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ABSTRACT

An efficient lossless coding procedure should take advantage
of the multichannel aspect of some data standards (such
as audio standards for example). In [1], the instantaneous
decorrelation of several quantized scalar signals is shown to
be efficiently realized by a lossless (integer-to-integer) imple-
mentation of the Karhunen-Loeve Transform (KLT, unitary
transform). The implementation of this integer-to-integer
transform involves a cascade of triangular matrices and trun-
cations. We present in this paper a lossless coding procedure
based on a recently introduced decorrelating scheme (Lower
Diagonal Upper factorization, LDU, causal transform). We
define the lossless coding gain for a transformation as the
number of bits which are saved by using the corresponding
lossless coding scheme. In a first step, we analyze and com-
pare the effects of the truncations on the coding gains for the
two transformations. In a second step, we analyze the effects
of estimation noise uppon the coding gains : in this case, the

transforms are based on an estimate @ of the covariance
matrix of the quantized signals Rzaza. We find that for sta-
tionary Gaussian i.i.d. signals, the coding gains are close to
their maxima after a few tens of decoded vectors. Moreover,
the LDU based approach is shown to yield the highest coding
gain. Theoretical assertions are confronted with simulations
results.

1 INTRODUCTION
1.1 Framework of this study

Lossless coding techniques allow to reduce the number of
bits required to exactly describe some data in aim of storage,
or transmission. An usefull application of a lossless coding
scheme is described in figure 1. The lossless coder is embed-
ded in the core of a lossy encoder, whose performance may
thereby be improved. In a first step, a very high resolution
vectorial source z is quantized using a lossy source codec,
represented by the box @ (@ may represent the discretiza-
tion realized by any lossy coder/decoder, e.g. independent
uniform scalar quantizers, independent ADPCM or MPEG
Audio Codecs...). The set of quantized values {z{} obtained
in the lossy coder is classically directly entropy coded using
independent entropy coders {v;}. However, since these coef-
ficients are independently entropy coded, it may be worth ap-
plying, after the quantization stage, a lossless transformation
T. T aims to reduce the intra- and inter-signal dependen-
cies, and hence, by further entropy coding the discrete trans-
formed signals y!, the total bitrate. Indeed, no additional
degradation of the signals should occur thereby. Integer-
to-integer implementations of optimal linear transforms in
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Figure 1: Transform based lossless coding scheme embedded
i a lossy codec.

the context of transform coding can reduce intersignal de-
pendencies, and may therefore be used in such a scheme.
Two of them are reviewed in this work, the optimal causal
transform (LDU) and the optimal unitary transform (KLT).
The set of operations {@,T,v,v~",T~'}, which represents
an ”enhanced” lossy codec, constitutes the framework of this
work. The field of audio coding appears as a natural space
of application for these techniques, which may however be
applied to the wide class of the vectorial sources. In the par-
ticular case of MPEG-4, MPEG members are now discussing
issues in considering lossless audio coding as an extention to

the MPEG-4 standard [2, 3].
1.2 Multichannel Audio

An important issue which should be taken into account in the
lossless audio coding procedure is the multichannel aspect of
recent audio technologies. Starting from the monophonic
and stereophonic technologies, new systems (mainly due to
the film industry and home entertainments systems) such as
quadraphonic, 5.1 and 10.2 channels are now available. An
efficient coding procedure aiming storage or transmission of
these signals should, as much as possible, take advantage of
the correlations between these signals.

Multichannel audio sources can be roughly classified into
three categories : signals used for broadcasting, where the
channels can be totally different from one to another (e.g.
different audio programs in each channel, or the same pro-
gram in different langages), films soundtracks (typically the
format of 5.1 channels) which present a high correlation
between certain channels, and finally multichannel audio



sources resulting from a recording of the same scene by mul-
tiple microphones (in this case, there is indeed a great ad-
vantage to be taken from the structure of the multichannel
audio signal) [4]. However, the correlations between the dif-
ferent channels are in most of the state of the art lossless
audio coders not taken into account at all, or in a basic way
only, by computing sums and differences.

