Extending Tamper-Proof Hardware Security to
Untrusted Execution Environments

Sergio Loureiro, Laurent Bussard, and Yves Roudier

Institut Eurecom, 2229 route des Crétes, B.P. 193
06904 Sophia Antipolis, France

{loureiro, bussard, roudier}@eurecom.fr

Abstract

This paper addresses mobile code protection with respect to potential integrity and confidentiality violations originat-
ing from the untrusted runtime environment where the code execution takes place. Both security properties are
defined in a framework where code is modeled using Boolean circuits. Two protection schemes are presented. The
first scheme addresses the protection of a function that is evaluated by an untrusted environment and yields an
encrypted result only meaningful for the party providing the function. The second scheme addresses the protection of
a piece of software executed by an untrusted environment. It enforces the secure execution of a series of functions
while allowing interactions with the untrusted party. The latter technique relies on trusted tamper-proof hardware
with limited capability. Executing a small part of the computations in the tamper-proof hardware extends its intrinsic
security to the overall environment.

1 Introduction be trusted and might try to modify the execution of this
program. In addition, in the context of mobile code,
interacting withA during the program execution is not

The mobile code paradigm is becoming increasingly,p, option. In other words, the code sentAymust be

praised for its flexibility in the management of remote ayecuted autonomously By who only provides addi-

computers and programmable devices. Unsurprisinglysional input parameters. It is necessary to ensureBhat
more flexibility leads to new challenging security prob- cannot get information about the semantics of the code
lems. Mobile code presents vulnerabilities unheard of i”provided byA and thatA can be assured, without per-
the traditional programming world. On one hand, forming the computation herself, that the execution has
attacks may be performed by mobile programs against gt heen tampered with. This is different from volunteer

remote execution environment and its resources. On theomputing scenarios [34] such as Seti@home where
other hand, a mobile code may be subverted by a maligata to treat is provided Iy

cious remote execution environment. The former issue
has been widely addressed [25], for instance through | this model, “integrity of execution” means that
containment mechanisms like the sandbox, the appletannot alter the execution of the program and surrepti-
firewall, etc., but few solutions deal with the latter. tiously modify its results. “Confidentiality of execu-
_) tion”, sometimes termed “privacy of computation”

This paper extends our work on the protection of 3ithough it bears no relationship with anonymity, aims
mobile code [23], [24]. The problem addressed here iyt preventing the disclosure of program semantics.
as follows: Alice f) wants a piece of code to be exe- |ntegrity and confidentiality are tightly entangled in our
c_uted on Bob’s B) workstation, the result of its execu- proposal because of the cryptographic protection
tion being eventually returned #. However,B cannot scheme used. However, confidentiality and integrity are

independent properties and thus will be evaluated sepaware consisting of the combination of several functions

rately in each solution. and of a control structure scheduling these functions. In
this case, a Tamper-Proof Hardware acting on behalf of

The use of tamper-proof hardware (TPH) has longthe party providing the mobile code is required. Execut-

been the only solution for protecting the execution ofing a small part of the computations in the TPH extends

critical programs from an untrusted party: the programthe intrinsic security of the TPH to the overall environ-

is completely executed within the hardware that isment. In Section 4, this solution is compared with simi-

trusted by the code owner. With the advent of mobilelar approaches dealing with integrity or confidentiality

code, TPH has logically been advocated as the mosif execution.

obvious solution for protecting a program from its

untrusted execution environment. [43] is a good exam- Protecting Functions

ple of this hardware-only trend. However, existing solu-

tions based on tamper-proof hardware suffer from

inherent limitations ranging from the cost and difficulty As a first step towards integrity and confidentiality of

of retrofitting tamper-proof and powerful cryptographic execution, a solution for protecting mathematical func-

boards on everybody’s workstations to the lack of com-tions is proposed. This solution is inspired by the work

puting power in smart cards. of Sander and Tschudin [33], [32], who devised a func-
tion hiding scheme for non-interactive protocols (see

Prompted by the limitation of TPH-based solutions, Section 4.1).

alternative approaches were brought up as application-

specific solutions [10], solutions aimed at protecting Figure 1 describes the main steps of the function pro-

specific classes of mathematical functions [33], [32], ortection process using this solution. Usirkg,, functionf

even empirical and mathematically unfounded ones likeés encrypted by its originatoA into a new functiorf’.

obfuscation [16]. Our proposal also takes into accountThe untrusted ho$t evaluate$’ on the cleartext input

the inherent limitations of tamper-proof hardware. and getsy’ as the encrypted result of this evaluation

Mathematical functions, which can be represented byJsing the secret decryption algorithbp, A can retrieve

Boolean circuits, are a building block for programs. Sec-y that is the cleartext result of the original functién

tion 2 presents a scheme ensuring a secure non-interagased on the following property of the function hiding
tive evaluation of such functions. To this end, the circuitschemey = DA(Y") = DA(F'(X)) = D A(Ea(f(X))) = f(X).

"T‘p'e"T‘e”t_mg the function_ Is encry_pted using a teCh'Moreover, an integrity verification algorithmj is used
nigue inspired by the McEliece public key scheme [28].b A to check the computation performedt
Based on this solution, Section 3 describes a scheme for P P Y

the secure non-interactive evaluation of a piece of soft-

A rB_(u_ntrgstgd)_ _______
_______________ .
: enciphered I cleartext input x
function f) function : | *
Ea | 2) 3)
—> — I NG
| |
| |
Va2 | *
A \ 4) |
cleartext output 5 = /(X) < | = F(x)
= f(X) <a— | Da r g : : enciphered output y’
| 1

Figure 1: Evaluating an encrypted function on an untrusted host .
1) the function is encrypted; 2) the encrypted function is sent to the untrusted host (confidentiality); 3) the encrypted function
is evaluated with cleartext inputs; 4) the encrypted result is sent back to A; 5) the result is verified (integrity); 6) Decipherment
is performed to obtain the cleartext result.

