negligible especially for high

channel load� even in the absence of ISI and reduces the energy of the useful signal at iteration

m by a factor
�
1 + Æ

(m)
u

jguj2

�2
.

12
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On the contrary, if the symbol estimatesâ(m)
u [n] are provided by estimatesnot containingthe

current observation interval, i.e., they are based on the decoderextrinsic information[14, 22],

then in the limit for large block length (i.e.,N ! 1) and random interleaving, the residual

interference is conditionally unbiased, i.e.,E
h
�
(m)
u [n]jau[n]

i
= 0.

We can rewrite the input of theuth decoder at iterationm given in Equation (13) as

z(m)
u [n] =

�
jguj

2 + Æ(m)
u

�
au[n] + e�(m)

u [n] + vu[n] (30)

wheree�(m)
u [n] is uncorrelated withau[n].

Hence, the true SINR in the presence of bias is given by

SINRu
(m) =

�
jguj

2 + Æ
(m)
u

�2
E

����e�(m)
u [n] + vu[n]

���2� =

�
jguj

2 + Æ
(m)
u

�2
�2�

(31)

where we define�2� = E

����e�(m)
u [n] + vu[n]

���2�. Now, the SINR estimator proposed in (28), in

the presence of bias and for largeN , converges in probability to

ScINR(m)
u !

1

E

���� e�(m)
u [n]+vu[n]

jguj2

���2�+ �1 + Æ
(m)
u

jguj2

�2
� 1

SinceÆ(m)
u � 0 (i.e., the bias tends to decrease the useful signal term), we conclude that the

estimator (28) tends to overestimate the SINR at the decoder input. As a consequence, the

weights�(m)
u computed according to (27) are mismatched in the presence of bias.

4.2 Estimation of the bias

In order to overcome this problem, a better SINR estimation taking into account the bias of

residual interference is required. The term�2� in (31) appears also in the variance of the decoder

input signal, given by

�(m)
zu

2
= E

h��z(m)
u [n]

��2i = �jguj2 + Æ(m)
u

�2
+ �2� (32)

and the bias termÆ(m)
u is contained in the expression of the correlation between the symbol

estimates and the decoder input, that, recalling Equation (30), is given by

�(m)
u = E

�
z(m)
u [n]âu[n]

�
=
�
1� 2f

�
SINRu

(m�1)
�
+ �

�
SINRu

(m�1)
�� �

jguj
2 + Æ(m)

u

�
(33)
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where�(�) is a known characteristic function of the convolutional code, proportional to the

correlation between the symbol estimates and the interference (see Appendix A).

Using Equations (31) and (32) the correlation in equation (33) can be rewritten as

�(m)
u =

�
jguj

2 + Æ(m)
u

� 2641� 2f

0B@
�
jguj

2 + Æ
(m)
u

�2
�
(m)
zu

2
�
�
jguj2 + Æ

(m)
u

�2
1CA + �

0B@
�
jguj

2 + Æ
(m)
u

�2
�
(m)
zu

2
�
�
jguj2 + Æ

(m)
u

�2
1CA
375

(34)

In practice, an approximation of�(m)
zu

2
and�(m)

u can be computed as follows

�(m)
zu

2
�

1

N

N�1X
n=0

�
z(m)
u [n]

�2
�(m)
u �

1

N

N�1X
n=0

z(m)
u [n]âu[n]

and Equation (34) can be solved numerically forÆ
(m)
u . Let Æ̂(m)

u be the estimated bias, solution

of (34). Then the estimated SINR is given by

ScINR(m)
u =

�
jguj

2 + Æ̂
(m)
u

�2
�
(m)
zu

2
�
�
jguj2 + Æ̂

(m)
u

�2 (35)

Figure 6 refers to a flat non-fading system, (i.e.
u = 1 for all users), withU = 32 users

and spreading factorL = 16 (corresponding to the channel load� = 2), Es=N0 = 5dB using

the convolutional code CC(5; 7). Users are chip-asynchronous and their relative delays are

uniformly distributed over an interval spanning one symbol. The true and estimated SINR vs.

the iterations for a given user are shown. The curve labeled “Viterbi (SINR est.)” refers to the

proposed iterative receiver that estimates the SINR using equation (28) while the curve labeled

“Viterbi (SINR-BIAS est.)” refers to the system that estimates both the bias and the SINR, using

Equation (35). Notice that in the first few iterations the SINR estimator given by Equation (28)

overestimates the true SINR up to several dBs. Instead, the SINR estimation given by Equation

(35) is very close to the true SINR.

