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Abstract

Orthogonal transforms are compared with the causal transform in lossless
transform coders. For single-stage lossless coding, it was shown in [1] that the
integer-to-integer implementation of the best orthogonal decorrelating trans-
form, the KLT, leads to lower compression performance than its causal coun-
terpart. In this work, we pursue this analysis in the framework of a multi-stage
lossless coding scheme, which yields a low resolution (lossy) signal, and an er-
ror signal. This scheme allows one to choose the respective bitrates of both
complementary signals, depending for example on the bandwidth of the trans-
mission link. We show that the causal approach allows one to code the data
(almost) without causing any excess bitrate as compared with a single-stage
coder, whereas for orthogonal transforms, the price paid for the multiresolution
approach is a bitrate penalty of 0:25 bit per sample. This excess bitrate is due
to a "gaussianization e�ect" of the transforms. Also, the approach based on the
causal transform allows one to easily switch between a single- or a multi-stage
compressor. Moreover, in the framework of interchannel redundancy removal,
this approach allows one to easily �x the distortion and rate for both the low
resolution and the error signal of each channel, by using di�erent stepsizes in
the quantization stage. Any of the channels may, as a particular case, be chosen
to be directly losslessly coded. Finally, a side advantage of the causal approach
is that entropy coding of the error signal is made very simple since for odd
quantization stepsizes, the discrete error sources are uniformly distributed, so
that the optimal codewords have the same length, and �xed rate coding is
optimal.

1 Introduction

Suppose one disposes of a discrete vectorial source x whose samples are xk. This
source may for example be composed of N scalar audio signals xi, in which case
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xk = [x1;k:::xN;k]T , or by the samples of the same scalar source, in which case xk =
[xk xk�1:::xk�N+1]T . There are many ways of losslessly coding this source. Vector
entropy coding is known to be asymptotically optimal w.r.t. to the block length, but
requires to estimate the joint probabilities of the vectors. Such a coding procedure
is thus very complex and not adapted to signals (such as audio) which present long
term correlations. Some approaches have thus been proposed, which divide into two
steps the coding procedure: �rstly, a transform is applied to each block in the aim
of decorrelation, and scalar entropy coding of the transform components is secondly
realized. Lossless implementation of the DCT (Discrete Cosine Transform) has been
for example described in [2], of the DFT (Discrete Fourier Transform) in [3], of the
orthogonal Karhunen-Lo�eve transform (KLT) in [4], and a comparison with the causal
LDU (based on a Lower-Diagonal-Upper factorization of the covariance matrix Rxx)
transform was proposed in [1]. In this framework, the vectorial signal x gives rise to
N transform signals from which the decoder is able to losslessly recover the original
signal x.
Besides this single-stage or "one-shot" compression approach, another way of lossless
coding is to �rst apply a lossy coding scheme (which yields a �rst stream of N
components yq), and then to separately code the error signal e, resulting in a two-
stage structure, see Figure 1. Usually, fQg are integer rounding operators [5, 6],
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Figure 1: Two-Stage Lossless Transform Coding. fQg denotes uniform scalar quan-
tizers, fig and f0ig scalar entropy coders, and [:]1 rounding operators.

ensuring that the yq are discrete valued and can e�ciently be entropy coded. A
simple improvement to this approach can however be brought by introducing scalar
quantizers with stepsizes greater than unity. Depending on these stepsizes, the rate
dedicated to code the low resolution version xq of x can then be made lower, at
the price indeed of allowing a greater distortion for the low resolution signal. Since
the rate-distortion trade-o� is then more exible than in the unity stepsize case, the
advantage of this scheme is that, in the case of variable transmission bandwidth, an
approximative version of the signal of interest can be quickly obtained, independently
of the error signals. The original signal can then in any case be recovered by adding
the error signals. In this framework, a transform is �rstly applied to a block of
signal, the decorrelated components y are then quantized by means of uniform scalar
quantizers, and further entropy coded. By inverting the transform and taking the
integer part of the resulting reconstructed value x0, the error signal e can be generated
by substraction : e = x�xq, and further entropy coded. The decoder generates then
xq in the same way , and recovers x by x = xq+ e. Note that the rounding operations
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are necessary: since T is a linear transform, x0 = T�1yq is generally not integer valued.
In this framework, this work compares the compression performance of orthogonal
and causal transforms (in which case the general multiresolution coding scheme is
slightly di�erent, see Section 3). A genralization of the two-stage structure to M
stages is analyzed for the causal transform in [7].
Let us now denote by r1�shot(x) the bitrate dedicated to the losslessly code the source
x with a single-stage lossless coder. The main question adressed in this work is: Is
there a price to pay, in terms of rates, by using multiresolution approach ? Or in
other words, will the overall bitrate rLR(y)+ r(e) be more than r1�shot(x), and if yes,
how much ? As will be seen in the next sections, orthogonal transforms su�er, among
other drawbacks, from some rate penalty, whereas the causal transform does not. In
the following, the KLT will be used as a benchmark for orthogonal transforms, but
as will be underlined, the conclusions of this analysis can be generalized to other
orthogonal transforms.
The rest of the paper is organized as follows. Section 2 states somes de�nitions and
notations, recalls the main characteristics of the causal transform and some results
about the "one-shot" compression. Section 3 describes the proposed two-stage coding
structures and analyzes the statistics of the error signals. Section 4 is dedicated to the
analysis of the bitrates in the case of Gaussian signals and Section 5 deals with non-
Gaussian probability density functions (p.d.f.s). Section 6 considers the particular
case where lossless transform coding is used to remove intrachannel redundancies,
and the last section presents some simulations results.