1.3 Overview of this work

This work only considers transformations attempting to re-
duce instantaneous correlations between the scalar signals
z?. In the next section, we derive the expression of the ideal
lossless coding gain, that is, the maximum coding gain one
can expect by a transform making the transformed signal in-
dependent, though preserving the whole information about
the vectorial source z?. The third part compares the gains
obtained with two approaches for lossless coding based on
approximation of linear transforms, a unitary (KLT) and a
causal (LDU) transform. The fourth section is dedicated
to estimation noise and derives the coding gains of the two
approaches when the transformations are based on an esti-
mate of the covariance matrix. The fifth section exposes and
discusses several simulations results.

2 IDEAL CODING GAIN AND MUTUAL IN-
FORMATION

Consider the coding scheme of figure (1). As stated in intro-
duction, the sources z; are generally not independent, and
neither are indeed their quantized versions. Thus, in order
to avoid to code any redundancy, one may apply a trans-
form T' before entropy coding. The resulting discrete scalar
sources {y]} are further entropy coded. The transform T
is chosen to be invertible so that the decoder can losslessly
recover the data {z?}. The lossless coding gain obtained for
the transform T, expressed in bits, may then be defined as
N
Gr =) [H(z) - H(y!)], (1)

i
where H denotes (zeroth order) discrete entropy.

2.1 Ideal Lossless Coding Gain

The question of the maximum coding gain Gt now arises,
in other words: how many bits can we expect to save by
making the transformed signals independent ?

Since the coding scheme must be lossless, the amount of
information about the vectorial source z? conveyed to the
decoder must be at least H(z7). Now, ideally, the several
signals {y!} will be made independent by the transform,
that is, the coding scheme will take advantage from a non
redundant repartition of the whole information H(z?). In
this case, since an invertible transform does not change en-
tropy, the bit rate required to independently code the y{ is
Zf\;l H(y!) = H(y?) = H(z?), which is also the minimum
bit rate required to losslessly code the vectorial source z9.
Now, the relation of differential to discrete entropy of the
uniformly quantized sources with stepsize A; is [5]

H(z}) +logaAi — h(zi) as Ay — 0. (2)
For the N-vectorial source z, a similar relation holds (see [1],

and [6] for a proof)

N
H(z%) + > logaAi — h(z) as Ai —+0,i=1,..,N. (3)

=1

For Gaussian random variables (r.v.s) x;, the differential en-

tropy h(z;) equals %log2 Zﬂeail. It can then easily be shown

that for sufficiently small quantization stepsizes A;, we ob-
tain
1 2me) ™ det Rys
H(z") ~ Llog, (2me) _det Ryy
[Tz, A

where Ry = E zaT. The maximum coding gain is then

, (4)

Gmar = Zfil H(CL‘?) - H(ﬁq)
YLy h(zi) = h(z) (3)

_ 1 detdiag{Rgz}
= 3log, det Rga

where diag{.} denotes the diagonal matrix made with the
diagonal elements of {.}.

It is now shown that G4 is ideal because it corresponds in
the Gaussian case to the gain obtained with a linear decor-
relating transform placed before the quantizers. By writing
det Ryy = [TiL, oy = [1X, Ai, where {o2.} and {\i} are re-
spectively the optimal prediction error variance of z; based
on z,.,_,, and the ecigenvalues of Rz, we can write equation
(4) as

H(z?)

>N Llog, 2mea’, — log, A; (6)

>N log, 2meX; — log, A;.

Q

Equation (6) shows that the entropy of the vector z? may be
written as the sum of the entropies of N independent r.v.s
of variances {02 } (or {A\i}), quantized with quantization
stepsizes A;. The required bitrate for independently coding
these quantized variables is H(z?) : if we apply first a KLT
or an LDU to the unquantized source z, and then quantize
the tranformed signals with stepsizes A; , then the mini-
mum bit rate required to entropy code these transformed
signals is given by (6). Hence, the gain (5) would be ob-
tained by a classical transform coding scheme by inverting
the transformation and quantization operations. As will be
illustrated in the next section however, the performance of
realizable lossless coding schemes based on approximations
of linear transforms must be expected to be lower than the
expression (5): indeed, since the transform is placed after the
quantizers and just before scalar entropy coders, its output
should be discrete valued, which is not the case for optimal
linear decorrelating transforms. Thus, truncations are nec-
essary which increase the entropy of the transform signals :
>, H(y}) is generally greater than H(z?).

2.2 Lossless Coding Gain and Mutual Information

We now show that the ideal lossless coding gain (5) can be
related to the mutual information between quantized r.v.s
{z!} always under Gaussian assumption.

