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Abstract

We present a lossless coding procedure based on a
recently introduced decorrelating scheme [1, 2], where
both intra- and interchannel redundancies are removed
by lossless prediction. The resulting signals are scalar
entropy coded. We show that for continuous-amplitude
Gaussian sources discretized with uniform scalar quan-
tizers, no suboptimality occurs in the proposed lossless
coding scheme by using scalar instead of vector en-
tropy coders, except from a term caused by the lossless
constraint, which vanishes in the limit of small distor-
tions. This lossless constraint is described in terms of
excess bit rate. The proposed coder may be used either
as a compressor, or as a scalable lossless coder. In this
case, a multistage version of the lossless coder based
on ADPCM-like lossless prediction loops allows one to
transmit the data by means of substreams, which rep-
resent di�erent "resolution" levels. We show that this
multiresolution approach is slightly suboptimal in com-
parison with a single global compression because of the
noise feedback created in the ADPCM-like loops, but
not of the "space �lling" loss of the scalar quantiz-
ers. We propose a strategy to �x the stepsizes of these
quantizers so that the delivered rates approach some
predetermined target rates.

1 Introduction
1.1 Lossless Coding

A general framework for lossless coding can be
depicted by Figure 1. Assume one disposes of a
continuous-amplitude vectorial source fxcg. In a �rst
step, this source is quantized. The box Q may for
example represent the discretization realized by A/D
converters, which may be followed by lossy source
coders. The e�ect of Q is to provide a binary rep-
resentation of fxcg by means of a discrete amplitude
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Figure 1: General framework of a lossless coding
scheme.

source x, whose samples are xk = [x1;k:::xN;k]
T , where

k refers to time. (x may in general, as xc, present
both temporal and spatial dependencies, that is, de-
pendencies between the xi;k and xj;l 8i; j; k and l.)
The price paid for this digitization is indeed the in-
troduction of some distortion, since some information
about xc has been lost. The aim of lossy coding is
to optimize Q so that for a given distortion, the bi-
trate required to represent x will be minimal. Once
some rate-distortion trade-o� has been chosen, both
rate and distortion are �xed to, say, some values r0
and d0. By the noiseless coding theorem of Shannon,
r0 is the entropy rate of the discrete-amplitude source
x. The aim of lossless coding is then nothing else
that designing a coding procedure with the goal that
the actual bitrate required to code x will be as small
as possible, and, if possible, will reach r0. Indeed, it
is known that entropy coders which assigns adequate
codewords to blocks of samples xk, according to the
joint probability of these vectors, can reach r0. The
complexity of these vector entropy coders may, how-
ever, be prohibitive. Thus, an interesting question
is that of designing a coding procedure which is per-
formant in terms of rates, though maintaining a rea-



sonnable complexity, by using scalar entropy coders.
Assume in a �rst scenario that the components fxig
of the vectors xk in Figure (1) are directly scalar en-
tropy coded (entropy coders 
i), resulting in a bi-
trate rscal(x). Assume in a second scenario that a
reversible transformation T (z), which tends to remove
the intra- and inter- channel dependencies, is applied
to xk before scalar entropy coding, resulting in a bi-
trate rscal(y). Then one may de�ne for this transform
a lossless coding gain as GT (z) = rscal(x) � rscal(y)
bits per sample. One may indeed expect that GT (z) is
upper bounded by some GMax = rscal(x)� r0.

1.2 Scalable lossless audio coding

Both temporal and spatial redundancies can be
found in audio signals : starting from the monophonic
and stereophonic technologies, new systems such as
quadraphonic, 5:1, and up to 10:2 channels are now
available. Thus, the �eld of audio coding appears as
a natural space of application for lossless coding tech-
niques, though these could be applied to the wide class
of the vectorial sources.
However, most of the state of the art lossless audio
coders do not take into account interchannel redun-
dancy at all, or in a basic way only [3]. As seen in the
previous subsection, this paper proposes a coding pro-
cedure where both types of redundancy are removed
by lossless prediction.
As many audio data transfers are completed through
the internet, scalable audio coders are particularily de-
manded (due to bandwidth constraints, browsing ap-
plications,...). These coders allow one to transmit in a
�rst step a low resolution (lossy, low bitrate) version
of the data, and to send the complement in a later
stage. Such coders are proposed in Sections 4 and 5.