obtained ciphertext resujt=c’(x). A polynomial time

Xg Yo Xg Yo i i ; i iati
- - — - decryption algorithm is necessary to remain realistic.
- = - T > . .
: Cc ' |::> Ea |::> . C ' Integrity of Execution
Xj-1 Vi-1 K] Y'n-1
Alice receives a ciphertext resyft corresponding to the
X —=Y X—= Y’ evaluation of the encrypted circuit with Bobis cleart-
{011}|9 {011# {0,1}'9 {0,1Y ext inputs.Alice should be gble to retrieve frqui the
cleartext resuly corresponding to the evaluation of the
Figure 2: Construction of the encrypted circuit c using the same inpu¥,, has to define a polyno-
circuit ¢'. mial time verification of this result since for practical

applications, the circuit owner must be able to efficiently

verify the result of the circuit execution. The verifier
2.1 Computational Model concept is introduced to address the problem of integrity

of execution. The verifier shares some similarities with

This section defines the mechanisms required to ensu S Pro:])fs %9& mhth:at th(fe_redcgn e_X|s|tI mvk?hd pr.?_ofs but
integrity and confidentiality of execution in an untrusted tNose should be hard to find. Basically, the veritier con-

environment. Section 2.2 describes more precisely hoﬁﬁpt (;elies on the diffic:lty of 1I‘i_gdir|19 valid valueg'f
those concepts are implemented in our approach. that do not correspond to valid cleartext outpug (
Using the terminology of [9]Alice’s verifier V checks

General Overview that there exists ar such thaty=c(x). It can be defined
as follows:

Since fixed-length inputs and outputs are used, it is pos;, _
sible to deal with functions using a Boolean circuit rep- ity O{c(x)[(x 0 X)} then p(V,(y) = Accep) <&
resentation. Let us represent the functiovith a circuit Even if the result is verified and cannot be forged ran-

calledc (in the sequel of .this paper, circuit and funct_ion domly, a malicious remote host is able to identify possi-
are largely used as equivalents). The number of binary, e gutouts of a circuit for chosen inputs. Therefore,

inputs () and outputs K) will be defined according t0 e qrity of execution alone (i.e. without confidentiality
the possible input and output values of the functiis of execution) does not preveBtfrom performing sev-

the unrestricted set of all possible inputs (G(_@l}l). eral executions of the circuit and selecting the best
Fk represent the family of Boolean circuits with result. A scheme that ensures both integrity and confi-

inputs andk outputs (X - Y). Circuit cOF, dentiality of execution is thus highly desirable.
defines a relation between input 0 X and output
y = {c(9)|(x0X)}, ydY, YyOo{o, 1*. The cir-
cuit ¢ may also be seen as a set bffunctions:
{01 - {0, 1} . Each of these functions is defined by

a Bc_)olean equathn. The c.orrespondmgquatm.ns are cryptosystem is used. Unlike the McEliece scheme that

the inputs to aIgorthnIEA (F|gur§ 2). The resultis a §et _encrypts data, our approach encrypts functions. Moreo-
of n Boolean equations that define a new Boolean circuityer this asymmetric scheme is used as a symmetric one
¢ UF, , . The circuitc’ defined byAis evaluated b8 py keeping both public and private keys secret. As a

who provides input datax 0 X , but the encryption by result, part of the attacks possible against the McEliece
Ea prevents the disclosure ofto B. Look at Section 2.2 Cryptosystem are not relevant in our scheme because
for details on the encryption mechanigp attackers do not know the public key.

2.2 Detailed Protection Scheme

This section presents our solution to encrypt functions.
A technigue derived from the McEliece [28] public key

Confidentiality of Execution Circuit Encryption
All Boolean equations of the original plaintext circugit
are encrypted using the McEliece technique [28] where
data are replaced by equatians E(C) :

The circuitc’=E 5(c) preserves the confidentiality ofif

it is computationally infeasible to derive from c’. A
decryption algorithmD, must be used in order to

retrieve the desired cleartext result ofx) from the

Vo Vadl = [Yo o Yieed|SGP* (2 . 20y

v Vv M

c (o

z

Boolean equationg; = fj(Xg..%.1) are multiplied by

the kx n matrixSGP(for more details on Boolean cir-

cuit encryption, look at Figure 3)G is a generating
matrix for a [nk,ff Goppa cod& [27] andt is the

codes allow to efficiently remove these errors at decod-
ing time. Errors introduced b, can be viewed as an
error circuit that, given af-bit argument, returns an

bit string with a Hamming weight of that is computa-
tionally indistinguishable from a random-bit vector
with the same weight. Such a function, calledompu-
tationally indistinguishable from the set of functions sat-
isfying the weight restriction exists. [31] proposes an

number of errors that the code is able to corrécis a efficient construction for functions that output words of
random nxn permutation matrix. Because of thea given weight.

importance of hiding the systematic form of the code

[13], an additional matrix8is usedSis a random dense Encrypted Circuit Evaluation and Verification

k x k non-singular matrixS, GandP are kept secret by
Alice. The SGP matrix multiplication leads to a linear
composition of each cleartext Boolean equationcof
The difference with respect to the original McEliece
scheme is that the result of the encryption is interpreted
as Boolean equations defining the encrypted circuit.
L]
In addition to the SGP multiplicatigralgorithm Ep
introduces errors in the circuit in order to detect integ-
rity attacks and prevent confidentiality attacks as
explained below. As error-correcting codes, Goppa

@ y=fx
L

y=ck)

Oncec' is created, the protocol between Alice and Bob
is the following:

Alice sends’ to Bob.

Bob evaluates’ on his data x[O X and gets the
result y'= c'(x) OY'. There is an increase in the
number of Boolean outputs while the number of
inputs is kept unchanged. The resylt s then sent
to Alice.