Suppose we dispose of a set of 1 — 1 quantized scalar sources
x?, j = 1...i—1, and that we wish to code an i —th source z{,
which is not independent from the ¢ — 1 others. Intuitively,
the best strategy would be to code the only information con-
tained in the 1 — th r.v. which is not shared with the : — 1
previous variables. The mutual information I(zf;z{, ;) al-
lows one to quantize this idea : it represents the amount of
information that the r.v. z{ shares with the 1 — 1 others
(vector z{.,_,), and is defined by
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By writing and summing the expressions of the mutual in-
formation between zf and z¥,,_, for 1 = 2, ..., N, we obtain

Yl et ) = X H(zf) - H(z?)
= Tl h(z) ~ h(z) (8)

- Gma$~

Thus, the maximum bitrate that can be saved using a loss-
less coding scheme corresponds to the sum of the mutual
information shared between each new random variable and
the previous ones.’

3 INTEGER-TO-INTEGER TRANSFORMS

Suppose as in Figure (1) that we dispose of N quantized
scalar signals z. Fach one of this source is a quan-
tized version of z; to the nearest multiple of A; (de—
noted by []a;), and takes values in the set AZ : zf, =
59 008 028 dT = [loradan, (58 a0, o 5 o

An integer-to-integer transform T: A1Z X AsZ... X AnZ —
Alz X NoZi... X ANZ associates to each quantized N —vector

i k an N —vector y =Tgz? ke The transformation is chosen

to be invertible so that the decoder can losslessly compute
the original data by z¢ =T Since the aim of the

transform 7' is to make the transform signals independent,
the problem of its design is very similar to that of designing
the best transformation in a transform coding framework.
The transform T' can be chosen to approximate linear decor-
relating transforms such as the LDU or the KL T, which are
optimal for Gaussian signals in the classical transform coding
case [7, 8]. However, since the transform must be integer-
to-integer, T is only an approximation of the chosen linear
decorrelating transform. Although both integer-to-integer
implementations tend to the maximum gain of expression
(5) for quantization stepsizes arbitrarily small, a quantifi-
able loss in performance occurs in practical coding situations
whose effects are analyzed in the following.

3.1 Integer-to-Integer implementation of the LDU
8.1.1 LDU Transform Coding

Consider a stationary Gaussian vectorial source {z}. This
source may be composed of any scalar sources {z;}. In the
classical transform coding framework, a linear transforma-
tion 7' is applied to each N-vector z, to produce an N-vector
Y, = T'w, whose components are independently quantized
using scalar quantizers @;. A number of bits r; is attributed
to each @; under the constraint Ez r; = Nr. In the case
of the LDU transform, the transform vector Y, is chosen to
be Y, = Iy — z, = Lz, = z, — ka, where f@k is the
reference vector. The output zj is y + ka This scheme
appears as a generalization to the Vectorlal case of the clas-
sical scalar DPCM coding scheme. As detailed in [8, 7], the
optimal L in terms of transform coding gain is such that
LRy LT = diag{o},,...00,}, where diag{ .} represents a
diagonal matrix whose elements are a . In other words, the
components y; ; are the prediction errors of z; 1 with respect
to the past values of z,, the z,;,_, ,, and the optimal coeffi-
cients —L; 1.;—1 are the optimal prédiction coeflicients. Since
each prediction error y; x is orthogonal to the subspaces gen-
erated by the z, ;_, ,, the yi » are orthogonal. It follows that

Rys = L7'R,, L™, which represents the LDU factorization
of Rys. o

!Note also from (8) that high resolution quantizing does not
change mutual information, which comes from the whiteness and
independence of the quantization noises.