1.3 Overview

The paper is organized as follows : in Section 2, we
derive the expression of GMax for Gaussian sources
with memory. We show in Section 3 that GMax can
almost by reached by an integer-to-integer implemen-
tation of a totally decorrelating transform, generaliz-
ing previous results on integer-to-integer transforms
(causal LDU transform [4], unitary Karhunen-Lo�eve
transform [5]). This structure will be refered to as
"one shot" multichannel prediction. The fourth part
describes a lossless coding scheme allowing to progres-
sively transmit the data by means of two complemen-
tary substreams. Finally, this structure is generalized
in the last part, resulting in a multistage structure for
the integer-to-integer prediction.

2 Minimum Birates and Maximum
Lossless Coding Gain

2.1 Memoryless Gaussian sources

In the case where fxg is a uniformly quantized ver-
sion of a memoryless Gaussian source fxcg, it was
shown in [4] that the maximum lossless coding gain,
that is, the number of bits per sample which can be
saved by taking advantage of the redundancy of the
source fxg is

GMax =
1

2N
log2

det diagfRxcxcg

detRxcxc
: (1)

2.2 Gaussian sources with memory

We �rst derive the minimal rate r0(x) required to
represent the discrete-amplitude source fxg, obtained
from xc by some discretization (or quantization) pro-
cess, see Figure (1). Since x is a source with memory
this rate corresponds, by the noiseless coding theorem
of Shannon, to the entropy rate of the source

r0(x) = H1(x) + � bits per sample; (2)

where H1 denotes the entropy rate, and � is a positive
value which can be made arbitrarily close to zero by
means of vector entropy coders. We assume now that
x is an uniformly quantized version of xc with stepsizes
�i. Let the samples of fxg be collected in a vector
Xk = [x1:::xk]

T and denote by Xc
k the corresponding

vector of samples of fxcg. The entropy rate r0(x) may
then be written as

r0(x) = lim
k!1

1

Nk
H(Xk): (3)

Now, for any continuous-amplitude source xci uni-
formly quantized with stepsize �i, the di�erential en-
tropy h(xci ) can be related to the discrete entropy
H(xi) by [6]

H(xi) + log2�i ! h(xci ) as �i ! 0: (4)

This result can be extended to the NK-vector Xk (see
[7] for a proof), leading, for Gaussian sources, to

r0(x) = limk!1
1
Nkh(X

c
k) +

1
N

XN

i=1
log2�i

� limk!1
1
2 log2 2�e

�
detRXc

kX
c
k

� 1
N + 1

N

XN

i=1
log2�i:

(5)
The Szego formula expresses the limit of the previous
determinant as

limk!1

�
detRXc

kX
c
k

� 1
k = e

R 1
2
�
1
2

detSxcxc (f)df
; (6)



where Sxcxc (f) is the power spectral density of the
vectorial process fxcg. Thus, the minimum bitrate
required to code the source fxg is

r0(x)=
1

2
log22�e

 
e

R 1
2
�
1
2

detSxcxc (f)
df

!1
N

+
1

N

XN

i=1
log2�i:

(7)
As mentionned previously, this bitrate can be attained
by vector entropy coding. If now we use scalar entropy
coders to code the xi, the bitrate becomes

rscal(x) =
1
N

XN

i=1
H(xi)

� 1
N

XN

i=1
h(xi) �

1
N

XN

i=1
log2�i

� 1
2 log2 2�e

�
det(diagfRxcxcg)

� 1
N � 1

N

XN

i=1
log2�i;

(8)
where diagf:g denotes the diagonal matrix made with
the diagonal elements of f:g. Finally, the maximum
lossless coding gain corresponding to the bitrate saved
by using vector instead of scalar entropy coders is

GMax=rscal(x)�r0(x)�
1

2N
log2

det diagfRxcxcg

e
R 1=2
�1=2

ln detSxcxc (f)df
:

(9)
Note that GMax does not depend on the quantization
stage but only on the spatial and temporal depen-
dencies of the continuous amplitude sources xci . Also,
(1) is indeed a special case of (9), since in the case
of memoryless sources, Sxcxc (f) becomes Rxcxc , and

e
R 1=2
�1=2

ln detSxcxc (f)df reduces to detRxcxc .
Vector entropy coding, though optimal, su�ers how-
ever from a complexity which may prohibitive. In
the next section, we show that GMax can almost be
reached by using a lossless transformation followed by
scalar entropy coders.