X
@ X1 Yaro
XZ oo

II yGP,S
@ Yo = XoFa%o+ XX
Y1 = XXXy + XpX X5 + XoX1 Xp Yor = Cor(X)
Y2 = %o ® Yopo = XoX1 T XoXg
Y3 = XXy Xp + XoX X + XoX1 X, Yop1 = +o+ i e 5 Yopg = e
cleartext function partially encrypted function ﬁ r
truth table @ truth table
Xo X1 X2 Yo Y1 Y2 ¥3 Xo X1 X2 Yoro Yer1 Yer2 Yopr3 Yor4 Yors Yors
0001 0 0 0 GP 0O 0 01 0 O 1 1 0 0]
00 1/l0 1 0 1 1001100 o o0 111 1. 12 1 0 O O
010|/00O00 0011010 0 1 0|0 0 0 0O 0o 0 O
0111121 00 1] ® 1001011]= o 1 110 1 0 1 1 1 O
1 00l01 10 1100010 1 0 0|j]1 0 1 O O O 1
1 01|00 10 1 0 111 0 O 1 O 1 1
1110|0011 @ 1 1 0j]0 1 0 1 O O 1
1110111 0® 111_0011101@
\ Y, /- v/) \ v / >
X Y YGP = Y DGP X YGP

Figure 3: Encrypting a circuit : basic steps
For clarity sake, only GP matrix multiplication is represented. It produces a partially encrypted circuit cgp To obtain the
encrypted circuit ¢, it necessary to use S and z too. The function to encrypt (1) is represented as a Boolean circuit ¢ (2). The
output matrix Y (3) is multiplied by GP (4). The result (5) is the partially encrypted output matrix Ysp It can be represented by
the corresponding Boolean equations (6) or as a “partially encrypted circuit” cgp (7).

* Alice decrypts the result (algorithrD,). She first exploiting the fact that the error circuitdoes not com-
pletely hide the linearity of the transformation were
described in [13] and [7]. These attacks only apply
when the public key is available but this one is kept
o)) 'secret in our scheme. Moreover, the identification of
w(zP~) = w(2). The vectorzis a correctable error - ciphertexts corresponding to the same cleartext can be
vector since it is defined asw(z) =t exactly. The syppressed [35] but implies an increase in the computa-

decoding algorithm for the code generatedd®gan tional complexity of the encryption, decryption, and ver-
correct an error with a weight of at mdsthus Alice jfication algorithms.

is able to retrieve the cleartext resuf= ¢(x) OY
and the error vectarfrom zPL. The majority voting attack described in [30], [39]
exploits the non-deterministic nature of the cryptosys-
 Alice finally performs the integrity verification €M to recover the secret code. The probability of suc-

(algorithmVy): if w(2) = t, the output is accepted, cess of this attack depends on getting a high number of
different ciphertexts for each plaintext. This is not possi-

ble in our scheme that keeps secret the public key.

removes permutatioR: yP "~ = ySG+ zP" . Per-
muting individual error contributions does not
change the Hamming weight of the vector and thus

tampering with the evaluation af is assumed other-
wise. For integrity verification, the error weight is
fixed. The maximum error weight that can be cor-

rected using Goppa coded.is Integrity of execution

Let us establish the probability that the verifier accept an

2.3 Scheme evaluation invalid y’. The set of acceptable cleartext outputs is

YO{Q12} ¥ Due to the definition of the error function, it
is assumed that it is hard to establish any link between

fidentiality of . i he hard fthe inputs to the error function and the error patterns.
Confidentiality of execution relies on the hardness Offhus, picking a random encrypted output value

retrieving the equations of the circuiafter their multi- n o)
plication with matrixSGPand after adding the erra y {0} "hasa probgbll!ty§ of belpg acceptedis
First of all, an enumeration attack to recover the circuit resulty can only be valid if its value is an element of
directly from ¢’ is unfeasible using the code size pro- Y O {0} K . The probability of a successful attack can
posed by McEliece ([n=1024, k=524, t=50]). Moreover be calculated as “the probability of choosingyaexist-
this attacker requires the public key that is not evening in Y times “the probability of generating a correct
available to him here. error weight”. Generating a correct error means finding
at bit vector chosen at random amongits. The worst

Confidentiality of Execution

Retrieving the error circuitz from circuit ¢ is
another possible attack. It is equivalent to trying to k—n 0]
retrieving a subspace from a set of codewords withattack of: d<2 EHID . For a Goppa code
errors. In another context, this problem was termedn=1024, k=524, t=101], the probability of a successful
Decision Rank Reduction [38] and was proven to be
NP-complete. In order to avoid this attack our solution
is based on errors with a Hamming weight equal to the
maximum correction capability of the code.

case (Y| = 2k) leads to a probability of a successful

—215

attack is: 0<2

Nonetheless, transformatidgy does not hide every-
thing about circuitc. Bob can identify inputs(x;, ;)
that have the same cleartext outpyt = y; because

the distanced(y;,y;) between the ciphertext values
will be small so that errors remain correctable. In that

Vo >
case, Yity; = Yy [BGP+ z+y;[BGP+ z = | bits | I bits
z +z; (mod 2) An attacker would be able to recognize L - — — — — —
such values because the Hamming weight of their sum is

Figure 4: Modular implementation of the
at most equal t@t even though he does not know the encrypted function

result cleartext valuey;. Differential cryptanalyse

Circuit Size Evaluation size of the error circuit§izg) can be chosen. Both are
independent of the original circuit siz8i¢g) and thus
The circuitc’ being evaluated by a remote host, it is Size: < Size + a . When the circuit is simple (e.qy

important to minimize the impact of encryption on the _ _ e < .
circuit size, measured by its number of logical gates. NOT(x) or y=2x), thenSizg o and encrypting a

Expansion rate cannot be calculated because it is Spé:_ircuit incregse; ;ignificantly the circuit. size. quever,
cific to the structure of the original circuit. However, itis WNen the circuit is large compared with the sizes of
possible to study the worst case. The encrypted functioffduivalent circuits forSGP multiplication and error,
can be implemented by a modular circeiitas shown in thenSizg > a and encrypting the circuit has a negligi-
Figure 4. ble effect on the circuit size increasBizg: = Sizg
(the size of th&XORfunction being negligible).

