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Abstract

This paper addresses mobile code protection with respect to potential integrity and confidentiality violations originat-
ing from the untrusted runtime environment where the code execution takes place. Both security properties are
defined in a framework where code is modeled using Boolean circuits. Two protection schemes are presented. The
first scheme addresses the protection of a function that is evaluated by an untrusted environment and yields an
encrypted result only meaningful for the party providing the function. The second scheme addresses the protection of
a piece of software executed by an untrusted environment. It enforces the secure execution of a series of functions
while allowing interactions with the untrusted party. The latter technique relies on trusted tamper-proof hardware
with limited capability. Executing a small part of the computations in the tamper-proof hardware extends its intrinsic
security to the overall environment.
1 Introduction

The mobile code paradigm is becoming increasingly
praised for its flexibility in the management of remote
computers and programmable devices. Unsurprisingly,
more flexibility leads to new challenging security prob-
lems. Mobile code presents vulnerabilities unheard of in
the traditional programming world. On one hand,
attacks may be performed by mobile programs against a
remote execution environment and its resources. On the
other hand, a mobile code may be subverted by a mali-
cious remote execution environment. The former issue
has been widely addressed [25], for instance through
containment mechanisms like the sandbox, the applet-
firewall, etc., but few solutions deal with the latter.

This paper extends our work on the protection of
mobile code [23], [24]. The problem addressed here is
as follows: Alice (A) wants a piece of code to be exe-
cuted on Bob’s (B) workstation, the result of its execu-
tion being eventually returned toA. However,B cannot

be trusted and might try to modify the execution of th
program. In addition, in the context of mobile code
interacting withA during the program execution is no
an option. In other words, the code sent byA must be
executed autonomously byB who only provides addi-
tional input parameters. It is necessary to ensure thaB
cannot get information about the semantics of the co
provided byA and thatA can be assured, without per
forming the computation herself, that the execution h
not been tampered with. This is different from voluntee
computing scenarios [34] such as Seti@home whe
data to treat is provided byA.

In this model, “integrity of execution” means thatB
cannot alter the execution of the program and surrep
tiously modify its results. “Confidentiality of execu-
tion”, sometimes termed “privacy of computation
although it bears no relationship with anonymity, aim
at preventing the disclosure of program semantic
Integrity and confidentiality are tightly entangled in ou
proposal because of the cryptographic protectio
scheme used. However, confidentiality and integrity a
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independent properties and thus will be evaluated sepa-
rately in each solution.

The use of tamper-proof hardware (TPH) has long
been the only solution for protecting the execution of
critical programs from an untrusted party: the program
is completely executed within the hardware that is
trusted by the code owner. With the advent of mobile
code, TPH has logically been advocated as the most
obvious solution for protecting a program from its
untrusted execution environment. [43] is a good exam-
ple of this hardware-only trend. However, existing solu-
tions based on tamper-proof hardware suffer from
inherent limitations ranging from the cost and difficulty
of retrofitting tamper-proof and powerful cryptographic
boards on everybody’s workstations to the lack of com-
puting power in smart cards.

Prompted by the limitation of TPH-based solutions,
alternative approaches were brought up as application-
specific solutions [10], solutions aimed at protecting
specific classes of mathematical functions [33], [32], or
even empirical and mathematically unfounded ones like
obfuscation [16]. Our proposal also takes into account
the inherent limitations of tamper-proof hardware.
Mathematical functions, which can be represented by
Boolean circuits, are a building block for programs. Sec-
tion 2 presents a scheme ensuring a secure non-interac-
tive evaluation of such functions. To this end, the circuit
implementing the function is encrypted using a tech-
nique inspired by the McEliece public key scheme [28].
Based on this solution, Section 3 describes a scheme for
the secure non-interactive evaluation of a piece of soft-

ware consisting of the combination of several function
and of a control structure scheduling these functions.
this case, a Tamper-Proof Hardware acting on behalf
the party providing the mobile code is required. Execu
ing a small part of the computations in the TPH exten
the intrinsic security of the TPH to the overall environ
ment. In Section 4, this solution is compared with sim
lar approaches dealing with integrity or confidentialit
of execution.

2 Protecting Functions

As a first step towards integrity and confidentiality o
execution, a solution for protecting mathematical fun
tions is proposed. This solution is inspired by the wor
of Sander and Tschudin [33], [32], who devised a fun
tion hiding scheme for non-interactive protocols (se
Section 4.1).

Figure 1 describes the main steps of the function pr
tection process using this solution. UsingEA, function f

is encrypted by its originatorA into a new functionf ’ .
The untrusted hostB evaluatesf ’ on the cleartext inputx
and getsy’ as the encrypted result of this evaluation.
Using the secret decryption algorithmDA, A can retrieve
y that is the cleartext result of the original functionf,
based on the following property of the function hidin
scheme:y = DA(y’) = DA(f ’(x)) = DA(EA(f(x))) = f(x).