3 "One Shot" Integer-to-Integer
Multichannel Prediction

3.1 Triangular MIMO prediction
Consider the coding scheme of �gure (2), described

for N = 2. Lij(z), i 6= j are Wiener �lters, and
Lii(z) are optimal causal linear prediction �lters. The
rounding operations denoted by �i (high resolution
is assumed) ensure the losslessness of the structure:
each x̂i is quantized to the same multiple of �i as
xi, and xi is losslessly recovered, at the decoder, by
yi + x̂i. The yi are then scalar entropy coded. This
scheme is a straightforward application of the triangu-
lar MIMO (Multi-Input Multi-Output) prediction to
lossless coding [2]. The entries of the lower triangular
MIMO prediction matrix L(z) (which may be written
as I�L(z), where I is the identity matrix) are Lij(z).
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Figure 2: "One shot" integer-to-integer multichannel
prediction for N = 2.

The triangular MIMO predictor can be seen, as the
classical MIMO prediction, as a particular case of the
generalized MIMO prediction [2]. The triangular case
presents however over its classical counterpart several
attractive coding advantages [8]. An application of
the classical MIMO prediction was recently applied to
lossless coding [9]. Concerning the decorrelating per-
formances of the triangular transform, the following
result was shown in [2].
Result 1: Suppose that we apply L(z) to decorrelate
some real valued vectorial source fwg. The resulting
vectorial process is fvg. Then each value vi;k is the
optimal prediction wi;k based on the past samples of
wi only, and on all the samples of the sources wj, for
all j < i. The vectorial process fvg is then totally
decorrelated with diagonal covariance matrix Rvv:

Rvv = Svv(f) = L(f)Sww(f)L
T (f) = e

R 1=2
�1=2 ln detSwwdf :

(10)

3.2 Coding gain
Coming back to Figure (2), and assuming that the

fyig are scalar entropy coded, we can de�ne the gain
for the lossless implementation of the transform L(z),
GL(z), as the di�erence rscal(x) � rscal;L(z)(y), where
rscal(x) is as in (8), and rscal;L(z)(y) is the bitrate re-
quired to scalar entropy code the decorrelated trans-
form components yi. We shall thus compute

GL(z) = rscal(x)� rscal;L(z)(y)

= 1
N

PN
i=1H(xi) �

1
N

PN
i=1H(yi):

(11)

Let us denote by y0i;k the optimal prediction error ob-
tained by applying L(z) to x (that is, without the



rounding operations ensuring the losslessness). Then
the yi;k can be related to the y0i;k by

y
k

= xk � [L(q)xk]�i

= [xk � L(q)xk]�i = [y0
k
]�i ;

(12)

where [y0]�i denotes quantization with stepsize �i of

the ith component of y0, and the notation (q) denotes
the unit delay operator. Thus, yi;k may be seen as
the optimal prediction error y0i;k quantized with the
same stepsize as xi;k. Now, applying the result (10)
to the decorrelation of the process fxg, the bitrate
rscal;L(z)(y) may be written as

rscal;L(z)(y)=
1
N

XN

j=1
ij=

1
N

XN

i=1
h(xi)�

1
N

XN

i=1
log2�i

�1
2 log2 2�ee

(
R 1=2
�1=2

lndetSxx(f)df)
1
N
� 1

N

XN

i=1
log2�i:

(13)
Using (8), (11) and (13), we get the following expres-
sion of the gain :

GL(z) =
1

2N
log2

det diagfRxcxcg

e
R 1=2
�1=2 ln detSxx(f)df

: (14)

In the case of equal �i = �VHR, expression (14) may
be approximated as

GL(z) �
1

2N
log2

det diagfRxcxcg

e
R 1=2
�1=2

ln detSxcxcdf| {z }
GMax

�
�2
VHR

24N ln 2

 Z 1=2

�1=2

tr S�1xcxc(f)df

!
| {z }

Excess bit rate due to the lossless constraint

;

(15)

where tr stands for the trace operator.
Thus, in the case of very high resolution, vector en-
tropy coders performance can be approached by a loss-
less transformation followed by scalar entropy coders.
In other words, vector entropy coders can be e�ciently
replaced by scalar entropy coders without (almost)
any degradation to the overall rate-distortion function
of the Gaussian source with memory xc, which is �xed
by the preliminary quantization stage. Similar result
have been reported in the case of memoryless sources
in [5] (without excess bit rate analysis), and in [4].