4.3 The ping-pong effect and its compensation

As it has been shown in the previous Sections, the proposed receiver allows system loads up

to a certain threshold above which the system cannot approach the single user performance. In

such high load situations, the system parameters as BER, SER, ME, and bias tend to oscillate

14



A. Nordio, M. Hernandez & G. Caire: Low-Complexity...

between two convergence patterns [12]. This phenomenon is calledping-pongand it is related

to the bias in the residual interference term. In fact, it does not appear when feedback is obtained

from a SISO decoder extrinsic information [14].4

A further investigation reported in [16] showed that such a bistable situation is due to a fixed

subset of the estimated symbols that flip when passing from one iteration to the next, while

the estimated symbols in the complementary subset do not change. A countermeasure to this

problem proposed in [16] consists of introducing a perturbation into the bistable situation, by

feeding back to the IC stage the average of the estimates obtained from the two previous itera-

tions. Thus, the contribution of the flipping symbols (considered as not reliable) is mitigated.

By considering this idea, Equation (20) is modified as

�(m) = E

�


���a� �1

(m)â(m) � �2
(m)â(m�1)

���2� (36)

where the two previous estimates are now weighted with the coefficients�
(m)
1 and�(m)

2 . Now,

we can optimize the weighting factors�(m)
1 and�(m)

2 as functions of the channel energy
 in

order to minimize the expected interference variance�(m) at every iteration. In analogy with

what done before, we seek the solution of the optimization problem

min
�1=�1(
);�2=�2(
)

E
h��a� �1â

(m) � �2â
(m�1)

��2��� 
i (37)

After straightforward algebra (we skip the details for the sake of space limitations), we obtain

the solution

�1
?(
) =

A� BC

1� C2
(38)

�2
?(
) =

B � AC

1� C2
(39)

where

A = E
�
aâ(m)

�
= 1� 2�(m)(
)

B = E
�
aâ(m�1)

�
= 1� 2�(m�1)(
)

C = E
�
â(m)â(m�1)

�
In practice, the weights�(m)

1;u and�(m)
2;u of useru at iterationm are computed as follows:

4For the extrinsic-based schemes, there exist obviously a threshold load above which single-user performance

cannot be achieved, but no oscillatory behavior appears.
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� for m = 1, �(1)2;u is irrelevant (sincêa(0) = 0) and�(1)1;u = 1� 2 f(ScINR(1)
u ) whereScINR(1)

u

is computed according to Equation (35).

� for m = 2; 3; : : :, we letC = 1
N

PN�1
n=0 â

(m)
u [n]â

(m�1)
u [n], A = 1 � 2 f(ScINR(m)

u ), and

B = 1� 2 f(ScINR(m�1)
u ). Thus,�(m)

1;u and�(m)
2;u are given by (38) and (39), respectively.

Figures 7 and 8 illustrate the bias and the true SINR plotted versus the iterations for a system

using Viterbi decoding, with unfaded chip asynchronous flat channel, (i.e.
u = 1 8u) U = 40,

� = 2:5 and in the same conditions of Figure 6. The “Viterbi (SINR est.)” and the “Viterbi

(SINR-BIAS est.)” decoders do not converge to near-single-user performance and show the

ping-pong effect in the bias and in the SINR. The receiver that weights the two previous iter-

ations, denoted in the Figures by “Viterbi (2-feedback)”, converges faster to near-single-user

performance and does not show oscillations.

This behavior can also be seen in Figure 9 where the BER provided by the proposed receivers

is shown, for an unfaded chip asynchronous flat channel, and the same conditions of Figure 8.

