MULTIPLE LAYER ENCRYPTION FOR MULTICAST
GROUPS

Alain Pannetrat
Alain.Pannetrat@eurecom.fr

Institut Eurecom, Sophia Antipolis, France.

Refik Molva

Refik.Molva@eurecom.fr

Institut Eurecom, Sophia Antipolis, France.

Abstract We propose a scalable multicast access control framework targeted for
large dynamic groups, where members are added and removed fre-
quently. Access control is provided by the original use of the counter-
based block cipher mode of operation to encrypt traffic. This scheme
uses intermediary elements in the network that contribute individually
to the encryption, providing confidentiality, backward and forward se-
crecy and also containment, a property that limits the impact of the
compromise of member access keys.

Keywords: Multicast Security, Encryption.

1. Introduction

This work describes a framework designed to provide access control
in a large dynamic multicast[Dee89] group using encryption techniques.
Consider, for example, the broadcast of pay-per-view TV over the In-
ternet. In such an application, we need to ensure that only selected
recipients are permitted to access the video. The set of recipients may
nevertheless be very large and dynamic. As we will see, this complicates
the design of an access control protocol. This work does not cover issues
such as authentication of multicast data and other multicast security is-
sues. We refer the reader to [HT00] for general presentation of multicast
security issues, solutions and challenges.

We focus on a I-to-n multicast scenario, where there is one source
and many recipients. This approach can be concretely extended to a

2

few sources by using one source as a proxy, however our work does
not aim to provide a mechanism where all recipients of the multicast
group are potentially also a source. As highlighted in [HC99], the 1-to-n
scenario is well suited to large commercial multicast applications such
as pay-per-view broadcasting. Through the remaining of this work we
will use the following conventions: we call recipient, any entity capable
of receiving multicast packets from a certain group, regardless of any
cryptographic protection that is applied to the data inside the packets;
we call member, a recipient who has been given cryptographic keys that
enable him to access the content of the received multicast packets.

The primary goal of a multicast access control mechanism is to allow
only members to access the content of multicast packets while disal-
lowing other recipients to do so. We assume the existence of one or
several entities called membership managers which add or remove mem-
bers from the group based on a certain policy (which is beyond the scope
of this work). Consequently, the group of members changes dynamically
through time as members are added or removed from the group. The
dynamic nature of the group of members imposes two critical require-
ments on the access control mechanism: forward and backward secrecy.
Backward secrecy is defined as the impossibility for a member who is
added to the group to access past data while forward secrecy is defined
as the impossibility for a member who is removed from the group to ac-
cess future data. The two main security objectives of a multicast access
control framework are thus:

R1 - Confidentiality.

R2 - Backward and forward secrecy.

Each time a member is added or removed from the group, the encryption
scheme that protects the data needs to be re-keyed to guaranty forward
and backward secrecy. The main challenge is to provide a re-keying
mechanism for a large multicast group that is scalable. As described by
the same authors in [MP99], the 3 main scalability requirements of a
multicast access control framework can be summarized as:

R3 - Processing scalability: the processing load supported by the
entities in the framework should be independent of the group size.

R4 - Membership scalability: when a member is added or removed
from the group it should not affect the rest of the group.

R5 - Group-wise scalability: no operation should require the whole
group to be treated as a set of distinct individuals.

The requirements R1 to R5 together form the core design goals of a
multicast access control framework. However, as highlighted in [MP99],
there is an aspect that is often overlooked in multicast access control

Multiple Layer Encryption for Multicast Groups 3

frameworks: member compromise. Generally, the more entities that
participate in a security protocol, the greater the chances of a compro-
mise. Thus if we design a multiparty security protocol that scales to
a large group of members, we need to be concerned by such an issue:
what happens if the access keys of a legitimate member are given to
another recipient or stolen by an “hacker”, published on a web site or in
a newsgroup ? Consequently another requirement should be added to a
multicast access control framework:

R6 - Containment: The compromise of one (or several) member(s)
should not cause the compromise the entire group.