In practice, the encrypted function is implemented by
a circuit based on simplified equations, the size of this3 Protecting Functions within a Program
circuit being necessarily smaller than that of the equiva-
lent modular circuit shown in Figure 4. The circuit
based on simplified equations offers the same functionAs explained in the previous section, function protection
ality as the three different modules of Figure 4. Integrity only allows the execution of one function while a pro-
and confidentiality properties of the protection schemegram has to perform several functions in sequence. A
do not allow an attacker to retrieve the modular circuitn@ive approach is to represent a program as a single
from the equations. The size of the actual encrypted cirBoolean circuit and protect this one using the function
cuit is smaller than the sum of the sizes of the thregprotection scheme described above. Unfortunately, this
modules: approach, which requires huge circuits, is totally unreal-

istic.
D < + + +

Sizg < Sizep* Sizg + Sizgor* Sizg We propose a solution to the problem of software
protection that consists in delegating the verification and
decryption tasks (originally performed by the circuit
owner A) to a trusted tamper-proof hardware (TPH)
located at the untrusted site (a preliminary proposal was

The matrix SGP multiplication transforms thek gescribed in [26]). This TPH must be directly accessible
cleartext circuit outputy; into n encoded outputs that py the untrusted host in order to suppress all interactions
are nOteOVSGP,ji for instanceysgpo= 1y; + (0yy) + with the code ownerA) when the software is executed.
The suggested solution assures the security of the cir-
;) i) cuits executed on an untrusted runtime environment. It
of inputs and outputs, the size of ts&Pencoding Cir- 5150 makes it possible to securely perform multi-step
cuit (Sizegp is fixed (proportional tok [h) and the eyajyation of functions. Additionally, this scheme ena-

encryption represented original
as circuits @) circuit

lys+ (0'yy)+ 1'ys, and so on. For a given fixed number

A rB_(u intrusted)

| 4)
TPH, | '

5 | C.S.

L. 2)
origina—— = c.S.

I
l
T
I
I
control I
I
I
I
I
|

structure 3 |D1pH [V1ph

DrpH |VrpH

Figure 5: Installation of the program on the untrusted host and trusted TPH.
A has provided a TPHto B. 1) the functions used by the program (i.e. Boolean circuits in our implementation) are encrypted;
2) the control structure is modified to call those new functions; 3) the verification and decryption algorithm corresponding to
the encryption are generated 4) the encrypted functions are sent to the untrusted host; 5) The control structure and the
verification and decryption algorithms are sent to the TPH using a secure channel.

TPH, rB_(ugtrgst_ed)_ _______

r— - - = 1 ﬁ-XTPH, XB |
control structure | 7) 2
6) | 8) *

10) 9)

I
I

Vieely ¢ 7] b =—((&)
I

™ Dol
5 e |

—

11) *

| |
3. = e <o)
-
I

Figure 6: Evaluating an encrypted program on the untrusted host .
6) The TPH calls a function according to the control structure; 7) the TPH can input intermediate results; 8) the selected
encrypted function is executed with data provided by B and/or TPH ; 9) The encrypted result is returned to the TPH; 10) the
inputs are used to allow a more efficient verification (see section 3.2); 11) the temporary result is stored; 12) the next
encrypted function is called ...

bles a program to deliver a cleartext result to thement to execute one of the encrypted circuts For
untrusted host without having to contact the code ownereach output of circuity’, the TPH is able to verify the

integrity of the result and to retrieve the cleartext regult

_ Assuming a wide deployment of mobile codes makesy, o efficient way. Each circuit is encoded with a new
it unlikely that expensive tamper-proof hardware bealgorithmE‘
A.

used: this implies that the TPH will be limited in terms
of storage and computational capacity. Even though our

solution for multi-step execution is based on the protec- A Sctja;_iaf Ihe chompute:jtion can be mailr(wtainetzj in th;
tion technique described in the Section 2, it has to pdruste » In other words memory attacks need not be

adapted to cope with the computation power Iimitationstaken in consideration. It is mandatory tH&ateceives a

imposed by the TPH (look at Section 3.2). The use of aTPfH trust_ed byA, which is not a very restrictive hypoth-

TPH has already been suggested for delegating the funé&S!S: For instance. could be_a baf‘k or an operator that

tionality of a trusted party in specific contexts as can peProvides a smart Ci”d to its clie, just like the_y_

seen in host-assisted secret key [8] or public key [17§Iready provide credit cards and SIM cards. A verifica-
i

P on and decryption algorithm must be installed on the
cryptography applications. [6] proposes to separate) _ S
program into several pieces but does not deal withTPH via a secure channel, either before the TPH is dis-

encrypted functions. tributed to clients or transmitted in encrypted form using
a secret shared l#yand her TPH.

3.1 Computational Model Once the encrypted circuitg’q ... ¢’,,) are installed

] (Figure 5) on hosB, the TPH is in charge of choosing
A program can be modeled as a set of functions plus &hich function has to be evaluated and of providing a
control structure, which defines the sequencing of funcyart of the inputsX;pp), the other part being provided
tions. As in the previous section, functions are imple—by B (xg). After each step (i.e. each encrypted function
mented with circuits. The computation of each | B he TPH decioh d verifies the ret q
individual circuitc; depends on a set of inputseceived ?g:IuIIIta(tlI:?gl)jr(te g) Note tehC;I; aeg;i:rII fu\IlecrtIi(I)enScar? Ir)?a ZUS_

golfn thfthSt tan?_ frorrf1 thehm_emc_)tryf/ of ttI;]e TPtH' ’tA‘S uated more than once with different inputs. When the
elore, the protection o each circutt irom the untrusteOrp - oho5es the next encrypted function to execute

enwronment where it is evaluated |s_ach|eved through |tici+n)’ it provides input dataxpy,). Those data are
encryption. The control structure is uploaded to the
stored on the TPH.

tamper-proof hardware to protect it. Based on this con-
trol structure, the TPH instructs the untrusted environ-

3.2 Protection Scheme equations and a smaller number of more complex equa-
tions closer to a random error.
The algorithms devised in the protection scheme of Sec-

tion 2 have to be adapted to the new scenario in whichReSUIt Decryption

the T.PH has less computat|or_1al power than the p_art){n the new scheme, the decipherment is based on the
that it represents. The algorithm used for function,

. . . ; N inputs and outputs of the encrypted function evaluation.