The curve labeled “Viterbi (� = 1)” denotes the receiver that feeds-back hard decisions (i.e.

assuming�(m)
u = 1 for u = 1; : : : ; U andm = 0; 1; : : :) and the bold horizontal line represents

the single user performance. The receiver “Viterbi (2-feedback)” converges to single user per-

formance in6 iterations. In these conditions, it converges even faster than employing BCJR

decoders providing soft extrinsic output, denoted by “BCJR (soft EXT)”.

Finally, Figure 10 compares the performance of several receivers in terms of speed of conver-

gence to near-single-user performance forEb=N0 = 5dB,L = 16, and for
u = 1 8u. As test of

convergence, we consider the number of iterations required to reach an average ME larger than

�0:1dB. The basic hard feedback Viterbi receiver has maximum channel load� = 1:5. The

weighted hard feedback Viterbi with SINR and bias estimation improves this limit to� = 2:4.

Eventually, the receiver “Viterbi (2-feedback)” outperforms any other considered receiver and

has limit load� = 3:7 (corresponding to a spectral efficiency of 1.85 bit/s/Hz). The dashed

curves refer to the receivers employing BCJR decoders and extrinsic information feedback and

are shown as a reference.
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5 Performance in Frequency Selective Fading Channels

In this Section we consider frequency selective channels and asynchronous users. Thus, the

ISI term appears in Equation (12). In presence of ISI, the system converges to near single-user

Matched Filter Bound (MFB) performance [5] for a channel load� generally lower than the

limit for flat synchronous channels. Indeed, the presence of ISI slows down the convergence to

single user performance and allows lower channel loads. Two different cases are considered:

� constant instantaneous power for all users;

� constant average power for all users.

5.1 Constant instantaneous power

This case is representative of perfect fast power control that fully compensates for the instanta-

neous (slot-by-slot) effect of fading, so that
u = 1. Thus,

jguj
2 = E ; 8u = 1; :::; U (40)

Under these conditions, we evaluated by simulation the degradation due to the ISI with respect

to the results shown in the previous Section. Figure 11 shows the number of iterations needed

to reach ME larger than�0:1dB, as a function of the channel load, forEb=N0 = 5dB,L = 16,

the “Viterbi (2-feedback)” receiver, and for three different channels whose Multipath Intensity

Profile (MIP) [23] is shown in Table 1. CH1 is specified as a standard UMTS test channel in [24]

while CH2 and CH3 were created “ad hoc” in order to test the system in severe ISI conditions.

CH1 shows a negligible degradation with respect to the single-path case while, for the channels

CH2 and CH3, the maximum achievable channel load is decreased to� = 3:3 and� = 2:9,

respectively. Notice also that, in the case of strong ISI and low channel loads, more iterations

are required for the convergence with respect to the single-path case.

5.2 Constant average power

This case is representative of a slow power control system that cannot compensate for the in-

stantaneous fading, but maintains a fixedaveragereceived power for each user. The average

received power is assumed to be the same for all users, that is

E[jguj
2] = E ; 8u = 1; :::U (41)
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Figure 11 shows the number of iterations needed to reach ME larger than�0:1dB as a function

of the channel load and for the channels given in Table 1. In this case, two contrasting phenom-

ena characterize the convergence to single-user MFB performance. On one hand, faded users

have little impact onto unfaded users, since they are received at much lower power. On the other

hand, even if unfaded users can be reliably estimated and subtracted from the received signal,

faded users have an instantaneous SINR that is too low for achieving a small SER, therefore,

their contribution cannot be perfectly eliminated even in the absence of MAI. The fact that the

performance in slow power control are worse than their fast power-control counterparts (see

Figure 11) indicates that the effect of uncanceled faded users dominates the performance of

the receiver. Moreover, Figure 11 shows also another interesting fact. Namely, the degrada-

tion of the receiver performance due to uncompensated fading is larger for channels with little

multipath diversity (e.g., single-path, CH2 and CH3), while it is smaller for channels with rich

multipath diversity (e.g., the UMTS test channel CH1). This is intuitively clear, since when the

multipath diversity is large, then the random fluctuations of the instantaneous received power

jguj2 are reduced, and the fraction of users that can be reliably estimated and subtracted is larger.