4 Multiresolution Approach
4.1 Structure of the �rst stage

Consider now the coding scheme of �gure (3), rep-
resented for N = 2. A uniform quantizer Q1 is in-
troduced in the ADPCM-like prediction loops, whose
e�ect is to reduce the entropy of the transform sig-
nals yqi . These signals represent low resolution ver-
sions of the transform signals yi described in the pre-
vious section. The error signals ek, k = 1; :::; N , are
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Figure 3: First stage of the lossless multichannel pre-
diction scalable encoder for N = 2. The bit rates for
fi11:Ng and fi

2
1:Ng are determined by the quantizer Q1.

then generated by substraction and separately entropy
coded. Note that the transform signals are computed
by substracting the optimal estimate of xi based on
the past quantized samples xqi , and by quantizing with
stepsize �i the resulting error prediction. The reason
for computing the prediction by means of quantized
data is that we are interested in a low resolution sig-
nal which can be computed independently of the er-
ror signals. Thus, only the available xqi at the decoder
should be used to compute the remaining xqj ; j > i.
The total bit rate is thus the mean rLR of the bit rates
corresponding to the low resolution substreams fi1kg,
k = 1; :::; N , plus the mean �r of the rates correspond-
ing to fi2kg, k = 1; :::; N (substreams dedicated to the
error signals). In order to simplify the derivations,
we assume in this section that the �i corresponding
to the preliminary quantization stage are all equal,
�i = �VHR. Moreover, we assume w.l.g. that the
�2xi >> 1, and that �VHR = 1. Thus, xi are in-
teger valued, and H(xi) � h(xci) � log2�i � h(xci),
and Sxx(f) � Sxcxc (f). Note that quantizers after
the predictors, with stepsizes �i = �VHR, are nec-
essary to keep the structure lossless. Their e�ects on
the several entropies are however small in compari-
son with the e�ects of the quantizer Q1. (The step-
size �Q1 is generally >> 1: for example, a Gaussian



source with variance �2yi = 104 quantized with stepsize
�VHR = 1 requires at least � 8:7 bits to be entropy
coded. Suppose we wish the bitrate corresponding to a
low resolution version of this source to be � 8:7=2 bits,
then the corresponding quantization stepsize should
be �Q1 � 20 >> �VHR = 1.)
We shall now analyze the bitrate dedicated to the

low resolution version rLR = 1
N

XN

i=1
H(yqi ) =

1
N

X
j=1

i1j . Similarly to the previous section, each

yi;k is now the optimal prediction of xi;k based on the
past quantized value of xi, and on all the quantized
components of xj, for all j < i. Assuming that the yi
are Gaussian, we have

rLR = 1
N

XN

i=1
H(yqi )

� 1
2N log2(2�e)

N
YN

i=1
�2yi �

1
N

XN

i=1
log2�Q1 :

(16)
We now use the following result from [2].
Result 2: Suppose that we apply L(z) to decorrelate
some real valued vectorial source fwg in closed loop
around a quantizer of stepsize �, that is, by com-
puting the predictions by means of quantized data of
fwg. The resulting vectorial process is fv0g. Then
the variances of the process fv0g can be related to the
variances �2v0i

of fvg, and to Sww(f) of Result 1 (10),

by

YN

i=1
�2v0i

�
YN

i=1
�2vi

 
1+

�2
Q

12

"Z 1
2

�
1
2

trS�1ww(f)df�
XN

i=1

1

�2vi

#!
:

(17)
Applying Result 2 to (16) yields

rLR �
1
2 log2 2�e(

R 1
2

�
1
2
ln det Sxcxc )

1=N�
1+

�2
Q1

24N ln 2

�R 1=2
�1=2trS

�1
xcxc(f)df�

PN
i=1

1
�2
y0
i

��
�log2�Q1

� rscal;L(z)(y) �0
BBBB@1 +

�2
Q1

24N ln 2

"Z 1=2

�1=2

tr S�1xcxc (f)df �
NX
i=1

1

�2
y0i

#
| {z }

Excess bit rate due to noise feedback

1
CCCCA

� log2�Q1| {z }
Bit rate reduction due to Q1

;