There are two main directions followed by multicast access control pro-
posals: key graph based approaches and re-encryption tree based ap-
proaches. Key graphs were first proposed by WONG ET AL. [WGL9S]
and WALLNER ET AL. [WHA98] (see also [CVSP98; MS98; CGIt99)]).
These authors construct a tree T where each vertex represents a random
distinct key and which has as many leaves as members in the group.
Each leaf is associated to a member and each member receives a set of
keys corresponding exactly to the keys on the path from the root of T'
to its corresponding leaf. The root of the tree is the key used to encrypt
the traffic. When a member is removed from the group the root and all
other keys on the path from the root to the leaf representing the depart-
ing member are invalidated. These keys are changed and re-broadcasted
to the group by encrypting them with other remaining valid keys in the
tree in a careful manner such that only the remaining members may
update their subset of invalidated keys. We refer the reader to [WGL9S]
for precise definitions and related algorithms. The main strength of this
approach is that it is simple because it does not rely on intermediary
elements in the network and it has a reasonable overhead (logarithmic
in the size of the group). However, when a member is removed from
the group, then all other members are affected since at least one of the
keys they hold, the root key, is invalid. As a consequence all remaining
members in the group need to receive a message to update their access
parameters. Thus this scheme does not offer membership scalability
(R4). Tt does not offer containment either, since the compromise of the
keys held by a legitimate recipient allows anyone to access the group
from anywhere within the scope of the multicast group.

The other approach is based on the same principle that multicast
routing protocols use to scale to large groups: involve the intermediary
elements in the network. Here, the intermediary elements modify the en-
cryption of the data going through the multicast network, such that the
recipient group is partitioned to subsets with different access parameters,
thus restricting all scalability issues to an arbitrary small subset of the

4

group. The first proposal to follow this idea was the IOLUS framework
[Mit97] and was used later in IGKMP[HCDO00] and in Cipher Sequences
[MP99]. We refer to these family of schemes as re-encryption trees, since
they all use a tree of intermediary elements to perform transformations
on the multicast data. Since each subset of the group uses a different
key to access the group, there is a dependency between the location of a
member in the network and the access parameters that it uses to access
the group. If an access key is exposed, it has a limited impact because
it is only useful in a subset of the group. Thus, this family of solutions
provides containment (R6).

A strong drawback of IOLUS and IGKMP is that they trusts all in-
termediate elements with the security of the group. A solution to this
problem was provided by Cipher Sequences]MP99]. Cipher Sequences
allow the intermediate elements to perform security transforms without
being trusted, thus satisfying a final requirement for a multicast confi-
dentiality framework:

R7 - Limited trust in intermediary elements: the compromise of

some intermediary elements in the network should not compromise the
group, or provide access to the protected data.

However, the main drawback of Cipher Sequences is that they rely on
asymmetric cryptographic transforms as opposed to other schemes which
use classical symmetric encryption. Thus Cipher Sequences cannot be
used for bulk data encryption but are instead restricted to key distribu-
tion, which typically involves short messages.

1.1. Contribution and outline of this work

The solution we propose here belongs to the family of re-encryption
trees. The main contribution of this work is the definition of a multicast
confidentiality framework that uniquely combines 2 qualities:

1 It satisfies all the requirements described above including R7 like
Cipher Sequences.

2 It can be applied for bulk data encryption as in IOLUS or IGKMP
by relying on efficient cryptographic techniques.

This work is organized as follows. In the first section, we will look at
some interesting cryptographic primitives that we use in our framework.
Then, we present our framework based on multiple layers of encryption,
or L-layer trees. In the following section we analyze the security of
our construction, and discuss its scalability and relate it to the list of
seven requirements we presented above. Finally, we present a potential
improvement of our scheme with a shorter message expansion.