8.1.2 Integer-to-Integer Implementation of the LDU

In a first step, the linear transform L? = I — L9 is optimized
to decorrelate the quantized data z!. Thus, we look for

. T
min L¥(Ryaza) L%, (9)

Litio

which leads to the normal equations

q
iie1 0
Riqiql:i,l:i : — .
= )
q
i, 0
1 Ty

where o2, is the optimal prediction error variance corre-
sponding to the optimal (continuous valued) prediction er-
ror yfyk = x?yk — L?,l:i—lﬁ(lz:i—l L= ?k — ;\ The optimal
transform vector is then y' =z] - Lag?, and the optimal
transform L corresponds_in this case to the LDU factoriza-
tion of the covariance matrix of quantized data Rzagq

Ryage = LY 'Ry LO77. (10)

The second step is now to design an integer-to-integer ap-
proximation LY , of L? which allows one to keep the trans-
form structure lossless This can easily be realized by round-

ing each estimate z? g of z? - BEach transform coefficient is
computed by

—

y?,k = x?,k —[zf)a; =2, — [L?,lzz‘—lﬁ(lz:i—l,k]mv (11)

’ ’

see Figure(2). Let us denote by LY, i = 2,..., N, the matrix

Figure 2: Lossless implementation of the LDU transform.

whose non zeros off diagonal elements correspond to the :—th



optimal predictor

1

0o . 0

L¥%=] - L =

g q.
2,1 2,0—1

0 .. e 00 1
(12)
Then a lossless implementation L{f, of L% is obtained by

=L{ 21 = I-[L9%g}]a,. The inverse operation is simply

-1 J—
zl = L%, y? = I +[L9z{]a,. Now, the global transform
vector gk can then be computed using a cascade of N — 1
elementary transforms (see figure (2))

A 13
= LZan L, LI, =
= LGt‘rk
At the decoder, the inversion is realized by
q q ! ot vy 2!
Ly = Lint Qk L1nt LGt Ltnt yk (14)

In order to analyze the effects of the truncations (quantiza-
tion [.]a, of the {z{,}) on the coding gain, let us compute

the entropy of the variables y{. Since the source z{ is dis-
crete, we have

y?,k = ‘r?,k - [x?,k]A
i
= |29, — 29 (15)
xz,k xz,k A
i
= [yll}k]Al

Thus, the entropy H(y!) may be written as

H(y{) = h(y;) —log, A, (16)
which assumes a quantization noise uniformly distributed
over [—%, %[ (small quantization stepsizes). The contin-

uous 1.v.s {y;} are not strictly Gaussian since each y; is a
linear combination of : Gaussian r.v.s and ¢—1 uniform r.v.s.
However, since the probability density function of a sum of
uniform r.v.s tends quickly to a Gaussian p.d.f, we assume
that this is the case, and

2, —log, A;. (17)

1

H(y?) ~ 3 log, 2mea,

Note that in the integer-to-integer implementation of the

LDU, the first scalar signal remains unchanged, and only

N — 1 rounding operations are involved in the lossless trans-

formation. The bit rate required to entropy code the discrete

r.v.s {y?} is then

sz'\;l H(yf) =~ log2(2ﬂ'e)axl log, Ay

—|— Et=2 7 log, (2me)N— 1ay, —log, A;.

(18)

The lossless coding gain for the integer-to-integer LDU may
then be written as

Gra =~ YN, H(gﬂ) — H(y%)
i= 2"%

= 1 5 logy =5 o
1 1 det dtag{lRH}
5 1087 o2 ., o2,
1

i

(19)

0
5
¢

where subscript L? , refers to the integer-to-integer imple-
mentation of L?. The last equality shows that G« , is

indeed inferior to Gmas of (5) since the denominator in-
volves the optimal prediction error variances obtained from
Riaze = Ryp+D (where D is the diagonal of the variances of
the quantization noises whose i-th entry is D(i,1) = A} /12)
instead of those of Rgsz.

2

. . . N
Moreover, since L? diagonalizes Rgage, we have []:_, oy =
;

detRgzagzq, where 0211 = criq. Thus the coding gain G« , may
1 in

alternatively be approximated as

det diag{Rgx }
2 _ A7 Y. o2
C’Ig_ 12 i=2 71
i
1 det diag{Rgz} 1 Af
2 logy, —g Roqq + 5 log, (1 + 1252, )

‘1

G =~ %log2 (

1] det diag{Rgz} A2
2 082 det R q,q + 24 In 20’%1

G La

int

Q

(20)
This last expression shows that we should position the most
coarsely quantized signal (

order to maximize G q¢ Moreover one can check in the
two previous expressioflns that GLfm indeed tends to Guaz
as A; — 0, 1 = 1,..., N, which means that the transform is
optimal in terms of lossless coding gains in the case of neg-
ligible rounding effects.