Moreover, an integrity verification algorithmVA is used
by A to check the computation performed byB.

y=f(x) y’=f’(x)
EA

function f
enciphered

y’=f’(x)

x

y’  = f’(x)y’  = f’(x)

y   = f(x)

function f’
cleartext input x

enciphered output y’

cleartext output y

A B (untrusted)

VA

1)

2) 3)

4)

5)

DA

6)

Figure 1: Evaluating an encrypted function on an untrusted host .
1) the function is encrypted; 2) the encrypted function is sent to the untrusted host (confidentiality); 3) the encrypted function
is evaluated with cleartext inputs; 4) the encrypted result is sent back to A; 5) the result is verified (integrity); 6) Decipherment
is performed to obtain the cleartext result.
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2.1  Computational Model

This section defines the mechanisms required to ensure
integrity and confidentiality of execution in an untrusted
environment. Section 2.2 describes more precisely how
those concepts are implemented in our approach.

General Overview

Since fixed-length inputs and outputs are used, it is pos-
sible to deal with functions using a Boolean circuit rep-
resentation. Let us represent the functionf with a circuit
calledc (in the sequel of this paper, circuit and function
are largely used as equivalents). The number of binary
inputs (l) and outputs (k) will be defined according to
the possible input and output values of the function.X is

the unrestricted set of all possible inputs (e.g.{0,1}l ).
Fl,k represent the family of Boolean circuits withl

inputs andk outputs ( ). Circuit

defines a relation between input and output

, , . The cir-
cuit c may also be seen as a set ofk functions:

. Each of these functions is defined by
a Boolean equation. The correspondingk equations are
the inputs to algorithmEA (Figure 2). The result is a set
of n Boolean equations that define a new Boolean circuit

. The circuitc’ defined byA is evaluated byB

who provides input data , but the encryption by
EA prevents the disclosure ofc to B. Look at Section 2.2
for details on the encryption mechanismEA.

Confidentiality of Execution

The circuitc’=EA(c) preserves the confidentiality ofc if
it is computationally infeasible to derivec from c’. A
decryption algorithmDA must be used in order to
retrieve the desired cleartext result y=c(x) from the

obtained ciphertext resulty’=c’(x). A polynomial time
decryption algorithm is necessary to remain realistic.

Integrity of Execution

Alice receives a ciphertext resulty’ corresponding to the
evaluation of the encrypted circuitc’ with Bob’s cleart-
ext inputs.Alice should be able to retrieve fromy’ the
cleartext resulty corresponding to the evaluation of the
circuit c using the same input.VA has to define a polyno-
mial time verification of this result since for practica
applications, the circuit owner must be able to efficient
verify the result of the circuit execution. The verifie
concept is introduced to address the problem of integr
of execution. The verifier shares some similarities wi
CS Proofs [29] in that there can exist invalid proofs bu
those should be hard to find. Basically, the verifier co
cept relies on the difficulty of finding valid values (y’)
that do not correspond to valid cleartext outputs (y).
Using the terminology of [9],Alice’s verifier VA checks
that there exists anx such thaty=c(x). It can be defined
as follows:

if then

Even if the result is verified and cannot be forged ra
domly, a malicious remote host is able to identify poss
ble outputs of a circuit for chosen inputs. Therefor
integrity of execution alone (i.e. without confidentiality
of execution) does not preventB from performing sev-
eral executions of the circuit and selecting the be
result. A scheme that ensures both integrity and con
dentiality of execution is thus highly desirable.

2.2  Detailed Protection Scheme

This section presents our solution to encrypt function
A technique derived from the McEliece [28] public key
cryptosystem is used. Unlike the McEliece scheme th
encrypts data, our approach encrypts functions. More
ver, this asymmetric scheme is used as a symmetric o
by keeping both public and private keys secret. As
result, part of the attacks possible against the McElie
cryptosystem are not relevant in our scheme becau
attackers do not know the public key.

Circuit Encryption

All Boolean equations of the original plaintext circuitc
are encrypted using the McEliece technique [28] whe
data are replaced by equationsc’ = EA(c) :

X Y→ c Fl k,∈
x X∈

y c xi( ) xi X∈( ){ }= y Y∈ Y 0 1,{ }⊆ k

0 1{ , } l 0 1,{ }→

c' Fl n,∈
x X∈

EA

{0,1}l      {0,1}k

y0

y1

yk-1

c

X       Y

Figure 2: Construction of the encrypted
circuit c’.

x0

xl-1

x1

{0,1}l      {0,1}n

y’0

y’1

 y’n-1

c’

X       Y’

x0

xl-1

x1

y c xi( ) xi X∈( ){ }∉ p VA y'( ) Accept=( ) δ<
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Boolean equationsyi = fi(x0..xl-1) are multiplied by

the matrixSGP(for more details on Boolean cir-
cuit encryption, look at Figure 3).G is a generating
matrix for a Goppa codeC [27] and t is the
number of errors that the code is able to correct.P is a
random permutation matrix. Because of the
importance of hiding the systematic form of the code
[13], an additional matrixS is used.S is a random dense

non-singular matrix.S, GandP are kept secret by
Alice. The SGP matrix multiplication leads to a linear
composition of each cleartext Boolean equation ofc.
The difference with respect to the original McEliece
scheme is that the result of the encryption is interpreted
as Boolean equations defining the encrypted circuit.