Multiple Layer Encryption for Multicast Groups)

2. Cryptographic primitives.

Our framework uses a multiple key version of the counter based block
cipher mode of operation (CTR-Mode) as described in [BDJR97] and
can alternatively be constructed with any general stream cipher. CTR-
mode has been proposed for standardization to NIST as an official AES
mode of operation in [LRWO00]. In this section we will briefly recall
CTR-mode and present our own multiple key extension that is used in
the framework. We denote “@®” as the binary XOR operation.

2.1. CTRM encryption scheme.

In [BDJR97] BELLARE ET AL. describe and analyze various cipher
modes of operation. We will briefly recall their work on the CTR-mode,
which we use in our own scheme. Let f,(.) describe a [-bit pseudorandom
permutation such as DES or AES[oST01] where a is the encryption key.
The CTR-mode scheme CTRM;, = (K, &, D) is defined as follows:

m the function X flips coins and outputs a random k bit key a.

» the function (o, z) is defined as:

split z in n blocks of I bits: x = x1,...,xn
fori=1,...ndoy = falo+1i) ®z;.
return (o, y1y2...Yn)-

ogo+n

» the function D(o,y) is defined as:

split y in n blocks of I bits: y = y1y2...yn
fori=1,...,ndox; = fo(c+1i) Dy
return r = r1x2...Tn

Note: The state or counter o is maintained by the encryption algorithm
across consecutive encryptions with the same key. The decryption
algorithm is stateless.

The authors of [BDJRI7] have shown that there is a tight reduction be-
tween the security of the CTRM-scheme and the security of the primitive
block operation f, (we refer the reader to their work for details).

This scheme has many advantages. First it’s paralellizable because
the encryption of each block is independent of another. Second, the
decryption can under certain circumstances be “prepared” in advance.
Since the state is incremented in a predictable way across several mes-
sages, it means that the receiver can pre-compute some of the values of
fa to reduce online computations. Finally, this scheme uses the XOR
operation which is commutative, a property that we will show to be
useful.

6

2.2. Multiple encryptions.

The commutative nature of the XOR operation makes CTRM=(K, £, D)
interesting for a special form of multiple encryption. Normally if we en-
crypt a message = several times with a set of keys ay, ..., a,, we would
compute (opm,y) = Ea,, (Om, ---Eay (02, Ea, (01, T)...) but we proceed slightly
differently, by leaving the counters oy, ..., oy, outside the consecutive en-
cryptions. We define CTRM(™) = (™) £(m) D)) with m indepen-
dent keys as as follows:

» K™ chooses m random keys : ag,a, ..., Gm.

m .
n 51,212,__,% (01, ey Om,x) is defined as:

split z in n blocks of I bits: x = x1,...,Tn
fori=1,...,ndoy; = fo, (01 4+ 1) D ... ® far (Om +1) D ;.
return (o1...0m, Y1Y2...Yn)-

forj=1,..,mdooj <o;+n

] Dg’f?,,,am (015 .y Om,y) is defined as:

split ¥ in n blocks of [bits: ¥y = yi1y2...yn
fori=1,...,ndoxi= fo,(c14+)D.. B fa,,(Om +17) DYs
return x = r1T2...2,.

We note immediately that &, = &Sl) and D, = Dgl). This form of
multiple encryption has the following interesting properties:

Fact 2.1 For any permutation © of {1,...,m} we have

Saﬂ(l)r__,aﬂ(m)(aﬁ(l), ey aﬂ(l),x) = Ea1,a2,0,0m (O1s vy O, T)

and

Daﬂ.(l),...,aﬂ.(m) (0-71'(1)7 = 0r(1) y) = Da1,a2,..,am (0’1, cey Omy,y y)

This is a natural consequence of the commutativity of the XOR binary
operation.
. . (m-1)
Fact 2.2 Given a message z if we compute {01, ..., 0(m—1), Y} <Earyyaim_1) (15 s O(m—1), T)

(m)

and {o,z} + &Sl)(a, y) then we have {01, ..., 0(m_1), 0,2} = Ea:rf“,,a(mfl),a(al, s O(m—1)5 05 Y) -
A similar result holds for D=1 qnd DM,

We also recall a classical property of multiple commutative encryptions
that applies to our scheme [MvOV96, Chapter 7]:

Fact 2.3 When a message is encrypted with m keys as described above
it is at least as secure as anyone of the individual encryptions.