2 Single-Stage Structure
Suppose we dispose of a vectorial source x, which is obtained by some discretiza-
tion (quantization) process from a continuous-amplitude source xc (for notation con-
venience, the time index k will be often omitted). We assume in this work very
high resolution, that is, x is integer valued, and �2

xi
>> 1. The rounding oper-

ation may be de�ned as follows. A component xci of xc can then be written as
xci = sign(xci)� k+ sign(xci)� �, where k is a positive integer, and � belongs to [0; 1[.
The rounded value obtained from xci and denoted by [xci]1 is then de�ned by

[xci ]1 = round(xci ) = f
sign(xci)� k + sign(xci)� 1 if � � 0:5;
sign(xci)� k if � < 0:5:

(1)

Similarly, an uniform quantizer with non unity stepsize � associates then to xci a

quantized value [xci ]� by computing [xci]� = round(
xc
i

� )��: In the case where xc is a
vector, [xc]� will denote quantization of each component xci .
In order to compute the analysis of the di�erent rates, we will use the relation of
di�erential to discrete entropy: H(xi) + log2�! h(xci) as �! 0; where H denotes
the discrete entropy of the discrete source xi, obtained by uniform quantization with
stepsize � from the continuous amplitude source xci with di�erential entropy h. For
vectors, a similar relation can be derived, see [4, 1].
We now recall some results concerning single-stage compression of a vectorial source
x by means of integer-to-integer transforms.
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2.1 Lossless Implementation of the Transforms
In the causal case [8, 9], the vector x is decorrelated by means of a lower triangular
transform L. The transform vector y is Lx = x�Lx, where Lx is the reference vector.
the components yi are the prediction errors of xi with respect to the past values of
x, the fx1:i�1g, and the optimal coe�cients �Li;1:i�1 are the optimal prediction co-
e�cients. It follows that Rxx = L�1RyyL

�T , which represents the LDU factorization

of Rxx. In the unitary case, Rxx = V �1�V �T , where � is the diagonal matrix of the
eigenvalues of Rxx. (Note that in both cases, detRyy = detRxx, since both tranforms
are unimodular.)
However, since the resulting components yi are generally not integer, the transform
cannot be used as is for lossless coding. A lossless implementation of the LDU trans-
form can be obtained as follows, see Figure 2. In this case, the transform signals
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Figure 2: Lossless "One-Shot" Implementation of the LDU Transform.

are obtained by yi;k = xi;k � [cxi;k]1 = xi;k � [Li;1:i�1x1:i�1;k]1; where cxi;k is the esti-
mate of xi;k based on the previous samples of xk. The signals yi are then entropy
coded (bitstreams fi0jg). At the decoder, each component xi is losslessly recovered by
xi = yi + [cxi;k]1.
Many lossless implementations of orthogonal transforms have been studied recently,
see for example [4, 2, 3]. Concerning the KLT, the integer-to-integer approximation of
the optimal linear orthogonal decorrelating transform is based on the factorization of
the unimodular matrix into a product of triangular matrices, cascaded with rounding
operations ensuring the inversibility of the global transform [4].