In addition to the SGP multiplication, algorithm EA

introduces errors in the circuit in order to detect integ-
rity attacks and prevent confidentiality attacks as
explained below. As error-correcting codes, Goppa

codes allow to efficiently remove these errors at deco
ing time. Errors introduced byEA can be viewed as an
error circuit that, given anl-bit argument, returns ann-
bit string with a Hamming weight oft that is computa-
tionally indistinguishable from a randomn-bit vector
with the same weight. Such a function, calledz,compu-
tationally indistinguishable from the set of functions sa
isfying the weight restriction exists. [31] proposes a
efficient construction for functions that output words o
a given weight.

Encrypted Circuit Evaluation and Verification

Oncec’ is created, the protocol between Alice and Bo
is the following:

• Alice sendsc’ to Bob.

• Bob evaluatesc’ on his data and gets the
result . There is an increase in the
number of Boolean outputs while the number o
inputs is kept unchanged. The result is then se
to Alice.

y'0 … y'n 1– y0 … yk 1–
SGP z0 … zn 1–

+=

c’  c  z

k n×

n k t,[ , ]

n n×

k k×

Figure 3: Encrypting a circuit : basic steps
For clarity sake, only GP matrix multiplication is represented. It produces a partially encrypted circuit cGP. To obtain the
encrypted circuit c’, it necessary to use S and z too. The function to encrypt (1) is represented as a Boolean circuit c (2). The
output matrix Y (3) is multiplied by GP (4). The result (5) is the partially encrypted output matrix YGP. It can be represented by
the corresponding Boolean equations (6) or as a “partially encrypted circuit” cGP (7).

y0 x0x1x2 x1x2+=

y1 x0x1x2 x0x1x2 x0x1x2+ +=

y2 x0=

y3 x0x1x2 x0x1x2 x0x1x2+ +=
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1
1
1
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1
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1
0
1
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0
0
1
0
0
0
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1
0
0
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0
0
1
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0
0
0
0
1
1
1
1
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1
0
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0
1
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0
1
1

0
0
0
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1
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1
1
1
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0
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1
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0
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1
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0
0
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1
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1
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1
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1
1
0
0
1
1
0
0

yGP,1

0
1
0
1
0
0
1
0

yGP,2

0
1
0
0
1
0
0
1

yGP,3

1
1
0
1
0
1
1
1

yGP,4

1
0
0
1
0
0
0
1

yGP,5

0
0
0
1
0
1
0
0

yGP,6

0
0
0
0
1
1
1
1

; ;

yGP 0, x0x1 x0x1+=

yGP 1, …= … yGP 6, …=

y = f(x)

y = c(x)

yGP = cGP(x)

cleartext function
truth table

GP

x0

x1

x2

yGP,0

yGP,6

1

2

3
4 5

6

7

X Y X YGP
YGP Y GP⋅=

partially encrypted function
truth table

x X∈
y' c' x( )= Y'∈
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• Alice decrypts the result (algorithmDA). She first

removes permutationP: . Per-
muting individual error contributions does not
change the Hamming weight of the vector and thus,

. The vectorz is a correctable error
vector since it is defined as: exactly. The
decoding algorithm for the code generated byG can
correct an error with a weight of at mostt, thus Alice
is able to retrieve the cleartext result

and the error vectorz from zP-1.

• Alice finally performs the integrity verification
(algorithmVA): if , the output is accepted,
tampering with the evaluation ofc’ is assumed other-
wise. For integrity verification, the error weight is
fixed. The maximum error weight that can be cor-
rected using Goppa codes ist.

2.3  Scheme evaluation

Confidentiality of Execution

Confidentiality of execution relies on the hardness of
retrieving the equations of the circuitc after their multi-
plication with matrixSGPand after adding the errorz.
First of all, an enumeration attack to recover the circuitc
directly from c’ is unfeasible using the code size pro-
posed by McEliece ( [n=1024, k=524, t=50] ). Moreover
this attacker requires the public key that is not even
available to him here.

Retrieving the error circuitz from circuit is
another possible attack. It is equivalent to trying to
retrieving a subspace from a set of codewords with
errors. In another context, this problem was termed
Decision Rank Reduction [38] and was proven to be
NP-complete. In order to avoid this attack our solution
is based on errors with a Hamming weight equal to the
maximum correction capability of the code.