Multiple Layer Encryption for Multicast Groups 7

3. L-Layer Encryption Trees.
3.1. Definitions

To describe our 1-to-n multicast encryption framework, we view the
multicast network as a tree with the following elements:

root: The root represents the source generating data to be securely
distributed to members of the group.

intermediary: An intermediary describes any node in the tree besides
the root and the leaves. An intermediary element is either a mul-
ticast enabled router or proxy with embedded encryption capabil-
ities.

leaf: The leaf represents a member, or a cluster of members receiving
data from the same intermediary. These elements are expected to

be physically close to each other, for example on the same LAN
with a common IGMP[Fen97] router.

Our approach to secure multicast can be summarized as follows. The
root produces data, encrypts it and forwards it to the multicast network.
intermediaries receive data, modify the encryption and forward the result
to other intermediaries until it reaches a leaf. Finally, the members
in the leaves decrypt the data transmitted by the source. Since each
intermediary element changes the encryption of the data, each leaf will
require different access parameters to access the content, which provides
a form containment as described in the introduction.

3.2. Construction

We call a tree T a singular leaf tree if each leaf in T has a distinct
unique parent. We define a function Depth(N) which for a node N
returns its depth in the tree, where Depth(root) = 0, and we define
the function Parent(N, L) which returns the L' parent of node N if it
exists or () otherwise.

We call “L-layer tree” the association of a multicast singular leaf tree
network with a set of cryptographic transformations designed to protect
the distributed data with a varying set of L layers of encryption. We
associate a set of keys to the tree to perform CTRM encryptions as
described previously, taking advantage of the commutative nature of
the encryption scheme. Let T be a tree without sibling leaves with n
intermediaries. We associate a set of n 4+ L different encryption keys
(K1, ..., K14n] to the tree as follows:

root: The root receives the encryption keys [Kj, ..., K1].

8

intermediaries: The n intermediaries receive each a distinct key from

the set [Kr41,..., Ki+n]. For example if we number the interme-
diary arbitrarily from 1 to n we can associate key Ky .; to inter-
mediary number 7. We call this key the intermediary’s encryption
key. Each intermediary N receives a secondary key K', which we
will call decryption key, as follows:

if Depth(N) < L then K, — KDepth(N)-
else K' < (the encryption key of Parent(N, L))

leaves: The leaves each receive L keys. To clarify the notation we will

call these keys X1, ..., X1, A leaf N receives these keys as follows:
fori=1,...,L do

(1) if Parent(N,i) = 0 then X ;1) < Kpepin(n)+i-1

(2) else X(1_i;1) + (the encryption key of Parent(N, L))

Line (1) shows that if the leaf does not have an ' parent then it
gets one of the encryption keys used by the root and line (2) shows
that if it does have an ‘" parent then it gets the encryption key
of that parent.

This key assignment may seem somewhat complex but in fact it’s gov-
erned by two simple principles:

Each intermediary gets its own encryption key and the encryption
key of its L' parent.

Each leaf gets all the encryption key of its parents of level L down
to 1.

The complexity only appears in the algorithm for nodes or leaves that
are not deep enough in the tree to fully apply the previous two rules.
In such a case, the otherwise missing keys are taken from the root. If
we focus our attention on a single path of the tree extending from the
root to a leaf, we can see that each key used on a node in a path is used
once as an encryption key and once as a decryption key, as illustrated
on figure 1.

An example of our key assignment algorithm is shown on figure 2 for
a 4 layer tree.

3.3.

Data Distribution

Once the tree is constructed, its components operate as follows:

Multiple Layer Encryption for Multicast Groups 9

[
(K1 K Kg KoKy Kglod Ky Kglod Ky K7lfKy Kglod K5 Kol Kg KigpmdKig Ky Kg K7)
EAF

SOURCE NODE 1 NODE 2 NODE 3 NODE 4 NODE 5 NODE 6 L

Figure 1. Key distribution on a single path in a 4 layer tree.