encryption remains the same since this operation is per- . S .
- " For each evaluation of circuif, the TPH, which knows

formed by the code owner, but the error computation IS receivesy’ and xe. The encrvpted result can be

modified in order to simplify the verification performed ~TPH Y B yp _

by the TPH. The new verification and decryption algo-Written:y'= ySGP+ £ Xpy[Xg) - S G, and P being

rithms are respectively callédrpy and Dypy. In order known to the TPH, as well as the error circa(k), it is

to simplify the verification and decryptiong is trans- possible to first compute and remove the error pattern:

mitted to the TPH.
_ _ _ _ o ySGP= Y+ z(Xpy|Xp)
The integrity of execution relies on the difficulty of

creating forged pairs(x, y) that pass the verificationsince matrixG is in systematic forml(| A), the GP

process Xypy being known). Using the same terminol- encoding can be removed as follows:

ogy as in the previous section, this probability can be

defined as follows: -
ySG= y§ | A= (Y +2(%pu[Xe))P" (ed1)

if yzc(X) thenP(Vipy(x ¥) = Accep)<d

xbeing krpr [Xp) yS= ySI= [(¥+204puXe))P |y (eq2)

Error Circuit

where (v?i is the vector formed by the firisbits of
As in the classical McEliece scheme, the function pro-yeciory.
tection scheme of Section 2 introduced at most (and in
our case, exactlyy errors into the encoded circuit: this Thg cleartext output can finally be retrieved as follows:
represents the maximum number of correctable errors
using the capacity of the code, since in the schefne,
did not knowB's inputx. This value is now retrieved on vy = [(y + 2(xpy|%g))P™* | (5™
the TPH that also possesses the error cimfdtand can
entirely suppress the error without restraining to a spe- . N
cific correction capacity. It is thus possible to introduceIntegrlty Verification

much more weighted errors into the encrypted circuit. L . .
9 yp The verification algorithm is adapted to the new con-

struction of the error circuit. Integrity of execution is

ensured by controlling that all bits of the cleartext out-

Iput are correct after having removed the supposed error
attern. Since the cleartext output y can be obtained by

The security parametey, with 0<g<n , indicates
the maximum weight of the error introduced. Using a
Goppa code [n=1024, k=524, t=101], this paramete
might be as high as 1024 bits, meaning that all bits of

. Lo : . . sing only the firstk bits of ySG the remaining and
given outputy might be In error, instead aF101 bits redundantn-k bits are used to verify that the output
as in the scheme of Section 2. In the general case, th

Eomputed by the untrusted host has not been tampered
number of errors introduced will be smaller than this . P y P

upper bound, yet higher than the correctable case. This
considerably limits enumeration attacks for retrieving

) From decryptiorequation 1(above), and using only the
the error circuit. yptioreq () g only

lastn-k bits ofySG:

Nonetheless, the error circuit size must remain rea-
sonable to retain any advantage from executingn the ySA= L(y+2z(XrpH| xB))P_lj(n_k)
untrusted host rather thamon the TPH. For the con-
struction of the error circuit, a trade-off should be found
between the highest possible numipenf simple error

where [v is the vector formed by the lasbits of this pattern will not be useful for another valuexgb.
vectorv. In practice xrpy Will vary for nearly each computation
of a given function throughout the lifetime of a program.
SinceySA = (yS)Ait can be deduced from decryption
equation 2that the TPH needs only verify that the fol- Limitations
lowing equation is satisfied:
As to the limitations of this approach, it is obvious that
the algorithmic structure of the protected program is not

L(y‘+z(erH‘xB))P_1J(n_k) = hidden: the repeated execution of a function can be
traced. Private Information Retrieval techniques (PIR)
((y-_,_Z(XTPH‘XB))p—kaDA [15] and oblivious RAM models [20] that hide the

sequence of accesses provide a sophisticated solution to
this problem. Unfortunately, those works have shown

3.3 Scheme Evaluation that hiding access patterns is prohibitively expensive.
This is the reason why our scheme addresses the protec-
Confidentiality of Execution tion of each function used by a program rather than the

protection of its algorithmic structure.

Evaluating the confidentiality relies on the same princi-

ples as in the previous section. Since it is now possible The result of some encrypted functigrean be used

to introduce more weighted errors, the complexity ofas the input to another functidi This means that a

retrieving the initial circuit is increased in a ratio malicious host can sometimes observe the cleartext

depending upon the chosen security parangter result of one of the encrypted functions that form the
building blocks of a program. Depending on the func-

A new problem is introduced by the multi-step execu-tion and on the number of times it is evaluated, it might

tion concerning intermediate cleartext results. It somebe possible to obtain enough cleartext inputs and out-

times happens tha¢rpy | = D1pu(Yin), that is,B can puts to interpolate the function. In order to avoid this

observe the cleartext result of a previously computedoroblem a scheme using enciphered inputs and outputs

function. The fact that the cleartext result may be givencould be used but the performance penalty is important.

back to the untrusted environment is critical. With a suf-

ficient number of pairs of cleartext inputs and outputs, However, even if the confidentiality of execution is

the untrusted host would be able to interpolate circuit partly broken, the integrity is not attacked. Indeed, inter-

For more details, refer to the limitations section below. polating a function allows an attacker to compute all
corresponding cleartext outpugsbut knowingy andy’

Integrity of Execution is already not sufficient to break the McEliece crypto-
system.

An enumeration attack amounts to obtaining a forged

pair (x, y’) acceptable for the verifier. Since the TPH canlmplementability

get access to the input in addition to the encrypted out-

put of circuit evaluation, the verification is now per- Any function with fixed-length inputs and outputs can

formed using the actual error pattern and not the errobe represented as a Boolean circuit and thus encrypted

weight as before. The probability of such an attackby our scheme. However, to have an efficientimplemen-

being successful is thus even smaller than in the schemi@ation, it is necessary to define a computation model fit-

of Section 2. Like for confidentiality, the use of more ting the requirement of this approach. The TPH and the

weighted errors can even further increase the difficultyuntrusted host have to support two different computing

of breaking the integrity of execution. models:

An algorithmic logic similar to what can be found in

Moreover, part of the input is provided by the TPH *
ver, p NPUL IS provi Y smart cards.

and cannot be modified by the untrusted host: this
makes it pOSSible to obtain the eqUivalent of a variables A functional model Supporting a representation of
error pattern for the inputs restrictedxg, the untrusted Boolean circuits. It could be implemented as truth

host inputs. In other words, even if the untrusted st tables (memory) or as circuits (programmable logic).
is able to determine the error pattern for a givgp,