In general, the average bit error rate (BER) for a finite-dimensional system can be computed by

Monte Carlo simulation, by averaging over a large number of frames and channel realizations.

In order to reduce the complexity of BER computation, we propose a semi-analytic approach.

Assuming symmetric users, with the same channel statistics and average received power, the

average BER (averaged with respect to both the channel statistics and over the user population)

can be bounded by

BER(m) = E
h
fb(�

(m)
 SNRMFB)
i

=
1

U

UX
u=1

E
h
fb(�

(m)
u 
u SNR

MFB)
i

a
� E

"
fb

 

SNRMFB 1

U

UX
u=1

�(m)
u

!#
= E

h
fb
�

SNRMFB�(m)

� i
(42)

wherefb(�) is the bit error probability vs. decoder input SNR function of the employed convolu-

tional code, where (a) follows from Jensen’s inequality applied to the convex functionfb(�) and

where we define the average ME�(m) as the arithmetic mean of the ME of all users. Notice that,

under mild conditions, for randomly spread CDMA in the large-system limit the ME converges
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to a constant independent of the user index, and inequality in (42) holds with equality. However,

for a finite-dimensional system and given spreading sequences the above provides only a lower

bound.

The expectation in the last line of (42) is with respect to the normalized channel energy


(assumed identically distributed for all users). The evaluation of the above lower bound is

much less computationally intensive than full Monte Carlo simulation of the whole system. In

fact, the average ME�(m) can be obtained by running short simulations, since it requires a much

smaller statistical sample to converge than the average BER. Then, the expectation with respect

to 
 can be obtained by either another Monte Carlo simulation or, if the distribution of
 is

known, by numerical integration.

Figure 12 shows the comparison between the full Monte Carlo simulation and the semi-analytic

approach for a system withU = 32, L = 16, and channel CH3. Solid lines show the BER

obtained by Monte Carlo simulation form = 1; 2; 3; 6 iterations respectively, plotted versus

Eb=N0. The dashed lines, show the results obtained using the semi-analytic approach. The

thick solid line corresponds to the single-user MFB. For low SNR the system does not converge

to the single user MFB even for a large number of iterations while for high SNR the convergence

is obtained in a few iterations. We notice that the semi-analytic approach yields fairly accurate

results already for such a small system.

6 Conclusions

We proposed a low complexity iterative turbo equalizer and multiuser decoder/detector for

TD-CDMA systems, characterized by convolutional coding, hard-output Viterbi decoding and

weighted feedback. From a rigorous large-system analysis of synchronous users and flat chan-

nels we gained the rationale for the optimization of the feedback weights. In the proposed

iterative scheme, however, the presence of Viterbi decoders (not providing extrinsic informa-

tion) produces biased statistics after the IC stage. Hence, we proposed a method for estimating

the bias and improving the performance of the basic iterative decoder. Moreover, in order to

cope with the ping-pong effect, we proposed a modified algorithm where a weighted sum of the

decisions made in the two previous iterations is used for interference cancellation. The modified

algorithm outperforms the the basic PIC receiver and even the receiver based on SISO decoding
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and soft feedback, with lower complexity.

The proposed receiver was validated in a realistic scenario, including asynchronous users, fre-

quency selective fading channels and power control. Simulation results show that the receiver

is robust to severe ISI conditions, even though its performance is degraded by uncompensated

fading. However, this degradation is not very evident in the presence of sufficient multipath di-

versity. Eventually, a simple and fast semi-analytic approach to compute the BER was proposed

and its behavior compared with the results obtained via Monte Carlo simulation.

As a concluding remark, we would like to point out that the proposed receiver structure is

fully suited to be implemented in a UMTS-TDD base station, as an alternative to conventional

single user decoding and high-complexity convolutional or turbo codes proposed in the current

standard.