Nonetheless, transformationEA does not hide every-

thing about circuitc. Bob can identify inputs
that have the same cleartext output because

the distance between the ciphertext values

will be small so that errors remain correctable. In that
case, =

(mod 2). An attacker would be able to recognize
such values because the Hamming weight of their sum is
at most equal to2t even though he does not know the
result cleartext valueyi. Differential cryptanalyse

exploiting the fact that the error circuitz does not com-
pletely hide the linearity of the transformation wer
described in [13] and [7]. These attacks only app
when the public key is available but this one is kep
secret in our scheme. Moreover, the identification
ciphertexts corresponding to the same cleartext can
suppressed [35] but implies an increase in the compu
tional complexity of the encryption, decryption, and ve
ification algorithms.

The majority voting attack described in [30], [39
exploits the non-deterministic nature of the cryptosy
tem to recover the secret code. The probability of su
cess of this attack depends on getting a high number
different ciphertexts for each plaintext. This is not poss
ble in our scheme that keeps secret the public key.

Integrity of execution

Let us establish the probability that the verifier accept
invalid y’. The set of acceptable cleartext outputs

. Due to the definition of the error function, it
is assumed that it is hard to establish any link betwe
the inputs to the error function and the error pattern
Thus, picking a random encrypted output valu

has a probability of being accepted.A’s
result y can only be valid if its value is an element o

. The probability of a successful attack ca
be calculated as “the probability of choosing any exist-
ing in Y” times “the probability of generating a correc
error weight”. Generating a correct error means findin
a t bit vector chosen at random amongn bits. The worst

case ( ) leads to a probability of a successf

attack of: . For a Goppa code

[n=1024, k=524, t=101], the probability of a successfu

attack is:

y'P 1–
ySG zP

1–+=

w zP
1–( ) w z( )=

w z( ) t=

y c x( )= Y∈

w z( ) t=

c'

xi xj,( )
yi yj=

d yi' yj',( )

yi' yj'+ yi SGP zi+⋅ yj SGP zj+⋅+ =
zi zj+

Y 0 1{ , }
k⊆

y' 0 1{ , }
n∈ δ

Y 0 1{ , } k⊆

Y 2k=

δ 2k n– n
t 

 ⋅≤

δ 2 215–≤

c U
SGP

x y

z

y’

c’
n bitsl bits

k bits n bits n bitsl bits l bits

ySGP

Figure 4: Modular implementation of the
encrypted function
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Circuit Size Evaluation

The circuit c’ being evaluated by a remote host, it is
important to minimize the impact of encryption on the
circuit size, measured by its number of logical gates.
Expansion rate cannot be calculated because it is spe-
cific to the structure of the original circuit. However, it is
possible to study the worst case. The encrypted function
can be implemented by a modular circuitc’ as shown in
Figure 4.

In practice, the encrypted function is implemented by
a circuit based on simplified equations, the size of this
circuit being necessarily smaller than that of the equiva-
lent modular circuit shown in Figure 4. The circuit
based on simplified equations offers the same function-
ality as the three different modules of Figure 4. Integrity
and confidentiality properties of the protection scheme
do not allow an attacker to retrieve the modular circuit
from the equations. The size of the actual encrypted cir-
cuit is smaller than the sum of the sizes of the three
modules:

Sizec’ SizeSGP + Sizez + SizeXOR + Sizec

The matrix SGP multiplication transforms thek
cleartext circuit outputsyi into n encoded outputs that

are notedySGP,j : for instance,ySGP,0= 1.y1 + (0.y2) +

1.y3 + (0.y4)+ 1.y5 , and so on. For a given fixed number
of inputs and outputs, the size of theSGP-encoding cir-
cuit (SizeSGP) is fixed (proportional to ) and the

size of the error circuit (Sizez) can be chosen. Both are
independent of the original circuit size (Sizec) and thus
Sizec’ Sizec + . When the circuit is simple (e.g.y
= NOT(x) or y=2x), thenSizec << and encrypting a
circuit increases significantly the circuit size. Howeve
when the circuit is large compared with the sizes
equivalent circuits forSGP multiplication and error,
thenSizec > and encrypting the circuit has a negligi

ble effect on the circuit size increase:Sizec’ Sizec
(the size of theXOR function being negligible).

3 Protecting Functions within a Program

As explained in the previous section, function protectio
only allows the execution of one function while a pro
gram has to perform several functions in sequence.
naïve approach is to represent a program as a sin
Boolean circuit and protect this one using the functio
protection scheme described above. Unfortunately, t
approach, which requires huge circuits, is totally unrea
istic.

