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ABSTRACT Although classical transform coding theory may appear as rather

The main advantage of backward over forward adaptive coding °ld and routine, the problem of backward adaptation in transform
schemes is to update the coding parameters with the data avail€0ding has, to our knowledge, received few attention until recently.
able at the decoder, avoiding thereby any excess bit rate. In thisindeed, the interdependence of quantization and estimation noise
work, the performances of two practical backward adaptive trans- ON the several estimates makes the analysis of the recursive back-
form coding schemes are analyzed in terms of rate and distortionard adaptation somehow delicate. Some convergence results have
for two transforms: the KLT (Karhunen-leve transform) and the ~ nowever been proven in the unitary case [1]. A theoretic compar-
LDU (based on a Lower-Diagonal-Upper factorization of the co- iSOn between causal and unitary approaches was lead in 3, 4],
variance matrixR of the data) transform. For both algorithms, we Which did however not describe how practical backward adaptive
model the expected distortion w.r.t. the number of vectors avail- transform algorithms would perform. This is the aim of this work,
able at the decoder. Our analysis shows that for an algorithm usingVhere we lead an analysis based on small perturbations.
Sheppard’s correction on the second order moment estimates, théectlonz reviews an_d formalizes some results from the |_deal cod-
distortion should converge to the target distortion. Without this iNg schemes. Sectioh states how both the transformations and
correction, the effects of backward adaptation are shown to movethe quantization stepsize are perturbed, and the two adaptive algo-
the actual r(D) point of the system from the target point by the rithms are presented. S_ectlarderlves the dlst_ortlon analysis for
same term for both transforms. Simulations results confirming the the two proposed algorithms and sectiononsiders the problem
theoretic analysis are then presented. of the rates. The last section presents some simulations results.

2. TRANSFORM CODING

1. INTRODUCTION 2.1. Framework _ _ _
For non- or locally- stationary data, the efficiency of transform Consider a stationary Gaussian vectorial sogreg. This source
coding relies on the updating of the coding parameters accordingMay be composed of any scalar sour¢es}. In the classical
to the source statistics changes. These updates aim to keep the peffansform coding framework, a linear transformatibns applied
formance of the structure close to a predetermined rate-distortiont® €ach N-vectorX. to produce an N-vector). = T'X; whose
trade-off. Classically, they are sent as side information to the de- COmponents are independently quantized using scalar quantizers
coder, though this excess bit rate could be saved by using closed&i- A number of bitsr; is attributed to eacky); under the con-
loop, or backward adaptive algorithms. straint}_; r; = Nr. For an entropy constrained scalar quantizer
We propose to model the effects of the backward adaptation for of @ Gaussian sourag, the high resolution distortion &(y; . —
two simple algorithms and for two different transforms, the uni- i x)*> = crfh = c2‘2”a§l, wherec = %=. At the decoder, the
tary KLT and the causal LDU transform [5, 6], which are known quantized vectors are computed by recovering the quantized value
to be optimal for Gaussian signals in the ideal case (witeig Y9 from the received codeword, and applyiNg = 7~ Y¢.
constant and known from the coder and the decoder).A transformAn important property of commonly used transformations is that
coding scheme is in the ideal case designed to reach a target poinE||X||f’T) = E||Y||%T) =D, Where||X||2T) denotes the variance
of the rate-distortion functio®(r). Some value of the distortion  of the quantization error o', obtained éor a transformatidfi.
D will for example be chosen to be acceptable for the purpose of
some application, resulting in an average bit ratgedicated to - . : . ) .
represent the quantized signals. Assuming now that we use som%}levcézttz?gl Z:t ﬁ;fg;‘@?ﬁ%ﬁ'ﬁs_‘hi "g}i kr;%‘””_d}jtcoz”_'g’? for
backward adapted algorithm, an interesting question is to know if N 1/3 ” PN il T T
the corresponding distortion will converge or not to the target dis- * (Hizl 0y,)' """ = Nog. Thus, the noise;, should be indepen-
tortion, and if yes, how fast. Also, one may desire to control the dentof:. The number of bits assigned to thé componentis then

2.2. Quantization Stepsize and Optimal Bit Assignment

rate which will then actually be required to represent the resulting -+ log,o2 AT] /L, 2% Under high resolution assumption, the
quantized signals. quantization noise resulting from quantization with stepgizés
a uniformly distributed (ovef—%, %[) random variable (r.v.),
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(correponding to the average lengths of the codewords represent-

ing the transformed signals) is given by the zérorder discrete
entropyH of these signals. For Gaussian signals= H(y}) ~
L log, 2meoy,, —log, A. It can then easily be checked that choos-
ing A = \/ZﬂeZ_T(Hfil ail)ﬁ = /2me2™" det(TRTT)ﬁ
ensures; = H(y!) = r Vi. Both approaches are equivalent as
long as the rate dedicated to each componentis at lebistper
sample [1]. The corresponding distortion is then
A2
D = — =

T\ &
- (TRTT)™.

