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Abstract

Most Automatic speech recognition systems make use of very complex HMMs to model
speech trajectories. They are estimated with very large databases of annotated speech.
Models are usually built to function well with any kind of speaker. Specializing these
models to a particular speaker, condition, or gender, when enough data are available, is
known to improve performance considerably.

Unfortunately, there are rarely enough data per speaker to build a specific model anew.
Therefore, the generic speaker-independent model (SI) is altered with the scarcity of data
problem in mind to befit the specific speaker’s speech. This is commonly referred to as
speaker adaptation. Model complexity and scarcity of data are intricately related to each
other.

This dissertation addresses issues about speaker adaptation in the context of large-
vocabulary speech recognition.

Firstly, the estimation of speaker-adapted models is improved by introducing con-
straints. The relationship between Euclidean distance and maximum-likelihood in the
HMM framework allows us to impose linear constraints in the parametric HMM space ef-
fectively. Then, feature-space transformation is extended with a new closed-form solution
and a Bayesian estimation formula.

Secondly, the specific applications of speaker adaptation are introduced. Self-adaptation
is modeled as a cluster identification problem. Unsupervised adaptation techniques are ap-
plied to discriminative adaptation. The interaction with noise adaptation is studied.

Lastly, I have developed large vocabulary continuous speech recognition systems dur-
ing this thesis. This comprises a miscellany of components, including a scalable acoustic
training engine, language model training, self-adaptation, feature parameters normaliza-
tions, and a native triphonic trigram Viterbi recognizer. The most complex part is the de-
coder, which we will describe into more details. It is based on a new fast search algorithm.



Version Abrégée

La majorité des systemes de reconnaissance de la parole font usage de modeles de Markov
tres complexes dans le but de modéliser la parole. Ces modeles sont habituellement con-
struits de maniere a fonctionner de fagon satisfaisante indépendamment du locuteur. Il est
bien connu que la spécialisation de ces modeles aux spécificités d’un locuteur, d’une con-
dition, ou d’un sexe contribue a améliorer les performances lorsque sont a disposition des
données en suffisance.

Malheureusement, rares sont les cas ol il est possible de trouver des données en quan-
tités suffisantes a la création de modeles spécifiques a partir de zéro. A cet effet, le modele
indépendant du locuteur est modifi€, considérations dues au probléme de paupérisme de
données, en vue d’adhérer spécifiquement a la parole du locuteur en cours. Ce processus
est nommé adaptation au locuteur. Une relation complexe existe entre la complexité du
modele et le manque de données.

Cette dissertation porte sur des problémes ayant attrait a I’adaptation du locuteur dans
le contexte de la reconnaissance de la parole grand vocabulaire.

Premiérement, I’imposition de contraintes améliore I’estimation de modeles adaptés au
locuteur. La relation entre la distance Euclidienne et le critére de vraisemblance maxi-
male, dans le formalisme des modeles de Markov cachés (HMM), nous permet d’imposer
efficacement des contraintes de nature linéaire dans I’espace paramétrique des HMMs. En-
suite, une nouvelle forme analytique pour la transformation de vecteurs d’observations est
développée. Une formulation Bayesienne 1’accompagne.

Deuxiémement, des applications particulieéres a 1’adaptation au locuteur sont intro-
duites. L’auto-adaptation est modélisée en tant qu’un probléme d’identification de groupe-
ment. Des méthodes d’adaptation non-supervisée sont appliquées a 1’adaptation discrimi-
native. Dans ce cadre, I’interaction au bruit fait I’objet d’une étude approfondie.

Finalement, j’ai développé un syst¢me de reconnaissance de la parole grand vocabu-
laire dans le cadre de cette theése. Celui-ci comprend une variété de composants, notamment
un moteur d’entrainement acoustique flexible et d’entrainement de modeles de language,
I’auto-adaptation, des normalisations de vecteurs d’observation, et un décodeur Viterbi en
triphones et trigrames au premier pas. Le décodeur forme le pole prépondérant de com-
plexité, que nous nous proposons de décrire en plus amples détails. Il est basé sur un
nouvel algorithme de recherche rapide.
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Chapter 1

Introduction

In this introduction, I hope to provide a quick kickstart to the main topic of this thesis.
The structural overview of dissertation provides a general summary of the contents. Basic
notations used throughout the documents are exposed.

1.1 Overview of the thesis

This section is devoted to providing an overview of the thesis. We are primarily interested
in speaker adaptation.

There are three parts in this thesis: Theory, Applied Speaker Adaptation, and Evalua-
tion. They are presented in an increasing link to practical applications. The final goal is to
tackle problems stated in the Evaluation, namely LVCSR. The systems deployed in LVCSR
provide some restrictions about how the adaptation is going to operate. It will be mainly
unsupervised speaker adaptation in block mode. Given the properties of the domain, we
will choose adaptation formule from the Theory.

First, we pursue theoretical developments. We follow the approach of Eigenvoices.
Eigenvoices is an adaptation method that operates in the model space, that is, in the space
defined by parameters of HMMs of a given topology. We extend and formalize the frame-
work of HMM parameter regression under the likelihood criterion. Additionally, a new
solution to feature transformation is explored. This is presented in Part I, Theory.

Secondly, we seek algorithms that tackle the problem of unsupervised adaptation and
adaptation in noisy environments. We make use of the equations of Part I: Theory. This is
done in Part II: Applications. It takes advantage of the characteristics of the adaptation of
the Theory.

In Part IIT: Evaluation, the algorithms of the Applications are embodied in Large Vo-
cabulary systems. The data-savvy adaptation of the Theory calls for large databases. Large
Vocabulary systems, in turn, make use of unsupervised adaptation in varying conditions as
envisioned by the Applications.

1.2 Notation

I have decided not to include a generic HMM introduction. Chapter 2 will introduce all
notations necessary for the basic comprehension of the thesis. Readers are expected to
have a general understanding of speech recognition mathematics.

In the short preamble, we define the symbols and conventions that will be exploited
throughout this thesis. Most of the material is fairly standard. However, I made use of
some shorthands in notations to outline important steps. The reader is invited to review the
table of symbols in Table 2.1 quickly before proceeding with the dissertation.

1



2 CHAPTER 1. INTRODUCTION

1.3 Theory

In the first part (Chapters 3 and 4), we attempt to develop methods that contribute to a
better estimation of HMM parameters. In particular, in Chapter 3, we construct a set of
tools to model the parametric values of HMMs. Chapter 4 takes a lower-level approach.
Observation features are transformed via a full, LU-decomposed matrix.

1.3.1 Model-space constraints

The first chapter extends and formalizes the Eigenvoices adaptation. Speaker adaptation
allows to increase performance by specializing the speech recognition system to a particular
speaker. There are two ways of adapting to the speaker: modify observation features, or the
HMM models. We follow the second route: we place ourselves in the model space. Since
the number of parameters to modify is large compared with the amount of speaker specific
data, a method that reduces the amount of parameters to adapt is welcome. This is the main
purpose of Eigenvoices: it places a linear constraint on model parameters. This concept of
model space constraint is extended in Chapter 3.

Section 3.2 unites the likelihood criterion with the Euclidean distance in a Gaussian
framework.

In Section 3.3, we give a brief review of the classic Eigenvoices approach. The mathe-
matical framework is exposed in Section 3.4. A new method for estimating the eigenspace
is presented in Section 3.4.2.

The following sections, Section 3.2 and 3.5, take a closer look at the idea of model
distance. The premises are found in Section 3.5. We stipulate that posterior probabilities
of models are Gaussian (Section 3.5.1, 3.5.2).

The root modulation (Section 3.6) is introduced as a means of reconciling PCA’s squared
error with ML. In Section 3.7, we expose estimation related to this new model.

Having thus formalized PCA, we relate discriminative Hilbert-geometric concepts, such
as the Fisher cost function, with probabilistic concepts such as MMI, in Section 3.8. The
Section 3.9 attempts to model HMM parameters with piece-wise linear regression, as an
attempt to escape the linear restriction.

1.3.2 Feature-space transformation

The second chapter of this “theoretical” part pertains to an entirely different topic. Chap-
ter 4 is to be understood in the context of feature transformation. It bridges a small gap in
the current literature.

The problem of linear feature transformation has no direct closed-form solution in the
general case. A closed-form may be established when the transformation matrix is diago-
nal. The SVD may be exercised when the matrix is orthogonal. Numerical solutions, either
conjugate gradient, or row-by-row maximization, exist for full matrices.

We find out that triangular matrices also have a closed-form solution. This is closely
related to LU decomposition for matrix inversion. Furthermore, we extend the framework
to Bayesian adaptation.

1.4 Speaker adaptation: applications

In the second part of the thesis (Chapters 5—7), we deploy the adaptation techniques. Three
aspects were investigated.
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1.4.1 EM-based approaches

First, we concentrated on the problem of supervised and unsupervised adaptation, including
the problem of local optima in the EM algorithm. The unsupervised adaptation techniques
are applied to supervised adaptation for best discrimination. We argue that counter exam-
ples can be counted as additional data and also improve the reliability of the estimates.
Finally, we analyze the pertinence of MAP and MLLR in different contexts.

1.4.2 Clustering and self-adaptation

The problem of unsupervised adaptation is viewed from another standpoint. We divide a
sentence into smaller units, which might be correctly recognized or not. A unit is typically
the time segment spanned by a recognized word. These units will be used for adaptation.
If a unit is assigned a wrong label, due to misrecognition, it will corrupt the adaptation.

We argue that correctly recognized units will translate into a consistent estimation for
the speaker. Errors in the unit labels are due to accidental confusion: they wll translate
into inconsitent speaker estimation. In our algorithm, we decide whether a unit is correctly
recognized or not based on the estimation of the speaker. The performance of speaker
adaptation is improved by filtering out wrongly labelled units.

1.4.3 Noise and speaker adaptation

In many practical instances of ASR, noise is present in test conditions. Since the noise is
not known a priori, an online noise compensation is applied. Applying speaker adaptation
on the top of noise compensation, and vice-versa, is not trivial (see [RNKJO1, NWJ99]).
We attack the problem with Eigenvoices in mind. Adaptation of prior knowledge to noise
conditions is approached, as well as the difference between the characteristics of noise and
speaker adaptation.

1.5 Evaluation framework

In the third part of the thesis (Chapters 8 and 9), approaches described in the previous chap-
ters are evaluated on large-vocabulary continuous speech recognition (LVCSR). A signifi-
cant effort has been devoted to the development of this LVCSR.

1.5.1 System descriptions

First, the large-vocabulary decoder was developed on WSJ. Then, the decoder was tailored
to the SWB task. For that purpose, multi-class adaptation, variance normalization, and
other features were added to the system. When the preliminary evaluation specification
was released by NIST in January 2002, I began working the BN system. Speaker clustering
and segmentation were implemented to tackle this task effectively.

WSIJ, BN, and SWB are the three large vocabulary tasks which became the frontier of
state-of-the-art speech recognition systems since 1992. From March 2000 until April 2002,
I have replicated results roughly equivalent to state-of-the-art in 1998-1999, or about six
years of research, and written a continuous speech large-vocabulary decoder for that pur-
pose.

Chapter 8 summarizes choices in the implementation of the system. Since compu-
tational and human resources allocated to the development were limited, I opted for a
minimal selection of features most influential on performance. This chapter is useful for
anybody who would want to replicate LVCSR results.
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1.5.2 Decoder

The recognizer is the main difficulty encountered when building large-vocabulary systems.

Chapter 9 begins with an introduction of the chapter. Section 9.2 gives an overview
of the large-vocabulary decoder. Section 9.3 describes the search algorithm’s theoretical
foundation. Contrarily to structural optimizations such as the lexical tree search topology,
the novelty comes from the organization of the search space. We define a total order relation
of the search state hypotheses. The algorithm will traverse and build the active list of
hypotheses according to this order, reaching maximum achievable speed.

Finally, NBest lists may be generated with material of Section 9.4.



Chapter 2

Conventions and Notations

This chapter introduces the notations used throughout this thesis.

Symbols and operators are usually named according to Table 2.1. The same symbol w
identifies a word sequence, and eigenvalue vector, and the MLLR supervector. To avoid
confusion with the transposition, the duration of an utterance will be 7.

Abbreviations in the text are found on Table 2.2.

2.1 Implicit subscripting, and super-vectorization

In this thesis, emission probability density functions are Gaussian mixtures. For the sake
of simplicity, we usually drop the subscript of Gaussian components of the mixture. Also,
several speaker dependent models are trained or speaker independent models are adapted.
Wherever no confusion is introduced, speaker indices are also dropped.

2.1.1 Capitalization and alphabet

In general, capital letters are reserved for matrices, objective/cost functions, and cardinal
numbers. Ordinals, vectors, and scalars are Latin lowercase characters. Greek letters are
continuous variables, and constants.

2.1.2 Subscripting

All vectors are column vectors unless otherwise specified. A vector x of size D will have
elements x4,
z1

z=|:|. Q2.1
Zp

If we have a collection of vectors z, each of size D, we denote each component of each
vector xj, in such a manner that:

o
T = S, k. 2.2)
2
When clear from the context, or agreement of matrix dimensions, we may write :y((ik) =
zq,Vd =1..D.
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Symbol | Description

Q Expected log-likelihood (E-step)

€ Squared error

N The Gaussian/normal distribution

D Dimension of feature vector (e.g. MFCC:39, PLP:27)

B Number of speakers in the training data

q Speakerindex ¢ =1, ..., B

d Dimension index d =1, ..., D

t Time index, in frame units

T Duration of an utterance

G Total number of Gaussians

w Word sequence of #W words: W = [wo, ..., wgw—_1]

Ot Observation vector at time ¢
04 OF og) d" element of o,

m Gaussian index m = 1, ..., G in a Gaussian mixture
Um or i | Mean vector of Gaussian m, size D

g d™ element of

¢ Extended mean vector, ¢ = [1:pT]T

C), or C | Covariance matrix of Gaussian m
Ry, or R | Precision matrix of Gaussian m. R, = C;,;!

Tkd Element d of k™ row of R
rq d™ diagonal element of R (when R is diagonal)
E Dimension of the eigenspace

Y (%) Expected posterior occupation probability of Gaussian m at time ¢
Jorw | Eigenvalues vector of size Ef
P Length of supervector, usually G x D
U Eigenspace of type P x E
Up, or U | Part of eigenspace corresponding to m, i.e. rows 1 +mD,...,(m + 1)D
4" row of U,
4™ column of Uy,
model parameters of an HMM
a diagonal matrix
Regression matrix W of type D x (D + 1)
Number of regression classes, usually K =1
d™ row of linear regression matrix W
Length of MLLR supervectors, D(D + 1)K
the MLLR supervector
Precision of MLLR matrix d, of type (D + 1) x (D + 1)

Q
°
Q
%

The weight parameter in MAP adaptation
A constant

A matrix

A bias vector, usually of size D

A vector

Vector space of dimension [V

%H S|

ai Derivative w.r.t.
E Expectation
)T Transpose of matrix
( Trace of a square matrix
| 2-norm of matrix or vector
< +,- > | Inner product in canonical space
® Kronecker product

Table 2.1: Taxonomy of symbols
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Abbreviation | Description Definition
ASR Automatic Speech Recognition
BN Broadcast news task p. 102
CAT Cluster Adaptive Training [Gal00]
DR Dimensionality Reduction p. 24
EM Expectation Maximization [DLR77]
HMM Hidden Markov Model
KLT Karuhnen-Loeve transformation
LDA Linear Discriminant Analysis [DH73]
LM Language Model
LU Lower-upper matrix factorization p. 56
LVCSR Large Vocabulary Continuous / Conversational

Speech Recognition
MFCC Mel-frequency cepstral coefficients
MD(E) Meta Data (Extraction)
ML Maximum-likelihood
MLED Maximum-likelihood estimation p. 24
MLES Maximum-likelihood eigenspace p.- 25
MLLR Maximum-likelihood linear regression [LWO5b], p. 28
MMI Maximum mutual information [Nor91]
PCA Principal Component Analysis p- 15, [Jol86]
pdf probability density function
PLP Perceptual linear predictive [Her90]
PSTL Panasonic Speech Technology Laboratory
QED Quod erat demonstrandum
RT Real-time factor
RT-02 NIST’s Rich Transcription evaluation 2002
SI,SD,SA Speaker independent, dependent, adapted
SAT Speaker Adaptive Training [AMSMO96]
SVD Singular vector decomposition
SWB Switchboard task p. 97
STT Speech-To-Text
TDT Topic Detection and Tracking
TIMIT TIMIT task p. 107
VTLN Vocal Tract Length Normalization
WER Word Error Rate
w.rL.t. with respect to
WSJ Wall Street Journal task p. 105

Table 2.2: Frequently-used acronyms and abbreviations
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‘When matrices are decomposed into rows, each row will be treated as a column (verti-
cal) vector. Let a matrix A be of type M x N. The elements of the matrix are ay;. Its rows
a} will be of type 1 x N:

_akl-l
ag = | J (2.3)

A= : |, (2.4)

so that k& will be a row index.

2.1.3 Super-vectorization
If we have a collection of vectors zg, kK = 1, ..., G, we define the supervector:
1
x = super(z)§$_, = S (2.5)
e

If the original vector had size D, then the new supervector has size P = D - G.
Similarly, we build a super matrix by concatenating the vectors as columns:

X =[z1,...,2¢]- (2.6)

The matrix X has dimension D x G. The supervector x is called the supervector of this
matrix. Finally, inequalities are matricized: if A is a square matrix N x N, we write:

A>0, 2.7
to mean that for all vectors z € RV,
el Az >0, (2.8)

with z # 0. In that event, the matrix is called non-negative definite.

2.2 Einstein’s notation and lemmas

Einstein [Ein16] discovers that we may drop the summation sign X if the index appears (at
least) twice in the summation. For instance, the ;™ element of the k™ row of a matrix C,
such that:

C = AB, (2.9)
is given by:
ckj = _ apby, (2.10)
1
which Einstein writes:
Crj = apibyy. (2.11)
Similarly, the trace of C'is:
trC = agbis = Y _ asibis. (2.12)
s,l

Usually, we will reserve k and j as indices. Other Latin lowercase letters, such as [, m,n, q, s, r, t
and z can be used as ephemeral summation indices.
The following lemmas are useful when differentiating w.r.t. a matrix.
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Olog|A| _ 4-T
Lemma 1l —— =A"".

It stems from Laplace’s expansion into minors. Then since adjA = |A|A~7T the rest fol-
lows.

o
Lemma 2 5ir BTA=B.

Using Einstein’s notation,

0
%blmalm = by;. (2.13)

QED.

Lemma 3 %tr BATRA = RAB + RTABT”. In particular, when matrices R and B are
symmetric, it is also %tr BATRA = 2RAB.

Using Einstein’s notation,

0

a—blmanmrnqaql = (bljmqaql> + (bjmaqmqu> (2.14)
(ij

QED.
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Chapter 3

Model space constraints

This chapter is devoted to our findings in imposing constraints, or structure, to HMM model
parameters. In contrast with other approaches (e.g. [SZPO1]), we do not apply constraints or
transformations on the feature space. On the contrary, we apply constraints on HMM model
parameters. For this reason, we call these constraints model-space constraints. Model
parameters are themselves treated as random variables (e.g. [GL94]).

Our approach relies heavily on the idea of Eigenvoices [KNJ*98a]: we first impose
linear constraints on HMM model parameters. These will significantly reduce the number
of degrees of freedom. In turn, models will require fewer adaptation data before they attain
an acceptable level of reliability. The backside of imposing constraints is the reduction of
potential generative potential: strong evidence of a speaker-specific pattern that is not pre-
dicted by the constraints can never be learned. Therefore, we trade reliability of estimates
for generative potential.

In this chapter,

1. We introduce the problem of speaker adaptation (Section 3.1).

2. We review distance measures such as squared error (used in PCA) and divergence
(used in ML-HMM training) in (Section 3.2).

3. We explain Eigenvoices (Section 3.3) and extend it within the Baum-Welch frame-
work (Section 3.4).

4. Asafirst step towards unfiying divergence and squared error, we verify that estimates
of MLLR and MLES are Gaussian (Section 3.5).

5. We show that a normalization, called root modulation (Section 3.6), equates squared
error and log-likelihood (Section 3.7).

6. We show that MAP, DI (deleted interpolation), and MMI can be cast as an ML prob-
lem (Section 3.8).

7. We extend the framework of linear regression to a simple non-linear model (Sec-
tion 3.9).

8. We present experimental evidence of the performance of these derivations (Sec-
tion 3.10).

3.1 Speaker adaptation and uncertainty

In this section, we review the main motivation for imposing constraints on model-space
parameters. We observe that speaker-dependent models are more accurate than speaker-

13
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independent models. However, due to lack of training data, they are rarely observable in
real-world applications.

The balance between accuracy and lack of training data is fundamental in speaker adap-
tation.

3.1.1 Speaker-dependent models

It has been observed that speaker-dependent (SD) models provide much better recognition
accuracy than speaker-independent models. In many applications, for instance, on Personal
Digital Assistants (PDAs), one can safely assume that it is always the same speaker that is
using the system.

The reason why SD models provide better recognition accuracy is the fact that they are
not encumbered with having to model different speaker style at the same time. The entropy
of SD models is always lesser than, or equal to, the entropy of SI models. Therefore,
tailoring models to a specific speaker is always beneficial.

The reason why we do not always use SD models is due to trainability.

3.1.2 Uncertainty and quantization

In practice, building models specifically for the speaker using the system can prove difficult.
This is due to the lack of training data. Usually, the adaptation data that is available to
the system is several order of magnitude lower than the amount of data available for SI
modelling. It is a classical estimation problem. We cannot take the adaptation data as
being very reliable. It contains a large amount of accidental patterns. They are mixed
with actual patterns that we would like to learn. Therefore, the conclusion drawns from
observing the adaptation data are uncertain.

In estimation theory, the classical way of dealing with that problem is to reduce number
of the degrees of freedom. This is called quantization. For instance, instead of using a
mixture of two Gaussians, we use a single Gaussian. Quantization is known to reduce
the number of parameters to estimate, and in turn, the uncertainty. On the other hand,
quantization also reduces the potential generative power of the pdf.

There is a trade-off between quantization and uncertainty: it is called the error decom-
position theorem [Zhu98].

3.1.3 Introducing structure

There are several ways of reducing the degrees of freedom of models. Reducing parameters
towards compact models is a difficult task. Clustering, for instance, is a popular technique
that ties some models parameters. Tying decreases the number of parameters by sharing
parameters. These parameters also share observed samples, which improves their reliabil-
ity. At the same time, the generative power of the model decreases because the model must
describe two pdfs at the same time.

There is another class of techniques, called transformation-based coding, which aims
at transforming the space of observations to recognize important from unimportant compo-
nents. It has been explored into depth in the feature space. In the model-space, however, it
has gone relatively unnoticed.

Eigenvoices is a transformation-based coding in the model space. Model parameters
discern between pdfs of the same family. Those parameters will be treated as random
variables themselves.

3.2 Least-squares, divergence, and log-likelihood

In this section, we show how the divergence, log-likelihood, and squared error are linked.
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3.2.1 Squared error

The squared error is most popular in discrete vector quantization. Let there be a set X
of B samples. Each observation vector i, K = 1,..., B has a dimension P such that
X = [z1...xp] is a matrix of dimension P x B. In Vector Quantization, we decide to
approximate each xj with a value drawn from a set of predefined values y;. The values are
easier to process because of their nature (for instance integer values) or their small amount.
For that reason the set of possible values is called a dictionary or codebook.

The designer of the codebook must find a satisfactory approximation of x with yy:

Tk R Yk, (3.D

which can be summarized as the mean squared error of the approximation (MSE), some
times referred to as the distortion. It is defined as:

B
e=B") ¢ (3.2)
k=1

with the observation error £y, defined as:
ek = |lzi — yrll? =< 2k — Yk T — Yk >= (z — y)" (Tk — Yi)- (3.3)

In the last equation, we have specialized the error to the canonical Euclidean distance. It is
also possible to use a different inner product:

< Tk — Yy Tk — Y >= (T — yk)TW(.rk —yk), W >0, wr =w (3.4)

where we weight the contributions using a non-negative definite matrix W. We will see
that this matrix can be interpreted as a rotation and a scaling. The rotation transforms the
space which is canonical for the phenomenon. In other words, we rotate the observation so
that each component of the rotated vector has a meaning by itself, for instance. The scaling
gives more weight, or importance, to some components.

The quantizer will choose naturally:

Yk = aurgmin||?/—ﬂlik||2 (3.5)
yel

where C is the codebook, i.e. the possible values for y;. When designing C for N > 1,
it is unfortunately impossible to define a total order of the xj, and therefore it results in an
intractable problem. However, one can use common sense to devise fairly good suboptimal
approaches in quadratic time.

We have defined the least squares criterion. The concept was illustrated with vector
quantization.

3.2.2 Principal Component Analysis
Introduction

Principal Component Analysis [Jol86] is an algorithm very popular in many domains, such
as sociology, biology, etc. There are many interpretations of what it produces and why it
would work. In this section, we concentrate on defining the basic notations which will
appear later in this thesis.
We can revisit the problem of Section 3.2.1 and devise a continuous approximation
of xy:
yr = f(z)- (3.6)
In this section, we assume that f(-) is a linear (or affine) function. f(-) is sometimes called
the kernel mapping, and in this case we have a linear kernel, which is defined by the matrix
U,
yp = UUT 2. 3.7)

For this reason, the transformation is called a linear regression.
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Definition

Let the =y, defined previously serve as samples. Let U be a orthogonal matrix of type P x E,
where P is the length of all xy. By orthogonal, we mean that:

UTU = Ig, (3.8)

which we call the resolution of unity. The matrix U generates a linear vector space in R”
of rank /. We abuse the notation and call the subspace itself U.

It is notoriously known that the minimum squared error approximation of a vector y
inU is:

Y, = argmin ||z — y||* = argmin{”xk —UU | + ||y — UUTkaZ}: UUT zy,.
yelU yeU
(3.9)
Note how Pythagoras’ identity helped us here.

The goal of PCA is to find the U that will minimize the error of quantization €. The
error due to the approximation is:

e=> llox — UU x| (3.10)
k
We have:
argmUins = argmUin Z{||xk||2 — 22T UU oy, + IZUUTUUTLE]C}, 3.11)
k
and because U is orthogonal:
. TrrrrT T, T

. —are = arg . 12
arg ml}ne arg ml?xzk: z, UU" o, = arg mUax zk: trU" zpx;, U (3.12)

Let the observation matrix X be:
X:[xl,...,xB] (313)

It is easy to show that the solution for U is the spectral decomposition of the auto-correlation
matrix:
XXT =3 mpaf =VAVT (3.14)
k
with V' an orthogonal P x B matrix, and A a diagonal eigenvalue matrix with diagonal
elements A1, ..., A such that:

A=A > > Ap. (3.15)
Substituting X X with its eigenvalue decomposition into (eq. 3.12), we have:

arg mUins = argmax wrUTVAVTU. (3.16)

Clearly, any U # V will yield non-diagonal elements whose energy will be subtracted
from the trace. Therefore, the optimal U is a truncation of spectral decomposition of the
auto-correlation matrix.