Figure 2. Key distribution on a 4 layer tree.

10

root: Theroot or source encrypts a message M by computing (o1, ...,07,C) =
E}é)m i, (01,...,00, M) and sends the result to its children nodes

in the tree.

intermediaries: Each intermediary N receives an encrypted message
(o1,...,01,C). The intermediary N performs the following opera-
tions:

1 Suppress a layer of encryption: C' < D (o, C).

2 Add a new of encryption: (7,C") « £ (7,C") where 7 is the
internal counter of N.

3 Let 71, + Tand 7; = 0(;4q) fori = 1,..., (L—1). Send (11,72, ..., 71, C")
to the children nodes.

leaves: The leaves receive an encrypted message (o1, 09, ..., o1, C) that
(L)

they decrypt by computing M = Dxl,...,XL(Ulv w0, C).

If we recall the construction of our tree, we see that the keys are dis-
tributed to make the above algorithm work: each key used to encrypt
the data is used later as a decryption key. The source and the leaves
both perform L-encryptions and L-decryption. Intermediaries use Prop-
erty 2 to first transform an L-encryption to a (L — 1) encryption, then
using the same property, they transform the (L — 1)-encryption back
into an L-encryption. The combination of Property 2.1 and 2.2 allows
us to decrypt a layer regardless of the order in which the encryptions
were done.

As an example, we will examine how our data distribution algorithm
is applied on the path of the 4-layer tree of figure 1, where C" denotes
the encryption of M at stage r in the algorithm:

. 0 (m)
Source: Computes and sends (01,09, 03,04, C”) < ExRy Ky s Ky (01,09,03,04, M)

Node 1: Suppresses a layer (o2, 03,04, C') + Dgz(al, cY).

Then it computes and sends (03, 03,04, 05, C?) 5};5)(05, ch.

Node 2: Suppresses a layer (03,04, 05,C3) D%i(gg, Cc?).

Then it computes and sends (03, 04, 05, 06, C%) 5;2(06, C3).

Node 3: Suppresses a layer (04,05, 0¢,C%) Dgg(ag, ch).

Then it computes and sends (o4, 05, 06, 07, C%) < 5}2(07, Cd).

Multiple Layer Encryption for Multicast Groups 11

Node 4: Suppresses a layer (o5, 06,07,C7) < Dgi(m, Ch).

Then it computes and sends (o5, 0g, 07, 08, C%) Egg)(ag, c").

Node 5: Suppresses a layer (0,07, 05, C?) D%)(O};, C?).

5
Then it computes and sends (03, 03,04, 05, C'0) Eé(lg (09, C?).

Node 6: Suppresses a layer (07,03, 09, C'1) < Dgg (06, C10).

Then it computes and sends (o7, 08, 09, 019, C'*?) 55(11)0 (010, CH).

Leaf: Decrypts the message M < D%?KS,KQ,KN(UW 08, 09,019, C'2).

3.4. Membership Management

After describing how members access the multicast content in the
previous section, we will now turn our attention to the addition and
removal of members in our framework.

Add: When a recipient M wants to be added to the group, he contacts
a membership manager (MM) with an authenticated secure chan-
nel. If M is allowed to access the group, then there are 2 possible
scenarios:

1 M is already physically in an existing leaf F': the MM sends
an authenticated secure message to the parent intermediary
P of F, to change the encryption key K of P to a new value
K'. Then the new key K’ is sent to all the members of the
same leaf and to the new member M.

2 M is not in an existing leaf: the tree is expanded to create
a new leaf for M. The corresponding keys are distributed to
the new intermediaries and M.

Remove: When a member needs to be removed from the group, the
MM sends an authenticated secure message to the parent interme-
diary P of F, to change the encryption key K of P to a new value
K'. Then the new key K' is sent to all the members of the same
leaf except M. If the leaf is empty because the last member left,
than after a certain delay, we may remove unused intermediaries
from the tree.