2.2 Bitrates for the "One-Shot" Structures
Because of its triangular structure, the LDU transform is naturally well suited for
factorizations involving lifting steps and roundings (N � 1 for an N-transform). This
is not the case of noninteger- valued orthogonal transforms, in which case the number
of rounding operations decrease the coding performance. It was shown in [1] that the
minimum rate required to losslessly code the transform signals can be related to the
mutual information between the xi. For L and V , these rates are

r1�shot;L = 1
N

NX
i=1

H(yi; L) �
1

2
log2 2�edetR

1

N
xx �

1

24N log 2�2
x1

;

r1�shot;V = 1
N

NX
i=1

H(yi; V ) �
1

2
log2 2�edetR

1

N
xx +

1

2N log 2

NX
i=1

di

�i
> r1�shot;L;

(2)
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where V denotes a KLT of Rxx, and di are positive quantities which depend on
the coe�cients of V . Thus, for single-stage coders, the best linear decorrelating
orthogonal transform is slightly less e�cient than the causal one. For other transforms
such as DCT, DFT..., the compression performance will most probably be still worse,
since their decorrelation e�ciency is less than that the KLT, and they are square
matrices with non-integer coe�cients. In the next section, these approaches are
compared for a two-stage structure.

3 Two-Stage Stucture

3.1 Orthogonal Transforms
As stated in introduction, the vectorial source x can be losslessly coded by means of
a two-stage structure, yielding a low resolution version xq, and an error signal e.
In the case of orthogonal transforms (KLT, DCT...), the coding scheme is represented
by Figure 1. At the encoder, the transform signals are obtained by applying the trans-
form T to x. The resulting components yi are then quantized, scalar entropy coded,
and transmitted to the decoder (bitstreams fijg). The low resolution version xq of x
is then computed as follows at both encoder and decoder (assuming no transmission
errors). The transform T�1 = T T is applied to yq. Since the result x0 is generally
not integer-valued, rounding operations are necessary to ensure that the error signals
ei = xi � x

q
i are integer and can be scalar entropy coded (bitstreams fi0jg). The

original signal x is recovered at the decoder by x = xq + e.
We may now consider the statistics of the error signals. Let q denote the quantization
noise in the transform domain (qi = y

q
i � yi). In the signal domain, the quantization

noise resulting on x
0q is T�1q. The covariance matrix Ex0x

0T = Rq0q0 equals then,

under high resolution assumption, Rxx + T�1RqqT
�T , which shows that the variance

of the quantization noise on a component xq
0

i is (T�1RqqT
�T )ii. In case of signal

dependent transforms T such as KLT, chhosing all stepsizes equal ensure that this
variance is �2

12 . Then the rounding operations increase the variances on the compo-

nents xqi , which can be approximated as 1
N
Ejjx� xqjj2 � 1

N
Ejjx� x

0qjj2+ 1
12
. Thus,

the distortion is indeed �xed by the quantization stepsize �, and is the same on all the
components, �2+1

12 . The error signal is now e = x� xq = [x� x
0q]1 = [T�1q]1. Thus,

each ei is a discretized mixture of N random variables (r.v.s), wich, as shown by high
resolution quantization theory, are uniform if � is small in comparison with the vari-
ances �2

yi
. Since the convolution of N uniform r.v.s tends quickly to a Gaussian, the

error signals ei may be approximated as continuous Gaussian r.v.s with variances �2

12
,

discretized with stepsize unity. The minimum distortion is now obtained by setting
� = 1, resulting in a distortion of 2

12 =
1
6 on each component. Thus, this scheme does

not o�er the simple mean of switching from the two-stage to the "one-shot" coder
by only setting the quantization stepsizes to 1. Since the ei are nearly Gaussian, the
probability that an error occurs for a general � can be approximated with the error

5



function:

P (ei 6= 0) = P (jeij �
1

2
) � 1� erf(

r
3

2

1

�
): (3)

For � = 1, we obtain P (ei 6= 0) � 0:08, which means that one out of twelve samples
should be corrected at the decoder to ensure the losslessness. The question of the
rate dedicated to code e is examinated in the next section.

3.2 Causal Transform
The two stage-causal structure may be described by Figure 3. The transform signals

+

xc
1

xc
2

xc
N

[:]1

�2

L2;1L2;1

�1[:]1

[:]1

[:]1 �N

[:]1

: : :

: : :

...

...

...

...

x
q
1

x1

: : : : : :
...

...

+

+

+

+

fig

f0ig

LN;1 LN;1

+ �

+

+ �

+
+
�

+
�

x
q

N

e2
e1

...

eN

...

x
q

N

x
q
2

y
q

1

y
q
2

y
q

N

y
q

N

y
q

2

+ +

�

y
q

1

e2e1

x
q

1

x
q
1

xN +

: : : x
q
2 x

q
1 x

q
2 x

q

N�1

+ +

x
q

N�1

... (to the decoder)

(to the decoder)

x
q

2x2

LN;2LN;N�1 LN;N�1

...