A Definition of f(�), fb(�) and �(�)

Consider a transmitter that maps the information bit sequencefb[j]g onto a sequence of coded

binary BPSK symbolsfa[n]g and sends over the AWGN channel defined by

y[n] = a[n] + �[n]

where�[n] is Gaussian noise with distributionN (0; �2). The signal-to-noise ratio isSNR = 1
�2

.

The receiver decodes the signaly[n] providing hard decisionŝa[n] on the transmitted symbols

a[n] and hard decisionŝb[j] on the information bitsb[j]. We define

1. The SER vs. SNR characteristic

f(SNR) =
1� E [â[n]a[n]]

2
(43)

2. The BER vs. SNR characteristic

fb(SNR) =
1� E

h
b̂[j]b[j]

i
2

(44)

3. The correlation characteristic between decisions and noise

�(SNR) = E[â[n]�[n]] (45)
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The above functions depend uniquely on the code considered (i.e., they are “characteristics” of

the code) and, although they are generally unknown in closed form, they can be pre-computed

by Monte Carlo simulation and stored as look-up tables in the receiver memory. Therefore, the

impact of real-time evaluation of these functions on the overall receiver complexity is negligible.

References

[1] R. Prasad, W. Mohr, and E. W. Konh¨auser,Third Generation Mobile Communication Sys-

tems. Boston: Artech House, 2000.

[2] S. Verdu,Multiuser detection. Cambridge, UK: Cambridge University Press, 1998.

[3] 3GPP, “ETSI TS 125 222, Multiplexing and channel coding TDD 3GPP TS 25.222 Ver-

sion 4.0.0 Release 4,” tech. rep., March 2001.

[4] S. Verdu and S. Shamai, “Spectral efficiency of CDMA with random spreading,”IEEE

Trans. on Inform. Theory, vol. 45, pp. 622–640, March 1999.

[5] S. Shamai and S. Verdu, “The impact of frequency-flat fading on the spectral efficiency of

CDMA,” IEEE Trans. on Inform. Theory, vol. 47, pp. 1302–1327, May 2001.

[6] M. Varanasi and T. Guess, “Optimum decision feedback multiuser equalization with suc-

cessive decoding achieves the total capacity of the Gaussian multiple access channel,” in

Proc. Asilomar Conference, (Pacific Groove, CA), November 1997.

[7] R. R. Müller and S. Verdu, “Design and analysis of low-complexity interference mitiga-

tion on vector channels,”IEEE Journal on Selected Areas in Communications, vol. 19,

pp. 1429–1441, August 2001.

[8] P. Alexander, A. Grant, and M. Reed, “Iterative detection in code-division multiple-access

with error control coding,”European Trans. on Telecomm., vol. 9, pp. 419–425, September

1999.

[9] X. Wang and V. Poor, “Iterative (Turbo) soft interference cancellation and decoding for

coded CDMA,”IEEE Trans. on Commun., vol. 47, pp. 1047–1061, July 1999.

21



A. Nordio, M. Hernandez & G. Caire: Low-Complexity...

[10] H. ElGamal and E. Geraniotis, “Iterative multiuser detection for coded CDMA signals in

AWGN and fading channels,”IEEE J. Select. Areas Commun., vol. 18, pp. 30–41, January

2000.

[11] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for mini-

mizing symbol error rate,”IEEE Trans. on Inform. Theory, vol. 20, pp. 284–287, March

1974.

[12] L. K. Rasmussen, “On ping-pong effects in linear interference cancellation for CDMA,”

IEEE 6th int. Symp. on Spread-Spectrum Tech. & Appli., September 2000.

[13] D. Tse and S. Hanly, “Linear multiuser receivers: Effective interference, effective band-

width and capacity,”IEEE Trans. on Inform. Theory, vol. 45, pp. 641–675, March 1999.

[14] J. Boutros and G. Caire, “Iterative multiuser decoding: unified framework and asymptotic

performance analysis.” submitted to IEEE Trans. on Inform. Theory, August 2000.

[15] S. Marinkovic, B. Vucetic, and J. Evans, “Improved iterative parallel interference cancel-

lation,” in Proc. ISIT 2001, (Washington DC, USA), p. 34, June 2001.