The leaf holds L keys and needs all of them to access the data. Thus,
changing just one of them when we add or remove a member provides
us with forward and backward secrecy (R2).

12

3.5. Distributed Membership Management.

This scheme also lends itself to a certain form of decentralized key
management. The tree of intermediary elements can be managed by a
hierarchy of membership managers. It follows from our construction in
section that an individual membership manager only needs to know L ex-
tra keys to manage a subtree on its own. More precisely, if a membership
manager is selected to manage a subtree consisting of an intermediary
N and all its descendants in the tree, then it needs the to know the set
Y1, ..., Yy of keys defined as follows:

for:=1,...,L do

if Parent(N, Z) = () then Y, + KDepth(N)#»ifl
else Y; <+ (the encryption key of Parent(N,1))

In turn a membership manager may delegate the management of some
of its own subtrees to several other membership managers.

4. Security Requirements
4.1. Encryption

To discuss the security of our construction, we will first look at one-
layer trees before we study the general case. One layer trees are concep-
tually very simple, since they only use the original CTRM encryption
algorithm. The source has a key K; and uses it to encrypt data to be
sent to its children. The intermediaries decrypt the data with the key
K that their parents used to encrypt the data and use their own key
K; to encrypt the data again for their children. The leaves use a single
key to access the data. A one-layer tree is quite similar to the IOLUS
framework [Mit97], and it shares one of the drawbacks of that frame-
work: each intermediary is trusted to access the cleartext data. For now
however, let’s examine the security off a one-layer tree while making the
hypothesis that the intermediary elements are secure.

The individual links are secured by the CTRM encryption algorithm.
In our framework, an adversary has the ability to observe several links
and thus the same message encrypted under different keys. We can
even imagine that the adversary may modify or input new messages at
different points in the tree to try to break the security of the system. In
a recent work evaluating the security of public key cryptosystems in the
multiuser setting [BBMO00], BELLARE ET AL. have shown essentially that
if a public key cryptosystem is secure in the sense of indistinguishability,
then it implies the security of the cryptosystem in the multiuser setting,
where related messages are encrypted under different keys. We refer the
reader to their work for further details [BBMO00]. Though their work was

Multiple Layer Encryption for Multicast Groups 13

targeted at public key cryptosystems, their results can be applied to the
private key setting, and since the CTRM encryption is secure in the sense
of “indistinguishability” under chosen plaintext attacks[BDJRI7], we
can assert the security of the whole tree by using the results of [BBMO0].

Now for L-layer trees, property 2.3 tells us that they are at least as
secure as a l-layer tree if no intermediary is compromised. But, the
advantage of a L-layer tree is that it remains secure even if some nodes
are compromised, more precisely:

Proposition 4.1 Let B = By,...,B, define a set of p compromised
intermediaries in a L-layer tree. The tree remains secure as long as
there exists a constant ¢ € {0, ..., L — 1} such that Depth(B;) # ¢ mod L
for all i € {1, ...,p}.

Proof. This property derives from the arrangement of the keys in the
tree. Let B = By, ..., B, define a set of compromised intermediaries in
a L-layered tree T such that there exists a constant ¢ € {0,...,L — 1}
verifying Depth(B;) mod L # ¢ for all i € {1, ...,p}. From the tree T' we
can extract a subtree T iteratively, as follows:

Notations:
Let Ny define the root of T'.
Let Ny define the root of T, and let {N1,..., N} define the interme-
diary nodes of T.
Construction:
NU +— Ny
Select {Ny,...,N4}, the set of intermediaries N; of T' which verify
Depth(N;) = ¢mod L.
{Nl, ey Nq} — {Nl, ey Nq}
fori=1,...,q do
if Depth(N;) = c then
connect N; to Ng in T.
let Z be the concatenation of all leaves Z; € T such that
Depth(Z) < c.
if Z # () then connect Z to Ng in T.
else
let N; = Parent(Nj, L).
connect Wj to N; in T.
let Z be the concatenation of all leaves Zj, € T such that
(Parent(Zy,r) = N;j and j < L).
if Z # () then connect Z to N; in T.