We should here underline the similarity between the integer-
to-integer implementation of the LDU and the lossless ma-
trixing described in [9], in which however the diagonalizing
aspect of the transform (and thus its optimality for Gaus-
sian signals in the case of negligible perturbation effects) was
not established. Moreover, the pertubation effects due to
truncations and estimation noise are not, to our knowledge,
analyzed in their published related work.

3.2 Integer-to-Integer implementation of the KLT

Concerning the KLT (unitary case), the integer-to-integer
approximation is based on the factorization of a unimodular
matrix cascaded with rounding operations ensuring the in-
versibility of the global transform. In [1], this transform was
shown to be equivalent to the original KLT for arbitrarily
small A;. The loss in the bitrate saving which is due to the
rounding operations occuring in actual coding situations was
however neglected in [1], and is analyzed here for N = 2.
Let us denote by V¢ the KLT computed on Rzaza. We then
have

A =VIRyaza VL. (21)

We denote by A! the variances of the (continuous) transform
signals.

We now briefly recall the construction of the integer-to-
integer transform based on V9. As any unimodular trans-
form, V¢ can be factored into at most three lower- and upper-
triangular matrices with unit diagonal as



q:

Zk

a

Ve— ] = VAVAVE

1 et 1 0 1 4=l
q __ c q __ q __ c
v=lo T o=t V] oe=lo T

(22)

The transform vector Y, is then losslessly obtained by using

the integer-to-integer transform V7,

Vi | Viiag NS

L <, 4 A,

L vy da,
Since the matrices are triangular, their inverses are simply
computed by changing the signs of the off-diagonal elements.
In the N = 2 case, one can analyze the effects of the trunca-
tions at each step of the cascade (23). Denoting by 4;; the
error due to truncation of the ¢ — th component of the vector
y , it can easily be shown that the final (discrete valued)

transform vector yq is obtained by

q

yl,kZ[l“l q+51,1+a21(6$(11+051,1 +d$g+52,2)]A
Yo, = [cx‘f +cdiy +dzd],

(24)
Assuming small quantization stepsizes (i.e. the indepen-
dence of the quantization noises 6; ;, and the Gaussianity of
the transformed signals), the discrete entropy of each trans-
formed random variable may be approximated as

a A2 (a —1)* A%

H(y?) ~ % log, 2me(A + —— . B 1) —log, A:

"
Ay :>\’1+el

A2
1 ) —log, A

2

H(yd) ~ %log2 271'6()\; + ¢

AL =ALtes
(25)
Thus, y? may be seen as a continuous r.v. of variance )\:I =
A+ e;, quantized with stepsize A;. The terms e; are the
increase in the variance of the transform signals due to the
truncations. The corresponding expression for the lossless
coding gain in the N = 2 case is then

Yo H(z?) — H(y))
l_[z 1 ‘72 (26)
l_[ // 3

Gya

int

~ i 5 log,
where subscript V.7, refers to the integer-to-integer imple-
mentation of V4. Comparing with the gain obtained for the
lossless implementation of the LDU (19) we have Gva int <
Gra int (this follows from the following series of inequali-

ties [15, A > I, M =11, crzz > ai1a§;)~ Thus the
gain for the integer-to-integer KLT is clearly inferior to that
of the integer-to-integer LDU for the N = 2 case. Indeed,
only one triangular transform/truncation is involved in the
LDU case whereas three triangular transforms/truncations
are generally necessary to losslessly implement the KLT. In

the general N-case, the triangular structure of the prediction

matrix allows one to implement the lossless causal transform
using N — 1 truncations (see (13)), which is most probably
less than the number required in the unitary case, where the
transform matrix has not a triangular structure.

Expression (26) holds for N = 2, since the perturbation
terms e; in (25) have been analytically derived in this case
only. However, the truncation effects can be similarly ana-
lyzed for a general N, and the expression (26) would hold
more generally by plugging in the corresponding e;.

Note also that, as expected, leqm tends to Ginaz as A; tends
to0,2=1,...,N.