4 Related Work circuit. This problem has been extensively studied for
achieving reliability (see for example [12] for a survey)

]] ~ but security requirements taking into account possible
This section presents other work related to the confidenpalicious behavior from the execution environment

tiality or the integrity of execution. We also compare our \yere not considered.
solution with two other approaches, truth table encryp-

tion and gate-level encryption, that can be used to pro- other solutions cope with the maliciousness of the

tect functions represented as Boolean circuits. execution environment. Yee [44] suggested the use of
) o) proof based techniques, in which the untrusted host has
4.1 Confidentiality of Execution to forward a proof of the correctness of the execution

together with the result. Complexity theory shows how
Secure function evaluation is an instance of the mord© build proofs for NP-languages and recently how to
general problem of confidentiality of execution. SecurePuild Probabilistic Checkable Proofs (PCP) [4], [5].
function evaluation has been addressed by man\fcp proofs require checking only a subset of the proof
researchers ([41], [42], [19], [3], and [2], just to mention [N order to assure the correctness of a statement. How-
a few). Non-interactivity is an important requirement €Ver, this subset has to be randomly determined by the
for mobile code, but the protocols addressing the circuitthecker, so the problem of using PCP proofs in our non-
model need a round complexity dependent on thdnteractive scenario is that the prover has to commit to

well adapted to mobile code. [21] for a comprehensive survey of the work on proofs.

Sander and Tschudin [33], [32] defined what they N [11], the authors presented an interesting model
called a function hiding scheme and focused on nonfor mobile computing and a solution that overcomes the
interactive protocols. In their framework, the privacyfof Problem of using PCP proofs. The agent is modeled as a
is assured by a encrypting transformatidime authors probablhstlg Turlng_machlne3 and the set of all possible
illustrated the concept with a method that allows com-States of this machine constitutes a NP language. There
puting with encrypted polynomials, based on the Gold-€Xists a verification process for language membership,
wasser-Micali encryption scheme [18]. Sander andthatis, itis possible to check if an obtained state belongs
Tschudin took advantage of the homomorphic properi© the language. This scheme relies on the use of non-
ties of the above encryption scheme to encrypt the coeflnteractive Private Information Retrieval techniques to
ficients of the polynomial, thus their technique does notavoid the transmission of the overall PCP proof of the
hide the skeleton of the polynomial. Moreover, polyno- SPecified language, the randomly chosen queries from
mials are not as expressive as Boolean circuits. the checker being encrypted. Our second scheme allows

us to “trace” in real-time an execution step-by-step, one

[36] presented a non-interactive solution for secureStep being a function evaluation, and ensuring that each
evaluation of circuits but which is restricted to log depth Stép is performed in accordance with the program

I L . semantics. In our scheme, verifying an execution does
circuits (or NG circuits). Protocols were designed for fying

processing NOT and OR gates in a private way. ThenOt require verifying a complex trace.

restriction on the depth of the circuit comes from the L
increase of the output size by a constant factor when4'3 Encrypted Boolean Circuit Approaches
computing an OR gate.
Boolean circuits can be protected from confidentiality

In [14] and [1], more efficient techniques are pre- and integrity attacks using three different encryption
sented, that combine encrypted circuits [42] and oneechniques: circuit encryption (our approach from Sec-
round oblivious transfers. However, the circuit expan-tion 2), truth table encryption, and gate-level encryption
sion is high with this technique and this expansion com{36], [19].
promises the narrow advantage in performance of
mobile code as shown in [22]. Circuit Encryption vs. Truth Table Encryption

4.2 Integrity of Execution Evaluating a function with a truth table simply corre-
sponds to choosing the right line of the table that corre-
sponds to the inputs and contains the outputs of a circuit.

Integrity of execution is the possibility for the circuit A simple protection of this scheme is to encrypt line-by-

owner to verify the correctness of the execution of his

line each output of the truth table with a standard This approach has drawbacks: it is necessary either to

encryption algorithm. A new truth table with encrypted interact with the circuit owner for each gate evaluation

outputs is then obtained. In this approach, each result isr to use oblivious transfers to provide inputs. Moreo-

pre-calculated. ver, the scheme allows only one evaluation of the circuit
otherwise the integrity, and confidentiality in case of use

The truth table outputs being encrypted line by line,of a universal circuit, cannot be ensured.

the encrypted function it represents is by definition con-

structed randomly. Shannon showed that the size of In comparison, our approach is similar to the truth

almost every function with inputs and one output is table in that it is an encryption of the whole output that

bigger thar2'/l. The size of the circuit implementing an 1S performed instead of a bit-by-bit encryption of the
encrypted truth table with outputs can thus be assumed Output. This makes it possible to evaluate a function

to be bigger tham [2/1 gates. This size does not depend more than once. Bit-by-bit encryption yields too much

on the initial cleartext circuit but essentially on the

information about the circuit structure to permit two
number of inputs and can be bounded: any function wit consecutive evaluations: a new encrypted circuit has to
| inputs and one output can be computed by a circuit o

e recomputed after each evaluation.
sizeO(l [2') [40)].

5 Conclusion

Our scheme modifies Boolean equations rather than
outputs and, as shown in Section 2Sz¢: = Sizg + This paper presented basic building blocks for securing

a . Itis possible to hav&izg: = Sizg under reasona- mobile code executed in a potentially hostile environ-
ble assumptions about the sizemtompared with the ment. It first described a scheme that can autonomously
size of the error circuit or the SGP multiplication circuit evaluate a Boolean circuit in a potentially malicious
(in a modular implementation). In the worst case, whenenvironment. This scheme ensures at the same time the
the cleartext circuit siz&ize is close tol 2! the size integrity and confidentiality of evaluation of the circuit.
The protection is derived from the McEliece data
encryption scheme, thus allowing an efficient encryp-
tion, verification and decryption. The original circuit is
encrypted into a new circuit, which can be executed by
an untrusted environment although its result can only be