LN;2

Figure 3: Encoder of the Two-Stage Lossless Coding in the Causal Case.

are computed by substracting the optimal estimate of xi based on the past quantized
samples xq1:i�1, and by quantizing with some stepsize �i the resulting error prediction.
The reason for computing the prediction by means of quantized data is that we are
interested in a low resolution signal which can be computed independently of the
error signals. Thus, only the available xqi at the decoder should be used to compute
the remaining xqj ; j > i. As will be commented in the rate analysis, prediction based
on quantized data is slightly less e�cient than that based on original data, though
this di�erence will be shown to be negligible in most of the cases. Each error signal
is thus computed by

ei = xi � x
q
i = xi � [yqi + Li;1:i�1x

q
1:i�1]1 = [xi � Li;1:i�1x

q
1:i�1 � y

q
i ]1 = [yi � y

q
i ]1: (4)

Thus, the errors ei are now the discretized version of the quantization error in the
transform domain, which takes values in the interval [��i

2 ;
�i

2 ]. Concerning the statis-
tics of ei, three cases should be considered. Firstly, if � = 1, it can be checked that
�xing all stepsizes to 1 yields the coding scheme of Figure 2. If now �i is an odd
integer greater than 1, the rounding de�nition (1) yields equally likely errors (with
probabilities pi =

1
�i
), and belonging to f��i�1

2 ; ��i�1
2 + 1; :::; �i�1

2 g.

If �nally �i is even, all the errors are equally likely except from + and ��i

2 , which

are, due to (1), twice less likely than the other ones (for example, +�i

2 occurs only for
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positive values of bxi). Thus, the values 0; +1:::+ �i

2
� 1 are equaly likely with proba-

bilities 1
�i
, and + �i

2 have probabilityies 1
2�i

. These remarks lead to a probability of
nonzero error which is

P (ei 6= 0) = P (jeij �
1

2
) = 1�

1

�i
8�i: (5)

Figure 4.a) plots the observed and theoretic probabilities of error in the orthogonal
case and in the causal case as given by (3) and (5) respectively (for these simulations,
all the quantizations stepsizes are equal, see simulations details in Section 7). As a
conclusion, the causal transform allows one, on the one hand, to switch easily between
either a single, or a two-stage structure, by simply �xing the stepsizes to 1. Moreover,
the stepsizes �i may in general be di�erent, allowing one to choose a possibly di�erent
rate-distortion trade-o� for each signal xqi . Also, any xi can be chosen in the causal
case to be directly losslessly coded, by setting the corresponding �i to 1. On the
other hand, the KLT does not bene�t of these advantages because of a mixing e�ect
of the quantization errors in the signal domain.
As shown by Figure 4, the probability that an error occurs is higher in the causal
case than in the orthogonal case as soon as � > 1. Does this preclude that the rate
associated to the error signal is in the causal case higher than in the orthogonal case
? As will be shown in the next section, the answer is no because of the Gaussianity
of the quantization error in the orthogonal case.

4 Analysis of the Rates

In this section we assume Gaussian signals for which close form expression for the
rates can be obtained. (The case of non-Gaussian p.d.f.s will be discussed in the
Section 6.) Moreover, we assume that all the quantization stepsizes are equal in both
causal and unitary cases (though this, as stated in Section 3, not necessary for the
LDU transform).

4.1 Low Resolution Versions
For the two transformations, one should compute rLRT

= 1
N

PN
i=1H(yi; T )

� 1
N

PN
i=1 h(�

2
yi
; T )� log2�; with T = L; V:For both transforms, the transform sig-

nals are indeed Gaussian. The variances �2
yi
are in the orthogonal case the eigenvalues

�i of Rxx, which leads to

rLRV
�

1

N

NX
i=1

�
1

2
log2 2�e�i � log2�

�
=

1

2
log2 2�e(detRxx)

1

N � log2�: (6)

In the causal case, the variances of the transform signals �2
yi

are not exactly the
optimal prediction error variances �2

y0
i

of order i � 1 based on x1:i�1, because the

prediction is computed by means of quantized samples. One shows [9] that �2
yi
=

�2
y0
i

+ �2

12 (LL
T
)ii: As in ADPCM, the prediction error variances are increased due to
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a quantization noise feedback. These results lead then to

rLRL
=

1

N

NX
i=1

H(yi; L) �
1

2
log2 2�e(detRxx)

1

N � log2�+
�2

24N log 2

NX
i=1

 
1

�i
�

1

�2
y0
i

!
:

(7)

Thus, for the same distortion �2+1
12

on each component xqi , the bitrate required to
entropy code the low resolution version obtained by means of the causal transform
should require an excess bitrate in comparison with the KLT. Simulations in Section 7
show however that this excess bitrate is negligible for many practical coding situations.