4 EFFECTS OF THE ESTIMATION NOISE ON
THE LOSSLESS CODING GAINS

We analyze in this section the coding gains of an adaptive
lossless coding scheme based on an estimate of the covari-

ance matrix Rgaze = Rzaga + AR = % Zf\ 1 gfqu, where
K is the number of previously decoded vectors available at
the decoder. We suppose independent identically distributed
Gaussian real vectors z{, which is for example the case if the
sampling period of the scalar signals is high in comparison
with their typical correlation time. (Again, the r.v.s are
not strictly Gaussian because of the contribution of the uni-
form quantization noise. This contribution is however small
for a high resolution quantization). Thus, the first and sec-
ond order statistics of AR are known [10] : (AR);; is, for
suficiently high K, a zero mean Gaussian random variable
with covariance matrix such that Evec(AR) (vec(AR))T =
%qugq ® Rgage, where ® denotes the Kronecker product.
For each realization of AR, the coder computes in a first

step the linear transformation Ta ( Ta = Le or \//\‘1) which
diagonalizes @ : ﬁ@ﬂT = 5., Then, by using the
previously exposed factorizations, the coder er_computes the
corresponding integer-to-integer transform Tmt
In order to derive the coding gains for the two approaches
in presence of estimation noise, we need the following result
[11].

Result Suppose that the transformation Ta ( Te = L

z Without estimation noise, the variance of
the transform signals obtained by applying the transform 7'
to the quantized signals would be (T'YRzagzaT? )“ = (D).
(For the LDU, (X)ii = Ry, and (X)i; = A’ for the
KLT, as in equations (10) and (21)).

variances of the signals obtained by applying T4 to z? are

Now, the actual

E(T4RyagaTd" )ii = (X + AX)ii. Then for T4 = L1, V3, it
can be shown [11] that for sufficiently high K

(AX)i  N(N—1) _

b Z O = R (27)

where F denotes the expectation. We can now derive the
gains obtained when the transformations are based on an
estimate of the covariance matrix by means of K vectors.

4.1 Coding Gain for the integer-to-integer LDU

One has to compute the difference

EZH

where only the entropies { H (yZ , )} of the discrete variables

GA

znt

H(yi, K), (28)

y obtained by applyin to z?, depend on K. Since
b d b lying LZ 7, d d K. Si



the variance of the first variable y{ is not affected by the
transformation, we have

E H(yl, K) = H(el) = logz(zﬂe)%l log, A1, (29)
Concerning the N —1 remammg r.v.s {y]}, they may be seen

as r.v.s obtained by applying L1 to 29, and then by quan-
tizing the resulting continuous valued r.v.s with stepsize A;.

Thus, by denoting (L4RgazaL9)ii = (Ryy)is + A(Ryy)is,
we have T T

EHyl,K)= FE —log2(27re) Lquqqu )ii —log, A
R N /
%log2 ((2#6(R£/£/)¢,; <1 + >) log2
A
(Ryiyn)ii

(R

R 5 log, 2me(Ry1y1)ii —log, Ai + 575 B /yz)” ‘
o (30)
Thus, we have
EZfV 1 H( ) ~ 1 ]0g2(2ﬂ'6) Oz — log, Ay
A(Ry1 )4

+¥il, 210g2(2”6)N ‘o » —logy Ay +3i, szl Ry

Yyt )i
(31)
Comparing with the bit rate required to code the y! when
the transformation is not perturbed (18), the last term corre-
sponds to an excess bit rate due to estimation noise. Using

the result (27), and the fact that £ A(R,:,)11 = 0, this

term may be written as T

S 1 Ay S TNILED
21n2 ( )“ 21n 2 Ry, 42K

1=2 =1 £ 4

(32)
Finally, the lossless coding gain for an integer-to-integer im-
plementation of the LDU when the transform is based on K
observed vectors may be approximated as

G (K) = B YL H(l) - H(y! K)
i ~ « _ N(N-1) (33)
~ L 4In 2K *

int

for high K and under high resolution assumption.

4.2 Lossless Coding Gain for the integer-to-integer
KLT

In this case, one has to compute the difference

Gy (K) = “HLK),  (39)

where only the entropies H(y{, K) of the discrete variables
yl, obtained by applying V.1, to z?, depend on K.

Leading a similar analysis as in previous subsection (see [6]
for details), the lossless coding gain with estimation noise for
the integer-to-integer KLT may be approximated as

- detdiag{ R, N(N-—1
G (K) ~ Llog detdiag{Rga} _ N e N(N-1)
qum g2 det Ryqzq 21n2 i=1 Af 41ln 2K
~ Goe — YWD
~ V, 4n2K

" (35)
under high resolution assumption and for sufficiently high
K. As in section 3.2, this expression holds for N = 2 (in
which case we have derived analytically the gain GV:JM)7 but

would hold more generally with the corresponding Gy, « .