We propose a solution to the problem of softwar
protection that consists in delegating the verification a
decryption tasks (originally performed by the circu
owner A) to a trusted tamper-proof hardware (TPH
located at the untrusted site (a preliminary proposal w
described in [26]). This TPH must be directly accessib
by the untrusted host in order to suppress all interactio
with the code owner (A) when the software is executed
The suggested solution assures the security of the
cuits executed on an untrusted runtime environment.
also makes it possible to securely perform multi-ste
evaluation of functions. Additionally, this scheme ena

≤

encryption represented original
circuitas circuits ( )α

k n⋅

≤ α
α

α
≈

c1..m E’A

A B (untrusted)

c’1..m

original c.s.

c’1..m

VTPHDTPH

1) 4)

2)

5)

TPHA

c.s.

VTPHDTPH
3)structure

control

Figure 5: Installation of the program on the untrusted host and trusted TPH.
A has provided a TPH to B. 1) the functions used by the program (i.e. Boolean circuits in our implementation) are encrypted;
2) the control structure is modified to call those new functions; 3) the verification and decryption algorithm corresponding to
the encryption are generated 4) the encrypted functions are sent to the untrusted host; 5) The control structure and the
verification and decryption algorithms are sent to the TPH using a secure channel.
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untrusted host without having to contact the code owner.

Assuming a wide deployment of mobile codes makes
it unlikely that expensive tamper-proof hardware be
used: this implies that the TPH will be limited in terms
of storage and computational capacity. Even though our
solution for multi-step execution is based on the protec-
tion technique described in the Section 2, it has to be
adapted to cope with the computation power limitations
imposed by the TPH (look at Section 3.2). The use of a
TPH has already been suggested for delegating the func-
tionality of a trusted party in specific contexts as can be
seen in host-assisted secret key [8] or public key [17]
cryptography applications. [6] proposes to separate a
program into several pieces but does not deal with
encrypted functions.

3.1  Computational Model

A program can be modeled as a set of functions plus a
control structure, which defines the sequencing of func-
tions. As in the previous section, functions are imple-
mented with circuits. The computation of each
individual circuitci depends on a set of inputsx received
from the host and from the memory of the TPH. As
before, the protection of each circuit from the untrusted
environment where it is evaluated is achieved through its
encryption. The control structure is uploaded to the
tamper-proof hardware to protect it. Based on this con-
trol structure, the TPH instructs the untrusted environ-

ment to execute one of the encrypted circuitsci’. For
each output of circuitci’, the TPH is able to verify the
integrity of the result and to retrieve the cleartext resulty
in an efficient way. Each circuitci is encoded with a new
algorithmE’A.

A state of the computation can be maintained in th
trusted TPH, in other words memory attacks need not
taken in consideration. It is mandatory thatB receives a
TPH trusted byA, which is not a very restrictive hypoth-
esis. For instance,A could be a bank or an operator tha
provides a smart card to its clientB, just like they
already provide credit cards and SIM cards. A verifica
tion and decryption algorithm must be installed on th
TPH via a secure channel, either before the TPH is d
tributed to clients or transmitted in encrypted form usin
a secret shared byA and her TPH.

Once the encrypted circuits (c’1 ... c’m) are installed
(Figure 5) on hostB, the TPH is in charge of choosing
which function has to be evaluated and of providing
part of the inputs (xTPH), the other part being provided
by B (xB). After each step (i.e. each encrypted functio
evaluation), the TPH deciphers and verifies the return
result (Figure 6). Note that a given function can be eva
uated more than once with different inputs. When th
TPH chooses the next encrypted function to execu
(ci+n), it provides input data (xTPH, i+n). Those data are
stored on the TPH.

B (untrusted)

ci’(...)

xB,i

yi’

control structure

VTPH

DTPH

y’

y

TPHA

xB,i
xTPH

6)
7)

8)

9)10)

11)

ci+1’(...)

xB,i+1

yi+1’

xTPH,i+1

xB,i+1

12)

xB

state

xTPH,i

Figure 6: Evaluating an encrypted program on the untrusted host .
6) The TPH calls a function according to the control structure; 7) the TPH can input intermediate results; 8) the selected
encrypted function is executed with data provided by B and/or TPH ; 9) The encrypted result is returned to the TPH; 10) the
inputs are used to allow a more efficient verification (see section 3.2); 11) the temporary result is stored; 12) the next
encrypted function is called ...
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3.2  Protection Scheme

The algorithms devised in the protection scheme of Sec-
tion 2 have to be adapted to the new scenario in which
the TPH has less computational power than the party
that it represents. The algorithm used for function
encryption remains the same since this operation is per-
formed by the code owner, but the error computation is
modified in order to simplify the verification performed
by the TPH. The new verification and decryption algo-
rithms are respectively calledVTPH andDTPH. In order
to simplify the verification and decryption,xB is trans-
mitted to the TPH.