We have shown how to use the spectral decomposition to define a linear constraint that
will minimize the squared error. Utilizing Pythagoras identity, the problem was be reduced
to maximizing the energy of the projected samples.
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Orthogonality of eigenvalues

Another noteworthy property of the eigenvalues is that of orthogonality. The eigenvalues 9
represent the location of z, in the transformed space:

I = Ul g, (3.17)
Y, = UVy. (3.18)

We can see that they are independent:

S 0f = UTapa{U =UTVAVT = Ap, (3.19)
k k

where A% is the truncation of the diagonal matrix A2, which is again diagonal. It is not yet
appropriate to talk about covariance, but if we interpret:

1
E9yT = 51 > 0df, (3.20)
k

it means that the variables ¥ are not correlated, because off-diagonal terms of the covariance
matrix cancel.

3.2.3 Divergence

The divergence is a popular criterion for measuring similarities between probabilities. It
enjoys two useful properties:

e it is independent of the parameterization,
e it is linked to the log-likelihood, and
o its Pythagorean geometry is well-documented.

Let p(-) and ¢(-) be two probability density functions defined over the same feature
space RD. The divergence D(p, q) is a directed similarity measure that relates p with ¢:

D(p,q) = /dp logg- (3.21)

D(p,q) = 0iff p = ¢ in probability. Usually, p is understood to be the sought after
probability. The pdf ¢ does not necessarily belong to the same family, but we seek to find
one that is the closest in some family.

For instance, let p(-) be a mixture of two equiprobable Gaussians with the same vari-
ance C and mean p and —p respectively:

1 1
p(x) = SN (1, C) + ZN (. C). (3.22)

We want to approximate it with another distribution g(z). We seek:
4(x) = argmin D(p, q). (3.23)
q

The pdf q is the projection of p into a single Gaussian probability density family. Inciden-
tally, it is also the maximum-likelihood estimate [CT84]:

4(x) = argmin D(p, q) = arg min/dp logg = arg max/dp log q. (3.24)
a a q
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Suppose now that ¢ is a single Gaussian:
q(x) = N (ug, Cy). (3.25)

Its mean and covariance are sought:

(fig, Cy) = arg max /dp log q. (3.26)

Hq,Cq

The expected log-likelihood is:

1 _
/dp logq = ~3 /dxp(.r) [D log 27 + log |Cy| + (z — ,uq)TC'q Yo —pg)|. (3.27)

Differentiating w.r.t. 11, and setting to zero, we get:

92 /dp logq = 0 = 2C, (1iq — /dpm), (3.28)
Opiq
or:
11
Hg = /dpx = §u+ 5(—,11) =0, (3.29)

regardless of Cy. Replacing into (eq. 3.27), we differentiate w.r.t C° L

% /dp log g = 2C, — diag(Cy) + /dp [QxxT — diag me] =0. (3.30)
q

Finally, we can state:
G(z) = N(0,C + pp™). (3.31)

Furthermore, Pythagoras’ theorem is also valid:

D(p,q) = D(p,q) + D(q,q), (3.32)

for any ¢ in the same family as §.

p o

m-geodesic
N\, q

r q

Figure 3.1: Pythagoras identity: D(p,q) = D(p,§) + D(4,q)

Proof: We sketch an algebraic proof of the theorem for completeness. It is heavily based
on the concept of sphere and lines. No definition of area is required. We proceed as follows
(see Figure 3.1):

1. Draw a line from ¢ to ¢. Show that the distance decreases by a certain amount, when
we get closer to q.

2. Extend the line to r. This is done by drawing a line from ¢ to r, and stating that § is
also on the line.
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3. Consider a point z on this line. It was shown by argument 1 that the distance D(z, p)
must decrease as we approach ¢, and, by symmetry, from that point on increase until
r.

4. The derivative of the distance, w.r.t. to the coordinate of z in the line, must then
change sign at exactly ¢

5. Replace the expression of the derivative into an algebraic expansion of D(q, p) and
find the desired result.

We have an arbitrary point in the family of §. We draw the m-geodesic [Ama99] from ¢
to ¢. The m-geodesic is the segment joining the two points. For all points ¢, belonging to
this m-geodesic, there exists an o € [0; 1] such that:

Ga() = aq(-) + (1 — a)q(:). (3.33)

The function g, is a pdf which belongs.Let us assume that the pdf ¢ is further away from ¢
to p:
D(q,p) = D(4,p). (3.34)

Since the divergence is concave in (1 — «), then, we know that the distance to p from any
point of the m-geodesic is decreasing until we reach §. That is,

0
gDt ) = [ |ap—aiiog 2 + [ (g ) (339
o p
- / [dq - d(j] log 32, (3.36)
p
Incidentally, we can compare the distances to p and within the m-geodesic:
D(q,p) = /dq log% (3.37)
— [dglog? + / dg log L (3.38)
q p
= [dglogL+ [dglogd + /d(jlog a_ /d(jlog 4 (339
q p P P
= D(q,4) + D(4,p) + / [dq - dé] log% (3.40)
R R 0
=D(¢,9) + D(4,p) + 5-D(¢a:p) (3.41)
Q a=0

The derivative corresponds to the concept of tangent. Now, let us select another point r # ¢
from the sphere around p:

D(r,p) = D(q,p)- (3.42)
Let us draw the m-geodesic from r to ¢:

ry =771+ (1—=7)4, (3.43)

the same way we did for q,. Now, amongst the circle of intersecting the sphere of radius
D(q, p) around p and the family of g, we extend the m-geodesic ¢, such that all § and ¢,
and r belong to the same m-geodesic. That is, there is a 7 such that:

25 = q, (3.44)

with:
zZn =ng+ (1 —n)r. (3.45)
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We can see that r exists and is unique. Since both ends of the z, m-geodesic have equal
value,

D(T,p) = D(zn’p)|7’l:0 = D(Z??’p)|77:1 = D(q’p) (346)
Since ¢ has a divergence different from those,

D(g,p) < D(r,p), (3.47)

by hypothesis, and by convexity of the divergence on the r, and g, curves, the partial
derivative must exactly reach its minimum and change sign at §:

0
a—nD(zmp)M:ﬁ =0. (3.48)

Therefore, the tangent part of the decomposition of the divergence also vanishes at exactly
q/\7

/ [dq — d(j] log ;]—; =0. (3.49)

Replacing into (eq. 3.41), we obtain the Pythagorean identity:

D(q,p) = D(q,q) + D(¢,p).

QED.

3.2.4 Log-likelihood and Euclidean distance

Now that we have defined distance and projection in the least squares and likelihood sense,
we might ask ourselves: when do they ever coincide?

In the Eigenvoices logic (Section 3.3), we draw two distributions from the same family
of multivariate Gaussians. Let p(-) and ¢(-) be:

p(x) = N(pz, C), (3.50)
q(y) = Ny, Cy). (3.51)

We characterize the distance between p and ¢ as:

e = (g — 1) "W (e — 1) = | |1t — iy 3 (3.52)

where W is a whitening matrix. We will see that rationale underlying.



3.2. LEAST-SQUARES, DIVERGENCE, AND LOG-LIKELIHOOD 21

The divergence D(p, q) between these distributions is:

D(p,q) = / dz p(z) 1ogz% (3.53)
%/ﬁxﬂxﬂbgtz:+@;%ft;%xuﬁ.n (3.54)

— (& — )" C M — m] (3.55)

=5 % [tr Co'Co — (w— py) " C N (- uy)] (3.56)
=53 / dz p(@) (@ — 1) O @ — puy) (3.57)

=~ 5 [ dwp@)le o+ s - DTC o~ ) (3.58)

1
-3 [tr C;1Co+ 2 [ dopla){ (s~ 0)7Cy o — ) e (359)

+ (pz — My)TCy_l(,ux - My)}] (3.60)
1
=03 [tr Cy Co + (pa — 1) C ™ (1 — w)] (3.61)
1
= ﬁ// - 5 |:(:u'w - /‘y)TC’?jl(Mz - l‘y)] ) (3.62)

where 3,3 and 3 are constants. Now suppose that W = C; 1 = Cc, 1. This means that
the set of Gaussians p and q is homoscedastic. The divergence D(p, q) becomes:

D(p,q) = —2¢. (3.63)

We can thus state that there is an equivalence between divergence between two distri-
butions and squared error between the mean vectors.

Lemma 4 Let two random variables X, Y with pdf p(x) and p(y) respectively. If they are
Gaussian with equal covariance C, then the divergence and Euclidean distance between
the means are related with:

D(p,q) = —2||ptz — pyle-1- (3.64)

This condition of Gaussianity is very restrictive, but it restores symmetry of the divergence,
and all other geometric properties of a Hilbert space, to the otherwise cumbersome diver-
gence measure.

Furthermore, the Pythagorean identity is the same under both concepts. Let ¢ be a
Gaussian such that i, is constrained to lie in a linear space U. The projection of p onto U
is:

G = argmin D(p, q) = argmaxe, (3.65)
q q
by virtue of (eq. 3.64). The pdf ¢ has mean fi,,.
We know that:
||Ny_:“w||2: ||Ny_ﬂy||2+||ﬂy_ﬂx||27 (3.66)
D(q,p) = D(q,4) + D(¢,p) (3.67)

and both relationships are equivalent.
We have therefore proved that under certain circumstances maximum likelihood and
least-squares projection function equivalently in a homoscedastic Gaussian framework.
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3.3 Eigenvoices: introduction

A good introduction of Eigenvoices can be found in [KINNOO]. We will review the main
ideas quickly.

3.3.1 Motivation

The goal of Eigenvoices is to introduce a linear constraint model parameters, which will
be used during the adaptation process. Eigenvoices represent correlation within HMM
parameters. They can be thought of as principal speaker characteristics.

By observing speaker-dependent models in training data, Eigenvoices learns what is
reasonable for speaker-dependent models. Eigenvoices learns that if a male speaker pro-
nounces phoneme aa, he will not pronounce phoneme ax the way a female speaker does.
In other words, it is able to place a constraint on what HMM parameters may model.

These constraints are learnt through Principal Component Analysis (PCA [Jol86]). It
is posible to discern a linear vector space structure among a large training set of speaker-
dependent models.

When a new speaker is presented to the system, a naive adaptation algorithm would
attempt to modify parameters directly in the HMM parameter space. However, there is not
much data available for one to estimate all parameters. The uncertainty is very high, and
accidental structure in the small adaptation sample might yield unreasonable models. The
first tentative is to tie parameters together. For instance, in MLLR [LW95b], the adaptation
parameters are summarized into an affine transformation.

Eigenvoices, on the other hand, has gained experience during the training of what
speaker-dependent (SD) models look like. It will attempt to find the few speaker char-
acteristics in the transformed Eigenvoices space. These will then be mapped back into the
seemingly high-dimensional space.

In the next section, we show in more details how the process is carried out.

3.3.2 Algorithmic Overview

The process is shown on Figure 3.2. There are two phases: in the first one, the goal is to
collect prior knowledge. In the second one, this prior knowledge enacts better modeling of
unseen speakers. Those two phases correspond to training and decoding phases of a speech
recognition system.

Training Eigenvoices

We explain how to acquire prior knowledge necessary for better estimation of models.

Training speaker-dependent models. Observing models is crucial to Eigenvoices. Dur-
ing this phase, we train speaker-dependent models. For all speakers available at training
time, we train a speaker-dependent model. They are converted into supervectors as shown
on Figure 3.3. These serve as observation samples for PCA.

SD models are trained through pure MAP, or MLLR, depending on the amount of data.
It is the collection of adaptation experiments that will teach Eigenvoices what is expected
during an adaptation procedure.

Once all SD models are trained, we can build models for speaker variability. We shall
compare these models to get an idea of how inter-speaker variability affects HMM param-
eters.
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Step 0: observe SD models
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Figure 3.3: Supervectorization of model mean parameters
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Reducing dimensionality. Having thus collected SD models, we shall extract the Eigen-
voices: they span the space of speaker variability. With the collection of speaker models,
we are able to discern a linear pattern hidden in the high-dimensional space.

This is done through dimensionality reduction (DR). In early experiments, we have
been using PCA [Jol86], which is known under a variety of names, such as the Karuhnen-
Loeve transformation (KLT) or singular vector decomposition (SVD).

PCA is applied to the set of SD models. The KLT maps high-dimensional parameter
vectors into a smaller speaker characteristics space. High energy components correspond
to the Eigenvoices. Low energy components are discarded, provided that noise is of low
energy. This mapping filters out errors in the estimation of SD models. The resulting
space is called the speaker space, or Eigenvoices space. Each vector generating the basis
is referred to as an eigenvoice or eigenvoice vector.

Optimizing Eigenvoices. As we will see later, PCA might not yield an optimal set of
principal components. It is possible to re-estimate these vectors in a Baum-Welch algo-
rithm. KLT is not optimal because it seeks to minimize the Euclidean distance between
supervectors, which is related to, but not equal to the ML criterion. Other criteria than ML
might be considered.

Deploying Eigenvoices

Once these principal directions are obtained, they will form a framework of prior know-
ledge into which new models are expected to abide.

When a new speaker is presented to the system, we will assume it to lie in the speaker
space.

3.4 Estimation problems in Eigenvoices

We will now approach the problems of optimal estimation during all steps of the Eigen-
voices approach. In the remainder, we will only adapt the means of Gaussians. Adaptation
of the variances is an open problem.

‘We will proceed in an order that differs from what we have used before. We shall begin
with the simplest problem, that also serves as a basis for later stages.

We describre two algorithms:

1. MLED: this addresses the estimation of the location of a speaker within the Eigen-
voice space.

2. MLES: this optimizes the Eigenvoice space with respect to the likelihood.

These algorithms aim at overcoming a discrepancy between least-squares and HMM
likelihood.

34.1 MLED

In the following, we attempt to locate a speaker within the Eigenvoice space.

The algorithm called Maximum Likelihood Eigen-Decomposition (MLED) was derived
prior to this thesis [Ngu98]. The cited reference also analyzed effects due to unseen models.

The problem may be stated as follows. We place ourselves in the decoding step of
Eigenvoices. The SI model and speaker space were derived prior to this situation. An
incoming speaker is presented to the system, which must then build a speaker-dependent
model from some adaptation data o;,t = 1,...,7. This is done conveniently via the EM
algorithm. The updated mean of each Gaussian component m is:

Mhm = Zweu((am). (3.68)
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The () function is defined as [Gal97b]:

E E
1
Q= 2 Z'Ym(t)(ot - Z weul™)T Ry (0 — Z weu™). (3.69)
m,t e=1 e=1

This is only the fraction of the expected log-likelihood associated to the mean parameters.
Transition probabilities, mixture weights, and more importantly variances may not be opti-
mized using this incomplete function. Specifically, variances may not be optimized due to
the presence of the log determinant (see Section 4.2). Define a D x E matrix:

U = [u{™..u{™). (3.70)

This is the portion of the eigenspace that corresponds to the Gaussian component m. The
@-function may be rewritten as:

Q@=L Y (001 — Ut Bt — U G
m,t

We aim to estimate the speaker parameters w.. This is done by differentiating (eq. 3.71):

0Q T
o= ;%(t)UmRm(Ot — Upw) =0. (3.72)
The solution is:
-1
w = (Z fym(t)Uff;RmUm) > Am(OUE Rimor. (3.73)
m,t m,t

3.4.2 MLES

This algorithm aims at optimizing the Eigenvoice space with respect to the likelihood cri-
terion.

The eigenspace U,, extracted from PCA might not befit the likelihood criterion: this
is due to a discrepency between likelihood and least squares criteria. The eigenvoices
space might be re-estimated in the EM-algorithm. The Maximum Likelihood EigenSpace
(MLES) algorithm specifies a solution that maximizes the eigenvoices vectors with respect
to the likelihood of adapted speakers in the training data. The dimension of the eigenspace
E, is supposed to be fixed statically by the system designer.

Procedure: The algorithm must be understood as an extension of the Baum-Welch algo-
rithm. Let U be the eigenspace, which is the variable that we seek. To achieve this, we
proceed in four steps:

1. We define the likelihood to be optimized. It is the aggregation of all speaker-dependent
likelihoods.

2. We have an insoluble problem, in which we can discern: observation data (speech,
transcriptions, speaker ID), and completion data (segmentation, location of speakers
in Eigenvoices space). The completed data is the union of both.

3. We apply the EM algorithm, taking the expectation over the completion data.

4. We approximate the problem to achieve a tractable equation, and solve it.
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First, let us define the likelihood [(O; U). It is the probability of the training data given
the model U:
1(O;U) = p(O|U). (3.74)

The training data is O. The HMM models are developed using U. We have a partition of
the training data O = (04, ..., Oy, ..., Op) which splits the training data amongst speakers.
Each subset O, corresponds to the speech of one given speaker q. The subsets O, are
assumed to independent of each other:

B
1(0;U) = [[ p(O,|U). (3.75)
qg=1

This is impossible to solve directly. The observation data (O, and their labels) is in-
sufficient to solve the problem. We need to complete the problem with more data, which
is unobserved. The unobserved data, or completion data, consists of the segmentation and
of the location of speakers in Eigenvoices space. In Baum-Welch, the completion data was
the segmentation: it will be called ~. It is now augmented with the location of speakers:
they are referred to as wy.

We use the EM algorithm [DLR77]. We begin with an initialization of the space Uj.
We complete the data using the expectation conditional on this model:

Q@ =Elogl(O;U)|Up, O = ZE%“’q log p(Og, wq, ¥|U)|Ug, Oy. (3.76)

q

We can develop the expectations w.r.t the speaker location:
Q= ZE [/dP (wq, ¥|Uo, O )logp(Oq,y,wq|U)|U0,Oq]. 3.77

This is still not tractable, due to the joint expectation of v and w,. We can use the maxim-
ium instead of the the expectation:

Q= anluax{Elogp(Oq,%wq|U)|U0,Oq}. (3.78)
q q

The bracketed part is the same as the log-likelihood found by Baum-Welch, at the particular
wg where it is maximum. It is proportional to the () function, of equation (eq. 3.69),
evaluated at the MLED estimate (eq. 3.73):

Q=Y Quueo (3.79
q

It is possible to arrive at this same result by alternating EM with speaker location and EM
with segmentation. Therefore, the rule of the thumb is to use to estimate and use MLED
value for all speakers during the training of U.

Derivations: Replacing Qmep With its value (eq. 3.69):
Qo —5 Z Z AWD () (pm — 01)" R (m — 01)- (3.80)
with as usual:
i) = Z weul™ (3.81)

For the sake of simplicity we will drop the index g from u%), 7,(,;”( t) and wy.
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If covariance matrices are diagonal, rows v ,J = 1...D of the eigenspace are indepen-
dent:

of

Un=1:]. (3.82)
vh

Each row is a vector of type £ x 1. The speaker-adapted mean is:

M1 vof
p=|:1=1:|w=Upw. (3.83)
Hd ’Ug

Differentiating () with respect to every row v;, j = 1...D,

) 10 D
@—QF@T > ()Y (na —o0a)’ra (3.84)

Y Yi m,t,q d=1
== () (0] w — 0;)w, (3.85)

and therefore:
-1
= <Z ’Vm(t)wa> > Am(t)ojw, j=1..D. (3.86)
t,q t,q

A matrix of rank £ x E must be inverted and stored for every Gaussian of the sys-
tem [Gal00]. For D = E = 40, one would need store the equivalent of 41 times SI
models. In many applications, this is considered intolerable [Gal00]. We will concentrate
on more practical solutions.

MLES with Diagonal Eigen Correlation

One of the most useful features of the KLT is that dimensions are orthogonal (Section 3.2.2).

We transpose this assumption to the HMM framework: it is always true in the least
squares framework but not necessarily verified in the log-likelihood framework. We will
assume it is almost true. This means that the matrices are almost diagonal:

2
wi 0

Z’ym ww” (Z Y (t ) > wu” = (Z ’ym(t)> >
q t,q q 0 w2
E
(3.87)
Intuitively, it is the same as assuming that speaker characteristics are independent of each
other. For instance, if w; is the gender, and w- is the speaking rate, we assume that gender
has no effect on speaker rate, and vice-versa. As we shall see later, the “transposition” of
the concept of orthogonality may be done in a mathematically sound framework if some
modifications are applied during the PCA reduction.
The equation (eq. 3.86) can now be solved with minimal cost.

MLES with independent updates

It is possible to achieve an exact solution by updating each Eigenvoice column vector u;
one by one. Let:

Un = [u1, ..., ug]. (3.88)
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The vector u; is of type D x 1. Means will be updated as is:
p=> wyu. (3.89)
k

Differentiating the ) function for each u; yields:

oQ

5= D m(B)w; B (1 — 01) (3.90)
U ta
= m(t)w; (Z Wi, — ot>. 3.91)
t,q k
Define the complement estimated mean, @ to be contribution of all other u, k # j:
iy =) wyuy. (3.92)
k£j

If we are interested in updating only the vector u;, then:

uj = (Z vm(t)w?>_ Z'ym(t)wj(ot —Uy). (3.93)

This formula can be used as it is, by updating each u; separately at each iteration, or when
we are reasonably close to the solution, by updating all «; in the same iteration.

This method will be preferred in the implementations. It is more exact than the previous
approximation.

3.4.3 Maximum-likelihood dimensionality reduction

It is possible, with certain assumptions, to apply the SVD algorithm in optimal conditions
under the maximum-likelihood criterion.

The SVD operates on vectors using the least-squares criterion. It coincides with like-
lihood if the assumed pdf is a Gaussian with unit variance. We shall develop this point in
the next section.

3.5 Gaussianisms and least-square equations

In this section, we will establish the relationship between the posterior probability of MLLR
and Eigenvoice estimates as the likelihood equations.

We prove that MLLR and MLED estimates are Gaussian We show that the Gaussian
log-likelihood is a special case that is related to squared error.

I apologize for my abusive inflections of Gauss.

3.5.1 Gaussianity of MLLR rows

We take a closer look at the distribution of the rows of the MLLR matrices, or MLLR rows.
A very important component of the next developments is the assumption of Gaussianity
of MLLR rows. We show that the posterior probability of MLLR rows is itself Gaussian.
This may be understood by the fact that MLLR rows are multiplied by Gaussian means,
and since they are a linear combination of Gaussians, then they are Gaussian themselves.
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MLLR: MLLR is described into details in [LW95b]. We reproduce the key derivations
here. Throughout this thesis, we will assume one global matrix. The extension to multiple
matrices is trivial. In MLLR, the means p of Gaussian components are transformed via an
affine transformation W:

w=W¢, (3.94)
1

C= ||, (3.95)
Ho

where ( is called the extended mean vector, and p is the original mean, usually is the SI
model. Maximizing the likelihood of W corresponds to maximizing the objective func-
tion Q:

Q= t;vm(t)(u = 01)" Rin (1t = 01). (3.96)
We usually assume that covariances are diagonal with elements rq:
_ 1 3 2 3.97
Q—_§§Vm(t);rd(ﬂd_0d) ; (3.97)
with:
[ 11
pw=1:1, (3.98)
| D
o,
=111, (3.99)
_OD
(71 0
Ry, = . (3.100)
K rD

We see that each row contributes to the () function separately. The affine transformation
matrix W is constructed as:

W=1:]. (3.101)
wh
Each row w? contributes to the log-likelihood function @ with a row log-likelihood Qg:
1
Qu=—3 > vm(t)ralpa — 0a). (3.102)

t,m

The ML estimates y_ for the rows w? are well known. They satisfy:

Ya = arg max Qq. (3.103)
ya = Gy 24, (3.104)
Za=Y_ Ym(t)raoaC, (3.105)

t,m
Ga=Y vm(t)racc’. (3.106)

t,m
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Posterior distribution of rows wl: We will now show how wg vectors are distributed.
We start again from (eq. 3.102):

1
Qu=—3 > vm(t)ralpa — 0a). (3.107)

t,m

Replacing (eq. 3.94 and 3.101) into (eq. 3.107):

1
Qu=—3 > vmE)ra(wy ¢ — 04)’ra (3.108)
t,m
1
=3 > m(t)ra (<w§<)2 —204¢Twq — 03) (3.109)
t,m
1
=3 > m(t)ra (wgggde —204¢Twg — 03> (3.110)
t,m
1 1
= —§w5 ( ;n: 'ym(t)rdCQT> wq + (;n: 'ym(t)TdonT)wd — §ﬁ. (3.111)
where [ is a constant. We replace quantities y4 and G4 (eq. 3.105, 3.106) into (eq. 3.111):
1
Qq = -5 <w3{ded — 228wy + ﬁ) (3.112)
1
=-3 <wZ;ded — 2G gy wg + ﬂ) (3.113)
1
=3 ([wd —ya)" Galwa — ya) + 5'>' (3.114)

where 3 is another constant. We recall that Q is the expected log-likelihood given wy:
Qa4 = Elogp(Olwg). (3.115)
When there is no proper prior distribution for wg, Bayes’ rule yields:

Elog p(wq|O) = Elog p(Olwa) + log p(wa) — log p(O) (3.116)
= Elog p(O|wg) + B (3.117)

where 3" is a constant. The equation may be extended to conjugate priors of wy (elliptic
distributions [Cho99]).

The functional form of (eq. 3.114) is clearly quadratic, meaning that, conditional of the
observations, transformation rows are Gaussian. This is an important step towards relating
least squares with likelihood objective functions.

The mean and covariance of the distribution are yq and G} ':

p(wa|O) O<N<yd,G;1) (3.118)

The mean y4 is the MLLR solution. The precision increases proportionally to the number
of examples, which is the best achievable performance (Cramer-Rao lower bound for the
variance).

3.5.2 Gaussianity of Eigenvoices estimates

This section establishes the Gaussianity of eigenspace location w, which will serve as a
basis for Section 6.3.
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The demonstration is similar to that of the previous section. Once again, we start with
equation (eq. 3.96):

Q--3 > (8= 00" R =00, (3.119)

Means are updated given the following equation:

p=Upw. (3.120)
Substituting into (eq. 3.96):
Q= —% > Y () (Umw — 0¢)" Ry (Unmw — ;) (3.121)
t,m
_ 7% S () <wTUZ,;RUmw 20T Ry U — otTRmot>. (3.122)
t,m
We define the quantities:
G=> YU} RmUn, (3.123)
t,m
2= Ym(t)UkLRmor, (3.124)
y= gflz. (3.125)

In particular, y coincides with MLED (Section 3.4.1), as defined by (eq. 3.73, p. 25)
The quadratic exponent is becomes visible again when we introduce the quantities into
(eq. 3.122):

Q-1 <wTGw 0Tt ﬂ) (3.126)
= (w9 Cw—y)+ 7. (3.127)

where (3, 3 are constants.
In the absence of prior, or, with small modifications, with Gaussian priors, then we can
state:

p(w]0) ocN(y,G_1>. (3.128)

The eigenspace location w is Gaussian. The mean of the Gaussian is called the MLED
estimate Trivially, its conjugate prior is also Gaussian.

3.6 Root modulation

In this section, we will present the formulation that allows the use of PCA in the HMM’s
ML framework. It is based on a normalization of the variables called root modulation.

3.6.1 Optimal subspace regression

We now show that PCA may be applied to yield maximum-likelihood estimates with the
following remarks:

1. The posterior probability of Gaussian mean, or MLLR rows, is Gaussian (Section 3.5.1).
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2. Maximum-likelihood estimation is equal to least-squares estimation of the means
when variables are Gaussian with equal variances (Section 3.2.4).

3. Pythagoras’ theorem is equivalent in divergence and Euclidean frameworks (Sec-
tion 3.2.4).

4. The source of variability is assumed to be an isotropic variable: we will see it in
Section 3.6.1-3.6.1.

MLLR subspaces

We will apply PCA to observations of MLLR rows, as defined in Section 3.5.1. In Sec-
tion 3.3, we applied the dimensionality reduction to the means of the models themselves.
As noted by Gales [Gal00], in LVCSR, the eigenvoices constitute a signficant amount of
data that may be considered intolerably large. For instance, an eigenspace of £ = 100, for
the BN task (Section 8.3) will take 500 MB (Mega Bytes of computer memory). There-
fore, we replace supervectors constructed from HMM means of Gaussian components, by
the supervectors constructed from MLLR rows. Because we have showed that MLLR rows
are Gaussians, and because mean parameters are also Gaussian [GL94], it is trivial to go
from MLLR to Gaussian mean parameters.