5 SIMULATIONS

5.1 Lossless Coding Gains without estimation
noise

5.1.1 Results for N = 2.

In order to check the accuracy of the theoretical results, we
generated real Gaussian vectors with covariance matrix Rgg
(covariance matrix of a first order autoregressive process
with normalized crosscorrelation coefficient p). These vec-
tors were quantized using the same normalized quantization

stepsize GA—I. This experiment was made for several values of
GA, and the optimal decorrelating transformations LY and
V¢ were computed using the corresponding covariance ma-
trix Rgzaga. The integer-to-integer transforms L{ , and V/?,,

based on the transforms L? and V¢ were then implemented
and used to compute the transformed data yq We realized

this experience ten times for each = and averaged the dif-

ferent obtained gains. These galns are plotted in figure (3)

versus UA . The theoretic maximum coding gain is related
=

LDU and KLT Lossless coding gain vs Delta/Sigma for AR1 — N0=10" - 10 real
1.4 T T T T T T T
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Figure 3: Lossless coding gains for the integer-to-integer im-
plementations of the LDU and KLT vs quantization stepsize.
N=2,p=0.9.

to the mutual information between the unquantized variables
as defined in (8). The theoretic gains for LDU and KLT are
then given by (19) and (26) respectively. The observed loss-
less coding gains were then computed in two different ways.
The first one is to measure the actual variances of the trans-
formed signals, (averaged estimates) and computing the cor-
responding gain by (19) and (26) These gains are referred to
by ”?Observed Gain {K LT, LDU} Var.” in figure (3). The
second way is obviously to design Huffman codes for the
quantized signals {z!}, and then Huffman codes for the sig-
nals {y/} [12]. Since the average length of the codewords
will be close to the entropy of each scalar source, the differ-
ence of the average codelengths gives a precise insight of how
many bits are saved by using an integer-to-integer transform.
These gains are referred to by ”Observed Gain { K LT, LDU}
Huffman” in figure (3).

It first can be seen that for high resolution (small values
of %), the predicted gains correspond well to the observed
ones. The rounding effects due to the lossless implementa-
tion of the transforms can indeed be seen to increase as the
quantization gets coarser. The observed coding gains based
on the estimates of the variances of the transformed signals
correspond well to the predicted ones for a wide range of
coding situations (up to ﬁ ~ 1). When the quantization



becomes even coarser, the quantization noises are not inde-
pendent anymore, and the mutual information between the
quantized variables {z!} is superior to the theoretical one.
(Simulations [6] indicate that the assumption of indepen-
dence of the quantization noises is reasonable up to % = 1).
When these dependencies become not negligible, the trans-
forms take more advantage of the information shared by the
quantized variables, and the gains are slightly superior to
the predicted ones.

Figure (3) shows also that the gains based on a Huffman
coding of the losslessly transformed signals are slightly lower
than those given by the theory, and than the gains based
on variance estimates. This may be explained as follows.
We supposed theoretically that the relation of differential to
discrete entropy is given by (2), which is a high resolution
approximation. [6] shows that the actual entropy is greater
than the theoretical one, and that this mismatch grows with
%. Now, our theory predicts the same relationship between
discrete and differential entropies for the variables ¢ and y.
The latter, however, may be seen (see Section 3) as the op-
timal prediction y; of 4 quantized with stepsize A,. Thus,
relatively to its own standard deviation, y5 is more coarsely
quantized than z2, and the actual entropy of the quantized
r.v. yi is greater than the predicted one. This mismatch is
greater than the mismatch between predicted and observed
entropies for zf. A similar analysis can be made for the
transform signals obtained with a lossless implementation of
the KLT (where the mismatch is even greater since the low-
est variance is generally lower than 0512). As a conclusion,

Percentage of the total bit rate saved by the transform
20 T T

12

10+ —— Theoretic saving : LDU
— - Observed Saving (var.) : LDU
O Observed Saving (Huf.) : LDU

—— Theoretic saving : KLT
sl — - Observed Saving (var.) : KLT
A Observed Saving (Huf.) : KLT

6 I I
o] 0.5 1 1.5
Delta/Sigma

Figure 4: Percentage of the total bit rate saved by using
integer-to-integer transform. N =2 p =0.9

the curves obtained for N = 2 correspond well to the pre-
dicted results for a high resolution quantization. Figure (4)
illustrates the percentage of the total bit rate which can be
saved in this case (N = 2) by using these integer-to-integer
transforms. It shows that a non negligible part of the bit
rate (until &~ 15 — 17% in this case) can be saved. Finally,
the lossless implementation of the LDU yields higher coding
gains than that of the KLT.