The integrity of execution relies on the difficulty of
creating forged pairs that pass the verification
process (xTPH being known). Using the same terminol-
ogy as in the previous section, this probability can be
defined as follows:

if  then

x being (xTPH | xB)

Error Circuit

As in the classical McEliece scheme, the function pro-
tection scheme of Section 2 introduced at most (and in
our case, exactly)t errors into the encoded circuit: this
represents the maximum number of correctable errors
using the capacity of the code, since in the scheme,A
did not knowB’s input x. This value is now retrieved on
the TPH that also possesses the error circuitz(x)and can
entirely suppress the error without restraining to a spe-
cific correction capacity. It is thus possible to introduce
much more weighted errors into the encrypted circuit.

The security parameterq, with , indicates
the maximum weight of the error introduced. Using a
Goppa code [n=1024, k=524, t=101], this parameter
might be as high as 1024 bits, meaning that all bits of a
given outputy’ might be in error, instead oft=101 bits
as in the scheme of Section 2. In the general case, the
number of errors introduced will be smaller than this
upper bound, yet higher than the correctable case. This
considerably limits enumeration attacks for retrieving
the error circuit.

Nonetheless, the error circuit size must remain rea-
sonable to retain any advantage from executingc’ on the
untrusted host rather thanc on the TPH. For the con-
struction of the error circuit, a trade-off should be found
between the highest possible numbern of simple error

equations and a smaller number of more complex equ
tions closer to a random error.

Result Decryption

In the new scheme, the decipherment is based on
inputs and outputs of the encrypted function evaluatio
For each evaluation of circuitc’, the TPH, which knows
xTPH, receivesy’ and xB. The encrypted result can be

written: . S, G, and P being
known to the TPH, as well as the error circuitz(x), it is
possible to first compute and remove the error pattern

Since matrixG is in systematic form (I | A), the GP
encoding can be removed as follows:

     (eq 1)

(eq 2)

where is the vector formed by the firsti bits of

vectorv.

The cleartext outputy can finally be retrieved as follows:

Integrity Verification

The verification algorithm is adapted to the new con
struction of the error circuit. Integrity of execution is
ensured by controlling that all bits of the cleartext ou
put are correct after having removed the supposed er
pattern. Since the cleartext output y can be obtained
using only the firstk bits of ySG, the remaining and
redundantn-k bits are used to verify that the outpu
computed by the untrusted host has not been tampe
with.

From decryptionequation 1(above), and using only the
lastn-k bits ofySG :

x y',( )

y c x( )≠ P VTPH x y',( ) Accept=( ) δ<

0 q< n≤

y' ySGP z xTPH xB( )+=

ySGP y' z xTPH xB( )+=

ySG yS I A( ) y' z xTPH xB( )+( )P 1–= =

yS ySI y' z xTPH xB( )+( )P 1–
k= =

v i

y y' z xTPH xB( )+( )P 1–
k S

1–⋅=

ySA y' z xTPH xB( )+( )P 1–
n k–( )=
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where is the vector formed by the lasti bits of
vectorv.

SinceySA = (yS)A, it can be deduced from decryption
equation 2that the TPH needs only verify that the fol-
lowing equation is satisfied:

3.3  Scheme Evaluation

Confidentiality of Execution

Evaluating the confidentiality relies on the same princi-
ples as in the previous section. Since it is now possible
to introduce more weighted errors, the complexity of
retrieving the initial circuit is increased in a ratio
depending upon the chosen security parameterq.

A new problem is introduced by the multi-step execu-
tion concerning intermediate cleartext results. It some-
times happens thatxTPH, i = DTPH(yi-n’) , that is,B can
observe the cleartext result of a previously computed
function. The fact that the cleartext result may be given
back to the untrusted environment is critical. With a suf-
ficient number of pairs of cleartext inputs and outputs,
the untrusted host would be able to interpolate circuitc.
For more details, refer to the limitations section below.

Integrity of Execution

An enumeration attack amounts to obtaining a forged
pair (x, y’) acceptable for the verifier. Since the TPH can
get access to the input in addition to the encrypted out-
put of circuit evaluation, the verification is now per-
formed using the actual error pattern and not the error
weight as before. The probability of such an attack
being successful is thus even smaller than in the scheme
of Section 2. Like for confidentiality, the use of more
weighted errors can even further increase the difficulty
of breaking the integrity of execution.

Moreover, part of the input is provided by the TPH
and cannot be modified by the untrusted host: this
makes it possible to obtain the equivalent of a variable
error pattern for the inputs restricted toxB, the untrusted
host inputs. In other words, even if the untrusted hostB
is able to determine the error pattern for a givenxTPH,

this pattern will not be useful for another value ofxTPH.
In practice,xTPH will vary for nearly each computation
of a given function throughout the lifetime of a program

Limitations

As to the limitations of this approach, it is obvious tha
the algorithmic structure of the protected program is n
hidden: the repeated execution of a function can
traced. Private Information Retrieval techniques (PIR
[15] and oblivious RAM models [20] that hide the
sequence of accesses provide a sophisticated solutio
this problem. Unfortunately, those works have show
that hiding access patterns is prohibitively expensiv
This is the reason why our scheme addresses the pro
tion of each function used by a program rather than t
protection of its algorithmic structure.