From Q) to ¢

In this section, we extend the case of homoscedastic Gaussians to MLLR rows (Sec-
tion 3.2.4) to the HMM framework.

The objective function in the HMM-MLLR transformation is the sum of all likelihood
of all speakers ¢, as defined in Section 3.5.1. We sum (eq. 3.114) over all dimensions d of
all speakers g:

Q= -3 Z(wC(IQ) _ yC(IQ))TG((;I) (w((itI) - y((;I)). (3.129)
q,d

The transformations rows w7 are the random variables. The transformation mean y((iq) and

covariance G((f’) are defined in (eq. 3.104-3.106, p. 29). We would like to transform this
equation into a least-squares problem, as in (eq. 3.10). Let us define the supervectors w,
and y,4, and super covariance as usual. The supervector for the mean is:

'w@_
wéq)
wg=|"""1|, (3.130)
i |
and the ML mean:
[]
ys?
y=1""1, (3.131)

(a9)
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with covariance:

Gy = : (3.132)
0 aly

The MLLR super mean vectors w, and ¥, are defined for each speaker, and are each of
type D(D + 1) x 1. Each Gy is a block-diagonal matrix of type D(D + 1) x D(D + 1),
with each block of size (D + 1) x (D + 1). Replacing into the @) function of (eq. 3.129),

one sees:
1

Q= -3 Z(wq - yq)TGq(wq ~ Yq)- (3.133)
q

It is still not a homoscedastic problem, since G4 matrices are not shared amongst speakers.
Even if speakers are supposed to behave the same way, this may not be assumed if they do
not speak the same content in the adaptation sentences.

Root modulation

We therefore propose a normalization scheme that will map us back to the least-squares
domain. Let us look again at the functional form of each submatrix G4 (eq. 3.106):

R U
Ga=Y m®)raC¢" = ym(t)ra |- S (3.134)
t,m t,m : T
1p o iy
Except for the weighting v,,,(¢), there is nothing in G4 that is learned at adaptation time.
It is merely a regularization matrix that cancels the SI precision r4 with the autocorrelate
of SI means y,, X . Therefore, G4 is merely a reflection of the linguistic content observed
for the speaker, and is speaker-independent.
Therefore, we will assume that G4 may be computed relatively reliably. We proceed to
transform supervectors wy, 34 into:

By = GEwg, (3.135)
1 1
Jo = Giyg = Gy 2. (3.136)

We call this normalization the root modulation because of the root of the precision is in-
volved. The transformed space is called the root space. Since this is a transformation of
models, it is a pure algebraic change of variables that does not affect the log-likelihood
of HMMs. Nonetheless, the posterior of the transformation must be multiplied by |G|
(for more information, see Chapter 4). Since we are not modelling covariances, this is a
constant term that is ignored.

Remember that w, is the approximated mean, and y, is the exact MLLR estimate.
Since w, and g, have been normalized by the expected standard deviation due to linguistic
content, they are called linguistically normalized supervectors.

We substitute these vectors into (eq. 3.133):

1

Q= 3 Z(wq - ﬂq)T(wq — ¥q) = —2¢. (3.137)

q

We have reached the functional form of (eq. 3.2, p. 15), which defines a least-squares
problem.
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In the root space, the least-squares criterion coincides with the expected log likelihood.
We can use PCA under optimal conditions to reduce the dimensionality of the space. Eu-
clidean projections are also available under an ML criterion. We shall develop the Eigen-
voices estimation framework again. This time, however, estimations will be exactly the
same as Euclidean projections.

Root disambiguation

The usual definition of A2, when A is a positive definite symmetric matrix is related with
its eigen-decomposition. That is,

A=MAMT, (3.138)
Az = MAzMT, (3.139)
Az = A%, (3.140)

The matrix M is square an orthogonal. The matrix A is diagonal, and its exponentiate is
assumed component-wise exponentiation.

It is possible to use any other normalization scheme in (eq 3.135,3.136). The root matri-
ces are defined up to any rotation. For instance, one could use a Cholesky decomposition.
The rotations have no effect on the objective function. However, if we believe that the
source variables, after transformation, are isotropic normal, then the definition (eq. 3.139)
must be used. We will always use this restriction.

3.7 Re-estimation in the root space

In this section, we solve the three fundamental problems of estimation in Eigenvoices esti-
mation in the root space:

1. How to estimate speaker-adapted models.
2. How to reduce the dimensionality.
3. How to reestimate eigenspaces in the Baum-Welch framework.

The root modulation was defined as:

1
Wy = GEw,, (3.141)
1 _ 1
Jg=GElyy =Gy 2, (3.142)
The precision matrix, G, is:
S
GdZZ’Ym(t)rd . (3.143)
1p Nmﬂ%

It is believed to map variables into a space that is independent of the linguistic content of
the utterance. The linguistic content defines what the speaker said during the adaptation
phase. Indirectly, it defines what Gaussians will be hit. Although there is a correlation
between linguistic content and speaker identification in some tasks, for practical purposes,
we can safely ignore it.

The root modulation was shown to turn the likelihood equation into a least-squares:

_ 22 W) — @Y G () _ () 22 g — Tq)- (3.144)
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3.7.1 The estimation of speaker-adapted models

Now, we find best location of a speaker model in the speaker space (MLED). We will see
that it is a simple Euclidean projection. Suppose that we have found a linear subspace U in
the root modulated space. It was trained off-line.

We are now concerned with finding the best speaker-adapted model that lies in U. A
speaker is presented to the system. The E-step of the EM algorithm is performed. We have
to maximize the following auxiliary function with respect to ,:

1, L
Q=-5-9"@-7), (3.145)
subject to the constraint:
W = UW. (3.146)

¥ is a vector of size F x 1 that characterizes the location of the speaker in the eigenspace.
The solution is found by projecting y onto U as in (eq. 3.9). We differentiate (eq. 3.145)

w.r.t. J:
_ — — v —
Qﬁ =-UT(Uv—4)=0. (3.147)

This is solved by the familiar Moore-Penrose inverse:
9 = (UTU)"UTy. (3.148)
Replacing with definitions (eq. 3.146, 3.141, and 3.142),
w=U9=UUTU)uTy, (3.149)
w=G UUTU) " 'UTGry = G :UWUTU) 'UTG 3 2. (3.150)

Since the matrix G is block-diagonal, we can decompose each (D+1) x (D+1) subsystems
of equations. Let U; be the eigenspace that corresponds to dimension j. Each row is found
separately:

w; :G;%Uj(UTU)*lUjTGf%zj. (3.151)

By construction, UTU = I if no re-estimation takes places. The equation may be reduced
to: . S
w; =G, 2U;U; G722 (3.152)

Therefore, The estimation of speaker-adapted models reduces to:
1. Normalization into the root space: G~ = 2j.

2. Projection: UjUjT.

[N

3. Re-normalization into the original space: Gj_ .

3.7.2 Dimensionality reduction

This section parallels Section 3.2.2. We observe a number of speaker-adapted models in
the training data. We mean to use PCA for:

e Removing noise due to unreliable estimation of the observed speakers.
e Reduce the dimensionality of the space in order to

1. Decrease the number of parameters to estimate, and therefore increase the reli-
ability of the estimate (see Section 3.1.2).

2. Reduce the run-time requirements of speaker-adaptation.
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The observed speakers g, are collected in the root space. The likelihood of speaker-
adapted training is given in Section 3.6.1, (eq. 3.137):
1 . N - -
Q= 72(% — Gg) (g — Tq). (3.153)

q

We must relate it with Section 3.2.1, (eq. 3.2):

B
e=B" (k- yi) " (ar — i), (3.154)
k=1

which was the foundation of the least-squares PCA in section 3.2.2, (eq. 3.16):

arg mUins = argmax wrUTVAVTU. (3.155)

The dimensionality reduction step is therefore summarized as:

1. Collect all supervectors wWg.

2. Form the observation matrix X = [y, ..., Wa).
3. Compute the SVD of X = UAVT,

4. Keep only the desired number of ' < T eigenvectors in U.

3.7.3 [Eigenspace re-estimation

The resolution of unity is central to PCA. It allows us to remove the mathematical burden
associated with the matrix determinant (Section 4.2). It might be desirable to alleviate
the constraint, and re-estimate the eigenspace in the Baum-Welch framework. This is the
equivalent of MLES. It is also useful when the eigenspace is not inferred from correlations,
but learned from arbitrary eigenvalues.
Suppose that we have collected eigenspace locations ¥, for all speakers in the training
database. The goal is to optimize (eq. 3.137):
Q= _% Z(wq - gq)T(wq - qu)- (3.156)

q

We define each row of the eigenspace uq:

ui
U= : . (3.157)
ungl
The transformed vectors are:
ul
w=Ud = : . (3.158)
ug;rlﬂ
Differentiating the Q) function (eq. 3.156):
D+1
= 3 > 3 (0n -7 (3.159)
19 D+1

= T - T ~
T Eq: d; (ua¥¥” ua — 294 Ja) (3.160)
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and thus: .
uj = (Z ﬁqﬁqT) > - (3.161)
q q

The eigenspace is therefore summarized more compactly as:
-1
U= (Z ﬁqﬁqT> Zﬁg" ® 7. (3.162)
q q

3.7.4 PCA vs. MLES

Since we have rwo different algorithms to estimate the eigenspace, it might not be clear
whether or not they are redundant. In other words, after PCA, is there any gain of applying
MLES? The central distinction is the same as that between projection and transformation.
PCA uses an SVD decomposition of the covariance matrix. The SVD yields orthogonal
transformations, whereas MLES is not constrained to orthogonality. This point, as seen in
Section 4.2, introduces considerable mathematical complications.

ML-SVD MLES
SI Model-space eigenspace of fixed dimension £ @———
E-steps E-steps
M-step
NN N NN N

S1 Sy Ss3 Segmentations S1 Ss Ss

* * # local M for SD

M-step A1 A2 A3
/N /7N /7N local E-step
S1 Sa Ss

eigenspace

vy

A1 A2 A3

E-step on eigenspace

sufficient statistics for the eigenspace

Figure 3.4: Trajectory of the Eigenspace estimation

Table 3.1 summarizes the differences between the algorithms. On Figure 3.4 we can see
that the trajectories are different. The main difference is the resolution of unity. The SVD
yields an orthogonal decomposition, and the positions of speakers are implicitly determined
using (eq. 3.9, p. 16). In the MLES framework, the projection process is separated from
the estimation of the eigenspace. Therefore, it is possible to learn arbitrary knowledge by
setting speaker locations manually. Also, the eigenspace is not necessarily orthogonal.

3.8 Discriminative approaches

Until now, we have been using PCA as the dimensionality reduction. It will minimize the
encoding error, and is suitable for regression tasks.
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| Characteristic | MLES | SVD

Sufficient statistics projections of speakers all speaker models
O(E x P) O(B x P)

Dimension of the eigenspace fixed: I B—FE

Projective EM steps Alternates between segm- | Only a projection of SI
entation and speaker to SD spaces

EM hidden variables Segmentation and segmentation given SI
speaker location

Resolution of Unity Non-orthogonal basis UTu =1

Can introduce External knowledge || Yes No

Table 3.1: Features of MLES and ML-SVD

However, the optimality of PCA is contested in classification tasks. We will tailor the
model-reduction technique to classification tasks.

3.8.1 Speaker-adapted models and discrimination

It is well accepted, but very rarely used, that speaker-dependent speech exhibits more dis-
criminative properties (see Section 5.4).

We are interested in designing a system that learns speaker-dependent phoneme dis-
criminative models. It can be understood as an SAT-MMIE scheme.

3.8.2 Fisher discriminant

Fisher’s discriminant is the most popular objective function. It leads to the notorious LDA
technique. We will describe LDA as an extension to PCA. Then, we define a new discrim-
inative criterion based on MML.

PCA: a review

Let us use the notations set forth in Section 3.2.2. We have a collection of samples x;. We
are interested in finding a linear reduction matrix U, such that the squared error (eq. 3.10)
is minimized:
e=> llox — UU x| (3.163)
k
We found out that it was also closely related to the eigen-decomposition of the autocorre-
lation matrix (eq. 3.16):

arg mUins = argmax wUTVAVTU. (3.164)

This was also found to maximize the likelihood in certain conditions (Section 3.6.1). What
is important to note in this equation is that the estimation of the ML projection is equivalent
to the maximization of the trace of the projected autocorrelation. In the remainder, we will
refer to the optimization of matrices as the maximization of the corresponding projected
trace criterion.

We will move on to methods that take into account class discrimination.

LDA: introducing class discrimination

Let us, for the purpose of argument, assume that we segregated speaker models xj, into
classes. For simplicity, we will have an equal number of samples associated to classes.
Classes will be equiprobable. Suppose furthermore that we are also interested in separating
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these classes. It is not appropriate for a speech recognition task, but it is a plausible scenario
for gender-classification or speaker identification.

In Fisher analysis [DH73], we identify two matrices that describe regression and dis-
crimination about the training samples. The within-class matrix is defined as:

c

Sw=_Se, (3.165)
c=1

S, = Z(:r] —me)(z; — me)T. (3.166)
jEc

Each S, is the covariance within one class. The vector m, is the mean of the class c.
Maximizing S,, is good for regression.
The between-class matrix is:

Sy = _(me—m)(me —m)". (3.167)

c

The vector m is the total mean.
The LDA maximizes the Fisher discriminant J [DH73]:

J =1S,'Ss|. (3.168)

The criterion reflects the balance to strike between both conflicting interests: pure regres-
sion which attempts to model phenomena as precisely as possible, and pure discrimination
which merely attempts to separate training examples. The equation may be reduced to
an SVD problem. This will not help speech recognition, however, and we will define the
classes differently. The question that also remains is whether this minimization is appro-
priate according to divergence measures.

Appropriate classes for ASR

In ASR, we are not so much interested in distinguishing speakers, but rather, between

phonemes. The discrimination is measured within one model. We will define two matrices.

One corresponds to the regression problem. The other one does not correspond directly to

pure discrimination. The deviation of this matrix from ML simulates model confusion.
The within-class matrix will be defined as usual, as in (eq. 3.155):

Sw =VAVT. (3.169)

The between-class matrix S, will be defined the same way as S,,. However, instead of
using forced alignment, a decoding pass generates a lattice or NBest list. Statistics are
collected using the posterior probabilities [WPOO].

3.8.3 MAP, deleted interpolation, and ML

We now introduce the equivalence relationships between MAP, deleted interpolation (DI),
and ML. By definition, MAP with conjugate priors defines a problem that yields an ML
problem with a discounted penalty. In the Gaussian framework, the conjugate prior of a
mean is also a Gaussian [GL94, GL92]. The MAP solution is:

MAP = (zt: Y (t) + r) - [Zt: Ym (t)0s + Tuo] : (3.170)
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where 7 is a hyper-parameter that specifies the confidence on the prior in number of frames.
The prior mean is 9. The objective functions are:

QML———Z% p— o) Ry (p — or), 3.171)

1
Qo = —§(M — po) "Ry — o). (3.172)

The final MAP objective is:
Qmar = QmL + 7Qo, (3.173)

and the MAP solution is that of a quadratic function optimization:
MMap = argmax QMmAP- (3.174)

Similarly, the deleted interpolation (DI) formula is:

por = 1a<2wm ) va o + ap. (3.175)

It can be traced backwards into an ML problem:
T
Qo= —= va [ 1—a)o + aug — ,u] c! [(1 —a)oy + apg — p|. (3.176)

With a carefully selected interpolation weight, deleted interpolation performs only slightly
worse experimentally than MAP [Ngu98].

In other words, MAP and DI can be recast as a modified ML problem, where we inter-
polate either the sufficient statistics (MAP) or the observations (DI).

3.8.4 MMI discriminant
We endow the MMI formulation with PCA.

A quick review. For ASR, discriminating between speakers is irrelevant. We seek models
that maximize, per speaker, the MMI criterion [BBASM86, NNP88, Val95]. Let us employ
the notations of Section 3.4.2 for the partitioning {O4} of the training data. Let also w, be
a MLLR super mean vector defined in Section 3.6.1, with associated eigenspace U. Finally,
let YW be a possible transcription for O,. A sentence Oy uttered by a speaker w, using word
sequence WV has a joint posterior probability:

P(Og, wq, WIU) = p(Og, we|U, Wy)p(W) 3.177)

where p(W) is the language model, for best results set to a unigram [WP00]. The correct
transcription for utterance Oy is W,.
The MMI criterion is:

1 J dwy p(Og, wg[Wa, U)p(We) (3.178)

- q fdwq pr<0q,w|W, U)p(W)'

The criterion has a numerator and a denominator. It behaves much like (eq. 3.168): the
numerator is an ML regression objective, and the denominator helps discrimination. In the
log-domain, we have:

H=Y" llog/dwqp(oq,wqw) _ log{/dw%:p(Oq, W,w|U)}

q

(3.179)
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The maximization of criterion (eq. 3.179) has no closed-form solution. If we just follow
the gradient, we have a DI formulation [SMWN99]. Normandin [Nor91] uses Gopalakr-
ishnan’s inequality [GKNN89] to devise a fast gradient descent. The results are formalized
to continuous densities by Gunawardana [GunQOla]. Define the statistics collected for the
numerator as -y, (t) with observations o¢, and the statistics associated to the denominator
Am (t) with observations 6;. The final formula for the SI case is:

-1
p= (E )= im0 47) [ 00~ 7000 + 70 @150

t

The parameter 7 is the size of the gradient step, which is large enough to ensure positivity
assumptions [Gun0Ola]. The ML mean is py.

MMI optimization The gradient descent can be cast a minimization problem, such as
the least-squares PCA problem of (eq. 3.12 p. 16). The equation (eq. 3.180) can be traced
backwards as a MAP estimate in the form of (eq. 3.173) where the prior mean is po with
weight 7 and the estimates are the difference between observations and unconstrained ob-
servations. Let the ML (numerator), unconstrained decoding ML (denominator), and prior
functions be respectively:

1

Qui. = =5 3 m0) =00 Ry~ 00), (3.181)
~ 1

Qu. = =5 3 imt) 1 =00 Ryl (1 = 00), (3.182)
1

Qo = —5 (1= o) "Ry (1 — pro)- (3.183)

Up to a constant, these functions are:

1
QmL = —§tr Sw = E7/dwq log p(Og, wq, We|U)p(Wy) (3.184)
~ 1
QmL = —§tr Sy = E7/dW /dwq log p(Og, wq, WU )p(W) (3.185)
Qo = E%W/dwq log p(Og, wq, WIU) (3.186)

At each gradient descent step, the MMIE solves the equation:

UMMIE = arg m;?x [QML — QML] +7Qo, (3.187)

which is equivalent to (eq. 3.174), which in turn is equivalent to an ML problem such as
that of (eq. 3.96). This means that the function (eq. 3.179) may be solved iteratively with
the minimization of the objective function Qv at each gradient step:

_ 1
Qv =QmL — QmL +7Q0 = —tr [Sw — Sb] +7Qo. (3.188)

Algorithm. The criterion (eq. 3.188) is not exactly the same as the Fisher discriminant
(eq. 3.168). The discriminative algorithm is almost the same as standard PCA-based eigen-
voices:

1. Collect statistics for the numerator lattices S,.

2. Collect statistics for the denominator lattices Sp.
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3. Add a discounted matrix corresponding to (g, which is the original Eigenvoices-
PCA matrix.

4. Decompose using the SVD.
5. Iterate until convergence (S, &~ Sp in trace or some threshold is met).

This is a speaker-adaptive MMI algorithm. Note how ) functions may be traded with ma-
trix traces: this is the result of the least-squares criterion being equivalent to ML. We have
shown that in MMI each gradient step can be written as a quadratic function minimization,
which in turn is equivalent to a maximum-likelihood estimation.

3.9 Piecewise linear decomposition

Because of its simplicity and the presence of closed-form solutions, the linear assumption
has proven very effective in many pattern regression problems. However, the linearity
constraint has no legitimacy. In this section, we investigate a simple non-linear model.
Non-linear regression takes on the assumption that dimensions depend on the location of
the speaker. In the simplest case, we would assume for instance that loudness of speech
depends on the speaker’s gender.

There are many alternatives to linear regression. We will simplify the framework as
much as possible. We will restrict the model to a two-level hierarchical piecewise linear
regression. There is one level of location-independent parameters (gender, accent, ...), and
one location-dependent level (loudness, pitch, ...).

3.9.1 Scalar piecewise linear curves

+-
-
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Figure 3.5: Piecewise linear approximation in the scalar case

Before explaining the full model, we first examine the simple scalar piecewise linear
approximation. Let us suppose that we would like to model a function f(6). The function
is drawn on Figure 3.5. Ultimately, the function f(-) represents HMM model parameters.
Alternatively, it can be MLLR rows. The parameter @ is the eigenvalues vectors.
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In the linear approximation fi;, we find a U € R such that:

fu(0) =~ f(0), (3.189)
in the least squares sense, or:

U= argnbin/dep(e)HUe — ()|, (3.190)

where p is a probability measure on 6. The scalar U is the eigenspace. There are many
alternatives to the linear approximation. We use the simplest case, which we believe to be
the piecewise linear approximation. We draw two segments: the first one stops at 6y, and
the gther one starts at 61, as drawn on Figure 3.5. The piecewise linear approximation will
be fu,,v»

5 Ui(6—6y) if6—6p <0,
for,0,(0) = { Us(0— o) it — 0y > 0.

The estimation of the function involves three parameters: U;, Us, and 6. More generally,
we have to estimate the fopology of the function, that is, how many segments comprise
the function. The topology defines the complexity of the function, and is dictated by the
amount of data and the non-linearity of the function.

There is no closed-form solution that estimates all three parameters Uy, Us and 6 si-
multaneously. However, one can use an iterative EM process. The estimation of U; and Uz
is easy once 0y is known. When Uy and U, are known, the estimation of 6y is easy, but only
in the scalar case. We will see that generalization to multidimensional linear boundaries is
more difficult (Section 3.9.5).

(3.191)

3.9.2 2 x 2-dimensional piecewise linear hyperplanes

Figure 3.6: Two-dimensional extension: linear in X and piecewise linear in Y’

The generalization of the scalar case is not trivial. Amongst all possibilities, we avail
ourselves of the simplest. The parameter  is now a vector of dimension 2, § € R2. The
function also results in a vector of dimension two, f € R? — R2. We show the extension
on Figure 3.6. We plot only the first dimension of the function. The criterion to optimize
is:

€= /dﬁp(@ [F(6) — F(O)IT[F(6) — f(0)]. (3.192)

We retain the topology: we have only two hyperplanes (previously segments). We de-
compose the 0-space into a location independent (high), 6, = 6, and a location dependent
(low) 6; = 05:

0 = [eh] ) (3.193)
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The location independent part is modeled through linear regression Uy as in standard Eigen-
voices. The location dependent is developed through a piecewise linear approximation. The
hyperplane boundaries are defined using 05, only. Therefore, the regression coefficients Uy
and U are of type 2 x 1. To avoid confusion, we call them U;; and Ujs. In general they
could be 2 x 2. The function is approximated thus:

;o Unby if 61 — 6y <0,
f=Unbr + { Upbs i 61 — 0y > 0. (3.194)

The dimension of Uy, is 2 x 1. Compared with a linear model, we double the storage size
for the location-dependent part of U (U;; and Uj2 need to be stored).

3.9.3 Binary £ x P piecewise linear hyperplanes

Now we extend the model to more dimensions. First, the function to be approximated,
£(0), is now taken to output P-dimensional vectors. In the HMM regression framework, P
is G D, the total number of parameters to model mean vectors of the HMMs. In the MLLR
framework (Section 3.5.1, discussed in 3.6.1), the total amount of parameters to model is
D(D+1).

Then, we extend the 6 vector to E dimensions. As in (eq. 3.193), we distinguish two
parts, 6, and 6;, corresponding to the location-independent and location-dependent eigen-
values. These vectors have dimensions E}, and Ej respectively, such that:

E=FE,+ E. (3.195)

Incidentally, as usual, the apparent dimension P >> E. The eigenspaces have dimensions
that agree: Uy, is of type P x Ej. Uy and Ujs is of type P x Ej. Again, there were other
ways to generalize, but we chose the simplest.

Finally, the hyperplane boundary region must be generalized. We choose a vector v €
R¥n, called boundary decision vector. Based on the negativeness of the boundary decision
function b, (6,):

by(0) = 6T v, (3.196)

we will consider ourselves on the hyperplane Uy or Uje. In this case, there are only two
possibilities, corresponding to the sign of 6. This is a binary decision and there are only
two hyperplanes.

Finally, the function approximation can be written as:

. { Un6p if by(0r) <0, (3.197)

f(e) = Unn + U6, if bv(eh) > 0.

We can match this model to the introduction: we have a set of location-independent
features 6. In the case when E; = 1, we have the gender. In this case the location
is determined by the gender. Then, we have location-dependent (or equivalently gender-
dependent) features, 6;, which determine variations of HMM parameters, based on the
gender. For instance, it could be the effect of pitch.

3.9.4 N-ary piecewise linear hyperplanes

Preliminary results on TIMIT showed that gender-dependent eigenspaces were performing
better than gender-independent eigenspaces, indicating a non-linearity. We would like to
ascertain whether there are more non-linearities to be discovered. Therefore, we generalize
again the binary piecewise model to more than two hyperplanes. This is done by intro-
ducing a combination of linear boundary decisions. We use a cascade of linear boundary
decisions. Limitations of this approach were discussed in the notoriously condemning book
by Minsky [MP69]. Hyperplane pieces are found by dichotomy.
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Figure 3.7: Boundary decision vectors and regions: v; differentiates regions R, Rg, Rs
from regions Ro, R7, R4, Rs.

Figure 3.7 shows an example of such partitioning. For our experiments, we chose
canonical boundary decision vectors:

0
: k — 1 times
0
vy = |1 (3.198)
0
: Ey, — k times
_0_

For the particular case of vy, it is equivalent to splitting according to the gender. The
regions are the quadrants of the eigenspace. We have a set of boundary decision vectors vy,
which we combine. Let the boundary decision functions by, be:

b (0r) = 0 vy (3.199)
In the example of the figure, we would have:
U6, ifbl(eh) > 0 and b3(9h) > 0,

= U206, ifbl(ah) < 0 and bz(@h) > 0 and bg(ah) > 0,

FO) = U\ 10y i bs(04) < 0 and bs(04) > 0, (3.200)

The model is now complete.

3.9.5 Estimation of parameters

As with the standard Eigenvoices, we are confronted to the estimation of three kinds of
parameters:

1. the initial eigenspaces and topology: this is the equivalent of Section 3.6.1,
2. the eigenspaces in the Baum-Welch retraining: this is the equivalent of Section 3.4.2,
3. the location of a speaker in the eigenspace: this is the equivalent of Section 3.4.1.