_The tree T represents a 1-layer tree such that none of its intermediaries
{N1,..., N4} hold a key in common with any of those distributed to the

14

compromised set B. Thus since there exists an independent 1-layer
tree between the root and the leaves, the encryption of data in the tree
remains secure (R1). &

Corollary 4.2 An obvious implication of this property is that an L-
layer tree can at least withstand the compromise of any set of less than
L intermediaries.

4.2. Containment

In singular parent trees, no leaf shares its direct parent with another
leaf, thus each leaf receives data that is encrypted with at least one
layer of encryption that is distinct from any other leaf. This distinct
layer of encryption is generated by the parent intermediary node of
the leaf. Thus if £ is a leaf, then no collusion of any group of leaves
{Ly,....Lp|L; # L,i € {1,...,p}} can break the encryption of data re-
ceived in the leaf £. An adversary in a leaf £ who compromises the
keys in a set of leaves {L1,...,L,|L; # L,i € {1,...,p}} cannot use this
information to access the data in his own leaf. Thus having a singular
leaf tree is a sufficient condition to ensure a secure dependence between
the location of a recipient in the network and the keys used to decrypt
the received multicast data. This secure dependency provide contain-
ment (R6) since the exposure of a key will only be useful to an adversary
within the same leaf and will not affect the security of the whole group.

There is no containment within a leaf, all the recipients that are phys-
ically in the same leaf use the same key to access the data, thus exposure
of keying material in one leaf allows other members of the same leaf to
access the data. However, unless there is a form of hardware access con-
trol installed directly on each recipient, providing containment in within
a leaf is very hard: ultimately, it’s difficult to stop or even detect if a
member rebroadcasts decrypted data to other local recipients that are
not members themselves.

4.3. Hybrid attacks

The current framework may face more complex attacks which are
a combination of both the compromise of leaves and intermediary ele-
ments:

Membership extensions:. If a member M in a leaf £ takes full
control of the direct parent P of L, it can monitor key changes in P.
If the membership manager decides to remove M from the group, it
will change the key K held by P and send the new updated key K’

Multiple Layer Encryption for Multicast Groups 15

to the other remaining members in £ as well as P. As a consequence
the removed member M will still be able to stay in the group because it
learn the new value K’ from P. This means that we lose forward secrecy.
Recovering from such a compromise requires a key change in the parent
P' of the compromised node P, which in turn requires all the leaves that
have P’ as an ancestor to be updated.

Containment failures:. Assume that two leafs £; and Lo of same
depth in the tree share a common ancestor node P in the tree which
verifies |Depth(Ly) — Depth(P)| < L. In that situation, the members
in £; and the members in L9 have k£ < L decryption keys in common.
If a member M; in £; compromises the L — k first parents of Ly than
M, will know enough information to generate the set of L keys used in
Lo, by combining the k¥ common keys with the L — k compromised keys.
This attacks breaks the containment property of the scheme for two leafs
that are at the same depth in the tree.

5. Scalability Requirements

The processing load supported by each entity in the tree is not pro-
portional to the group size. For the leaves and the root it depends on
the parameter L which defines the number of layers in the tree, while in-
termediaries always perform a single decryption and a single encryption
regardless of the number of layers. Thus this framework offers processing
scalability (R3).

When a member is added or removed from the group, the key up-
date remains local and only affects a leaf at a time. The number of
elements in a leaf is not a scalability factor itself, because we can simply
create more branches in the tree to cope with leaves that get too large.
Consequently, our framework provide membership (R4) and group-wise
scalability (R5).

One of the main differences in terms of scalability between key graph
[WGL98] approaches and intermediary based approaches like ours, is
membership scalability. In key graph approaches, the departure of a
member requires the whole group to receive a message to update its
access keys.