Th level . 361 [19] i c . decrypted by the circuit owner. This scheme can gener-
e gate-level encryption [36], [19] is a Computing ate an encrypted circuit with a size close to that of the

with Encrypted Data schemg. Each gate of the circuit iSoriginal circuit. All functions implementable with
replaced by a cryptographic module that use keys 4Boolean circuits can be protected using this scheme.
inputs and outputs to represénte or falseBoolean val-
ues. A_function evaluation corresponds to cryptqgraphip Any program can be implemented as a single circuit
operations performed gate by gate. However, itis POSSIang thus be protected using this function protection

ble to observe the resulting construction and to de'duc%cheme. In practice however, that approach is totally
the initial circuit. This solution thus does not ensure unrealistic because of the huée size of the circuit. The
confidentiality but only integrity. Valiant's universal cir- second part of this article introduces another protection
CUit. [37] '.“akes it. possible to see circuits as da_ta. Thank’i‘,cheme that deals with programs rather than functions.
to it, it is possible to gonvert the .Com.putlng with This scheme resorts to using a tamper-proof hardware,
Encrypted Data scheme into Computing with EncryIOtGdaIbeit with a limited capacity compared with the pro-
Functions. gram processing needs. The tamper-proof hardware pro
. . tects the scheduling of a set of encrypted functions
The main qdvantgge of the gate-levgl encrypt'qnexecuted directly in the untrusted environment. The
scheme is the linear impact of the encryption on the C'r'tamper-proof hardware also performs the result decryp-

cuit size. Indeed, each gate of the initial circuit is tion and verification, which were previously done by the
replaced by one module and associated keys. When ﬂ'l‘?ode owner

universal circuit is used, the resulting size is
O(d _Eé[log(s_))modules, whersis the size of the initial The practical deployment of the latter scheme may
circuit andd its depth. This size increase is small andfinally be questioned because of the lingering require-

only depends on the initial circuit. ment for a tamper-proof hardware. However, few years
ago, authentication had similar needs and now such

Size: of the resulting encrypted circuit is not better than
the size of an equivalent encrypted truth table.

Circuit Encryption vs. Gate Level Encryption

hardware is in wide use for authentication purposes. We
envision the use of cheap tamper-resistant hardware "kELl]
slightly modified smart cards as a possible solution.

References

[1] J. Algesheimer, C. Cachin, J. Camenisch, and
G. Karjoth. Cryptographic security for mobile
code. InProc. of the IEEE Symposium on Security
and Privacy May 2001.

[2] Martin Abadi and Joan Feigenbaum. Secure cir-
cuit evaluationJournal of Cryptology2(1):1-12,
1990.

[3] Martin Abadi, Joan Feigenbaum, and Joe Kilian.
On hiding information from an oracldournal of
Computer and System Scienc®g(1):21-50, Au-
gust 1989.

[4] Sanjeev Arora, Carsten Lund, Rajeev Motwani,
Madhu Sudan, and Mario Szegedy. Proof verifica-
tion and hardness of approximation problems. In
Proc. 33rd IEEE Foundations of Computer Sci-
ence pages 14-23, October 1991.

[5] Sanjeev Arora and Shmuel Safra. Probabilistic
checking of proofs: A new characterization of NP.
Journal of the ACM45(1):70-122, 1998. [16]

[6] D.Aucsmith. Tamper resistant software: animple-
mentation. IrProc. International Workshop on In-
formation Hiding 1996. Cambridge, UK.

[7] Thomas A. Berson. Failure of the McEliece pub- 17]
lic-key cryptosystem under message-resend ané
related-message attack. In Burton S. Kaliski Jr.,
editor, Advances in Cryptology—CRYPTO ,97
volume 1294 ofLecture Notes in Computer Sci-
ence pages 213-220. Springer-Verlag, 17—
21 August 1997.

[8] Matt Blaze, Joan Feigenbaum, and Moni Naor. A
formal treatment of remotely keyed encryption. In
Kaisa Nyberg, editorAdvances in Crytology -
EUROCRYPT '98 Lecture Notes in Computer
Science, pages 251-265, Finland, 1998. Springer-
Verlag.

[9] Manuel Blum and Sampath Kannan. Designing
programs that check their work. RProceedings of
the Twenty First Annual ACM Symposium on The-
ory of Computingpages 86-97, Seattle, Washing-
ton, 15-17 May 1989. [21]

[10] Matt Blaze. High-bandwidth encryption with low-
bandwidth smartcards. In Dieter Grollman, editor,
Fast Software Encryption: Third International [22]
Workshopvolume 1039 of_ecture Notes in Com-
puter Sciencegpages 33—40, Cambridge, UK, 21—

(12]

(13]

(14]

(15]

(18]

(19]

(20]

23 February 1996. Springer-Verlag.

Ingrid Biehl, Bernd Meyer, and Susanne Wetzel.
Ensuring the integrity of agent-based computa-
tions by short proofs. In Kurt Rothermel and Fritz
Hohl, editors,Proc. of the Second International
Workshop, Mobile Agents 9&ages 183-194,
1998. Springer-Verlag Lecture Notes in Computer
Science No. 1477.

Manuel Blum and Hal Wasserman. Software reli-
ability via run-time result-checkingournal of the
ACM, 44(6):826—849, November 1997.

Anne CanteautAttaques de Cryptosystemes a
Mots de Poids Faible et Construction de Fonc-
tions t-RésilientesPhD thesis, Université Paris
VI, October 1996.

C. Cachin, J. Camenisch, J.Kilian, and Joy
Muller. One-round secure computation and secure
autonomous mobile agents. Rroceedings of the
27th International Colloquium on Automata, Lan-
guages and Programming-ICALP 2Q08Beneva,
July 2000.

B. Chor, O. Goldreich, E. Kushilevitz and M.
Sudan, Private information retrievéroceedings
of 36th IEEE Conference on the Foundations of
Computer Science (FOCG$). 41--50, 1995.

C. Collberg, C. Thomborson and, D. Low, A tax-

onomy of obfuscating transformations, Technical
Report 148, Department of Computer Science,
University of Auckland, 1996.

Joan Feigenbaum. Locally random reductions in
interactive complexity theoryDIMACS Series in
Discrete Mathematics and Theoretical Computer
Science13:73-98, 1993.

Shafi Goldwasser and Silvio Micali. Probabilistic
encryption.Journal of Computer and System Sci-
ences 28(2):270-299, April 1984.