The first item is the extension of PCA. The second one represents speaker adaptive training.
They both have to do with the estimation of hyper-parameters. The third one is the actual
adaptation process whereby SI models are altered. For the logic of exposition, we answer
these questions in reverse order.
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Optimal location

Since we are in a non-linear framework, the solutions are not necessarily unique. In our
structure, the search is simpler. It is sufficient to apply the linear programming [Dan63,
Dan49, PTVF92] for each region and select the best:
1: for all regions k£ do
2:  Find the best location 6, of the speaker in the region, using MLED (Section 3.4.1),
and the simplex method [Dan49]. The eigenspace is U = [Up; U]

0 = argmeaxp(0|9 € Ri). (3.201)

3:  For this location 6, compute the likelihood @y, according to (eq. 3.69).
4: end for
5: Select the best QQy, and update models with 6, using (eq. 3.200).

Alternatively, we can use:
6= p(O6x)bk, (3.202)
k

which is equivalent to a mixture of PCA [TB99].

In practice, this complexity proved unnecessary.

The other possibility, which is faster, is to calculate 8, considering that #; = 0. Then,
given the region, we can calculate 6;:

A~

0n = arg néaxp(0|0h, 6, =0) (3.203)
h
él = argmaxp(0|01,éh). (3.204)

This is suboptimal but breaks the complexity into two smaller MLED problems of (eq. 3.73).
We have used this formula in all experiments. A cursory study proved that it was equivalent
to the optimal solution.

Re-estimation of eigenspace parameters

Once eigenvalues and their corresponding associated eigenspaces are determined, we rees-
timate the eigenspace in the same way we would optimize the linear eigenspace using
Section 3.4.2).

Boundary decision vectors: The Perceptron

We can also optimize the boundary decision vectors. The perceptron algorithm [DH73]
can be used to update the boundary decision vectors vi. Suppose we want to find bound-
ary decision vector for an arbitrary dichotomy of the set. For instance, in the Wall Street
Journal dictation task, the training set comprises data from two databases WSJO (or SI84),
and WSJ1 (S1200), recorded in two different occasions. Assume that we would like to sep-
arate the database component explicitly. It does not appear to be associated to a particular
eigenvector. However, we premise that the impact on recognition will be large. To train a
sub-eigenspace per database, consider the following problem. We would like to obtain:

vl >0 if speaker is in WSJO, and (3.205)
vT0 < 0 if speaker is in WSJ1. (3.206)

If we switch the sign of all 8 corresponding to WSJ1 data, we are left with the problem of
solving the inequalities with respect to v:

vT8 >0, V. (3.207)
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If the system has a solution, it is called linearly separable. Among all 25 possible di-
chotomies, there are only:

E
B-1
22( . ); B> E, (3.208)
e=0

which are linearly separable. For E = 20 and B = 284, this amounts to about 17% of all
possible dichotomies. The system of inequalities is solved by defining first the optimization
criterion:

J(v) = Z vT9;  Q := all misclassified. (3.209)
0eQ

By descending the gradient we obtain the notorious perceptron algorithm [DH73], which
at each iteration j computes the set of all misclassified 6 as €2; and update the boundary
decision vector v; using the learning rule:

Vis1 v+ Y 6. (3.210)
069,-

If v is a solution, then we will converge in at most K steps,

maxe |[0e|[?|]v]|*
K=—"-/“-/—--— . 2
(min, 07 v)? <0 (3.211)

There are many extensions to this algorithm, in particular in the case of non-separability.

The perceptron approach is very effective when we would like to specify some prior
knowledge manually. It is also useful when we need to update boundary decision vectors
when the eigenspaces are re-estimated. Positive signs are enforced when the boundary
decision vector maps 6 to the eigenspace with highest likelihood.

3.10 Experiments

We carried out two sets of experiments: the first on TIMIT (see Section 8.5), and the other on
WSIJ (see Section 8.4). PSTL’s existing TIMIT system was used during early developments,
which led to MLES (Section 3.4.2). The remaining experiments focused on verifying the
effectiveness of the algorithms developed in Sections 3.7, 3.8, and 3.9.

3.10.1 MLES results

We verify the effectiveness of MLES. This is done by comparing the PCA-derived eigen-
space with MLES an MLES optimized version.

Experimental conditions

The experiments were conducted on the TIMIT database (Section 8.5), using the standard
train/test partition. Speech was parameterized using PLP cepstral features without cepstral
filtering. There are 9 static coefficients (including energy of the residual) and 9 delta,
totalling 18 features. We use 48 context-independent HMM models, with 3 emitting states
and 16 Gaussians per mixture, resulting in 2240 distributions. Adaptation is supervised. We
report results in phoneme accuracy over the 39 phonemic set. The decoder is a phoneme
decoder which applies bigram probabilities.
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| Method [E=5[E=10][E=20] E=50 |
LSES 60.67 | 60.58 | 6129 | 61.56
MLES(E = 10) || 62.53 | 65.10 - -

MLES(E = 20) || 63.06 | 65.01 | 65.37 -
MLES(E =50) || 61.74 | 63.77 | 64.84 | 66.96

Table 3.2: Maximum-likelihood eigenspace: unit accuracy for different configurations

MLES vs LSES

Table 3.2 evidences the performance of the maximum-likelihood criterion vs least-squares.
The least-squares (LSES) was derived with PCA. MLES was applied for different values of
FE (first column) and tested the eigenspaces with other values of E' (first row). LSES served
as the seed eigenspace for MLES. Due to memory limitations, LSES was estimated on a set
of only 100 speakers, but balanced with respect to sex. MLES used all 462 speakers. MLES
performs best when the number of dimensions is the same during training and decoding.
In this database, increasing the number of dimension always proved beneficial. This means
that we have to know in advance how many dimensions we want to use in our system when
building prior information.

3.10.2 Root modulation and other eigenspaces

For our experiments we chose the Wall Street Journal (WSJ1) Nov92 evaluation test, de-
scribed in Section 8.4. The baseline system achieves 10.8% Word Error Rate (WER). The
systems runs at about 1.1 times real-time each pass, with a search effort of about 9k states
(on a Pentium IV at 1.5 GHz).

We used an eigenspace of dimension E' = 40. This was known to provide reasonably
good results with relatively moderate resources. There was one full MLLR regression
matrix for each of the following classes: silence, vowels, and consonants.

We operated in self-adaptation mode: a first pass produces the most likely hypothe-
sis. The most likely hypothesis is used for adaptation. The second pass exploits adapted
models. Five iterations of within-word Viterbi alignments are performed between passes.
To comply with rules dictated by the Nov92 test, adaptation across sentences is forbidden.
Each sentence is processed independently.

Table 3.3 summarizes the results for MLLR only (MLLR), eigenspace-constrained
MLLR (MLED-MLLR), eigenvoice estimated on MLLR models with MAP smoothing
(MLED-MAP/MLLR). Results are significant at an interval of 0.3% WER with 95% con-
fidence. Also, we report the piecewise linear extension applied on MLED-MLLR models
in the inverse space, Root space and MMI space results.

WER
SI 10.8%
MLLR 10.5%
MLED - MLLR 9.8%
MLED - MAP/MLLR | 9.6%
Piecewise-linear 9.6%
Root space 9.5%
MMI space 9.1%

Table 3.3: Results for the different models

The largest gain in performance was obtained through MMIE space modeling.
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3.11 Summary

In this chapter, we have extended the framework of model-space constraints. The formal-
ism of least-squares criteria applied to model parameters lead to significant formalization
of Eigenvoices. This lead to novel approaches. We touched upon the following topics:

e The Gaussianisms interpretation of PCA, and MLLR in the HMM framework: We
have established a link between ML and least squares. We have also shown that the
posterior probability of MLLR rows is Gaussian. A light-weight ML re-estimation
procedure is given for the eigenspace.

e The root space normalization: it is possible to normalize MLLR row estimates so
that the squared error criterion corresponds exactly to the likelihood. PCA becomes
optimal under the ML criterion. Update formulz for the eigenspace and the speaker
location become simple projections.

e Discriminative method to improve on the estimation of the eigenspace: we show
that Gopalakrishnan’s gradient update can be written as a MAP minimization of a
quadratic function. We state the MMI formulation of Eigenvoices.

e Non-linear extensions via piecewise-linear approximations: we extend the linear re-
gression framework of PCA to a piece-wise linear approximation.

The central element is the link between the trace of the autocorrelation of mean super-
vectors and the ML criterion. Figure 3.8 shows how components are connected together.
Divergence, MAP, ML, projection, Hilbert spaces and least-squares have all been unified
in the posterior HMM/MLLR parameter framework.
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Chapter 4

Feature-space transformation

4.1 Introduction

In the case of a mismatch in environmental conditions, it is natural to seek a transformation
of the observations to compensate for the difference between training and test conditions.

Linear feature-space transformation is befitted to that task. As we will see, however,
the multi-dimensional feature transformation does not admit a closed-form solution in the
general case. The literature has so far focused on either diagonal matrices, unitary triangu-
lar matrices, and numerical analysis for full matrices. We first review the problem, and the
state-of-the-art, and finally our solution.

4.2 Affine transformation of observations

Let X be a random variable with pdf px (-). X is a vector of length D. The model px (-)
will be given by the HMM model. We can only observe another random variable Y, which
is modeled as an affine transformation of X:

Y = MX +ec, “.1

where M is a D x D square transformation matrix, and c is called the bias vector. The
Jacobian J of the transformation from X to Y is known to be:
oxT

_ _ —1
J = det [—ay ] =ML 4.2)

The bias ¢ does not appear in the expression (eq. 4.2). As we will see later, the Jacobian is
the primary cause of analytical difficulties. It is well-known that the pdf is given by:

py(y) = |M|'px (M~ 'y —c). (4.3)

For Baum-Welch HMM training, each px is assumed Gaussian with mean px and
variance C'y, and therefore:

1
logpy (y) = —3 Dlog 2w + log |Cx| +log|M|2+

“4.4)
+(ux — M Yy+ M to)TC (ux — My + M te)|.
It is more convenient to define:
A=M"1, 4.5)
b= M"e. (4.6

51
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The transformed pdf is:

1
logpy (y) = —3 Dlog2rm +log |Cx|—

.7
log|A]> + (ux — (Ay — b)) Cx (ux — (Ay —b))|.
Its mean and covariance are:
py = A" (px +b), (4.8)
Cy = A~'CxAT. (4.9)

As aptly noted by Gales [Gal97b], we can transform either means and variances of the
models, or observations features.

4.3 Constrained adaptation

These considerations are valid for single Gaussian only. We transpose them into the frame-
work of EM. As we shall see, solutions become rapidly intractable. There are no closed-
form solutions available for the general case. We will have to place restrictions on the
transformation A. Since the bias does not affect analytical difficulties, we will omit it for
simplicity.

The auxiliary function for HMM with Gaussian mixtures is:

1 \ T
Q:—5;:fym(t){log|Rm|+(,u—ot) Rm(,u—ot)}. (4.10)
Substituting results from (eq.4.7), we obtain:
1
Q=3 Z'ym(t){log JAP? 4+ (u — Ao))T Ry (11 — Aot)}. 4.11)
t,m

We wish to maximize ) with respect to A. It is not straightforward. First, we will apply
the standard gradient search. Then, we examine simplified formulea found in the literature.
The most common method for solving optimization problems is to follow for the gra-
dient. It is well-known that stationary points correspond to maxima or minima of the ob-
jective function.
We differentiate Q w.r.t. A, and solve forA:

9Q _
A
With the expression of (eq. 4.11), we have:

0. (4.12)

0

a—A(Rm,u)TAot} . (4.13)

0Q 1 r, 0 T 4T
oA~ 2;”:7,”@) {QA + BAtr [oi0f A" Ry A] — 2

Using the lemmas (Section 2.2),

)
a_i == m®{-A"" + BmAoo] — Rmpuoj }. @.14)
t,m

We note that A~! and A are present simultaneously. The equation (eq.4.14) is therefore
a quadratic equation. For a discussion of multivariate quadratic equations, we refer the
reader to [PTVF92]. Since the problem is not linear, there may be more than one solution,
and the gradient might indicate a minimum or a maximum.

We will follow three approaches: gradient descent, diagonal matrices, and present our
LU-decomposition scheme.

The solution is not unique. In the literature, we find roughly five approaches:
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1. Row-by-row optimization [Gal97b]: Gales finds an iterative method for canceling
the gradient. He supposes that rows are independent of each other, then solves row
by row. The process is iterated until convergence.

2. Conjugate gradient descent [KA98]: Kumar finds out that the equation is quasi-
quadratic. He uses the conjugate gradient descent method, but observes instabilities.

3. Diagonal transforms [DRN95]: Digikalis finds a closed-form solution for the diago-
nal case.

4. Unit triangular transforms [Bil00]: this is a subcase of MLLR. All diagonal elements
are set to one. The matrix is constrained to be triangular.

5. MLLT’s diagonalizing transform [Gop98]: Gopinath diagonalizes the matrix before
diagonal scaling.

4.3.1 Gradient search

Gradient search is the most popular hill-climbing method. It is suited for most problems
where objective function is derivable. Models are updated by small e-corrections in the
direction of the gradient:

AFHD — AF) 4 o7 ,Q = AP — ¢ Z’ym(t) {A™' + Ry Aoyo] — Rppof }|,

t,m
(4.15)
using an arbitrarily small step €.
Since the true solution is:
VaQ =0 < [[VaQ|’ =0 < tr ([VaQ]"V.AQ) =0. (4.16)

This is interesting because we have a scalar again, and gradient descent still applies, in
other words,

o=t ((VaQ"V.AQ). 4.17)

We want to cancel ¢(A), and its gradient is, after a lengthy but straightforward manipula-
tion:

]‘ a¢ T T T T
199 _ 0T L JGATR + RATJG + ACC
594 + + + + 4.18)

RMT AT AR®) AGWP) GIMT - ARP) AGP) GM)T AT )T
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with respect to the following definitions:

Jor = [Z wm(t)] > vm(ton” R, (4.19)
t,m t,m
JGATR = | ym(t)| Y vm(t)orof AR, (4.20)
t,m t,m
ARAGGATR = A |> RpnAY Am(t)oo] | |D RmA> ym(t)orof | A,
m t m t
4.21)
RATARAGG =) RnATAY R,A (Z Yp(t)orol ) (Z vm(t)otof> , (422)
m D t t
RATJG = |)_ 7m<t)] > vm(t)RAT 007 , (4.23)
t,m t,m

AccT = A (Z vm(t)Rmu0f> (Z 'Ym(t)ot/‘TRm> : (4.24)
t,m t,m

We have used Einstein’s notation and lemmas of Section 2.2 extensively.

Note that since the computation and differentiation of A~ is difficult, we left-multiplied
with A. The direct computation of all terms of the gradient is too expensive. This avenue
will not be pursued further.

4.3.2 Diagonal matrix

When the matrix A is diagonal, then there are two solutions per dimension. Let a4q be the
d™ diagonal element of A:

aill 0 0
A= |0 0w (4.25)
: 0
0o .- 0 app

Let o4 be the d" element of o;. The expression for the gradient is quadratic and may be
found in [Gal97b, DRNO95]. Simplifying (eq. 4.14), we have for each dimension d:

20 1 { | , T}
_— = —— m(t) S ——— + rqaqqoqa(d)” — rapqoq(d . 4.26
By 2;7 (t) agy +Tacdd a(d) alaoq(d) (4.26)

Since the equation is a scalar quadratic expression, it has (at most) two solutions. We
choose the solution that is closer to unity:

1
aas = 5 (VB 45+ 5) 4.27)

with the appropriate definitions of 3 and 7:

o= Z’ym(t)rdog, (4.28)
t,m
B=a"" " Ym(t)racatia, (4.29)

t,m
n=a"") ym(t). (4.30)
t,m
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The second derivative in this case indicates which of the two solutions corresponds to a
stable point by indicating more negative values. We differentiate (eq. 4.26):

2
) Zwm { +rdod}<0. (4.31)

dadd

Both roots of the characteristic equation correspond to maxima in the likelihood. However,
our choice guarantees a smaller absolute value of the second derivative, and also a value
closer to unity. Since there are two possible solution for every dimension d = 1..D, in
general the Q-function has 2” local maxima. We can stress the importance of a closed-form
solution. The gradient descent algorithm will converge blindly to any of these solutions.
By leveraging insight gained from the analytical study, we are able to select exactly which
solution is of interest to us.

4.3.3 Upper-triangular matrix

We will now solve the case of an upper triangular matrix A.

Since all rows of the matrix are independent, thanks to the diagonality of covariances,
we may set a dimension d and solve each dimension independently. Let ax, k = d,d +
1,..., D be the non-zero elements of the d™ row of A. Define:

a* = [ag41,ady2, -, ap, )7, (4.32)

0* = [0d41,0d412, .., 0p, 1]T. (4.33)

We seek to find [ag4, a*]. Since the determinant only depends on ag, it is treated differently.

First, we solve a (D — d) x (D — d) linear subsystem for a* using the D — d last elements

of the gradient. Then, we use the special equation for a4 to yield the usual quadratic form.
The objective function for the dimension d is:

1
Q= —5 {~loglaa* + (""" + @a0a — p1a)*ra} (4.34)

Differentiating with respect to ax, k = d + 1, ..., D and b, we get a linear system:

gf ;n:vm rd [,ud —a*To* — adod] . (4.35)
It is solved by:
a* =M (agy + 2), (4.36)
with the following:
M = ym(t)rao* o > 0, (4.37)
y=> Ym(t)raoqo, (4.38)
t,m
z = Z Ym () rafiq 0. (4.39)
t,m

Now we need to find ag4 and substitute back.
The solution for a4 is found using the last derivative, which is merely a generalization
of the diagonal case:

dad Z%" rq [ad +  (pa —a*T0" — aqoq)(0g +y" M1o*)|. (4.40)
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We can use the linear dependency specified by (eq. 4.36), and finally state that a4 is again
the solution of a quadratic expression:

1
aa =5 (8+ VP +n). (@41)

with:
o= Z’ym(t)rdofl —yTM~ Yy >0, (4.42)

t,m
B=a! [Z Y (t)rd0apia — yTMlz] : (4.43)
t,m
n=0a"1) ym(t) > 0. (4.44)
t,m

There is always a solution.

When covariances are not diagonal, we must first solve the quadratic equation for app.
Then, knowledge of this coefficient will help find ap_1,p—1 and ap_1,p. We proceed thus
up to the top row, in the same fashion as the back substitution step in a Gauss-Jordan matrix
inversion.

4.3.4 The LU decomposition

Looking at (eq. 4.14), we see that the crux of the problem resides in the presence of a log
determinant, which implies in turn the presence of the inverse matrix. A common way of
dealing with inverse matrices involves the LU decomposition of a matrix, that is to say, our
matrix A is written as:

A=LU (4.45)

with U an upper-triangular matrix, and L a unitary, lower-triangular matrix. The diagonal
elements of L are all equal to 1.
We embed this decomposition by alternating the maximization step in the EM algo-
rithm:
o' = Ao=L(Uo). (4.46)

The upper-triangular method was derived above, and the lower-triangular method is found
by just setting aqq = 1 in (eq. 4.36), as in [Bil00].

4.3.5 Bayesian extension

The Bayesian framework is useful for parameter smoothing. For instance, while using
regression trees to define multiple classes, the leaf transforms are derived by smoothing
with the parent nodes.

The MAP framework is usually greatly simplified by selecting the prior distribution
po(A) among the family of conjugate priors for A (see [AS96, GL94]).

Definition 1 (Conjugate prior) Let X be a random variable. Let the distribution of X be
p(X|A). The pdf p(X|\) is the likelihood of X. It has parameters \. Let the distribution of
A, called prior distribution of A\, be noted po(\). The posterior distribution is p(A| X = x).
If po(N) is such that the posterior belongs to the same family as the likelihood, i.d.:

PAIX) o p(X[A), (4.47)

then it is called the conjugate prior for p(X|\).
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The conjugate prior for a Gaussian distribution with fixed covariance is a Gaussian distri-
bution.

MAP estimators and prior distributions were defined for all but the diagonal term. The
conjugate prior for the bias is a Normal law. The conjugate prior for non-diagonal elements
is elliptic [Cho99]. The probability of diagonal terms has a transcendent shape. We will
start from (eq. 4.11) for the case of diagonal components aq:

1
Q= -5 ;n: Y (%) [— log |ag|?® + ra(pq — adot)g] . (4.48)
We need to find an R(aq) = log po(aq) such that Ja, ro, y € R:

S(aq) == Qaq) + R(aq) = 5 — % [—ozlog(obd)2 +ro(y — ad)z] , (4.49)

where [ is a constant. The conjugate prior family does not appear frequently enough in
nature to justify a name. We proceed to define it.

The Maxwell-Rayleigh-Normal distribution

A subset of the family of conjugate priors pg(aq) is a mixture of (extended) Maxwell,
Rayleigh, and Gaussian distribution. We christen it hence the Maxwell-Rayleigh-Normal
(MRN) distribution.

Maxwell’s distribution models speeds of molecules in thermal equilibrium. It is defined
forz > 0,a > 0:

2
pu(zla) =4/ 2?22 /2, (4.50)
T
Furthermore, the Rayleigh distribution models the attenuation in fading channels:
pr(z|s) = ;?e*%ﬁ/sg. 4.51)

Lastly, the Normal distribution is an old acquaintance of ours:

1 1
pa(zls) = \/2—71'—86_;902/32. 4.52)

‘We define the MRN distribution to be:
pMmeN(z|v) = <I>_1x26_(x_”)2T2, (4.53)

where r is the precision element. For simplicity, we set it to » = 1. The regularization
constraint ® is chosen such that:

/dpMRN =1. (454)

The distribution is shown on Figure 4.1.
The value of the hyper-parameter v with respect to the mean is shown on Figure 4.2.
Figure 4.2 shows how the mean of the distribution varies according to the hyper param-
eter v.
We proceed by defining the raised MRN law constitutes a family of conjugate priors:

prMRN(Z|V, T) = CI)I_%l(u, T)J:QTe*T(zf”y. (4.55)

Unfortunately, unless 7 is a multiple of 1, moments have no closed-form expression. Nev-
ertheless, in most cases, we are only interested in values of 7, v such that:

/ dz [prMRN@)] 1. (4.56)
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That is, the expected value is the identity: since the prarrn(-) will model the diagonal
element of the transformation matrix, in the absence of additional knowledge, a good guess
is 1, which corresponds to an identity transformation matrix. It is easier to use numerical
integration and tabulate v(7). On Figure 4.3, we show how to select v for a given prior
weight 7 such that the mean of the distribution is again 1.

MAP re-estimation formula

We now verify that the function is a conjugate prior for a4 and find the MAP solution. We
can replace (eq. 4.55) into the left-hand side of (eq. 4.49):

S(aq) = Q(aq) + R(aa) (4.57)
= Q(aq) + log prmrN (aq) (4.58)
= Q(aq) — log® + 7log |0Ld|2 —7(aqg — V)Q, (4.59)

which from (eq. 4.48) is also:

1
=p— 3 Zym(t) [— log |ag|® + ra(pa — adot)2] +7loglaq|* — T(aqg —v)?,
t,m
(4.60)

with a constant 3. The same kind of calculus in Section 3.5.1 yields:
1 1
S(aq) =p" + 3 [27' + ;n:'ym(t)] log(agq)? — |:T + 3 ;n:’ym(t)rdofl] (aa —y)*, (4.61)
with: )
1 5] 1
y= |:’7' + 5 ;; vm(t)rdod] [TV + 5 tZ; Wm(t)] . (4.62)

and 3’ another constant. Matching with the right-hand side of (eq. 4.49), we see that the
condition holds for scalars «, g properly defined as:

a=2r+Y Ym(t), (4.63)
t,m
1
ro=7+; > Ym(t)raod. (4.64)
t,m

Hence, we can assert that the prasr v is a conjugate prior for ag:

p(Olaa)prmrn(ad) = p(aq|O) o< p(Olag). (4.65)

And therefore from the same token as Section 3.8.3, the MAP estimator can be written as
an ML problem. In particular:

95(aa) _ (4.66)
5‘ad
implies:
al - %ad + % —0, 4.67)

which is a quadratic equation similar to the ML case of (eq. 4.26). For the same reasons as
in ML, we select the positive root, and uniquely define the MAP estimator for ag:

2 _
_ Yyt vy —dyo (4.68)

Qaqd
27“0
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Asymptotically, when there is an infinity of data, or % — 00, then it is the ML. When there
are no data, or % — 0, then:

aq = /dx |:~77pRMRN(l'):| = 1, (4.69)

or any appropriate value selected on the right-hand side of (eq. 4.56). Because of the
presence of the log-determinant, ag does not converge to v, but to a smaller value.

4.4 Bayesian transformation of the variances

This section is not directly related to feature adaptation. To the best of our knowledge, it
is not described in the MAPLR literature. We show that transformation parameters of the
variances have very simple conjugate priors.

Fortunately, Bayesian transformation of parameters is almost the same as Bayesian
adaptation of parameters. The conjugate prior is a Wishart distribution. We include it here
for completeness.

For a transformation of the variances defined as:

C — ATCA, (4.70)

the objective function becomes:
1
logp(O|A) +logp(4) = = = > m(?) [log Al = (1 — 0)TR* AR? (1 — o) | +
t,m

Tlog |A] — Ttr T A.
4.71)

[ is a constant term corresponding to regularization. The hyper parameter of the distri-
bution is the prior matrix 7. Without the regularization constants, we can distinguish the
simpler equation:

log po(A) = constant + 7 (log |A| —tr T A). (4.72)

We recognize the Wishart distribution:

p(W|G) = e(n, aw)|T| F|W| ™7 =3 TW (4.73)

with regularization constant:

awn  n(n— ]_ —1
c(n, aw) = lz yn ninsl) HF (M)] (4.74)

2

The update is very similar to the unconstrained covariance adaptation:

AT = [Z Y (t) + 7

-1
{TT + 3 Ym(OR? (p—01) (1 — ot)TRi} . (4.75)
t,m

T T
We may decompose T into R,;, Ty R,7 and T} is now a (full) global transformation matrix.

4.5 Experiments

4.5.1 Conditions

To validate our algorithm, we used the Switchboard conversational telephone speech data-
base (Section 8.2). We report results on the first evaluation test set of NIST’s 2001 evalua-
tion [MPO1], which contains 20 conversations from the Switchboard-I database.
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4.5.2 Results with MLLU

In Table 4.1, we report Word Error Rates (WER). The feature space transformation, or
MLLU for (Maximum-Likelihood LU transformation), yields an improvement comparable
with MLLR when used in isolation. Since there were about 5 minutes of adaptation data in
most cases, we have enough data. We disabled the MAP prior described in Section 4.3.5.

There is a .2% WER improvement if we only use block-diagonal matrices. We have
observed that MLLR behaves best with 7 regression classes (1 for silence, 4 for vowels,
and 2 for consonants). In this case as well, constraining the transformation matrices to be
block-diagonal, we get an improvement.

When we use MLLU as a feature normalization, followed by MLLR model adaptation,
we obtain a 1.6% WER improvement over the baseline MLLR adapted models.

WER
SI 34.6%
MLLR 1 global class 32.8%
MLLU 1 global class 32.8%

MLLU block-diag 32.6%
MLLR 7 classes + block | 32.2%
MLLU + MLLR(7) 30.6%

Table 4.1: Results

Note that MLLU depends on the order of the coefficients. Best results were obtained
with the default order: the energy is first, then standard cepstral coefficients. Since we
use block-diagonal matrices, derivatives are not dependent on the static coefficients and
vice-versa.

4.6 Summary

In this chapter, we have explored issues related with linear feature transformation. In par-
ticular, we have:

e outlined mathematical difficulties due to the determinant,

illustrated with a gradient descent study,

then reviewed the diagonal case published by Digilakis [DRN95],

generalized it to an upper triangular matrix,
e alternated upper and lower triangular transformations in the EM algorithm,
e and presented a Bayesian adaptation framework.