The result of some encrypted functionfi can be used
as the input to another functionfj. This means that a
malicious host can sometimes observe the cleart
result of one of the encrypted functions that form th
building blocks of a program. Depending on the func
tion and on the number of times it is evaluated, it migh
be possible to obtain enough cleartext inputs and o
puts to interpolate the function. In order to avoid thi
problem a scheme using enciphered inputs and outp
could be used but the performance penalty is importa

However, even if the confidentiality of execution is
partly broken, the integrity is not attacked. Indeed, inte
polating a function allows an attacker to compute a
corresponding cleartext outputsy, but knowingy andy’
is already not sufficient to break the McEliece crypto
system.

Implementability

Any function with fixed-length inputs and outputs ca
be represented as a Boolean circuit and thus encryp
by our scheme. However, to have an efficient impleme
tation, it is necessary to define a computation model fi
ting the requirement of this approach. The TPH and t
untrusted host have to support two different computin
models:

• An algorithmic logic similar to what can be found in
smart cards.

• A functional model supporting a representation o
Boolean circuits. It could be implemented as trut
tables (memory) or as circuits (programmable logic

v i

y' z xTPH xB( )+( )P 1–
n k–( ) =

y' z xTPH xB( )+( )P 1–
k A⋅
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4 Related Work

This section presents other work related to the confiden-
tiality or the integrity of execution. We also compare our
solution with two other approaches, truth table encryp-
tion and gate-level encryption, that can be used to pro-
tect functions represented as Boolean circuits.

4.1  Confidentiality of Execution

Secure function evaluation is an instance of the more
general problem of confidentiality of execution. Secure
function evaluation has been addressed by many
researchers ([41], [42], [19], [3], and [2], just to mention
a few). Non-interactivity is an important requirement
for mobile code, but the protocols addressing the circuit
model need a round complexity dependent on the
number of gates or depth of the circuit and are thus not
well adapted to mobile code.

Sander and Tschudin [33], [32] defined what they
called a function hiding scheme and focused on non-
interactive protocols. In their framework, the privacy off
is assured by a encrypting transformation. The authors
illustrated the concept with a method that allows com-
puting with encrypted polynomials, based on the Gold-
wasser-Micali encryption scheme [18]. Sander and
Tschudin took advantage of the homomorphic proper-
ties of the above encryption scheme to encrypt the coef-
ficients of the polynomial, thus their technique does not
hide the skeleton of the polynomial. Moreover, polyno-
mials are not as expressive as Boolean circuits.

[36] presented a non-interactive solution for secure
evaluation of circuits but which is restricted to log depth

circuits (or NC1 circuits). Protocols were designed for
processing NOT and OR gates in a private way. The
restriction on the depth of the circuit comes from the
increase of the output size by a constant factor when
computing an OR gate.

In [14] and [1], more efficient techniques are pre-
sented, that combine encrypted circuits [42] and one
round oblivious transfers. However, the circuit expan-
sion is high with this technique and this expansion com-
promises the narrow advantage in performance of
mobile code as shown in [22].

4.2  Integrity of Execution

Integrity of execution is the possibility for the circuit
owner to verify the correctness of the execution of his

circuit. This problem has been extensively studied f
achieving reliability (see for example [12] for a survey
but security requirements taking into account possib
malicious behavior from the execution environmen
were not considered.

Other solutions cope with the maliciousness of th
execution environment. Yee [44] suggested the use
proof based techniques, in which the untrusted host h
to forward a proof of the correctness of the executio
together with the result. Complexity theory shows ho
to build proofs for NP-languages and recently how
build Probabilistic Checkable Proofs (PCP) [4], [5]
PCP proofs require checking only a subset of the pro
in order to assure the correctness of a statement. Ho
ever, this subset has to be randomly determined by
checker, so the problem of using PCP proofs in our no
interactive scenario is that the prover has to commit
the overall PCP proof. We refer the interested reader
[21] for a comprehensive survey of the work on proofs

In [11], the authors presented an interesting mod
for mobile computing and a solution that overcomes th
problem of using PCP proofs. The agent is modeled a
probabilistic Turing machine, and the set of all possib
states of this machine constitutes a NP language. Th
exists a verification process for language membersh
that is, it is possible to check if an obtained state belon
to the language. This scheme relies on the use of no
interactive Private Information Retrieval techniques
avoid the transmission of the overall PCP proof of th
specified language, the randomly chosen queries fro
the checker being encrypted. Our second scheme allo
us to “trace” in real-time an execution step-by-step, on
step being a function evaluation, and ensuring that ea
step is performed in accordance with the progra
semantics. In our scheme, verifying an execution do
not require verifying a complex trace.