[16] E. G. Ström and S. L. Miller, “Iterative demodulation of othogonal signaling formats in

asynchronous DS-CDMA systems,”Proceedings of the ISSSE, pp. 184–187, July 2001.

[17] T. Richardson and R. Urbanke, “An introduction to the analysis of iterative coding sys-

tems.” IMA Proceedings, 2000.

[18] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-Input Soft-Output building

blocks for the construction of distributed iterative decoding of code networks,”European

Trans. on Commun., April 1998.

[19] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product algorithm,”

IEEE Trans. on Inform. Theory, vol. 47, pp. 498–519, February 2001.

[20] J. Zhang, E. Chong, and D. Tse, “Output MAI distribution of linear MMSE multiuser

receivers in DS-CDMA systems.” submitted to IEEE Trans. on Inform. Theory, May 2000.

22



A. Nordio, M. Hernandez & G. Caire: Low-Complexity...

[21] M. Kobayashi, J. Boutros, and G. Caire, “Successive interference cancellation with SISO

decoding and EM channel estimation.” to appear on JSAC (special issue on multiuser

detection), 2001.

[22] C. Berrou and A. Glavieux, “Near optimum error-correcting coding and decoding: Turbo

codes,”IEEE Trans. on Commun., vol. 44, October 1996.

[23] J. G. Proakis,Digital Communications, 4th Edition. McGraw-Hill, 2000.

[24] 3GPP-TSG-RAN-WG4, “TS-25.105v3.1.0 UTRA (BS) TDD Radio transmission and Re-

ception,” tech. rep., January 2000.

23



A. Nordio, M. Hernandez & G. Caire: Low-Complexity...

ENC BPSK su�uSu  (t)
xu(t)

pEu

(a) Transmitter scheme

RX

TX 1

TX U

 (t)

 (t)

cU (t)

c1(t)

g1(t)

gU(t)

a1

pE1
x1(t)

xU (t)aU

s1

sU

y(t)

pEU

(b) Transmission channel

Figure 1: Transmitter and channel schemes

Table 1: MIP of the considered channels

Channel Path delays (in multiples ofTc) Relative path powers (dB)

CH1 0, 1.15, 34.18, 49.54, 65.66, 76.80-2.5, 0, -12.8, -10.0, -25.2, -16.0

CH2 0, 16 0, 0

CH3 0, 16, 32 0, 0, 0
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Figure 3: Scheme of the proposed turbo multiuser receiver
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Figure 4: Evolution of the ME given by asymptotic analysis for CC(5; 7), � = 2, andEb=N0 =

5dB
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Figure 5: Evolution of the ME given by asymptotic analysis for CC(5; 7), � = 2:35, and

Eb=N0 = 5dB
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Figure 6: True and estimated SINR for “Viterbi (SINR est.)” and “Viterbi (SINR-BIAS est.)”

decoders, using CC(5; 7), U = 32, L = 16, andEb=N0 = 5dB
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Figure 7: Bias in the statistic ofz(m)
u using CC(5; 7), U = 40, L = 16, andEb=N0 = 5dB. The

figure shows the oscillations due to the ping-pong effect
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Figure 8: True SINR of several multiuser receivers using CC(5; 7), U = 40, L = 16, and

Eb=N0 = 5dB
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Figure 9: BER of several multiuser receivers using CC(5; 7), U = 40, L = 16, andEb=N0 =

5dB
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Figure 10: Number of iterations required to attain an ME> �0:1dB for several multiuser de-

coders using CC(5; 7), L = 16, andEb=N0 = 5dB
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Figure 11: Performance of the “Viterbi (2-feedbacks)” multiuser decoder in the presence of

multipath fading channels using CC(5; 7), L = 16, andEb=N0 = 5dB. FPC and SPC denote

fast and slow power control conditions, respectively
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Figure 12: BER provided by the “Viterbi (2-feedbacks)” multiuser decoder for channel CH3

using CC(5; 7), U = 32, andL = 16
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