Additionally, we presented formula for Bayesian transformation of variances.
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Introduction

Interesting how they may appear, the methods set forth in the previous chapters form only
but the premises required for successful speaker adaptation. In contrast with other com-
ponents in ASR, speaker adaptation is embodied in a running system, which is deployed
in certain ways. The specifics of the requirements dictate much of how speaker adaptation
will be performed. Such driving proponents are laid out by other considerations which in
turn may be rooted in as far as economical constraints.

The study of speaker adaptation is henceforth incomplete without a closer investigation
into these matters. There is an infinity of possible applications in which speaker adaptation
may be deployed. We hope to encompass a large part of these in the following. There
are recurrent characteristics that are encountered in many ASR systems. Some of those
may be solved by algorithms developed herein. In other words, this part is dedicated to
system developers, whose goal is to integrate existing Speaker Adaptation mathematical
algorithms in a way that benefits ASR users’ concerns.

We have attacked three specific problems:

1. Unsupervised and supervised adaptation using EM: we study differences between
MLLR and MAP, and which one should be used for what reason. We also improve
the efficiency of supervised adaptation using a sausage NBest discrimination.

2. Clustering and outliers: for the case of self-adaptation, we employ a clustering tech-
nique to remove outliers due to imperfect recognition.

3. Interaction with noise: heavy reliance on prior knowledge learned on training data-
bases, especially in Eigenvoices, underlines the problem of mismatch in training and
test conditions. We separate clearly between noise, and speaker adaptation, based on
the specifics of the algorithm.
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Chapter 5

EM-based approaches to
adaptation

Oftentimes, decoders operate in a setting which prevents them from using a lengthy enrol-
ment process. Speaker adaptation is performed on the fly. It is not possible to use labels
(transcribed speech) because they are not available. Mathematically, those labels may be
guessed via the E-step, which computes the expected segmentation probabilities. The EM
algorithm is applied once again. However, there are decision to be made as to how the
adaptation process is to be applied into details.

We shall take a closer examination at these matters. Characteristics of adaptation al-
gorithms must be taken into account. Under that light, we study the N-Best algorithm for
unsupervised adaptation. Then, we apply concepts to discriminative adaptation. The de-
scription of the decoder includes an explanation about how to create sentence-level N-best
hypotheses. For adaptation, it is sufficient to use “sausage” NBest lists and examine, in an
isolated fashion, alternatives to the first-best given the first-best segmentation.

5.1 Unsupervised adaptation using NBest decoding and
Ratio weighting

Integrating the transcriptions in the EM algorithm is mathematically straightforward. The
implementation causes much difficulties. We should maximize the expectation of the su-
pervised likelihood over all possible word sequences WV in the grammar:

~

A= argm}z\%xEWﬂgp(O,ﬁ,WM). (5.1

The amount of possible W is finite but prohibitively large. Therefore we consider the
direct computation to be intractable, and it is customary to apply EM hierarchically, once
for the word sequence, and thither for the speaker parameters. While this is still a valid EM
formulation, it may converge to a lesser optimum than the direct joint estimation.

We decide to apply further approximations. At this point, we should note that recent
work by Padmanabhan, Saon and Zweig [PSZ00] integrates directly on a lattice produced
by a previous pass. This is theoretically better than the sausage NBest integration scheme.
Nonetheless, considerations developed herein are independent of the objects being inte-
grated.
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5.2 Three approximations for the calculation of the Ex-
pectation with respect to the word sequence

Computing the expectation of (eq. 5.1) directly requires the summation over all possible
word sequences. Instead, we may use an approximation. We use three different formulae
. The simplest algorithm consists of using decoded labels as true labels, and we call it the
one-best unsupervised adaptation. It is also known as transcription-mode adaptation:

A= 0,9, W|N). 52
arg max vaa}gp( 9, WIN) (5.2)
Another possibility is to maximize the likelihood of all NBest strings as follows:

A= argm?x%:mgxp(O,ﬁ,WM). (5.3)

The expectation, instead of a sum, may be employed for the state sequence. The closest
form to the true formula is:

A= argm}z\aJXZ(pW mﬁaxp(O,wW,)\). (5.4)
w
Each NBest string is weighted by its (posterior) probability. Let us choose:
Pn = €Xp [(Ln - Ll)n] , (5.5)

where L, is the log-likelihood of the n™ best candidate, ¢,, is by definition lesser or equal
to one, and 7 is a heuristic parameter that represents prior confidence on the decoded labels.
When 11 — o0, then the best hypothesis is believed to be correct and a one-best adaptation
is performed. If » — 0, then an equal weighting is applied to NBest hypotheses. Figure 5.1
shows sample weights from different values of the parameter n versus the rank of the words
sequence. When the vocabulary is closed and we sum over all possible words, thenn = 1
corresponds to the actual posterior. When 7 is the inverse of the language model, we have
Woodland’s weighting scheme [WPO0O].

In all other cases, n < 1 leaves a left-over probability mass for unseen words. Contrar-
ily to expectations, experimental work reveals that even though there is an improvement
over 1-best adaptation, exponential weighting does not differ much from equal weighting.
Therefore, it seems that there is no gain using the theoretically exact formula. Examination
of the results showed that the algorithm was very sensitive to the segmentation, which is
perhaps due to our sausage NBest generation.

However, we can make a general statement about adaptation techniques themselves
before proceeding to the next topic.

5.3 Direct vs indirect adaptation: model complexity

It is not always stated in which case one should use an adaptation method or another. Let
us consider two of the most popular ones: MAP and MLLR.

Figure 5.2 depicts a typical learning curve of MAP, MLLR, and ML in supervised
adaptation mode. The reason why curves take these shapes is simple:

e when 7 — oo, MAP — ML, whereas MLLR, with a fixed, finite number of classes,
does not converge to ML.

e ML and MLLR being ML techniques, do not behave well when 7 — 0. This is
because unseen events have no impact on the criterion function.
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Figure 5.1: Exponential weighting versus the rank of the word sequence n
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Figure 5.2: Typical learning curve: MAP, MLLR, and ML
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e MLLR, however, adapts fewer parameters and converges faster to its plateau.
e MAP — SI when7 — 0.

The main difference is that MLLR should be considered to be an indirect parameter opti-
mization technique, whereas MAP changes each component directly.

MAP moves each Gaussian individually, whereas MLLR performs shift, rotation, and
scaling (possibly projection). On Figure 5.3, we see examples of phonemes aa and k.
Phoneme b remains unseen. MAP will move any seen example cautiously towards their

o M1 M

(o]
b b b
(] [e] ® L)
o
x (o] xo ° x
x k x k * k
aa aa aa
1% w2 M2
(a) ML (b) MAP (b) MLLR

Figure 5.3: Transformation of adaptation parameters via ML, MAP and MLLR. Crosses
mark SI models. Circles mark updated models.

ML estimates. MLLR, on the other hand, will infer the position of the unseen model b
because all Gaussians are shifted the same way. If all Gaussians share the same variance,
the Euclidean distance may be readily interpreted as the KL distance, which in turn is a
measure of log confusability. MAP, in this case, has harmed confusability, whereas MLLR
hasn’t. This is a key element that provides robustness to MLLR. However, the ability for
MAP to move Gaussians individually is of great accountability for discriminative methods.
In general, methods using a coarse level of granularity should be used for adaptation be-
cause they average out errors. Discriminative methods should use MLLR for adaptation (or
regression), and on top of this a finer granularity adaptation such as MAP or MLLR with
more classes to attain discriminative effects.

5.4 Discriminative adaptation

Following this discovery, we may now devise a new algorithm that achieves speaker adap-
tation and discrimination simultaneously.

There are several reasons why one should be interested in such a pattern. Firstly, from
a phonological point of view, there are many reasons to believe that the relative position
of phonetic units, divergence-wise, is speaker-dependent. In other words, a person’s aa
may sound similar to the same person’s ax, but, for another speaker, there may not be a
need to develop a fine distinction between the two. The other incentive that compels one
to perform discrimination on a speaker-dependent basis follows a parallel argument from
an information point of view. According to Jensen’s inequality, the conditional entropy of
speaker-dependent models must be at most that of the speaker-dependent model. There-
fore, one is lead to entertain the hope that speech modelling conditioned by a speaker is but
an easy battleground. Figure 5.4 illustrates our point. Let a, b be phonemes and X, Y be
speakers. The SI model must model a much more complex landscape, which encompasses
the union of the geometries of both speakers at the same time. Additionally, it is impos-
sible for it to discriminate some parts of b|Y and a|X. The third reason is perhaps more
subtle. Speaker adaptation is intuitively related to dealing with a modest amount of data.
Consequently, adaptation is done under a great lot of uncertainty, which causes the estimate
to roam around the objective. Using the discriminative aspects, we may localise the area
by adding soft constraints to prevent the estimate to look too close to another estimate of a
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Figure 5.4: Conditional entropy decreases: the SI model must retain a lot of confusability

different class. In other words, we model a point a|X not only as something reminiscent
of the a|X examples that we have seen, but also as something as repelled as possible by
the b| X that we have also observed. We call the samples of b| X anti-observations for the
phoneme a| X . As genuine observation, but with perhaps less descriptive power, these ob-
servations contribute to remove the curtain of uncertainty that shatters the estimate. They
are counter examples: they show what the system what a|X does not look like.

This third observation will be take literally to design our discriminative algorithm. The
previous section constitutes the other contribution that help in the choice of the adaptation
geometry. A coarse model is used for global speaker regression with collected data. A fine
model is enriched with anti-observations and leads naturally to a finer discrimination. This
is a win-win situation.

5.5 An EM-based discriminative algorithm

With these recommendations in mind, we apply a scaled-down version of the MCE crite-
rion. Since both the discrimination term and the likelihood have the same parametric form,
they instill a simple alteration of the ~,, (t) posterior probability which leads to a different
weighting for words:

K if correct label,

L {—gp exp[(Ln, — L1)|n otherwise, (5.6)

where ~ represents the weight given to the supervised forced alignment. Figure 5.5 shows
a typical plot of the weight ¢,, against the rank of the candidate n. The parameter x is

J)L‘LLaLé(L .....

—p

Figure 5.5: Typical assignment of weights
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independent of the rank n because we want to recover the label the same way whatever
its rank is. Parameters p and 7 contain the amount of back-off that mis-recognized items
should receive. A rule of the thumb chooses 7 > 0 and x > (N — 1)p so that the sum of
posteriors is positive. In other words, adaptation (regression) is given more emphasis then
discrimination (anti-observations). With values such as x = 2, n = 1072, p = .3 perform
well in the real world.

As any EM variant, perseverance in recurring application of the rule further improves
models. The global training protocol may be summarized as

1. Use the NBest decoder to find the best matches.

2. Perform forced alignment according to the true transcription if not found by NBest
decoder.

3. Accumulate using ¢,, as described in (eq.5.6).

Best performance is achieved with sausage NBest decoding, or possibly with lattice
integration. Under the assumptions that discriminative anti-observations “cancel out,” we
may use a single set of accumulators. Both coarse and fine adaptation may share the same
statistics. In our experiments, we exploited this assumption in combination with MAP with
MLLR as a prior (MAP|MLLR), that is, if W is the MLLR affine transformation of the
mean, then the update is:

Lim = [T + Et: vm(t)] - [TW[lfuT]T + Et: Wm(t)ot] . (5.7)

More generally in MLLR we need to introduce the sufficient statistics G1, G2 and 21, 22
for the precision and weighted mean of the coarse and fine regression matrices respectively,
such that each row wy, is of the form:

we = { G146l h o122 } . (58)

We recognize the familiar MAPLR formula. The coarse class serves as a prior to the fine
matrix. This is shown on Figure 5.6. We have used the concepts of coarse/fine classes
for discriminative adaptation, together with anti-observations to improve reliability of esti-
mates.

5.6 Overcoming local optima

As any iterative optimization algorithm, the EM algorithm is prone to precocious con-
vergence into globally poor local optima. The sparsity of data affords much of a bias in
the estimates by itself, which riddles the cost surface and produces shallow, local optima,
which head the algorithm into ill-fated deception. The EM algorithm is decomposed into
two operations: the expectation step, and the maximization step.

The E-step is the device through which, by means of the initial SI models, the segmen-
tation is estimated. Errors in this initial phase remain imprinted in the following estimates,
and performance is thereby impeded. This early precipitation to local optima is another
impersonation of the eminent over-training phenomenon: the granularity of the model is
greater than the descriptive power of the data. The richness of the model allows accidental
structures in the training data to be modeled. There are two common remedies hitherto
considered by the literature in this area:

e jack-knifing and the use of distinct models during E and M

e progressive model adaptation
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Figure 5.6: Regression trees for G1/z1 and Ga/z2.

5.6.1 Jack-knifing

Jack-knifing was once popular in the early days of the Switchboard task. Several statisti-
cally independent observations are available. In a two-wire telephone conversation, they
are identified as the different speaker turns originating from the same side of the receiver.
The jack-knifing algorithm is a breed of the permutative cross-validation algorithm. We
adapt on all cuts but one. The held-out cut is then recognized with this adapted model. The
operation is repeated with all cuts. Another variant alternates between SAT and SI mod-
els. The design is clear: we try to delineate information processed in the E and M steps.
Unfortunately, recent systems abandoned this idea.

However, there is still a form of this idea serviced in state-of-the-art HUBSE systems.
Different inputs of the ROVER algorithm (or variant that of) are combined during inter-
mediate steps, after adaptation. We do not leave one system out, but cross breeding still
occurs.

5.6.2 Progressive model adaptation

The other typical technique is resilient of the presence of an abundant number of passes
in HUBS systems. While usually it is bantered that low-complexity decoders for the first
pass are a necessity supported by computational concerns, it is only true a certain extent.
Following that avenue of reasoning, only two passes would have otherwise been selected: a
lattice generation, followed by adaptation and any ploy non-causal, and a lattice re-scoring
pass producing final recognition, in a backwards pass.

It is well-known that the adaptation commonly reaches a bound in performance after
at most four iterations of EM. Afterwards, researchers have employed, with much success,
further adaptation passes, by introducing more degrees of freedom. In later stages, variance
adaptation, full-matrix instead of block-diagonal, and more classes are all introduced.

The idea is that coarse models are required to flatten the cost surface. Once the region
which harbours the sought model is located, a detailed search resumes, which is not con-
founded by such the pestilence of stumbling blocks. We may insinuate the general concept
with the Figure 5.7.

There is not but a single trade-off between model complexity and abundance of data.
Acquaintanceship with the EM algorithm reveals that distance (divergence) to the true
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Figure 5.7: Progressive adaptation: in the coarse case, the cost surface is smooth and EM
does not saturate in a local optimum

model is a factor that instills moderation in the ostentation of increasing model complexity
immediately, and affords patience until we gain more familiarity with the landscape to dis-
play more confidence. We need to avail ourselves of the services of rustic low-complexity
“myopic” models, that go unencumbered with minute details and trifles, and thereafter a
detailed search may proceed. Very akin is the process whereby one looks at a map from
afar, to locate a country, or continent, and then, equipped with a magnifying glass, may
identify a village.

Such are the ways of accommodating with the locality of EM. We will now turn to a
different take of the outlier problem removal, based on clustering techniques.

5.7 Experiments

We have conducted experiments using the NBest algorithms under supervised and unsu-
pervised conditions.

5.7.1 Experimental conditions
Database

Since these results were obtained in early stages of this thesis, the large-vocabulary systems
were not available yet. We selected a continuous spelled names database [CRF92]. The
training data consisted of 1222 telephone calls. The test data was recorded by PSTL in a
car environment with a close-talking microphone. There were 10 speakers:

e 6 native speakers of American English, and 4 non-native speakers.
e Amongst native speakers, there were 4 male and 2 female speakers.
e Amongst non-native speakers, there were:

1. one Japanese female speaker,

2. one French male speaker,
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System Unit Accuracy
SI 60%
One corrected (1/5) 70%
Two corrected (2/5) 78%
Three corrected (3/5) 85%
Four corrected (4/5) 94%
All correct (5/5) 100%

Table 5.1: Adding supervision to the adaptation data

3. one Italian male speaker, and

4. one Chinese male speaker.

Each speaker recorded 45 spelled street names in the car at 60 mph. There was a total of
3951 letters. The names were 8.8 letters in average length.

Additionally, speakers recited the alphabet once in continuous mode. The alphabet is
divided into five sentences:

1. abcdef
2. ghijkl
3. mnopqr
4. stuvw
5. xyz

During this enrolment phase, the car was parked with the engine turned off. PLP pa-
rameters similar to 8.2 with first derivatives served as features.

5.7.2 Experiments

We first compare the unsupervised adaptation with supervised adaptation to calibrate the
difficulty of the task. Then, we employ the discriminative scheme for supervised adaptation
to improve the estimates.

Unsupervised adaptation

To asses the effect of the corruption of wrong transcriptions for adaptation, we vary the rate
of correct labels. The speaker-independent HMMs led to an average of 60% recognition
accuracy on the adaptation data. Then, we randomly selected one out of the five adaptation
sentences and corrected its transcription. We reiterate the process until we have 100%
accuracy, which is supervised adaptation. This is shown on Table 5.1.

We report results on Figure 5.8. We plot three curves: MLLR, MAP, and MLLR fol-
lowed by MAP (MAP|MLLR). If iy r is the MLLR mean, then the MAP|MLLR is:

TUMLLR + D¢ Ym (t)0t
T+ Zt TYm (t)

It can be seen that in the case of native speakers, MLLR is less sensitive to the recog-
nition accuracy on the adaptation data than MAP. For non-native speakers, this tendency
is not present. This may be due to errors which occur sometimes between two letters not
belonging to the same confusable set. In this case, the estimation of the MLLR matrix may
not be reliable. MLLR combines statistics to estimate a set of parameters shared by sev-
eral means, whereas MAP updates mean vectors directly. When 7 — oo, MAP converges

HMAP|MLLR = (5.9)
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Figure 5.8: MAP and MLLR for native and non-native speakers

to the ML estimate. Therefore, in MLLR, the reliability of statistics is averaged into the
estimation of the transformation matrix, whereas in MAP, the granularity is maximal and
each errors is propagated directly. It becomes clearer that MLLR is better suited for un-
supervised adaptation because parameters are estimated globally combining all statistics,
correct and incorrect altogether. MAP, in contrast, updates model parameters for each mean
individually, and therefore appears as a good candidate for discriminative training.

Supervised adaptation

We ran experiments with five alternative NBest candidates. The EM was iterated three
times. Wrong assignments are weighted negatively, as in Figure 5.5. Varying 7, we obtain
results on Table 5.2. We set the positive feedback parameter to x = 2. The negative
magnitude parameter was set to p = 0.3. The unit accuracy does not vary much when x
and p are changed.

System native | non-native | Average
SI 75.6% 64.3% 71.1%
Unsupervised (n = 1072) | 79.7% 65.2% 73.9%
Supervised 1-best 79.5% 69.0% 75.3%
Corrective 5-best 81.7% 73.7% 78.5%

Table 5.2: Supervised adaptation using the corrective scheme: unit accuracy

The adaptation update was MAP|MLLR (eq. 5.9): we transform the means using MLLR
first, then update each mean individually using MAP.
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Self-adaptation using clustering

6.1 Introduction

We have reviewed classical probabilistic methods and their solutions. Typically, statisti-
cal methods have a sensitivity to so-called outliers, which damage the estimation by being
away from the true estimate by an inordinate distance. Such accidents are due to mislabel-
ing of the data. Mislabeling occurs when the decoder does not yield the correct transcrip-
tion. Alternatively, noise may also appear, as well as incorrect phoneme transcription.

An ad hoc apparatus is put in place, that steers away and discards such potential
mishaps. We design such a device by means of clustering. First, we illustrate our claims
by performing a synthetic experiment. We see that the usual model is not appropriate and
suggest a solution.

6.2 Modified source model: The Black Sheep Experiment

Bayesian methods are optimal if the hypotheses hold. The need for introducing a non-
linear thresholding method is justified. To clarify this, let us once again visit the Bayesian
estimation of a Gaussian in several settings.

6.2.1 True observations

Consider an experiment where a set of samples {z }, kK = 1...B are produced by instanti-
ating a Gaussian. The ML estimate for the mean is known to be the unbiased MMSE — the
minimum of the best criterion:

1 B
ﬁ:E;xk. 6.1)

When B — oo it is known that i — g, the true mean in probability. In that case the
Bayesian estimate has a closed-form solution and is the best that we can do, thanks to
perfect labeling.

6.2.2 Impurities in the sample data

Now suppose that the source guiding the experiment is truthful with his first B — S samples,
all drawn from the Gaussian. Then, we introduce S black sheeps, observation with value
(on average) —u. The Bayesian estimate would compute:

. 1 B 28
Efi = Eﬁzijk =—5n 6.2)
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where E(-) is the expectation over all experiments. The estimate is now spoiled with a bias

of: "
= -— 6.3
e=gu (6.3)
which is linear with S and inversely proportional to B. This is immediately follows the
Cramer-Rao bound.

6.2.3 More realistic errors

Class A

o
[oXe)
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Figure 6.1: Non-zero mean of errors: consider class A. By, are confusable classes around
A. The expected value of By, is not necessarily the mean of A.

It is quite easy to generalize this experiment to a mixture probability, with multiple
classes and a hidden variable choosing among possible sources besides the correct one.
Class origin is the hidden variable that we seek to discover ultimately. The EM algorithm
is very popular in such environments.

6.3 Self-adaptation using clustering

Boundary region Low confusability
high prob mass

Class A

Class Ba

Ckass B1

Figure 6.2: Confusability regions: competitors Bj o, if introduced in the estimate of A,
have a bias. Also, probability regression will detail useless regions.

Let us investigate the Bayesian behaviour when presented with a source such as pre-
sented in Section 6.2.3. We have now in command that errors may introduced by our initial
estimate. The E-step may not be trusted entirely and misclassified items By » may appear
with high probability. Second, on the figure, B; + B2 # A. Errors do not cancel in the least
and a Bayes estimate exhibits a bias. We address two issues with the following method:

e first order bias is not zero,

e errors may be assigned a high probability.
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We employ the fact that estimates are correlated, whereas error are uncorrelated. That is, a
second order assumption that errors are merely coincidental, while the estimate is uncertain
but consistent.

The algorithm, however, is not readily explained without another short digression on
the sufficient statistics of eigenvoices. These will probe a helpful tool in designing the
algorithm.

6.4 Eigenvoices and sufficient statistics

Let us recall briefly how eigenvoices work. Each speaker is assigned a set of eigenvalues
{we}, e = 1...E. Means of Gaussian distributions are modelled using a linear interpolation:

E
Hm = Zeeue’ (64)
e=1

where m is the index of the Gaussian component. Eigenvoices fi(e) are trained off-line.
Let w = [wy,...wg|T. The EM algorithm has a well-known solution (MLED) which goes
by solving the weighted quadratic exponent:

1
Q=5 S 00~ Co im0, (65)

in the usual notations. The MLED equation is equivalent to solving the linear system of
equations for w:

Z 'ym(t)OjuJTCn;lue = va(t)ueTCn;lot, Ve=1..FE (6.6)

t,m,j t,m

6.4.1 Compact sufficient statistics for the likelihood

In this section, we find statistics required to compute the likelihood. The idea is that this
set of variables S will enable us to compute the likelihood of a segment of speech with
respect to some eigenvalues. That is, a segment of speech can be summarized compactly in
S as for as the computation of the likelihood of eigenvoices-adapted models is concerned.
Define ¥ to be the completion data for the EM algorithm (v, (¢)). The likelihood of the
entire observation O satisfies:

Elog p(0,9]0) & Y Ym(t) [Z 0c0; fim (€)Cr i (7) — 2> Ocfim (€)Cr 0f Croy |
t,m e

€,J
6.7)
And thus, the following are sufficient statistics for the likelihood:

r(e,d) = ym(t)ul Cplug, (6.8)

t,m
ble) = Z’ym(t)uZC’;lot, (6.9)

t,m
c= Z Ym(t)ol C:- 1o, (6.10)

t,m

Since the log-likelihood is a quadratic form (z—y)? = 22 —2xy+y? = r—2b+c, we have
the autocorrelation matrix r and a crossproduct b. The constant term c is usually discarded.
Furthermore, these products may be readily interpreted as correlation, and cross product
in the weight inner product defined by v, (t)C,,}. The posterior is known only during the
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adaptation and is a bequest of the E-step projection. The rest is due to the dimensionality
reduction step. This is of course due to the Markov chain:

(0t Mo) Epp {Z Ym(t), Z’ym(t)ot}mm'f»dum' S=A{rb,c}. (6.11)
t t

Note that, since eigenvoices usually has fewer degrees of freedom than ML or even
MLLR, the sufficient statistics are very compact. This will become of crucial importance
in later stages. First, let us review simple operations associated with segment statistics.

6.4.2 Segment algebra and sufficient statistics

We saw that a segment of speech S could be summarized by its statistics r, b, c¢. There are
a few operations that may appear useful to review.

Define two segments of speech O; and O, with corresponding statistics S7 and Ss.
A rather interesting property of the statistics is that concatenation of the segments, say
O = 01 + O3, have sufficient statistics that may be computed as the arithmetic sum of the
segments’ statistics: S = 57+ S9. Itis also equivalent to the MAP formula using conjugate
priors:

log p(0|01) = log p(016) + log po(0) — log po(O) (6.12)
= log p(016) + log p(O2|0), (6.13)
log p(Olw) = log p(01]0) + log p(O2|0), (6.14)

and we used the definition of the empirical Bayes’ estimate:

po(0) = log p(O2l6). (6.15)

The segment So was used as a prior density definition with mean 0, and covariance A,
which were calculated on the segment itself. It follows from the previous remarks that the
estimation of MLED eigenvalues on arbitrary concatenation of segments, and conditional
likelihoods may be computed easily. Moreover, the estimation of the gain or decrease
in likelihood given a hypothesized eigenvoice model can be done solely on the basis of
the sufficient statistics. Note that MLLR has similar sufficient statistics ([Bac00]). Those
familiar with MLLR will recognize G and z matrices of (eq. 3.105, 3.106, p. 29). They are
larger and more cumbersome to deal with.

Additionally, since we have linear models, the likelihood is again a Gaussian and there-
fore attains Cramer-Rao’s lower bound for the variance. It is inversely proportional to the
amount of data. The squared error due to the introduction of a wrong segment is also
inversely proportional to the amount of data, as we have shown previously.

6.4.3 Segment clustering and self-adaptation

The motivation for the approach is based on the transposition of speaker clustering ap-
proaches to segment clustering. We have seen that eigenvoices uses fewer parameters
and therefore is effective with fewer data. Figure 6.3 shows a typical learning curve for
ML training, MLLR adaptation, and eigenvoices. We may reuse (and extend) the same
weaponry deployed in speaker clustering. In [Bac00], sufficient statistics for MLLR were
gathered with the specific intent to perform speaker clustering. Based on a similarity mea-
sure constructed with likelihood ratios, contiguous segments are pooled together.

Instead of speaker clustering, we have to decide which segments are correct. We do
not require minutes of data, but instead fractions of seconds. Given an utterance, we divide
the speech into segments. These segments may correspond to a uniform time window,
phonemes, or words. Figure 6.4 shows an example utterance divided into words.
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1 sec 1 min 1 hour

amount of adaptation data

Figure 6.3: Learning curves for ML, MLLR, and eigenvoices

Said: Dravo last month agreed
Recognized Trade o. last month a green
Statistics: ® @ @ @ ® @

Figure 6.4: Dravo last month: To each recognized word, we assign one Gaussian. The
mean and covariance are represented with a cross and an ellipsis.