4.3  Encrypted Boolean Circuit Approaches

Boolean circuits can be protected from confidentiali
and integrity attacks using three different encryptio
techniques: circuit encryption (our approach from Se
tion 2), truth table encryption, and gate-level encryptio
[36], [19].

Circuit Encryption vs. Truth Table Encryption

Evaluating a function with a truth table simply corre
sponds to choosing the right line of the table that corr
sponds to the inputs and contains the outputs of a circu
A simple protection of this scheme is to encrypt line-by
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line each output of the truth table with a standard
encryption algorithm. A new truth table with encrypted
outputs is then obtained. In this approach, each result is
pre-calculated.

The truth table outputs being encrypted line by line,
the encrypted function it represents is by definition con-
structed randomly. Shannon showed that the size of
almost every function withl inputs and one output is

bigger than2l/l. The size of the circuit implementing an
encrypted truth table withn outputs can thus be assumed

to be bigger thann 2l/l gates. This size does not depend
on the initial cleartext circuit but essentially on the
number of inputs and can be bounded: any function with
l inputs and one output can be computed by a circuit of

sizeO(l 2l) [40].

Our scheme modifies Boolean equations rather than
outputs and, as shown in Section 2.3,Sizec’ = Sizec +

. It is possible to haveSizec’ Sizec under reasona-
ble assumptions about the size ofc compared with the
size of the error circuit or the SGP multiplication circuit
(in a modular implementation). In the worst case, when

the cleartext circuit sizeSizec is close tol 2l, the size
Sizec’ of the resulting encrypted circuit is not better than
the size of an equivalent encrypted truth table.

Circuit Encryption vs. Gate Level Encryption

The gate-level encryption [36], [19] is a Computing
with Encrypted Data scheme. Each gate of the circuit is
replaced by a cryptographic module that use keys as
inputs and outputs to representtrueor falseBoolean val-
ues. A function evaluation corresponds to cryptographic
operations performed gate by gate. However, it is possi-
ble to observe the resulting construction and to deduce
the initial circuit. This solution thus does not ensure
confidentiality but only integrity. Valiant’s universal cir-
cuit [37] makes it possible to see circuits as data. Thanks
to it, it is possible to convert the Computing with
Encrypted Data scheme into Computing with Encrypted
Functions.

The main advantage of the gate-level encryption
scheme is the linear impact of the encryption on the cir-
cuit size. Indeed, each gate of the initial circuit is
replaced by one module and associated keys. When the
universal circuit is used, the resulting size is

O(d s log(s))modules, wheres is the size of the initial
circuit andd its depth. This size increase is small and
only depends on the initial circuit.

This approach has drawbacks: it is necessary eithe
interact with the circuit owner for each gate evaluatio
or to use oblivious transfers to provide inputs. Moreo
ver, the scheme allows only one evaluation of the circu
otherwise the integrity, and confidentiality in case of us
of a universal circuit, cannot be ensured.

In comparison, our approach is similar to the trut
table in that it is an encryption of the whole output tha
is performed instead of a bit-by-bit encryption of th
output. This makes it possible to evaluate a functio
more than once. Bit-by-bit encryption yields too muc
information about the circuit structure to permit two
consecutive evaluations: a new encrypted circuit has
be recomputed after each evaluation.

5 Conclusion

This paper presented basic building blocks for securi
mobile code executed in a potentially hostile environ
ment. It first described a scheme that can autonomou
evaluate a Boolean circuit in a potentially maliciou
environment. This scheme ensures at the same time
integrity and confidentiality of evaluation of the circuit
The protection is derived from the McEliece dat
encryption scheme, thus allowing an efficient encry
tion, verification and decryption. The original circuit is
encrypted into a new circuit, which can be executed b
an untrusted environment although its result can only
decrypted by the circuit owner. This scheme can gen
ate an encrypted circuit with a size close to that of th
original circuit. All functions implementable with
Boolean circuits can be protected using this scheme.

Any program can be implemented as a single circu
and thus be protected using this function protectio
scheme. In practice however, that approach is tota
unrealistic because of the huge size of the circuit. T
second part of this article introduces another protecti
scheme that deals with programs rather than functio
This scheme resorts to using a tamper-proof hardwa
albeit with a limited capacity compared with the pro
gram processing needs. The tamper-proof hardware p
tects the scheduling of a set of encrypted functio
executed directly in the untrusted environment. Th
tamper-proof hardware also performs the result decry
tion and verification, which were previously done by th
code owner.

The practical deployment of the latter scheme ma
finally be questioned because of the lingering requir
ment for a tamper-proof hardware. However, few yea
ago, authentication had similar needs and now su
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hardware is in wide use for authentication purposes. We
envision the use of cheap tamper-resistant hardware like
slightly modified smart cards as a possible solution.
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