6. Reducing Expansion

In the CTRM(™ scheme, the encryption of a message results in an
expansion of m.|o;| bytes where |o;| represents the size in bytes of the
state value. We could use a single state chosen by the source and common

16

to all layers of encryption as well as all elements in the tree. In other
words we would rewrite the encryption algorithm as follows:

Ealih s (7, 7):

split z in n blocks of [bits: © = x1...x,
fori=1,...,ndoyi=fo,(c+i)D...D fa,. (0 +1i) Dz
return (o,y1y2...yn)

og—o+n

The intermediaries would use the same o to both encryption and decryp-
tion operations. The algorithm would be simplified and the ciphertext
size would be independent of the number of layers in the tree. In such
a case, however, proving the security of the scheme is an open problem
since the intermediaries are now stateless and cannot be modeled as in-
dependent encrypting devices, which was a requirement of the security
proof found in [BBMO00] upon which we relied for our scheme.

7. Conclusion

Using intermediary elements in the network we have constructed a
scalable framework for multicast access control. This framework offers
interesting properties such as containment, and limited trust in the in-
termediary elements of the network. It shows some vulnerabilities when
both members and intermediary elements in the network are compro-
mised, in particular the direct parent intermediary of a leaf in the tree.

Interesting applications of this scheme are not necessarily limited to
IP-Multicast. Consider for example the use of this scheme for content
distribution in next generation mobile networks. Our scheme would
allow a provider to send protected data to its clients even if they are
roaming in foreign or “less trusted” networks. Moreover, the risk of key
piracy found for example in European Digital Video Broadcasting would
be limited by the containment property of our scheme.

References

M. Bellare, A. Boldyreva, and Silvio Micali. Public-key encryption in a multiuser
setting: Security proofs and improvements. In Eurocrypt 2000, volume LNCS 1807,
pages 259-274. Springer Verlag, 2000.

Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In IEEE Symposium on Foundations of Com-
puter Science, pages 394-403, 1997.

R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructions. In Proceedings of IEEE
Infocom’99, 1999.

G. Caronni, M. Valdvogel, D. Sun, and B. Plattner. Efficient security for large and
dynamic multicast groups. In Proceedings of IEEE WETICE’98, 1998.

Steve E. Deering. RFC 1112: Host extensions for IP multicasting, Aug 1989.

W. Fenner. Internet group management protocol, version 2. Request For Comments
2236, November 1997. see also draft-ietf-idmr-igmpv3-and-routing-01.txt for IGMP
v3.

H. Holbrook and D. Cheriton. IP multicast channels: EXPRESS support for large-
scale single-source applications. In Proceedings of ACM SIGCOMM’99, Harvard
University, September 1999. ACM SIGCOMM.

Thomas Hardjono, Brad Cain, and Naganand Doraswamy. Intra-domain group key
management protocol. Internet-Draft, work in progress, February 2000.

T. Hardjono and G. Tsudik. IP multicast security: Issues and directions. Annales des
Telecommunications, to appear in 2000.

H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST concerning AES modes
of operation: CTR-Mode encryption. In NIST First Modes of Operation Workshop,
Baltimore, Maryland, USA, October 20 2000.

Suivo Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings of
the ACM SIGCOMM’97 (September 14-18, 1997, Cannes, France), 1997.

Refik Molva and Alain Pannetrat. Scalable multicast security in dynamic groups. In
Proceedings of the 6th ACM conference on Computer and Communications Secu-
rity, pages 101-112, Singapore, November 1999. Association for Computing Ma-
chinery.

David A. McGrew and Alan T. Sherman. Key establishment in large dynamic groups
using one-way function trees. Technical report, TIS Labs at Network Associates,
Inc., Glenwood, MD, 1998.

Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

17

18

National Institute of Standards and Technology. Advanced Encryption Standard,
2001.

C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs. In ACM SIGCOMM 1998, pages 68-79, 1998.

Debby M. Wallner, Eric J. Harder, and Ryan C. Agee. Key management for multicast:
Issues and architectures. Internet draft, Network working group, september 1998,
1998.