Errors

Figure 6.5: Correct estimates are correlated. Errors do not form one consistent cluster.
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Each segment defines a pdf with an estimated mean and covariance. We cluster seg-
ments to cut off errors: correct estimates (see Figure 6.5) are highly correlated. They form a
homogeneous cluster. Errors do not need to have zero mean, but they must be uncorrelated
with the correctly labeled segments. They do not form a large cluster.

Unsupervised adaptation reduces to identifying the largest cluster. Given the assump-
tion that errors are not correlated, the largest cluster, which gives a consistent speaker
identity, corresponds to the correct segments. Even in high WERs (greater than 50%), if
errors are not correlated, correct segments will be identified.

6.4.4 The choice of a distance measure

Now that we have seen how to merge segments, and that we want to single out the correlated
segments, we need to define a distance measure between two segments.

Perhaps the most popular criterion in this case is the likelihood. Adaptation gains are
used in [PWNOO] to reject incorrect transcriptions. Utterance verification techniques are
applied to suspicious segments. We introduce the measures in this order:

e likelihood ratio / posterior,
e divergence,
e cross-validation score.

The first distance that comes to mind for measuring similarity between two mean vec-
tors is the canonical Euclidean distance. Let the mean be:

wy = Ry by, (6.16)

for a segment £k = X, Y. The distance between two segments X, Y would be thus defined
as the Euclidean distance between wyx and wy. Even though, in this chapter, we wish to
mark a departure from standard Bayesian EM algorithms, we consider this measure to be
inferior. The measure is dependent on the parameterization of wy. Also, it is independent
of the number of frames and observed covariance. In our case, we have, by convention,
chosen the initial eigenvectors to be orthogonal with respect to the Euclidean distance in the
whitened space. Any non-zero multiple of each vector would have been equally valid. The
similarity measure described here would change, giving more or less weight proportionally
to the square of the multiple. According to the joint Gaussianity model, one should use a
Gaussian with covariance equal to the observed covariance in the training set; the correct
weighting scheme, in that event, corresponds to the square root of the covariance, as in the
Mahalanobis distance. Unfortunately, the observed Gaussian model corresponds to inter-
speaker variability. It is therefore invalid for use with errors in transcriptions. It is merely
a way of minimizing the error of the speaker location with respect to another speaker.

Now we shall generalize the use of covariance and attain the likelihood criterion. The
likelihood function is not symmetric. By plugging in the eigenvalue in (eq. 6.7), we obtain
a Hilbert-like distance between two speakers. This distance is performed in the precision
space of the segment which is under examination for scoring. The precision is naturally
proportional to the number of frames and its inverse contains both uncertainty due to lack
of observations, and the observed variability. The variability is normalized by the expected
precision given the STHMM. The weakness of the likelihood approach comes from the fact
that segments with many frames will assume an overwhelming dominating position in the
scoring process. This is a common curse in confidence-based approaches. The canonical
remedy uses a likelihood normalized by the number of frames.

In our third take, we use a distribution distance measure. Distribution measures are
invariant to the parameterization. The Kullback-Leibler distance is almost exactly the like-
lihood measure, with an additional log | R| term which accounts for the contribution of the
variability. This takes care of the frame normalization.
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6.5 Further studies in Self-Adaptation

In the framework of self-adaptation, three extensions immediately spring to mind. The first
one concerns the granularity of the segments. The second one pertains to the stationarity of
eigenvalues. The third extends the statistical test to disregard highly uncertain eigenvalues
to adjust the complexity of the model.

All three performed poorly.

6.5.1 Time segments

In Figure 6.6, it may be questionable whether t rade should be rejected when most of it
is correct. Since our recognizer is based on state lexical tree, recovering phoneme segmen-
tations is possible but awkward. Nevertheless, we may choose to chop the utterance into
equally long time segments. This is also takes care of the problem of normalizing to the
segment duration. We remove segments containing at least one frame of silence since they
may corrupt the estimate.

Surprisingly, this approach performs quite poorly. It may be due to the fact that errors
form a slowly varying process with one discontinuity.

Transcription:

Dravo last month
Recognized:
Trade o. last month

Recognized phoneme sequence:
| t OWI 1
1 I

Figure 6.6: Time segments are used instead of word-segmentation

r |eyld ah

S

els [ |m
1

time

6.5.2 Non-stationarity

Speaker variability stems from many factors. One of them is average speaker rate. Our
training and modelling procedure do not afford such subtle details. Still, it may be worth a
try. For instance, Molau, Kanthak and Ney [MKNOO] report that female seem to speakers
exhibit different Vocal Tract Length (VTL) warping factors for each phoneme. On Fig-
ure 6.7, we shown a pitch contour, which is determined by the prosody of the sentence.
This is a non-stationary effect.

speaking rate (prosody)

SN N

time

Figure 6.7: Non-stationarity is naturally introduced as speech is affected by prosodic con-
tent

This indicates that speaker characteristics may change during the course of the sen-
tence. Experiments did not support these intuitions. We used different flavours, with one
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sliding window, and some temporal filtering of eigenvalues. None of them resulted in any
significant improvement.

6.5.3 Tuning model complexity

In principle, the same statistical test may determine the complexity of the model E. The
variable E' controls the dimensionality of the eigenvalues vector ). Setting Ey < E is the
same as forcing some eigenvalues e = Ey + 1, By + 2,..., E to zero. It is also similar
to using a prior density to be po(¥) that sets zero precision to e > Ejy. In particular the
MAPED algorithm, the Bayesian counterpart of MLED, assigns a prior density:

po(¥) = N (0, By). 6.17)

Unfortunately, the curve of error rate versus model complexity is rather flat. We blame
this as the primary reason for our failure to extract an improvement from these ideas. Also,
despite our efforts, eigenvalues are not orthogonal and speaker information is spread over
many eigenvalues.

It seems that once again, the simplest method affords the best results, and increments
are difficult to obtain.

6.6 Experiments

For our experiments we chose the Wall Street Journal Nov92 evaluation test (Section 8.4).

| || SI-84 training (WER) | SI-284 training (WER) |

SI 13.7% 10.8%
MLLR 13.1% 10.5%
MLED 12.6% 10.1%
MLED on time segments 12.6% 10.2%
MLED w/ variable dim. 12.6% 10.1%
MLED w/ confidence 12.2% 9.8%
MLED w/ conf + LM weight 12.2% 9.7%

Table 6.1: Self-adaptation: WER with SI-84 and SI-284

Results are shown in table 6.1. Word error rates (WERs) are reported for SI-84 and
SI-284. We applied MLLR with one global matrix to get an idea of the difficulty of the
task. For calibration standard MLED was also run. The level of significance for this task is
0.3% WER, using the Doddington rule [?].

The first pass generated a 1-best transcription. Word segments were clustered using the
adaptation gain as a criterion, with a nearest-neighbor clustering scheme. There were on
average 17 words per sentence. This resulted in a false acceptance rate (FA) of about 20%
and a false rejection rate (FR) of about 40%. Intuitively, we consider the insertion of a
wrong segment to be as detrimental as keeping two correct segments.

We tested the assumption of stationarity as follows. We updated the estimate once
every 100 ms, based on an window length of 400 ms. Surprisingly the method did not
result in a change in WER, even for different values of update period and window span.
We believe that the non-stationarity is exactly balanced with uncertainty due to the removal
of observation data.

Then, for every utterance, we tuned the complexity of the model E. That is to say,
based on the adaptation gain (and amount of training data), we forced all we,e >= Eto
be zero for some empirically determined E. For all values of tuning parameters, permuta-
tion of eigenvoices, and maximum F, the system did not outperform the baseline MLED.
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However disappointing, it is consistent with our previous unsuccessful experiments with
multigaussian prior for w (MAPED).

On the other hand, purging segments based on a ratios of adaptation gains resulted in
an improvement. The false acceptance for words was about 20% and false rejection 40%.
Errors in the exact transcription may not result in all wrong assignment of gaussian, and
conversely a word pronounced poorly, but forced by the language model, may introduce
noise in the estimation. However, intuitively, we consider one errors in assignment to be as
detrimental as the added uncertainty due to the removal of two correct segments.

In our last set of experiments, we decreased the language model weight proportionaly
to our confidence measure. The intuition is that in the case of poor acoustic match, we
reduce the gap between first and second best hypotheses, and allow for more changes in the
transcription, thereby prevent locking-in errors due to language modeling. We observed no
significant improvement.
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Chapter 7

Noise and speaker adaptation

In this chapter, we investigate the interaction between speaker and noise adaptation.

7.1 Introduction: why joint adaptation

When ASR systems are deployed, we can usually observe a large drop in performance.
Differences in the environment account for much degradation of the system. They are
perhaps the first source of errors in real-world systems.

A variety of remedies were proposed by speech researchers to deal with this problem.
Contrarily to speaker variability, it is possible to model noise in an explicit way. Therefore,
noise, unlike speaker change, may be described mathematically in a miscellany of ways.
In this chapter, we will restrict ourselves to stationary noise, for instance, microphone
change. When the nature of the mismatch is unknown a priori, it is customary to apply
speaker adaptation techniques such as MLLR, which have almost no prior knowledge and
adapt to the situation regardless of the actual nature of the change. In this event, we mix
all variabilities in the same transformation. We are interested in separating the effects for
better performance. This is represented in the taxonomy of Figure 7.1.

Noise Speaker adapt

Jacobian adapt VTLN

CMS Eigenvoices
PMC

Figure 7.1: Adaptation domains and techniques

The table 7.1 explains the techniques and their properties.
In the same spirit we may distinguish between three kinds of adaptation:

o Noise adaptation: encodes prior knowledge in parametric form (Jac, CMS): the noise
is added in the cepstral or log spectral domain.

e Speaker adaptation: encodes prior knowledge in eigenvoices (Eigenvoices): inter-
phoneme correlations are present in each eigenvoice.
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Speaker adaptation Noise adaptation

MLLR no a prior MLLR works no matter what
MAP a priori = SI CMS channel

Eigenvoices a priori=speaker space | Jacobian additive noise (Spectrum)
VTLN prior = parametric form | MAP works no matter what

Table 7.1: Speaker and noise adaptation: properties

e Speaker adaptation: encodes prior knowledge in parametric form (VTLN): the fre-
quency is warped.

e Blind adaptation: do not assume any prior knowledge specific to the application
(MLLR, MAP). The parametric form of the adaptation stems from concerns over
mathematical tractability.

Except for VTLN, typical speaker adaptation have no human intervention that specifies a
parametric model. Another example is adapting lexicon to speaker dialect. Strik [StrO1]
gives a very comprehensive review of techniques in pronounciation adaptation.

Both speaker and noise variability share two common properties which have made them
targets of choice:

o they have a large impact on performance,
e it is measurable and is relatively controlled, and therefore suitable for data collection.

Other differences, such as stress, or semantic content, command an impact on acoustics.
However, they come only second or third after noise and speaker variability. Moreover,
they are difficult to label or observe in a database. Additionally, ASR has traditionally been
focusing on very specific tasks, tackling problems within a restricted domain.

For these reasons, we have decided to study speaker adaptation in conjunction with
noise adaptation.

7.2 MLLR and Eigenvoices

To illustrate the problem, let us show how eigenvoices may be used in conjunction with
MLLR to cancel speaker and noise respectively.

Figure 7.2 shows the problem with Eigenvoices. The prior knowledge is built on a
training database with homogenous conditions, and usually noise-free. The test conditions,
however, have to bear the presence of noise. Both noise and speaker adaptation techniques
may be applied. However, the usualy choice is to use one, or the other exclusively. Alter-
natively, one can use the ubiquitous MLLR to resolve both mismatches at the same time.

If we would want to make use of available tools, such as MLLR or eigenvoices, we
come across an odd predicament. How do we deploy eigenvoices models amidst noise cor-
ruption? Surely the conditions change and all gains given speaker adaptation will be lost.
Conversely, if we apply MLLR, gains will be impeded by the dual mission of the adap-
tation: adapt to the speaker and noise simultaneously. The answer lies in the Figure 7.3.

We shall use two different parametric forms for the different noises. Figure 7.4 goes
into further details. We use a simple hierarchical decoding of variabilities: we posit them
independent. Then, using alternative projections of EM, we maximize the profit. Since this
is joint adaptation, the scheme is very sensitive to local optima. Therefore, care must be
exercised to slow down convergence. It is common sense to start with the variability with
greatest magnitude: noise.
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Training

Database in clean

@ — —
eigenvoices

Test conditions

eigenvoices noise
noise are invalid speaker — Speake'r
and noise
at the same
time
(a) Eigenvoices only (b) MLLR only

Figure 7.2: Eigenvoices and MLLR: either speaker or noise adaptation

Training

Database in clean

@ //
eigenvoices

Test conditions

MLLR |
NOise  —— Speaker adaptation

in noise-normalized
domain

Figure 7.3: Eigenvoices and MLLR: speaker and noise adaptation
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4 Condition 0
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(b) Speaker adaptation only

°‘| Condition O

Adapted model
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b

Target model

(c) Noise adaptation only (e.g. Jac) (d) Blind adaptation (e.g. MLLR)

Figure 7.4: Hierarchical decomposition of variabilities

Conjecture 1 (Orthogonality) Noise variability is orthogonal to the speaker variability.
We suppose that ambient noise is independent of the speaker, and that all speakers react to
noise in the same way.

Algorithm 1 (Hierarchical noise decoding) We initialize the algorithm with:
e Noise = no noise,
e Speaker = SI.
Then we proceed with alternating optimization as shown on Figure 7.5:
o Noise k: maxlog p(O|speaker k — 1),
o Speaker k: maxlog p(Olnoise k — 1).

There are risks involved when using the hierarhical decoding in Figure 7.5. In Fig-
ure 7.6, we see that a suboptimal estimation of noise results in an incorrect estimation of
the speaker. The correct combination of noise and speaker is never recovered.

Specifically for the case when noise is reduced with MLLR and eigenvoices normalizes
for the speaker, model means are affected by :

1
P =W | --- |, (7.1)
PTY
where 9 is the vector of eigenvalues, PZ the corresponding eigenvoices, and W, the re-
gression matrix for the class to which m belongs. In our experiments we used only one

global transformation matrix. In that case, it is more advantageous to apply the noise re-
duction in the feature space:

o, =A"to, —b; W =]p:A]. (7.2)
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[ SI models trained in clean ]

{

[SI models adapted to noise]

{

[Noise—adapted, SA models]

{

Figure 7.5: Multiple iterations of the hierarchical decoding

Figure 7.6: EM converges to the incorrect estimate because the conjecture is violated
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Thereafter, the eigenvoices work in the noise-cancelled (i.e. cleaned) domain.

The scheme may be extended to a plurality of speakers. In that event, the noise reduc-
tion matrix is shared amongst speakers. This consideration becomes of paramount interest
when some data may be collected in the test environment, but not sufficiently to train full
eigenvoices models. Figure 7.7 shows how this setup occurs. In Dg, where speech is avail-

Dg: clean database D1: devel database

Clean eigenvoices . .
g Transformed eigenvoices

,)\ 7 *~ W = noise

W = [0:1]
Do: test data

some other speakers

Training in clean Test in noise

Figure 7.7: Eigenvoices and MLLR: adapting on D1

able in enormous quantities, we train eigenvoices models. Using a small development set
D;, we estimate the noise transformation. This is the main requirement of the approach.
We need to have a development data set. Using unsupervised adaptation, we can avail
ourselves of unlabelled data sets. For best performance, we assume that D comes with
labels. When come new speakers in the same conditions Dy, we are able to renormalize
eigenvoices in that environment and adapt to the speaker in this environment. This scheme
should be performed whenever D is available, for it allows for explicit distinction between
noise and speaker, which, improves the joint adaptation scheme.

We have solved the final problem with eigenvoices: requirements that we gather in-
finite amounts of data in test conditions. We are able to simulate unseen speakers with
eigenvoices, and with MLLR, unseen speakers in unseen conditions.

7.3 Experiments

7.3.1 Experimental conditions

We used TIMIT in the same experimental framework as in Section 3.10, p. 47. Noise of
a car running at 60 mph was added artificially to the test utterances. No noise reduction
processing was applied. In Table 7.2, we report results in unit accuracy. The SNR for clean
TIMIT is about 70 dB.

7.3.2 Normalization

We employed two databases. The training database Dy is the standard TIMIT training data-
base. To train to the noise, we have a small development database D;. The test was done on
a third part of the database D4 with the same noise as D1. Dy comprised 30 speakers, each
pronouncing 8 sentences. Do was made up by 30 speakers, each pronouncing 1 sentence
(about 2-7 sec of speech) for adaptation Déa) and the rest for decoding Déb). All results re-

ported are on Dg’). SI (Dy) represents the SI model, estimated on the full training set of the
TIMIT database. MLLR(D1) can be interpreted as the SI normalized by the environment
learned from Di. MLLR(D2) and MLED(D>) correspond to MLLR and MLED applied
normally, without any use of D;. Finally, normEV(D;, D2) symbolizes MLED applied on
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| Method/SNR [ oo ][40dB [ 30dB [ 20dB |
SI (Do) 60.94 | 50.13 | 31.09 | 10.63
MLLR(D;) 59.79 | 56.86 | 44.82 | 30.82
LR (Dy) 53.14 | 5244 | 4278 | 25.07
EV (Dy) 65.05 | 57.13 | 43.14 | 19.31
normEV (D1, Dy) || 6425 | 62.53 | 52.08 | 34.54

Table 7.2: Unit accuracy for different SNRs

Size / SNR: 00 40dB | 30dB | 20dB
30 x 8 64.25 | 62.53 | 52.08 | 34.54
10 x 8 64.46 | 61.65 | 51.37 | 33.78
10 x 4 63.59 | 60.83 | 53.28 | 33.08
20 x 2 63.52 | 60.35 | 50.74 | 3291

Table 7.3: Unit accuracy when reducing data for environment normalization

Déa) with priors transformed using an estimation of the environment based on D;. These
sets were sliced randomly (non-overlapping) from the test set of TIMIT. For all tests, £
was set to 10.

7.3.3 Further experiments: reducing the amount of data

In a further experiment, we examine how the algorithm reacts when we reduce the size
of the re-training database, D;. Table 7.3 summarizes the results. The first column de-
scribes the size of the database by the product of the number of speakers times the number
of utterances per speaker. We see that it is better to have fewer speakers, but each pro-
nouncing more utterances, than more speakers with fewer utterances. This conforms to
the intuition that we are attempting to comprehend speaker variability with many speakers.
Undertraining of each speaker is filtered out after PCA. These results might be dependent
on the database.
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Part I11

Evaluation and decoding
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Chapter 8

Evaluation framework

8.1 System descriptions

This section is devoted to the descriptions of the systems that are used to evaluate the
algorithms. A large part of my time during the thesis was invested in developing PSTL’s
large vocabulary decoder and systems, which culminated with the participation to NIST’s
Rich Transcription 2002 evaluation.

An overwhelming amount of research in speech recognition is carried out under di-
rect or indirect influence from the DARPA programs. In only two years’ time, I have
implemented a large vocabulary recognizer, with training tools for acoustic and language
modeling. We have developed systems corresponding to all three generations of DARPA
LVCSR evaluations, namely Wall Street Journal (WSJ/Hub3), Broadcast News (BN/Hub4),
and Switchboard (SWB/Hub5).

8.2 Switchboard

In 1989, DARPA contracted Texas Instruments to record a database of telephone con-
versational speech for use in speaker identification tasks. This database was later tran-
scribed at the LDC, and re-transcribed at Mississippi State University (MSU/ISIP). The
re-transcription effort attained completion in August 2002 under the direction of Dan Hark-
ing. This database is known as the Switchboard Phase 1 (swbd1) database. In 1992, another
round of recordings took place and yielded a database twice the size of the first one, which
was christened Switchboard Phase I (swb2). Except for short excerpts, it was never tran-
scribed manually. Recordings have again been revived, this time including cellular phone.

Switchboard (SWB) has enjoyed intense investigation from leading speech recogni-
tion sites. Only two tasks are considered more challenging than SWB. The first is Call-
Home/CallFriend, in the same acoustic quality, but where people call relatives and friends.
This task is so difficult that human transcribers themselves consider it impossible to tran-
scribe. The second more difficult task is that of transcribing multi-speaker Meetings. It is
currently being collected and will be the focus of the upcoming DARPA MUSE program.

I have, almost single-handedly and with modest resources, made a humble attempt to
catch up with multi-million dollars research legacy in that area. I will try render details of
the SWB system submitted by PSTL to the evaluation.

8.2.1 Parameterization

The input signal is filtered to retain only 100-4000 Hz. After pre-emphasis, PLP coeffi-
cients with an 8-pole model are computed every 10 ms over a window of 25 ms. Residual
energy was prepended to the static feature vector. Those 9 coefficients s(t) were augmented
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with the first and second order time derivatives. The time derivative was approximated with
a five-tap non-causal filter h(¢):

+2
ds®) 37 h(r)s(t — 7). 8.1)

T=—2

These cepstral coefficients were then normalized to have unit variance, and zero mean
over each conversation side on all 9 dimensions of the static parameters. Delta and acceler-
ation coefficients were computed after variance and mean normalization. By construction
their mean is zero. Normalization excludes long segments of silence. Specifically, during
training, we used segments as defined by MSU. During decoding, we used either segments
provided by NIST (transcribed with the same specification as MSU), or automatically de-
fined segments.

The convention adopted by MSU results in a padding of at least one second prior to and
posterior to speech in every segments. This introduces a large proportion of silence in the
speech segments, which is believed to reduce gains due to normalization. Moreover, this
silence amounts to about 30h duration, and slows down training. For simplicity we chose
not to remove it for this evaluation.

8.2.2 Acoustic training

In our system, acoustic modeling was the primary consumer of computational resources.
Training LVCSR models is a discipline that concedes a large influence of parameter tuning.
We will describe our choices.

Data

Training data was drawn exclusively from the Phase-1 SWB (SWBD1). LDC provides
the sound files under catalog number LDC97S62. There is approximately 265 hours of
speech. There were 2436 conversations, or 4872 conversation sides. Due to lack of time,
we made no use of additional material such as CallHome, Cellular, etc. The segmenta-
tion was bootstrapped from an early automatic word-level segmentation provided by MSU.
Training and segmentation were alternated for more than 6 months. Forced-alignments use
recognition models adapted to the speaker using MAP-smoothed MLLR. Therefore, we
have SAT-grade quality segmentations.

All speakers were identified with a PIN number. They are recurrent in development
and evaluation corpora. There were 539 speakers in the training. Some conversations
contained unusable transcriptions, or very poor quality due to frame dropping. There were
filtered automatically by a likelihood based confidence measure. We kept almost all of the
training data. A total of 4400 conversation sides are present in the training. After filtering,
speakers had either zero training data, or at least more than one minute of speech.

Lexical units and Language modeling

The language model was kindly provided to us by Andreas Stolcke from SRI [SBBT00].
It contains 34610 words, including 1659 compounds, 4.8 million bigrams, and 11 million
trigrams. Training data includes Broadcast News transcripts, Call Home, and Switchboard
acoustic transcription data.

We employed 41 phonemes including one for the silence. Cross-word transcriptions
were manually inserted for the most frequent compounds. We believe that compounding is
an efficient alternative to first-pass cross-word modelling. We leave the decision of select-
ing cross-word modeling or word-internal modeling to the Viterbi segmentation step. For
instance, the compound you_have_a may be modeled as:

e Word sequence you have a, denoting word-internal units.
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e Word sequence you_have a, for a cross-word model for the first two words only.
The last word a is modeled separately because of a pause between the words.

e Word sequence you have_a is similar.

e Word sequence you_have_a for full cross-word modeling. No silence is allowed
between these words, and coarticulation effects may be introduced in the acoustics.

Instead of applying the rule greedily to model across-compounds, we split compounds
arbitrarily. For instance, do_you_have_a does not appear in the SRI language model. It
was split into the two compounds do_you and have_a, which could be split in smaller
units. The reason is that we were concerned that the greedy rule might leave too little data
for model synthesis. If cross-words are always selected during training, there is very little
data left for word-internal model synthesis of unseen compounds. The problem can be seen
easily with the case of acronyms. Acronyms are sequences of letters, suchas C. N. N..
If all acronyms are trained as compounds, there is no data to left to synthesize unseen
acronyms. Similarly, language models will leave almost no backoff probability mass for
unseen acronyms.

Triphone clustering

Our best acoustic models were trained using 3-state, left-to-right HMMs, with no skip state.
Gaussian mixtures provided the basis for probabilistic modeling on each state. States do
not share Gaussians, but may be shared across triphones. This is called State Clustered
Tied Modeling (SCTM).

Sharing is settled by a Classification And Regression Tree (CART) algorithm. Trees
were grown using half of the acoustic training data. The second half of the training data
served as a cross-validation set to prune unreliably trained leaves. After we adjusted the
minimum count and likelihood gain thresholds, this resulted in 3892 states. Trees assumed
a single Gaussian distribution at each level.

There were 63 phonetic questions, which we obtained from MSU. The questions distin-
guish between vowel, voiced, front, lenis, etc., to determine the nature and the position of
the sound. This set is slightly larger than the one used by Odell [Ode95]. We asked ques-
tions about the position of the allophone (immediately after or before a word boundary).
This is called position-dependent triphone modeling.

Iterative splitting - merging

The single Gaussian distributions inferred from pooling growing and cross-validation prun-
ing data were then refined using word-internal Baum-Welch training. Distribution were
split and perturbed proportionally to their standard deviation. Another round of Baum-
Welch occurs. We split by a factor of two exponentially to 128 Gaussians.

In the last step, we had trained 489350 Gaussians. A nearest-neighbor clustering based
on least likelihood loss trimmed unreliably trained Gaussians. We retained 256000 Gaus-
sians. Merging of Gaussians was permitted only within states.

8.2.3 Decoder

In order to meet the self-imposed 10x real-time constraints, we truncated the decoding
strategy to a single-pass trigram decoding. We were the only ones to participate to the
unpartitioned condition. We paved the way for limited resources SWB conditions.

The segmenter uses gender-dependent GMMs to find speech from the four-wire (4W)
data. In NIST’s terminology, four-wire data was defined as data collected on the switch-
board, separately for each channel. Therefore, meta data annotation as defined this year
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System WER
Dev set | 34.4%
Eval set | 36.7%

Table 8.1: Development versus evaluation performance on SWBD1 data

reduces to a simple speech detector. We adjusted the slackening parameters to an over-
bearing false acceptance ratio. We preferred to insert pure silence segments that would be
detected as such by the LVCSR decoder, rather than missing speech altogether.

Recognizers ran on the partitioned (PEM), and unpartitioned (UEM) conditions were
identical up to beam size. During the evaluation, we solicited NIST for a definition of
the real-time factor computation. To keep in line with Meeting Room experiments, they
decided for a lenient real-time factor computation for the UEM, that leaves twice as much
time for the decoder. The real-time factor is defined as:

Total processing time

RT =
Reference time

(8.2)

The definition of the reference time is:

e PEM: total of duration of segments as provided by the NIST (MSU-style annota-
tions),

e UEM: total of duration of channel A plus total duration of channel B.

For the sake of comparison, both recognizers used the same single-pass strategy. En-
couraged by our preliminary findings, NIST will probably settle for the UEM next year.
Moreover, CU-HTk was probably engrossed by our submission when they submitted a late
limited resources system.