(18)
One can show from expression (18) that minimizing
this excess bit rate entails maximizing

P
i

1
�2
y0i

, which

in turns entails processing the signals in order of de-
creasing variance [8].
Now, the bitrate dedicated to the error signals, r =

1
N

XN

j=1
i2j , corresponds to the entropies of the r.v.s

ei, which are uniformly distributed over the interval

[�
�Q1
2 ;

�Q1
2 ], and whose entropies are consequently

H(ei) �

Z �Q1
2

�

�Q1
2

�
1

�Q1

log2
1

�Q1

dx = log2�Q1 :

(19)
Thus

r =
1

N

XN

j=1
i2j � log2�Q1 : (20)

4.2 Multiresolution approach
and space �lling loss

Since the DPCM-like loops used in the multiresolu-
tion approach exposed above use entropy constrained
uniform scalar quantizers (ECUQs), one may wonder
if a suboptimality does not arise. ECUQs are known
to be suboptmal in the rate-distortion sense, since for
a given distortion (irrespectively of the p.d.f of the
source), the rate of an ECUQ is 1

2 log2
�e
6 � 0:25

bits above the rate-distortion bound. So indeed (ne-
glecting the term corresponding to quantization noise
feedback in (18)), the rate rLR will be � 0:25 bits
more than that of an ideal "Shannon quantizer" for
a given distortion. In this ideal coder, the quanti-
zation error would be Gaussian instead of uniform,
which yields the factor 1

2 log 2
�e
6 . Concerning the er-

ror signal however, Figure (3) shows that we have to
code uniformly distributed r.v.s. In the ideal case of a
"Shannon quantizer", the rate dedicated to code the
error signal would then be � 0:25 bits more than r.
Thus, neglecting the quantization noise feedback in
(18), the birates rLR and r sums in any case up to
rscal;L(z)(y). As a conclusion, the price paid for us-
ing this multiresolution approach is the excess term in
(18), which causes a slight suboptimality coming from
quantization noise feedback, but not from space �lling
loss due to scalar quantizers. Similar considerations
can be found in the case of multiresolution lossless
transform coding in [10].

5 Mutistage Integer-to-Integer

Multichannel Prediction
Finally, the previous scheme may be generalized

to M stages, see Figure (4). Suppose we dispose of
partially- or uncompressed data fxg. In a �rst step,
the minimumbit rate required to losslessly code these
data is given by compressing the data with the "one
shot" lossless coder. The size in bits of the com-
pressed signal is then rscal;L(z)(y) (13). Suppose now
we wish to transmit the data x by means of M + 1
substreams corresponding to di�erent resolution lev-

els with imposed rates Ri (
XM+1

i=1
Ri � rscal;L(z)(y)).
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How should we choose the stepsizes �Qk of theM uni-
form quantizers ?
As seen in the previous section, the one-stage structure
of Figure (3) will, neglecting the term corresponding
to the noise feedback in (18), yield a �rst substream
with rate

r1 = rLR =
1

N

XN

k=1
i1k � rscal;L(z)(y)� log2�Q1 ;

(21)
and a complementary susbstream with rate r �
log2�Q1 . If now we use a second stage, the previous
error signal with rate r will be divided into two sub-

streams with rates r2 � log2
�Q1
�Q2

, and r2 � log2�Q2 .

(Note that for the stages i > 2, the prediction stuc-
ture becomes useless if the error signals are white (that
is, if the decorrelation performed in the stage is e�-
cient). Thus, a structure using M stages will yield
a �rst substream with rate r1 given by (21), M � 1
complementary substreams with rates

rj =
1

N

XN

k=1
ijk � log2

�Qj�1

�Qj

; j = 2; 3:::M; (22)

and a last substream with rate rM+1 � log2�QM .
It can easily be checked that the constraint r1 � R1

imposes �Q1 � 2rscal;L(z)(y)�R1 . Similarly, the con-
straints rk � Rk impose �Qk � �Qk�12

�Rk, for
k = 2; :::M . Thus the stepsizes �k of the M uni-
form quantizers should be determined by the simple
rule of thumb

�Qk = 2
rscal;L(z)(y)�

Xk

i=1
Ri
; k = 1; :::;M: (23)
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