E2_2T det

: W

2.3. Optimal Transforms
In the causal cas¢; = LX = X — LX¢, whereL X is the
reference vector. The outpf? is Y9 + X1, Note that the
reconstruction erroX equals the quantization errdr:
X=X_X1=X-IX7-Yi=Y-Yi=V, (2

as in ADPCM. If we neglect the fact that (2) uses quantized data,
one shows [6, 5] that the optimal (unimodulérjn terms of cod-
ing gainis suchthat RL" = diag{s} ,...05 }, wherediag{...}
represents a diagonal matrix whose elementssgre In other
words, the components are the prediction errors af; with re-
spect to the past values of, the X,.;_,, and the optimal co-
efficients—L; 1.;_1 are the optimal prediction coefficients. The
distortion is then

Do 16972 det(LRLT) ¥ = 22272 det(VRVT)
T2 det AN = Z2272" det(R) ¥,

@)

wherel” denotes a KLT of, andA its eigenvalue matrix.

If we take now into account the fact that (2) uses quantized data,

the actual prediction error variancei are greater than the op-
timal oness? [6] due to a quantization noise feedback similar as
that occuring in ADPCM, and are given by is the variance of
the quantization noise)

)) : 4

3. BACKWARD ADAPTIVE ALGORITHMS
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As can be seen from (L) and (3), the design of a transform coding +7 > _ ARE”‘FZ AR > AR
scheme indeed results, as every source coding problem, from a rate

distortion trade-off. The higher the bitrate dedicated to the trans-
form signals, the less the resulting distortion. Sifitéepends on

R, as well asA (for a given target rate, A is related taR by (1)),
changes in the statistics of the source require to upfaad A

N Ny K
B (30 XXy X S bt

Algorithm [1]:
e Step 1: The decoder disposes then of a first estimate of the co-
variance matrixky = - S X, X7

e Step 2. A transforniy is computed such théf\NﬁNfﬁ is
diagonal, wher@y is either a KLT, either an LDU factorization of
Ry, and astepsizAll! is computed by/2me2"det (TR T H)7F.
e Step 3: These parameters are used to transform and quantize the
(N + 1)th vector byY? [\A/NXNH]A%] in the unitary case, or

Y9=[Xy41 — qu]A%] in the causal case, wheféa denotes
uniform quantization with stepsiz&. The expected distortion for
the (N + 1)th vector is theD! (N + 1) = AL /12,

e Step 4: Back to Step 1: the decoder disposes then of an es-
timate of the covariance matrikx 11 = A (7L, XX/ +

X%, X% ), from which Ty, and Ay, can be computed,
used to code théN + 2)th vector, and so on.

Algorithm [2]:

A simple improvement to the previous algorithm can be made by
using the following result. Suppose that th& i} are quantized
without transformation using the same (constant) ste@siZzehen

it can be shown [1] that )

EXLXT =RI=R+ %1 +C, (5)
where | denotes the Identity matrix add — 0 elementwise as

A — 0. In the previous algorithm now, if the stepsize converges
to some small stepsiz& ., (T'), one may expect that the estimate

2
of the covariance matrix converges to sofe- A";’;T) I. Thus,
a better estimate aR can be computed after a certain amount of

vectors, sayV, by substracting‘%] to the current estimate @t.
This correction on the estimate of the second order moment of the
data by their quantized version is usually referred to as Sheppard’s
correction [2]. Except from this difference concernifigthe steps
of Algorithm [2] are the same as in Algorithm [1].
The estimate of the covariance matrix for the second algorithm can
now be expressed as
~ 2
A

12

i=1 i=N4+1
Ny

K
LINR+ > (R+DU N+ Y (R+ DY)
1=N+1 1=Np+1

i=Ny+1

1)

i=1 i=N+1 i=Ny+1

(6)

whereD (1) denotes the distortion obtained for tith vector, and
where we used the following notation:

if one want the system to perform close to a chosen target point of - superscript’! refers to algorithm [j],

the r(D) function. We now propose two algorithms updatifig
andA with the data available at the decoder only.