8.2.4 Development / Evaluation Results

In this subsection, we report the performance of the system in different conditions.

For our first participation to a NIST evaluation, we tried to follow the instructions of the
evaluation plan as closely as possible. It states that sites should submit as many conditions
as possible, even though the results might be poor. We were the only ones submitting in a
number of categories. We submitted the most systems to the evaluation.

Due to a lack of computing resources, our developments were only measured on the
earlier SWBD1. The Phase 2 (swb2) and cell phone (swbcell) series were available to
us, but ignored for practical reasons. Table 8.1 shows the dev set versus eval set results.
Referring to previous evaluations, we estimated that the first pass of the unlimited systems
were scoring at about 35-40%, with a real-time factor of about 20 times RT. The systems
that we report were 10 times RT, that is two times faster for about the same performance.
We can see from the table that there was a significant “overtuning” to the database.

Moreover, the results from the actual evaluation have to be blended with the two other
sets, which are more difficult. Table 8.2 shows the results on the evaluation sets. Again,
due to lack of time and computing resources, we did not test the submission system on
these part of the dev sets. There are two different systems: the manual and the auto-
matic segmentation systems. We were the only ones to submit an automatically segmented
Switchboard transcription system. The automatic transcription is believed to be harder.
However, because of the larger beam, as explained in Section 8.2.3, the results are slightly
better. Despite the preliminary nature of our results, this has encouraged NIST to propose
an automatic condition for RT-03.

After the evaluation, and hopefully encouraged by our tentative, CU-HTk decided to
develop a “late” system. AT&T submitted a faster-than-RT system timely. Results are
shown on Table 8.3.
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Test set WER manual | WER auto
PEM UEM
SWBDI1 36.7% 35.9%
SWB2 44.3% 46.9%
SWB cell 50.9% 48.0%
Average 44.5% 43.9%

Table 8.2: Evaluation results for PEM and UEM tests

System RT | WER
CU-HTk | 10x | 27.2%
PSTL 10x | 44.5%
AT&T Ix | 28.4%

Table 8.3: Limited resources systems

On Table 8.4, results for the unlimited resources systems are given. These systems
can use more than 300 times RT. They typically use two to four passes with two to seven
systems for ROVER combination, with full variance adaptation and pentaphone modelling.
By design, we have decided to concentrate on a small set of features, which would be
directly applicable to a commercial system. The NCE measure is the normalized cross

entropy.

System WER NCE
AT&T 26.4% | -0.420
BBN 28.4% | 0.188
CU-HTk | 23.9% | 0.289

JHU 33.6% N/A
LIMSI 30.0% | 0.239
SRI 27.4% | 0.268

Table 8.4: Unlimited resources

As we can see, the PSTL system is not competitive yet. In absolute WER performance,
it is comparable with the open-source MSU-ISIP system, which did not participate this
year. However, the PSTL system operates about 80 times faster than ISIP’s hierarchical
decoder.

In terms of MetaData, the raw results are shown on Table 8.5.

11714.69 | Total Speech to be segmented (in seconds)
7834.75 | Correctly segmented speech (in seconds)
3879.94 | Incorrectly segmented speech (in seconds)
0.33 SEGMENTATION ERROR

Table 8.5: SWB: Meta Data Results (frame error)

During the workshop, NIST presented detailed results where they showed that PSTL
performed equally regardless of the set type (SWBD1, SWB2, and SWB-Cell). MIT-LL
performed better than PSTL on SWBD1 and SWB2, and approximately equally worse on

SWB-Cell.
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8.3 Broadcast News

Our efforts on Broadcast news (BN) data were limited to three months (Jan 2002 — Apr
2002). The BN database consists of news broadcasted from various news channels, such as
CBS, ABC, NPR/Marketplace. Test data includes shows from VOA and CNN not present
in the training data.

News were recorded in 1996 and 1997. Two hundred hours were transcribed. The
data were also labeled versus speaker name. There were more than 4000 distinct iden-
tification tags. Some of them may be repeated for different speakers across shows (e.g.
spkr_1). Due to presumably transcription errors, these tags may refer to different speak-
ers within one show. We define nominative speakers as speakers whose tag do not contain
digits (john_doe?2), nor three consecutive capital letters (ABC_Announcer). Some
were manually corrected, for instance:

e Dave_Bird <=> David Bird,and
e Hilary_ Rodham Clinton <=> Hilary_Clinton.

After normalization, we still had more than 2000 distinct nominative speakers. More than
50% of them appear fewer than or exactly twice in the database.

BN is characterized by its real-environment nature (“found” data). It includes music
in the background and interviewees speaker over telephone channels. Some degree of
spontaneity is also present. To a lesser extent, a few examples of overlapping speech may
be found. Used in the early days for indexing only, BN systems are now being deployed
for closed-captioning by the NHK (Japanese Broadcast company) and the BBC (British
Broadcasting Company), but is still thwarted by fierce opposition in the US. CNN recently
adopted the English connectionist system formerly known as the Abbot system for their
indexing needs.

BN is the LVCSR system that is closest to being deployed. Therefore, extra emphasis
is put on real-time operation and simplicity versus performance.

8.3.1 Parameterization

The frontend generates MFCC parameters at a frame rate of 100 Hz. After pre-emphasis,
the power spectrum of 32 ms is integrated of 20 filter banks. After the Inverse Cosine Trans-
form, we retained 12 cepstral coefficients, excluding c0. Residual energy is prepended to
these coefficients. The five-tap filter of equation (eq. 8.1) is applied twice for delta and
acceleration processing. To the static coefficients, we applied a purely causal version of
online cepstral mean normalization. An average over the 2 previous seconds of speech is
subtracted to all 13 static coefficients prior to delta computation.

As opposed to some other sites, we decided not to incur special processing for narrow-
band conditions. Narrow-band is understood as telephone speech or speech recorded with
low-quality.

8.3.2 Acoustic training

Broadcast news systems were trained on both training corpora available from LDC, train96
(LDC97544) and train97 (LDC98S71). Overlapping speech and music-only segments were
discarded. Segments were cut at each available time reference point, including SyncTime.
Transcriptions for this task were surprisingly cleaner than MSU transcriptions. They re-
quired almost no post-processing for errors.

We applied the same acoustic training strategy as in SWB (Section 8.2.2). Tri-state,
position-dependent triphonic HMMs with entropy-merged SCTM mixtures serve as the
basis for speech recognition. Specifically, decision tree clustering produces 2739 states,
which were split exponentially to 128 Gaussians per state. Out of the resulting 347832
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LDC Name Type Size M words) | Weight
1996 CSR-Hub4 Broadcast 140 3
North American News (NAB) | Newswire/paper 500 1
TDT2 + TDT3 Broadcast 31 3
Acoustic training Broadcast 1.6 12

Table 8.6: LM training data: amount, type, and weight

Gaussians, we keep only 192000. The phonetic questions were the same as those set out in
Odell’s thesis [Ode95].

Amongst several gender-dependent training strategies, we found the following to work
best. SI models are cloned for each gender. Variances, transition probabilities, and mixture
weights parameters remain the same as SI. We then update all seen means by Baum-Welch
training with the ML criterion. Unseen means are left untouched, as they seem to provide
background modelling necessary for recognition. MAP, MLLR, update of variances, and
removal of unseen Gaussians all degraded results. Bandwidth-dependent models were not
found to bring stable improvements for speech recognition and were not explored further.

8.3.3 Language Modeling

The language models were trained from a variety of sources, all available from LDC, in-
cluding closed-captioning data from Broadcast News (CNN), newswire (e.g. Reuters), and
newspapers (WSJ). Table 8.6 shows the sources. Texts were processed using a modified
version of the normalization tools provided with WSJ.

TDT data excluded epoch December 1998, from which RT-02 evaluation data was
known to be drawn.

The vocabulary is selected amongst the 60000 most frequent words in all corpora ex-
cluding NAB. In that case all corpora had the same weight. From these words, a number
were excluded. We chose to include only those words that were present in COMLEX, SWB
training data, BN training data, and most common names in the Census database. False-
starts were filtered out. Hesitations were normalized into only uh and hmm. Compositions
were permitted with hyphens (across-the-board). After this filtering we had extracted a
vocabulary of 53514 words. Rejected words included about 3000 words which were a mix-
ture of rare valid words (according to the Webster 1913 release), and proper names. They
were added manually after the evaluation.

Language modeling interpolated corpora at the count level. The Katz backoff topology,
with Good-Turing estimation, and CMU-style cut-off pruning brought about 19M bigrams
with 68M trigrams.

8.3.4 Segmenter

The meta-data comprises two tasks: speaker segmentation, and speaker clustering.

The speech is first decoded using a GMM with 512 Gaussians per model. Models
were trained for silence, and the Cartesian product of bandwidth (narrow/wide) and gender
(male/female). Since the train97 data does not include bandwidth tags, a model was trained
on train96, and used for further decoding on train97. Bandwidth classification does not
enjoy high agreement between transcribers. Therefore, it is never to be evaluated as meta
data. Rather, it might be used by sites to improve modeling.

A unigram decoder produced a first-pass output. The decoded output is then heuristi-
cally smoothed according to the following rules:

1. Consecutive segments of speech are merged, and assigned to the dominating class.
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[ Total number of classes || Vowels | Consonants | Silence ||

7 classes 4 2 1
5 classes 3 1 1
3 classes 1 1 1
1 class 1 0

Table 8.7: Allocation of matrices to broad phonetic classes

2. Speech segments surrounded with fewer than 400 ms are merged again with neigh-
bors if speech within the segments lasts for less than 4 seconds.

3. Silence of fewer than 150 ms between two segments of different conditions are col-
lapsed, if either segment is less than 4 seconds. A resulting segment encompassing
both is labeled with the longer segment’s label.

This was found to minimize the false-rejection (FR) rate. As in the SWB evaluation, we
prefer to decode more silence using LVCSR, than to chop words. The BIC criterion further
merges segments.

Clustering also makes use of BIC. We begin with all segments alone in their own cluster.
Then bottom-up, nearest neighbor hierarchical clustering merges segments until a prede-
fined BIC threshold is met.

8.3.5 Decoder

BN decoding stands in sharp contrast with SWB in terms of performance and required
computational resources.

Less than 10 times real-time decoder

The system proceeds in two stages. The first-pass decoding uses gender-dependent models
according to the labels provided by the segmentation/clustering step.

The most likely transcription is used for MLLR adaptation. Block-diagonal matrices (3
blocks) constitute the affine transformation. Regression classes were allocated to silence (1
class), vowels (4 classes), and consonants (2 classes). In degenerate cases, we reduced the
number of classes to 5, 3 or 1, according to the number of frames (see Table 8.7).

To speed up search, only words hypothesized during the first pass decoding were al-
lowed in the second pass. There were about 400 words per audio cut. The second pass is
exactly the same as the first pass, but uses adapted models.

Real-time decoder

The faster system also proceeds in two stages. The segmenter is the same as for the previous
system. The first-pass decoder is truncated to 2 to 5 seconds until a minimum amount of
true speech is found. Block-diagonal, global MAPLR adaptation on speech only is applied
on these words. The prior was the identity matrix.

The second pass runs with adapted models.

8.3.6 Development / Evaluation Results

We present evaluation results in this section. The system has been updated since. Improve-
ments as of mid-June are reported. The nature of the updates is not algorithmic. It is due
to a better handling of compounds in the lexicon and in the text normalization. Acoustic
training was iterated.
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I refer to the submitted system as sys34, and the updated system as sys61. Table 8.8
shows results for the faster than 10 times RT. This time, the evaluation data was not anno-
tated for focus conditions. (Previously, NIST would differentiate between FO/F1, which is
high quality speech in planned and spontaneous mode, and other conditions, which include
speech over the telephone, music, etc.) hub4-98 was our development set. It corresponds to
the test set of the NIST evaluation held in 1998. The results were better for the evaluation

System WER (RT02) | WER (hub4-98)
LIMSI 12.7% N/A
PSTL(sys34) 20.1% 22.5%
PSTL(sys61) 19.5% 21.5%

Table 8.8: BN: limited resources (10x RT)

test set. This might be due to the LM, which was trained on TDT. We carefully removed
all the December 1998 data from the training epochs, but the test was still drawn from the
TDT corpus.

The faster than real-time system is presented on Table 8.9. The speech recognition re-

System
PSTL(sys34)

WER (RT02)
23.7%

Table 8.9: BN: limited resources (1x RT)

sults (Speech-to-Text/ STT) results are significantly worse than those of LIMSI. However,
it can be estimated that they are not wildly worse than a typical 1999 evaluation system.

3268.95 | Total speech to be segmented (in seconds)
2652.99 | Correctly segmented speech (in seconds)
615.96 | Incorrectly segmented speech (in seconds)
0.19 SEGMENTATION ERROR (sys34)

0.036 SEGMENTATION ERROR (sys61)

Table 8.10: BN: Meta Data Results (frame error)

We were the only ones to participate to the Meta Data (MD) evaluation on BN (see
Table 8.10). The error rate of 19% was reduced in further experiments to about 4%. Note
that NIST changed the scoring algorithm. It is now more pessimistic but still realistic. The
previous methods consisted of computing all pairing of reference speaker labels to putative
speaker labels. This algorithm is factorial in the number of speakers and diverges rapidly
beyond 2-3 speakers. On average there were about 9 speakers in this set. Instead of the
optimal method, NIST selected a greedy algorithm that would match a reference speaker
label to a hypothesized speaker label if the overlap duration is the greatest. This is penalizes
over-detection of speakers even more. We present no results on hub4-98 because the sets
are artificial concatenations of 10 min duration excerpts.

For the updated result, we corrected “Dave Bird” to “David Bird”, which afforded about
1% absolute error reduction.

8.4 Wall Street Journal

The Wall Street Journal (WSJ) database was the first amongst LVCSR tasks to be carried
out by NIST. It consists of read speech from WSIJ articles. As with BN, training was
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Training data SI-284
Frontend MFCC, CMS
Acoustic models | triphone, word-internal
Language models trigram
Gaussians 96k
Real-time 2.0

WER 10.5%

Table 8.11: Results on Nov92

released in two parts. They consist of so-called long-term and short-term speakers. Long-
term speakers may be used for SD modeling. Most sites prefer using only short-term
speakers for training. The first released part of WSJ data is called SI-84 because it contains
84 speakers. SI-84 contains about 12 hours of speech. The second released part of WSJ
is called SI-200, and contains 200 additional speakers. It is worth 60 hours of short-term
speakers. It is commonplace to carry out experiment on either only SI-84, or both training
parts, referred to as SI-284. Except for the early developments results, most site run training
on SI-284.

8.4.1 Parameterization

The frontend is very similar to Section 8.3.1. MFCC parameters, with delta and accel-
eration parameters are computed over the same window. The difference lies in the way
Cepstral Mean Subtraction (CMS) is applied. In WSJ, the cepstral mean is computed over
each utterance, including both speech and silence.

8.4.2 Acoustic training

Our WSJ system was trained on SI-284. The TIMIT database was used to bootstrap the
forced-alignment. A full system was trained on these utterances. About 20% of the data-
base was then removed from the training using a frame-based and utterance log-likelihood
threshold. Amongst rejected sentences we discovered some incorrectly recorded data (sen-
tences repeated twice, or additional disgruntled comments appended). After some passes
of training and segmentation, we decided to incorporate rejected data again. About 700
sentences were still rejected due to low likelihood. There were about 37500 sentences.

Again, we exercised the strategy of Section 8.2.2. Triphones were trained with 1400
mixtures, split to 128 Gaussians per mixture, and merged down to 98304 Gaussians (96k).
From there on, splitting, and merging back to 96k was repeated a few times.

8.4.3 Decoder

The decoder proceeds in one pass only. Alternatively, in self-adaptation experiments, we
would apply a second pass identical to the first one, except for adapted acoustic models.

The lightweight decoder runs in 1.3 times real-time with about 64k Gaussians. At
that speed we process 10000 active hypotheses per frame. This stands in sharp contrast
with other decoders, which process typically 10000 hypotheses in comfortably more than
4 times real-time. This is mostly due to an optimized implementation. Also, the choice of
word-internal triphones simplifies the task of the decoder.

Our baseline system was tested on the Nov92 evaluation test set. There were 333 sen-
tences.
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System Unit Accuracy
CI models, PLP (static + delta) 60.94%
CI models, MFCC (static + delta) 63.72%
CD models, same MFCC, 700 leaves, 16 Gaussians per mix 72.34%

Table 8.12: Phoneme accuracy

8.5 TIMIT

The TI-MIT database, or TIMIT can hardly considered a large-vocabulary task. I have used
it in early developments, as a springboard to WSJ. There are 462 speakers in the training
set (325 males) and 169 in the test set. Each speaker pronounces 8 sentences of a length of
about 2-7 sec each. All subjects read speech with a high-quality Sennheiser microphone.
The sampling rate was 16 kHz. Sound files are compressed with the SPHERE pack format.

The standard benchmark is the so-called Kai-Fu-Lee phoneme recognition task. The
recognizer is evaluated by its phonemic output. Language model is allowed at the phoneme
level. Since sentences are selected from a finite, well-known set, language modeling should
be kept to the minimum. The aim of TIMIT is to benchmark pure acoustic modeling. There
is one hour of manually labeled speech.

We use MFCC parameters, with static parameters and their first derivatives. They
are computed as in WSJ. Context dependent triphones share a total of approximately 700
leaves. A Turing-Good, phoneme bigram language model was built atop the acoustic train-
ing data. Recognition is based on 48 phonemes, but the scoring down-samples the phoneme
set to 39 phonemes. The decoder is a Viterbi word graph search.

Typical results are reported on Table 8.12, in unit accuracy. Best results are given with
at a 0.05% interval, with 95% confidence, using the Doddington rule [Por97].
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Chapter 9

Large Vocabulary Decoder

In choosing to study adaptation in large vocabulary continuous speech recognition (LVCSR)
tasks, we made the implicit decision to develop such a system. The most time consuming
part was the decoder.

In this chapter we review the architecture and specificities of our decoder.

9.1 Introduction

As underlined previously, the more technically interesting configurations occur in state-of-
the-art LVCSR systems. Due to the difficulty of the task, the systems are in essence rather
complex. A major pole of complexity of the system is due to the search. The Table 9.1
shows the approximate proportions in lines of C code in our system devoted to respec-
tively training, decoding, and support components as of October 2001. The miscellaneous
components include speaker adaptation, decision tree clustering, various general purpose
mathematical algorithms, and data structures.

Conceptually, the decoder, called EWAVES, is quite simple and will be exposed in the
remainder. We begin with a general description of the architecture, followed by a more
detailed description of each component. The decoder uses two passes. The second pass
may be repeated several times with low cost. We can distinguish two components in the
first pass: the search algorithm, and the language modelling structure. The second pass
re-scores an N-Best list and is an isolated version of the word-internal search algorithm.

9.2 Architecture

The figure 9.1 shows the general architecture of the decoder. Given the paucity of resources
allocated to this project, we aimed for a simple, yet flexible architecture. The first pass,
shown on Figure 9.2, includes trigrams by default, with word-internal context-dependent
phones. The search space is organized to accommodate trigrams, but was extended to n-
grams at various levels of sub-optimality. It is possible to use pentaphone models without

Module Lines of code
Decoder + Frontend + Audio 70k
Training 30k
Support 50k
Total 150k

Table 9.1: Lines of code allocated to each component
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E’Vord—internal CD/ trigrana

[ NBest generation j

[ Adaptation

'

Cross-Word modelling
long-span LM/acoustic

Figure 9.1: Architecture of the decoder

[LM probabili[ieg [LM Cacha

Lextree manager

Lextree Viterbi

Figure 9.2: Modules in the decoder: LM probabilities and LM Cache are higher-level en-
tities. The lextree manager creates and destroys hypotheses spaces associated to a bigram
history. The lextree Viterbi performs Viterbi within a bigram-conditioned space. The Hy-
potheses memory manager (HypMM) manages state hypotheses.
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increase in complexity.

The N-Best generation is a beamed backwards Depth First Search (DFS). Adaptation
can be performed between stages. At this point, we may switch to cross-word models,
gender-dependent, rate-dependent, VTLN-warped, segmental CMS, and optimal longer
span models.

Because of the trend in growing computational power, and the real-time requirements of
many practical applications, a lot of complexity is allocated to the first pass. For simplicity,
we delayed cross-word modelling to the second pass. Long-span ngrams and pentaphones
may be applied in the first pass.

9.3 Search algorithm

In this section, we will describe the within-word search only. Since we have no cross-word
contexts at this stage, it is almost the same as an isolated search. We chose a lexical-tree
based time-synchronous dynamic programming. The originality of our algorithm resides
in the definition of a total order among hypotheses. It is not the same as a structural opti-
mization (for instance usage of a lextree instead of linear lexicon). The algorithm operates
without loss of optimality.

For the rest of the explanation, we shall be only concerned in strictly left-to-right
topologies. It is possible to extend the algorithm to directed acyclic graphs (DAG) with
an additional cost proportional the maximum number of outgoing transitions from an emit-
ting state. Intuitively this can be interpreted that since each state can only activate one node
at each frame, the space of hypotheses propagates at a controlled speed. In practice, rare is
the case when one needs to use loops or even skip transitions.

9.3.1 The lexical tree

For the first pass, there is only one static lexical tree. It is defined a priori before the search
begins. It can be compacted for unigram and bigram LM lookahead factorization.

While most sites use phoneme-based prefixes, we opted for state-based lexical trees.
This allows us to instantiate all needed in-context allophones during the generation of the
tree and then discard all data related to decision trees until the next pass. Our lexical trees
will be naturally smaller than allophone-based lexical trees.

Definition 2 (Parent and Child Nodes) If a node p has a non-zero transition to another
node ¢ # p, we call p the parent node of ¢, and c a child of p’s. All nodes except the root
node have exactly one parent. A leaf has zero children.

Definition 3 (N™ order offspring) The set of all children of a node are called first-order
offspring. The set of all children of all N" order offspring are called (N + 1)™ offspring.

Definition 4 (Level) A level N is the set of all N offspring of the root node.

Note at this point that there is no prevalence defined between children of the same
parent. In fact, from the search point of view, there is no distinction at all between any
permutation of children. It is possible to modify the algorithm to ensure that children will
be processed in a specific order, for instance to maximize memory caching.

Definition 5 (Lateral lists) A lateral traversal list is a list of nodes to be traversed. All
nodes belong to the same level. It is termed thus to differentiate from hierarchical traversal
which crosses level boundaries.
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9.3.2 Viterbi Search

We will proceed as follows:
e Introduction of Viterbi search
e Array-swapping: a simple Viterbi implementation
e Piggy-backed array: a refinement for DAG HMMs.
e Active envelope: an optimal traversal of hypotheses

The crucial improvement of our algorithm lies not in the structural organization of the
search space, but rather in the definition of a total relation of order in the search space.
As noted by many authors, the search space explored during Viterbi search is in practice
several order of magnitude smaller than the entire potential search space. In other words,
the actual search space is very sparse.

In many algorithms implemented in state-of-the-art systems, this implies conceptually
that one runs very frequently into representation problems. They can be summarized as
asking the question, “what is in my search space? Have I explored this node yet?”

The fact is that algorithms work with a pool of hypotheses spread on a network. Search-
ing for a hypothesis in this pool is like search in a bag of stones for a specific stone: the
entire bag must be reviewed. Our solution is simple. First, we distinguish smaller sets of
equivalence within this pool. These sets are equivalent for the search algorithm. These sets
are simply hypotheses in lateral lists. We have a partial order. Then, we complete the order
by defining an order within these lists, so that we now have a total relation of order.

The algorithm will review hypotheses religiously in sequence. By construction, we
guarantee that it will lookup and create hypotheses following the same relation of order.
Therefore, the pool of hypotheses can be encoded as a simple linked list or array. Insertion
and lookup of a hypothesis is O(1) per hypothesis, and O(H) in total, where H is the
average number of hypotheses per frame. H is also called the search effort. Given the
premises, it is impossible to design a faster algorithm. All other algorithms with distinct
cost are suboptimal.

Viterbi Algorithm

The notorious Viterbi Algorithm [Vit67] is a dynamic programming alignment on a trellis.
Its most striking property is that the search can be summarized and built incrementally
using the so-called recursion equations. Again, we leave out the problem of language
modelling for later.

The general layout of the algorithm is shown on Figure 9.3. The words w; and ws
share the same first two states and therefore, given the lexical-tree organization, search
is shared. The DP alignment procedure specifies that sufficient statistics for maximum-
likelihood ending score can be compacted in the list of active hypotheses at the end of the
utterance. Moreover, each list of hypotheses can be generated using recursive equation
over time. The list of hypotheses at any time ¢ is «(t). Given our topology, the recursion is
simple. Figure 9.4 shows why by zooming the general layout graph. At each point of the
column, we only need to look at the immediately following row. In our terminology, only
offspring of order 1 are explored.

The direct implementation of the algorithm leads to the so-called array-swapping algo-
rithm.

Array-swapping algorithm

A list of hypotheses a(t) is kept in a linear array. The size of the array is equal to the
number of states in the lexical tree. For the recursion, we use the so-called backwards
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Figure 9.3: General layout of the Viterbi Algorithm
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recursion equation of the Viterbi algorithm. An array a(t + 1) is created empty. The entire
list of states is traversed, and for each state k, we find the parent state of the node, called k*.
Inactive states are assigned a score equal to —oo. We assume that scores are log-likelihoods
and log-probabilities. The score of £ at time ¢ 4 1 is defined by its own score at the current
time and the score of its parent:

skt + 1) = max{sg(t) + lg, sk~ + ir} + di(t) 9.1
where:
l: the log-probability of the self-transition (loop) from & to &k
ik: the log-probability of the incoming transition £* to k

di(t): the acoustic match log p(o4|k).

Since a(t) — a(t + 1) forms a Markov Chain, at any time we only need the two arrays.
For the next time ¢ + 2, a(¢ + 1) is used in lieu of «(¢). The other array «(¢) is cleared and
can be readily used for a(t + 1). For that reason the method is called array-swapping.
Clearly, it is expensive because of the memory requirements. Space must be allocated
for the potential search space. On the other hand, lookup and insertion of a hypothesis is
O(1). The algorithm is intolerable for LVCSR but optimal. It has two other drawbacks:

e backwards lookup: for each node in consideration we need to find its parent. Of
course, this can be hashed.

e backwards recursion: this is a corollary of the previous statement. In practice many
states in the trellis are not active, because their parents are not. Supposing that the
backwards lookup problem is solved, in theory, we still need to examine all states of
the array and look backwards to see if they can be activated;.

We would like to improve the algorithm to only use one array, or hypotheses list, and to look
forward from existing hypotheses, instead of looking backwards from potential hypotheses.

Forward recursion

The first observation that comes to mind is that «(t) is very sparse. In many an instance of
the potential right column «(¢ 4 1), parents will have zero likelihood, leading to a waste of
time. It is possible to use the forward recursion to construct a(t + 1) while traversing only
active hypotheses of «(t). This is called the forward recursion. For each node k, we list all
children c. The following equation holds:

Ve, se(t + 1) = max{sg(t) + ik, sc(t) + Ik} + di(t). 9.2)

Unfortunately, this requires the use of a lookup function for s.(¢). It is not known whether
the score of c is going to be used further down in the hypotheses list, and thereby impossible
to use only one array if no other information is added.

In the introduction, we talked about «(t) as the pool of hypotheses. Now we are going
to define small clusters in this pool.

Piggy-backed array

We define a partial order of the hypotheses of «(t) to avoid the problem. From Figure 9.5,
we see that it corresponds to traversing each pool of later lists from top to bottom.