5.1.2 Position of the first signal

Figure (5) illustrates the codings gains obtained for the
integer-to-integer LDU applied to two scalar sources of unit
variance, versus their crosscorrelation coefficient p. In the
first case, denoted by 71”7 in the legend, the first signal z; is

Gains [bits]

Lossless Coding gains for LDU with different normalized stepsizes
T

1.2 T T T

—— Theoretic Maximum Gain /
—— Theoretic Gain LDU : 1 /
1 © - Observed Gain LDU Var. : 1 / k-
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Observed Gain LDU Var. : 2
o8l Observed Gain LDU Huffman : 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rho

Figure 5: Importance of the position of the first signal.

quantized with stepsize A; = 0.1 and the second signal zs
with stepsize A1 = 1. In the second case, denoted by ”2”
in the legend, the stepsizes are 1 for z; and 0.1 for z3. The
curves show as expected that the most coarsely quantized
signal (case 2) must be placed in first position in order to
maximize the lossless coding gain.

5.1.8 Results for N > 2.

The coding gains obtained for the integer-to-integer LDU
with N = 5,A = 0.51 are presented in figure (6). In this

LDU lossless Coding Gain vs rho — N=5
5 T T T T T

—— Theoretic Maximum Gain
a5k O Theoretic Gain LDU 54
: + Observed Gain : Variances &R

A Observed Gain : Huffman

Gain [bits]
N
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0.5 R - -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rho

Figure 6: Lossless Coding Gain for integer-to-integer LDU
with N =5. A =0.51.

case, the data are real Gaussian i.i.d. vectors with covari-
ance matrix R = HRy, HT. H is a diagonal matrix whose
ith entry is (1)*/° (the coarseness of the quantization de-
creases as 1 increases). It can be seen that the predicted
gains match well the observed ones. In particular, the previ-
ously exposed mismatch between the predicted gains and the
observed gains based on Huffman coding concerns only the
few first y! because the stepsize A becomes, as i grows, rela-
tively smaller comparatively to the standard deviation of the
prediction error y;. Thus, this mismatch becomes negligible
relatively to the total gain.



5.2

Coding Gains with estimation noise

In a first experiment (figure (7)), the data were generated

as in section 5.1.1 (N = 2,

Graz refers to the mutual information given by (8).

o'Al. = 0.51). The coding gain
The

theoretic gains for LDU and KLT are given by (33) and (35)
respectively (gains referred to as ”G(K) Transform Asymp-

totic”).
section, whether based on the estimates of the variances of

The observed coding gains are, as in the previous

the transform signals (gains referred to as ”G(K) observed
variances” ), whether based on the actual gain computed by
Huffman coding. In this case, a Huffman code is designed
for the signals obtained with integer-to-integer transforms
based on an estimate of the covariance matrix of quantized

data @ with K vectors. The theoretic curves correspond

1.2

0.8
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Figure 7: Coding Gains with estimation noise versus K for

N=2,

A
Oz,

= 0.51.

well to the observed ones for the observed gains based on
variances estimates for K = a few tens. The slight mismatch
between Huffman based and variance based observed gains
is due to the overestimation explained in the previous sub-
section. Huffman based and variance based observed gains
reach 90% of their maximal value for X = 10 decoded vec-
tors. That is, basing our conclusions on averaged codewords
lengths obtained with a Huffman code, 90% of 16% of the
total bit rate can be saved for entropy coding each 2-vector
as soon as K =~ 10 in the case of the integer-to-integer LDU.
In the case of the integer-to-integer KLT, 90% of 15% of the
total bit rate can be saved for a comparable estimation noise.
Figure (8) plots the lossless coding gain with estimation noise
versus K for the same type of data as in the previous sub-

section (5.1.3: N =
observed gains correspond well for K =

5, A = 0.51, p = 0.9). Theoretic and
a few tens.
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