4.2 Error Signals
Concerning the rate rT dedicated to the error signals, one can compute the entropies
of the signals ei by using the error analysis of Section 3. In the unitary case, each
ei can be seen as discretized Gaussian r.v. with variance �2

12
. Thus, the bitrate

rV = 1
N

PN
i=1H(ei; V ) can be written as

rV �
1

N

NX
i=1

1

2
log2 2�e

�2

12
= log2�+

1

2
log2

�e

6
;| {z }

�0:25 bit

(8)

where 0:25 bit is the well known di�erence between Gaussian and uniform entropies.
In the causal case we obtain, depending on the parity of �

rL;even = �

NX
i=1

pi log2 pi = log2�+
1

�
; rL;odd = �

NX
i=1

pi log2 pi = log2�: (9)

Comparing (8) and (9), the rate which is required to code the error signal in the
unitary case is � 0:25 b/s more than in the causal case. Moreover, in the case of odd
�, the error are uniformly distributed, which means that no compression is required
for the bitrate to reach the entropy of the sources ei, and a simple optimal coding
procedure is simply to transmit the binary representation of the values ei.

5 Intrachannel Redundancy Removal
The coding schemes presented in Figures 1 and 3 can indeed be used to remove
intrachannel redundancies, In this case, each data block is xk = [xk xk�1:::xk�N+1]T .
Again, we assume a Gaussian p.d.f. and equal quantization stepsize � for fQg. By
letting the block length grow to in�nity, and using the asymptotic distribution of
Toeplitz matrices [10], we get for the bitrates of the low resolution signals

rLRV
� 1

2 log2 2�e e

R 1

2

�
1

2

logSxx(f)df
� log2�

rLRL
� rLRV

+ �2

24 log 2

"R 1

2

�
1

2

S�1xx (f)df � e
�

R 1

2

�
1

2

logSxx(f)df

#
;

(10)

where Sxx(f) denotes the power spectral density of fxg.
The bitrates corresponding to the error signals (8) and (9) remain unchanged.
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6 Case of Non-Gaussian p.d.f.s
In the orthogonal case, non-Gaussian p.d.f.s of the xi should lead to Gaussian p.d.f.s
of the yi for relatively high N . This "gaussianization" e�ect is less pronounced in
the causal case, since each transform variable is a linear combination of i � 1 r.v.s
only. Thus, the entropy of the low resolution version should also tend to (6) in
the orthogonal case. In the causal case, the entropies H(yqi ; L) are h(�2

yi
) � log2�,

where h will generally be some unknown function of the prediction error variances
�2
yi
. Since the Gaussian p.d.f. maximizes the di�erential entropy for a given variance,PN
i=1H(yqi ; L) <

1
2 log2 2�edetR

1

N
xx �

PN
i=1H(yqi ; V ). The rate rLRL

will probably be
less than in the Gaussian case (7), whereas due to the "gaussianization" e�ect, this
decrease in rate should be less sensitive in the orthogonal case.
Concerning the error signal, if � is small in comparison with the variances of the
transform signals, the analysis of the previous sections are still valid. The quantization
errors in the transform domain are still uniform, leading in the signal domain to nearly
Gaussian errors in the orthogonal case, and to nearly uniformly distributed errors
in the causal case. Thus, the 0:25 bit suboptimality of the orthogonal transforms
remains, irrespectively of the p.d.f.s of the sources.

7 Simulations
For the simulations, we generated 105 real Gaussian i.i.d. vectors with covariance
matrix Rxx = HRAR1H

T . RAR1 is the covariance matrix of an AR(1) process with
� = 0:9 and variance 105. H is a diagonal matrix whose ith entry is (N � i+ 1)1=3,
N = 3. The data are then rounded. A "one-shot" approach requires roughly 9 b/s
to losslessly code these data. For the presented simulations, � = is odd. Figure 4b)
compares the theoretic (expression (6) for the KLT, and (7) for the LDU) and observed
bitrates for the low resolution signals. "Observed entropy" denotes the entropy of the
transform signals as estimated of the whole set of data, and "Actual rLR Hu�man" is
the average codewords length obtained by Hu�man coding. Figure 5a) compares the
theoretic (expression (8) for the KLT, and (9) for the LDU) and observed bitrates
for the error signals. Finally, Figure 5b), which compares the theoretic and observed
total rates for the two-stage coders in both approaches, shows that the best orthogonal
approach is � 0:25 bits suboptimal than its causal counterpart in most cases.
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Figure 5: a)Rates for error signals and b) total rates.
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