By construction, we can override the score of the child ¢ immediately. The algorithm
ensures that we have traversed ¢ before and will not use the score again in the same Viterbi
step. To avoid another pass through the data, we will modify the beam. Let us define:

Tk (t) = sk(t) — di(t); 9.3)
Tk (t) = T‘k<t) + I, 9.4)
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Standard DP recursion: > k(1)
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Acoustic-score delayed recursion:
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Figure 9.6: Delayed acoustic scoring

which are the topological score and partial topological score respectively. The topological

score corresponds to the score at time (¢ + 1) but without the acoustic match. The partial

topological score is the same, but with the self-transition. It is more convenient to apply

the acoustic score at the beginning of the Viterbi step (V-step), as shown on Figure 9.6.
The follwing forward algorithm is applied to each node k:

1: Acoustic match: ri(t + 1) « sx(t) = ri(t) + di(2).

2: Bequeathal:

3: for all children ¢ of k£ do

4 re(t+ 1)« max{ri(t + 1) + i, T(t + 1)}

5: By hypothessis, the score 7.(t + 1) was either set in line 8, or

equals —oo.

6:  The bequeathal score (¢ + 1) was computed on line 1.

7: end for

8

9

. Self-activation: 7 (t + 1) « ri(t + 1) + lk.
. Implicit: ri(t + 1) < 7, (¢ + 1) unless seen again in line 4.

Since we have proven that a single array was sufficient, we shall drop the time index.
For more performance, we apply the self-activation directly, so that the node k can disap-
pear from the memory cache immediately. We will define a score field, o to each node
k, which will hold in turn 74 (t), 7 (¢ + 1), and 7 (¢ + 1). Therefore, for each cell k, we
summarize the algorithm in Table 9.2.

Application of the acoustic match takes place at the beginning of the iteration. It was
moved in order to avoid a full pass on the hypotheses at the end of the iteration. A full
pass through the search space costs 5% to 10% of the total search time (including acoustic
match) on Switchboard. It cannot be done during the pass because while traversing each
cell it is unknown whether the cell score is going to be used again in a later bequeathal.
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1: Temporary variable v < ay, + di(t).
2: Self-activation: ayg, «— v + .

3: for all children c of k do

4 e« max{v+ic,ac}.

5. end for

Table 9.2: Compact piggy-backed Viterbi

Figure 9.5 shows why the beam is slightly different from standard Viterbi beaming.

So far the children were traversed in any order. They are located in independent search
spaces and thus the order is not total. Most decoder architectures stop at this point. If we
look carefully at the equations, we will see that the bequeathal process requires the lookup
of a hypothesis in «(t) for each child of k. Generally speaking, this means that a linear
search through all hypotheses hitherto processed, and hence O(H ) for each hypothesis. In
total this sums to O(H?). The active envelope list reduces the cost to a linear function
O(H) < O(H?).

Active Envelope

We define an ordering of the children in the same lateral pool. It is arbitrary and therefore
can be assumed to follow the order in the data structure of the lexical tree. Defining this
order within lateral lists defines an order at each level and thus a total order relation on

a(t).

END of list

3
2

1
START of list

Figure 9.7: Z-traversal of the lexical tree

We modify the algorithm to process children in order. By construction, each level of
the tree is processed in reverse order. Since offspring are traversed in increasing sequence,
the traversal of hypotheses follows a Z-shape, as shown on Figure 9.7.

If we examine the lookup, by induction we can prove that traversing the parents in
order insures that children are also going to be inserted in the list following the total order.
Lookup is also done in the same order. Therefore, it is sufficient to keep a cursor on «(t) for
the activation-bequeathal, and another one for the lookup. Since we proved that inheritance
occurs only once, each of the lists is traversed exactly once. The lookup occurs in O(1) per
cell, or O(H) in total. This is the minimum achievable cost, which is proportional to the
array-swapping method.
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LO[ LI L2A L2B LO[ LI L2A L2B
1]10] [ 101] 111] 1 [ 10] 11] 100] 101] 102] 111]
(a) Active hypotheses list at ¢ (b) Active hypotheses list at (¢ + 1)

Construction of L2 from L1:
Current Level listis o = {101, 111}.
for all hypotheses in L1 = {10},
for all children of 10 = {100, 101, 102}:
Activate 100: new list: {100,101,111}
Lookup 101: since it exists, Viterbi. New list: {100,101,111}
Activate 102: new list: {100, 101,102,111}
Added list: o = {100, 101, 102}
Initial list: o; = {101,111}
Final list (sorted g + o;): « = {100, 101, 102, 111}
(c) Construction of Level 2 (L2A & L2B)

Merging sorted lists:
Merge list iy = {100, 101, 102} into ax(t) = {101, 111}
Add virtual node —oo to a(t) = {—o00,101,111}

Define: Next point n = 101; Insertion point ¢ = —oo.
for each element a in aq = {100, 101, 102}
a = 100:

Since a < n = 111, insert 100 after ¢, and let n < 100.
a(t) = {i = —oo,n = 100,101, 111}.

a = 101:
While @ > n, let i < n, and n be the next element in a(t).
Since (a = 101) = (n = 101), apply Viterbi to merge hypotheses.
a(t) = {—o0,i=100,n = 101, 111}.

a = 102:
While a > n, scroll the pointers ¢ and n along «(t).
Since a < n, insert a between ¢ = 101 and n = 111 and let ¢ <+ a.
a(t) = {—00,100,7 = 101,n = 102,111}.

The final list is: a(t + 1) < «(t) = {100, 101,102, 111}.
(d) Ilustrated merging algorithm

Figure 9.8: Merging hypotheses list

The construction of a(t + 1) from «(t) is equivalent to the merging of two ordered
lists, which is done in O(H), thanks to the total order. Figure 9.8 illustrates the process.
We show the search space in parts (a) and (b). The Viterbi search is shown in part (c): it
is an application of the algorithm of Table 9.2. More detailed about the merging algorithn
are laid out in part (d). Part (d) must be written with care, handling cases when there are
gaps in the sequences. The new sequence «.(t + 1) is built in-place, by inserting elements
into «(t). As shown in part (c), the merging algorithm of part (d) must be blended with the
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Viterbi search.

9.3.3 Language model structure

Now that we have reviewed the search within a word, we can describe the structure of
the entire search. We follow Ney’s Viterbi decoder structure. We keep (conceptually) one
tree per word history p(-|wswy ). This is depicted on Figure 9.9. The language modelling
module can be seen as a higher-level search management in which all nodes are represented
by lexical trees given bigram history. Nodes are very strongly connected. They do not
form a DAG at all. The trees are very sparsely populated. There is only one topological

p(-Jwyw))

1 //)

p(-|wywy

<] : topological tree

Figure 9.9: Tree copies

tree, defining the lexical tree structure. All tree copies store hypotheses in the compact
representation of the active envelope list.

Tree copies

The intra-word search is done using EWAVES. Once a terminal node is reached, the search
space has hit a word ws. If we were in a tree copy of history (ws,w;), then the root
hypothesis of the tree p(-|wsws) is activated with the cumulative score of our hypothesis
plus p(ws|wswy ). There is a loss of optimality at this point. Ney calls this problem the
word-pair approximation. The correct strategy would activate all p(-|ws;), by looking at
all previous histories that activated p(-|wqws ). This is clearly very expensive. Ney observes
that the loss practically negligible. In addition, Demuynck et al. note that [DDCWO00]:

e Given the Katz backoff topology of the language model, all backoff nodes can share
the same search space p(-|wsx), where = does not matter. The backoff weight
B(x,ws) is applied at the entrance the backoff node.

e The use of trigram results in an increase in complexity but is beneficial because since
the perplexity is reduced, the search space also becomes smaller.

For that reason, we retain the trigram topology, but apply higher-order ngram probabilities
at word boundaries whenever available. We have to be aware of the so-called ripple ef-
fect of a misrecognized word on subsequent words. The error analysis using higher order
ngrams becomes more convoluted.
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Demuynck et al. observe a 10% increase in speed by using the first optimization. This
is understandable because only 22% of the time, backoff nodes are actually traversed in the
WSIJ task. For this reason we chose not to implement this feature.

Other LM issues

Lookahead (smearing) We use a bigram lookahead for the beam pruning. LM looka-
head trees are factored starting from the leaf nodes backwards using dynamic program-
ming (DP). The topological tree is compacted to a smaller tree where only nontrivial tran-
sition nodes are shown. Nontrivial transition nodes are terminal nodes (no outgoing transi-
tion) or have more than one child.

Quantization and storage All probabilities are quantized using linear quantization. We
use 8 bits for bigrams and bigram backoffs, and 16 bits for trigrams. Linear quantiza-
tion allows us to perform arithmetics in the quantized domain directly. This is especially
attractive for processors with superscalar integer operations.

All LM probabilities are stored in a sorted array. Other decoders normally employ
hierarchical models for faster lookup.

Lookahead cache Bigram lookahead trees are cached using an interpolated cost based
on usage (hit counts) and last time of hit. When the cache is overflowing, we diminish the
beam size.

Beaming We use a dynamic beam based on the histogram of hypotheses. At the end of
each frame, we adjust the beam.

A maximum number of tree copies is maintained. When the count is reached, trees
with the least best score are deleted. On WSJ, we keep 64 trees. On SWB, increasing this
amount to 256 seems to be profitable.

9.3.4 Parallelization, horizontal caching and defragmentation

In the case when large amounts of computational resources are available for a low-latency
or real-time decoding, it is possible, with our architecture, to distribute the load of compu-
tation amongst several processors (CPUs). Most decoder architectures are unable untangle
the data flow between components of the language model, search, and distribution compu-
tation.

First, we use an optimized distribution computation algorithm that is completely inde-
pendent from the search space. Second, we note that search on each tree copy is indepen-
dent from one another, and only word ends must be communicated between processors.

The distribution computation algorithm is called horizontal caching. It is called thus
because instead of computing distributions on demand, frame by frame, we compute stripes
of distributions at the same time. If the time axis is horizontal and the Gaussian mixture
component is on the vertical axis, then instead of computing vertically, one frame at a time,
we compute all distributions on a horizontal strip at a time. In this way, we are able to
download means and variance parameters into the processor once for many observation
vectors. Even in a task such as WSJ, where only 40% of Gaussians are used, computing all
of them in horizontal caching mode affords an overall 80% speed improvement. There is
no loss of optimality.

The parallelization allows us to dispatch lexical trees to processors, or local processing
units. The search space is local to each processor. Only word ends and word beginnings
need be transmitted at the end of each frame. For best results, pruning parameters such as
histograms or sufficient statistics for the histograms must be transmitted.
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Finally, every 5-7 frames, we run a defragmentation of the search space. All active
search hypotheses are copied onto a region of contiguous memory. This enhances the
memory caching effect.

9.4 Generation of NBest candidates

The generation of the NBest list is done through beamed Depth First Search (DFS). It
borrows much from BBN’s forward-backward algorithm [NS97]. The first pass is done
using the Viterbi algorithm as set forth above. To generate the NBest list, we need to
define the partial forward and backward scores. We then define a sentence-level invariant
(the posterior probability) that will allow us to prune during the search without loss of
optimality.

9.4.1 Partial scores

Suppose we split a sequence of words in the middle. What are the scores up to the end of
the word and from the beginning of the word on?

Definition 6 (Observation segment) We define the observation segment corresponding to
an alignment of a word sequence YW = wg, w1, ..., Waw—1 as 0;_1. Ift; is the ending time
of word wj in the utterance, then we let

o

j—1 = {Otjflaotjfl-l—l?"',otj}

The acoustic score of the segment is of course the likelihood p(0}_; |w;).

Definition 7 (Forward score) The forward score of a word w; ending at time t;, given
history wo, w1, ..., waw—1 is defined as:

o(w;) = H (0§ _1 |wi)p(wi|we—1wk—2)

k=0

[Causality] It is strictly causal. The anti-causal dual is the called backward score, because
we begin with the end of the utterance and play it reverse to the beginning.

Definition 8 (Backward score) The backward score of a word w; ending at time oy, given
history wo, w1, ..., Wxw—1 is defined as:

#W—1
Blw;) = H P(0f_ 1 [wi)P(Wht2|wkwh1)
k=j

Unlike other anti-causal definitions in signal processing, we include the word in the score.
Trivially, the following, called recursive update is true:

a(wj) = p<0§_1|wj)P(wj|wj—2w]'—1)a<wj—1) 9.5)

Blwj—1) = p(0) "5 |wj—1)p(Wj+2lwiwjt1)B(w)) 9.6)

We have shifted the index of «(-) for ease of presentation of the following.
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9.4.2 A sentence invariant

Consider the sentence V/. We are interested in finding the set of best matching sentences.
A depth-first search algorithm (DFS) working backwards in time would work just fine.
Unfortunately, it is exponential and extremely costly. Therefore, we retain the DFS idea,
but define an A*-like upper bound for the partial score. The intuition is that it is no use to
pursue an utterance at end of word wj if it leads to a bad score. If we are able to find a
sentence invariant, i.e., the score (or the upper bound that of) of the sentence, then while
constructing 3(-) we can “look ahead” to see whether the path is promising or not.

Definition 9 (Global score) For a transition word wj;, we define its forward-backward or

global score as
o(w;)B(wj)
J

P(wjt1|wj—1w;)
p<0j—1 |wj)

Y(wj) =

The normalizing acoustic score is present because it is accounted for in both « and 3, and
the multiplication LM score is called the overlap score, i.e., the score of the concatenation
of both sides.

Theorem 1 (Invariant global score) The global score is constant for all words of the sen-
tence. Furthermore, it is equal to the one-sided final scores, i.e.:

V(wj) =7 = a(wgw-1) = Bwo) 9.7
Using the recursive update:

a(wj)

P(0§_1 |wj)p(wjlwj—2w;i—1)

Oé((,dj_l) = (98)

Plugging into the definition:
Ywim1) =7(wj) =7 Vw; 9.9)

which is our first claim. The second part of the theorem is also easily seen given that
a(0) = (0) = 1 by definition, which completes the proof.

Now we have our invariant, that depends on the whole sentence, we will show how
to find an upper bound given partial scores only. Let us recall how the best sentence was
created.

Definition 10 (Optimal forward solution) The solution W = {wo, w1, ..., wn } is chosen
to maximize the forward scores recursively. Denote:

Wj(wj) = arg _Dax a(w;) (9.10)
= arg maxp(o?_l|wj)p(wj|wj,2wj,1)a(wj,1) 9.11)
~ (0] 11wy p(w5 @) 205 -1)d(w;j-1) (9.12)

where (7) means maximized value over wy, w1, ...,wj—2. The last approximation comes
from the “propagate the first best” rule.

Since we have found and stored these values in the forward pass, the following will help
us express the upper bound on (W) based on partial scores B(w;éwfl) and best partial
scores &(wj).

Theorem 2 (Global optimum) The maximum of the score of all optimal forward solutions
at the end of the utterance is the maximum achievable score by all combinations permitted
by the lattice.
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We proceed to state the following upper-bound on the left-hand side of the sentence.
Theorem 3 (Upper-bound given partial score) The maximum achievable score over all

sentences with (backwards) history way_1, Wwaw—2, ..., w; is at most the score of the for-
ward optimum for that word w; (ending at that time), id est:

YW) <T = y({@j, wj, Wjg1s oo, Whpw—1)s VW5, Wih1, ooy WpW—1 (9.13)
‘We can now come to the (fairly simple) DFS algorithm.
Algorithm 2 Generation of the NBest list. We begin at the end of the utterance and:
e Set, according to our definition 3 = 1.

e Start with an infinite threshold ¥, and our list of NBest hypotheses H to the empty
set.

o Tuke the first node connected to 3, use the recursive update to compute the projected
B if we follow the link. Compute the upper-bound T of the partial score. If it is above
the threshold repeat, else try the next node.

o When we reach the beginning of the sentence, score it (i.e. apply p(wo|<s>)), and
push it in 'H.

o Ifwe reach a given card(H) = H, then compute the score g such that :
card{h|~v(h) > g} = N, 9.14)
where N is the desired number of hypotheses, and set ¥ = g. Proceed.

o When we have exhausted the list of connected nodes, then we backtrack to the origi-
nal node and expand another node.

This is a DFS algorithm that uses the I" pruning.

Definition 11 (Admissibility) An algorithm is said to be admissible iff for all conditioning
the outcome always includes the optimal solution.

Theorem 4 (Admissibility) Our generation of the NBest list is admissible.

Trivial by construction. The first hypothesis inserted in the stack is always the best.

Another optimization is the in the computation of the threshold 7. We model the dis-
tribution of ~(-) as an exponential function before the current maximum, i.e., if we define
T as maxpex y(h), the pdf of a score x is approximately:

f(T —2)=ateT—2) (9.15)

with a fixed dispersion ratio . The expectation is T'— 1. The Q™ part of the distribution
is T — a~1'log Q. In particular, when Q = 2, i.e. we set T = 2N we have the median
T — o~ !log2. We can compute alpha from the expectation. The algorithm is linear time.
There is no theoretical improvement in speed over the exact algorithm. Nonetheless, We
avoid the computation of the histogram.
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9.5 Recognizer speed

In this section, we measure how much time is spent during a decoding pass. Measuring time
spent in each module is not a trivial task. For most measurements, we adopted the following
strategy: in the code, replicate IV times the computation for a certain component; then, the
different between this new code and the baseline is counted as approximately N times the
time spent in the baseline system. Different decoders, compiled with different replicated
codes, are compared. The final result is averaged: it is the solution of an overdetermined
system of equations. Each decoder is repeated 5 times over 5 examplary utterances. The
same machine ran all tests. It is a Pentium-IV, 1.5 GHz system, with 1 GB of RDRAM.
It is running Linux and all code was compiled with the best combination of optimization
flags with the Intel Compiler.

Despite the very expensive measuring procedure, we do not guarrantee more than 0.1 x
RT precision at 95% confidence.

| | WSJ | BN | SWB |
Total decoding time 1.3xRT | 48xRT | 85xRT
Total Likelihood computation 09xRT | 39xRT | 5.1xRT
Gaussian likelihood computation | 0.8 xRT | 2.8 xRT | 3.4xRT
Number of Gaussians 64000 192000 256000
Mixture recombination 0.1 xRT 1.1 xRT 1.7x RT
Number of Mixtures 1404 2542 3889
Estimated total search 04xRT | 09xRT | 3.4xRT
Search effort (Hyps per frame) | 9.8 x 10 | 3.6 x 10* | 1.4 x 10°

Table 9.3: LVCSR Decoder statistics

Table 9.3 shows timings for different LVCSR tasks. We measure the total time spent in
user mode. The likelihood computation can be broken down into two parts: computation
of each Gaussian component, and the mixture recombination. The mixture recombination
weights the score of the Gaussian likelihood and adds all weighted scores. Since scores are
stored in the log-domain, we use a maximum approximation instead of a sum of exponen-
tiated scores. We measured the search effort in number of state hypotheses per frame.

‘We usually think of WSJ as a small task with good acoustics and predicatable language.
BN has more challenging acoustics, but the language model is still reliable. SWB has
relatively easier acoustic conditions, but a low sampling rate. The challenge in SWB is
the language model. This is reflected in a significantly larger search space for SWB. The
search space in BN is markdely more controlled. However, BN acoustics are considerably
more complex than WSJ. Nonetheless, we see that timings are directly proportional to the
search space and number of Gaussians. We have therefore verified that EWAVES processing
is proportional to the search space.

Estimated total search 0.9 x RT
Histogram pruning statistics 0.15x RT
Defragmentation 0.14 x RT
Minimum traversal cost 0.1-0.14x RT
LM factorization (cached) 0.14 x RT
LM lookahead cache size 300 trees / 34 MB
LM lookahead cache hit > 98%
Estimated time for Viterbi 0.4 x RT

Table 9.4: Breakdown of search cost for BN
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On Table 9.4, we try to break down the cost of the search effort. They are very ap-
proximate. The decoder employs histogram pruning: the beam is adjusted so that an ap-
proximately constant maximum amount of state hypotheses can be processed per frame.
For this, we need to compute the histogram, or the number of frames associated with each
score. This computation is proportional to the size of the search space. We estimate that
traversing the search space to count the hypotheses takes between 0.1 to 0.14 x RT. This is
the minimal traversal cost. We also measure the time spent in LM lookahead: it is mostly
due to factoring the bigram scores, and interpolating with the backoff unigram tree. Since
the factored trees are cached, factoring is relatively inexpensive. The defragmentation of
the search space is ran every 7 frames, and copies the search space from the fragmented
area, into a defragmented area.

Finally, EWAVES is estimated to account for less than 50% of the total search time,
or 9% of the total system time. This includes score combination and comparison, and
construction of the search space for the next frame. Those comparisons imply branching
(conditional execution), which are known to be the slowest operations for a processor.
Given that the minimal traversal time of the search space is at least 0.1 x RT, EWAVES
spends approximately four times this amount.

Estimated total search 0.9 x RT
Search effort (Hyps per frame) | 3.6 x 10*
Number of clocks / second 1.5 x 10°
Clocks per hypothesis 500

Table 9.5: Average clock cycles per hypothesis

On Table 9.5, we estimate that processing one state hypothesis is equivalent to about
500 processor clock cycles. Any memory operation, such as reading from the memory,
loading instructions, etc, will take at least 3 clock cycles. For reference, the square root
operation in float uses 70 clock cycles. The least expensive operation is the addition with 4
clock cycles once operands are loaded. The processor works at 1.5GHz while the memory
can deliver 64 bits at 400MHz in optimistic conditions. We believe that the cost of EWAVES
is minimal.

9.6 Summary

This concludes the description of the decoder. We have a fairly standard architecture except
for the following points:

e a fast Viterbi implementation called EWAVES (Section 9.3),

e trigram topology of the search space and application of higher-order ngrams in the
first pass (Section 9.2),

e word-internal context-dependent only (implies only one pre-computed lexical topo-
logical tree),

e a fast distance computation, called horizontal caching (Section 9.3.4), and
e a parallelizable architecture of the search,

For simplicity, we opted for an NBest re-scoring second pass. Most state-of-the-art
decoders avail themselves of word graphs instead. In many systems, we just run the first
pass decoder with adapted model.



126 CHAPTER 9. LARGE VOCABULARY DECODER



Part IV

Conclusion

127






Chapter 10

Final word

10.1 Short summary

We have attempted to address three aspects of speaker adaptation for speech recognition.
In the first part, we lay the framework for modeling HMM mean parameters. Regression
via ML and least-squares are unified. A discriminative model dimension reduction is pre-
sented. A non-linear extension to the regression is also explained. Additionally, we extend
the current state-of-the-art feature transformation mathematical apparatus with a closed-
form solution for triangular matrices. A Bayesian formulation of the diagonal elements is
discovered.

In the second part, we study more application-oriented aspects. The EM formulation
is applied to supervised and unsupervised adaptation. A new approach using Eigenvoices
locations yields a clustering for confidence-based unsupervised adaptation. The interaction
of speaker and noise adaptation is further investigated.

In the third and last part, we describe our large-vocabulary systems. We explain into
details the main component: an efficient Viterbi decoding algorithm. It is based on the
definition of a total relation of order amongst state hypotheses.

10.2 Achievements

We review again what new elements are explored in the three sections.

Theory: We establish the link between divergence, ML, and least squares in the case
of HMM model parameters.First, we remark that the distribution of model parameters is
Gaussian. Then, we see that with an appropriate normalization, the likelihood criterion
coincides with least squares, which gives a justification for using SVD. Then, we cast
the MMIE gradient descent equation as a quadratic form optimization through the MAP
framework. Finally, we suggest a non-linear extension to PCA regression via piece-wise
linear regression. Estimation formula are given for all cases. Furthermore, we give a
closed-form solution for triangular feature transformation. This allows us to select the
solution closer to the identity amongst a number of possible transformations. Moreover,
we can also find a Bayesian compensation formula.

Applications: Supervised and unsupervised adaptation with MLLR and MAP are studied
with sausage NBest decoding. The unsupervised adaptation is improved with a cluster-
based rejection. Noise and speaker adaptation are separated. To our knowledge, we were
the first to examine joint adaptation to noise and speaker simultaneously.

129



130 CHAPTER 10. FINAL WORD

Evaluation: I have initiated the large vocabulary effort in PSTL. I have designed and
implemented a large vocabulary decoder. It achieves the maximum achievable theoretical
speed without loss of optimality. In practice we estimate that it can process about 10
times as many hypotheses than a conventional decoder, not only because its algorithmic
optimality but also because of implementation.

Most of these contributions, along with joint speaker-noise adaptation and speaker recog-
nition, were also set forth in a number of publications ((KNJ*99, NRJ0O, NWJ99, KINNOO,
NRMIJ02, NRK 01, TKNJOO, NRIWO02, RNKJO1, PKNJO1, KPNT01, SRN*02, NGJIC99,
NKIJT99, NWK+00, NRWJ02, NRWJO01]).

Chronologically, supervised and unsupervised adaptation were investigated first. Then,
MLES and noise adaptation were studied. A first attempt at using Eigenvoices for speaker
verification emerged. Moving in PSTL implied re-engineering of PSTL’s code base. At
this time, the decoder was developed and LVCSR was launched in PSTL. Research on
adaptation was able to proceed with self-adaptation. Model-space constraints were refined.
Developments on SWB led to the LU decomposition scheme. LVCSR was given the ulti-
mate boost for NIST’s RT-02 evaluation.

10.3 Afterthoughts

In retrospect, we can always find a myriad of ideas and aspects upon which to improve.

In hindsight, the experiments seem under developed. Perhaps we should have restricted
experimental framework to fewer items. The amount of work required to develop the large
vocabulary systems was probably overwhelming. It is possible also that I could have started
the large vocabulary effort earlier in the thesis, or concentrated the thesis around large
vocabulary decoder and system development. I may have been too greedy or diluted my
efforts with too many directions.

As for the adaptation, results are very encouraging and sometimes even bring con-
siderable improvements. However, the costs of deploying the techniques, as well as the
instability of research features, prevented me from incorporating promising elements into
the RT-02 submissions. Piece-wise linear models bring an improvement, but taking into
account the increased resource requirements, they seem to be premature now. There were
many issues left unsolved: non-uniqueness of estimates, efficient training, and initial parti-
tioning. Piece-wise linear regression was designed in the spirit of generalizing the concept
of gender-dependent, condition-dependent modelling. It is comparable to the unlimited
modeling power of context-dependent phones: when more data becomes available, it is
possible to increase the length of the context. The generative potential of piece-wise linear
regression is also asymptotically unlimited. When even more data is available, piece-wise
linear might make a difference. We shall wait until then. Unfortunately, variance adapta-
tion is largely ignored in this thesis. The Eigenvoices framework is notoriously mute about
variance adaptation. There is an enormous unexploited potential there. Self-adaptation
using clustering also seemed interesting but did not bring much improvement. The root
modulation, although more correct theoretically, does not outperform the standard eigen-
voices as much as expected. The Bayesian extension to the LU feature decomposition was
not tested thoroughly.

10.4 Conclusion

In closing, I would like to state the main contributions of this thesis once again. They range
from simply theoretical modeling of HMM parameters to decoder development. Perhaps
the achievements about which I am most enthusiastic in these areas are exposed in the
theoretical section. In particular, the link between ML, least squares, and MMI are fully
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exploited in the context of speaker modeling by MLLR matrices. In the applications, we
have been pioneers in joint noise and speaker adaptation. A complete LVCSR system was
built from scratch, including a new decoder, so that adaptation could be validated on real
tasks.
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