Oded Goldreich, Silvio Micali, and Avi Wigder-
son. How to play any mental game or a complete-
ness theorem for protocols with honest majority.
In Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computipgges 218—
229, New York City, 25-27 May 1987.

Oded Goldreich and Rafail Ostrovsky. Software
protection and simulation on oblivious RAMSs.
Journal of the ACM43(3):431-473, May 1996.

Oded GoldreichModern Cryptography, Probabi-
listic Proofs and PseudorandomnesSpringer-
Verlag, 1999.

Daniel Hagimont and Leila Ismail. A performance
evaluation of the mobile agent paradigm.Rro-
ceedings of the Conference on Object-Oriented

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Programming, Systems, Languages and Applica{32]
tions pages 306-313, Denver-USA, November
1999.

Sergio Loureiro and Refik Molva. Function hiding
based on error correcting codes. In Manuel Blum[33]
and C. H. Lee, editor®roceedings of Cryptec’99
- International Workshop on Cryptographic Tech-
nigues and Electronic Commercpages 92-98.
City University of Hong-Kong, July 1999.

Sergio Loureiro and Refik Molva. Privacy for Mo-
bile Code. InProceedings of the Distributed Ob-
ject Security WorkshopOOPSLA'99, pages 37-
42, Denver, November 1999.

Sergio Loureiro, Refik Molva, and Yves Roudier.
Mobile code security.In Proceedings of ISY-
PAR’2000, 4éme Ecole d’Informatique des
Systémes Paralléles et Réparfisulouse, France,
February 2000.

Sergio Loureiro and Refik MolvaMobile Code
Protection with Smartcard$n 6th ECOOP Work-
shop on Mobile Object System. Cannes. France.
June 2000.

R.J. McEliece. The theory of information and cod- [3g)
ing, Encyclopedia of Mathematics and its Applica-
tions Vol. 3, Addison-Wesley, Reading, MA,
1977.

R. McEliece. A public-key cryptosystem based on [39]
algebraic coding theory. Idet Propulsion Lab.
DSN Progress Repqrt978.

Silvio Micali. CS Proofs (extended abstract). In
IEEE Proceedings of Foundations on Computer 40
Sciencepages 436—453, 1994.

Joost Meijers and Johan van Tilburg. Extended|41)
majority voting and private-key algebraic-code
encryptions. In Hideki Imai, Ronald L. Rivest, and
Tsutomu Matsumoto, editorgdvances in Cryp-
tology—ASIACRYPT '9¥olume 739 ofLecture
Notes in Computer Sciengeages 288—-298, Fujiy-
oshida, Japan, 11-14 November 1991. Springer-
Verlag. Published 1993. [4

Nicolas Sendrier. Efficient generation of binary
words of given weight. In Colin Boyd, editor,
Cryptography and Coding; proceedings of the 5th [44]
IMA conferencenumber 1025 in Lecture Notes in
Computer Science, pages 184-187. Springer-Ver-
lag, 1995.

(34]

(35]

(36]

(37]

(42]

Tomas Sander and Christian Tschudin. On soft-
ware protection via function hiding. IRroceed-
ings of the Second Workshop on Information
Hiding, Portland, Oregon, USA, April 1998.

Tomas Sander and Christian Tschudin. Towards
mobile cryptography. IrProceeding of the 1998
IEEE Symposium on Security and Priva®ak-
land, California, May 1998.

Luis F. G. Sarmenta/olunteer Computing?h.D.
thesis. Dept. of Electrical Engineering and Com-
puter Science, MIT, March 2001.

Hung-Min Sun. Improving the security of the
McEliece public-key cryptosystem. IRroceed-
ings of Asiacrypt 98pages 200-213, 1998.

Tomas Sander, Adam Young, and Moti Yung.
Non-interactive cryptocomputing for NC1. In
Proceedings of the IEEE FOCSctober 1999.

Leslie G. Valiant. Universal circuits (preliminary
report). InConference Record of the Eighth Annu-
al ACM Symposium on Theory of Computipgg-

es 196-203, Hershey, Pennsylvania, 3-5 May
1976.

A. Valembois. Recognition of binary linear codes
as vector-subspaces. Workshop on Coding and
Cryptography’99, Book of abstragtsages 43-51,
Paris, France, January 1999.

Johan van TilburgSecurity-Analysis of a Class of
Cryptosystems Based on Linear Error-Correcting
Codes PhD thesis, Technische Universiteit Eind-
hoven, 1994.

Ingo Wegener. The Complexity of Boolean Func-
tions. Eiley-Teubner, 1987.

A.C. Yao. Protocols for secure computations. In
IEEE Symposium on Foundations of Computer
Science 82pages 160-164, Chicago, 1982.

A.C. Yao. How to generate and exchange secrets.
In IEEE Symposium on Foundations of Computer
Science 8ppages 162-167, Toronto, 1986.
Bennet Yee. Using Secure Coprocessors. Techni-
cal Report CMU-CS-94-149. School of Computer
Science, Carnegie Mellon University. May 1994.
Bennet Yee. A sanctuary for mobile agents. Tech-
nical Report CS97-537, UC at San Diego, Dept. of
Computer Science and Engineering, April 1997.

	1 Introduction
	2 Protecting Functions
	2.1 Computational Model
	General Overview
	Confidentiality of Execution
	Integrity of Execution

	2.2 Detailed Protection Scheme
	Circuit Encryption
	Encrypted Circuit Evaluation and Verification

	2.3 Scheme evaluation
	Confidentiality of Execution
	Integrity of execution
	Circuit Size Evaluation

	3 Protecting Functions within a Program
	3.1 Computational Model
	3.2 Protection Scheme
	Error Circuit
	Result Decryption
	Integrity Verification

	3.3 Scheme Evaluation
	Confidentiality of Execution
	Integrity of Execution
	Limitations

	4 Related Work
	4.1 Confidentiality of Execution
	4.2 Integrity of Execution
	4.3 Encrypted Boolean Circuit Approaches
	Circuit Encryption vs. Truth Table Encryption
	Circuit Encryption vs. Gate Level Encryption

	5 Conclusion
	References
	Extending Tamper-Proof Hardware Security to Untrusted Execution Environments