- superscripf refers to quantization,
- superscript®) refers to estimation noise occuring by estimating

Suppose that the coder deals with locally stationary data. We as-a covariance matrig by the estimate&l X7 = R)) = R+ AR,
sume zero mean independent identically distributed (i.i.d.) Gaus-- subscriptx refers to the total number of vectors available at the

sian vectors (which is for example the case if the sampling period
is high in comparison with their typical correlation time), and that
the first/V vectors are very accurately quantized and sent (without
transformation) to the decoder.

decoder (except indeed frof;, which denotes théh vector).

The corresponding estimate for the first algoritﬁ%\] can also be
computed from (6), where in this case the underlined terms vanish.

A L2012
By wiiting ~£=t = DPI(K) + 6DP)(K), the estimate (6) can



also be written a:ﬁ[]f,] =R+ AR[I?, with The first term of (9) may be written as

2 — 2 — 2 —
st (32 o $ ) -og]s  EER I (o )
K
i=N+1 i=Ny+1 0 /
& % [ =Ytot — D[2]( )] tr{R™'1,
ARE]det
INCK (11)
q[1](1 q[2](1 K—1 )
(ZAR —i—%;lAR +;+1AR >_ 2 b I(\;Vggsﬁtéot—z iy DU )+Z, v, +:PP1(i). The second term
2 2 1
N v (tr{Ang% ")) = g B {R AR RT3}
' ~ 2N2 (UecTR 2)(R™2 ® ])
©) X EUecAR[If,] UecTAR[If,](R_% ® ])UecR_%
WhereAR[I?det is a deterministic diagonal matrix, amkiR[If] sto vees il e ARL 4 Bocea Rl veeT AR,
is a stochastic matrix. The update of the transform (to simplify 12)

the notations, the subscrit will be omitted for7%) is then  \here the term corresponding to the deterministic part can be com-
2 - . . . . .
computed so thatx R TF is diagonal, and the updated stepsize puted using the fact that 2% , is diagonal. The stochastic term

_1_ . A K, det .
A[If,]:\/%Z‘Tdet(TKRI? TzTc) *¥is usedto quantize tii&)th in (12) generates, according to (7), fours terms, which can be com-
transform vector. The expected distortion is then

puted using (10). The second term in (9) leads finally to
B(tr{ARPRT})? = ¢ +tr{R—1}(2Em)

[2] ~[21? _Te,y-or Bl2lAT & 2N2 L K2N2
D1\+1 = EAL /12 = 6 det(TI\R T)V.  (8) + ("{fNQ }) [(Etot D[2](IX )) + E5D[2] \]
Using the unimodularity property of the transforms and consider-
ing AR[I? in (7) as a perturbation term on R, one should compute (23)
in both unitary and causal casef denotes the trace operator) where for the purpose of this first order analysis, only the domi-
D[I2]+1 Imeo—" det (RD]) N Do[14 %Etr{AR[ﬁ]R_l} nating terms needs to be retained. For example, the term
: N 221y — AR 1102 _ pl2? i

9) Concerning the third term of (9) let beR‘%AR[ﬁ] R™%. Then
we havevecG = (R" ® R~ )UecAR[ ], and we get

4. DISTORTION ANALYSIS —LEtr{AR[ﬁJ R—1AR5§JR— = E - Atr{GG}
In order to compute the three expectations in (9), we can descrlbe Et’"{U“GUeC G} ) ) ) )
the r.v.s involved in (7) as follows. The elementary tefmaR!" } S Btr{(R" 3 @R~ %) Evee AR vec” ARR(R™F @ R=%)}
corresponds to "one-shot” estimates ®fbased on a single ob- (14)
servation. Since théXA} are i.id., soisAR!". The elemen-  where again, the arising terms can be computed using (10).
tary terms{ARq[1 A0 } correspond to "one-shot” estimates of Finally, the distortion occuring with the second algorithm can be
R E(A[l 2]2 /12)I which, from (5), can be approximated as approximated by the recursive expression
R+ DU21()I. These terms are indeed not identically distributed. DY, | ~ Do x
They are neither independent sins&? *") depends o[,

Ny K
ESr —hfif1 [y, 2l Al pl2]
which depends okl which in turns depends aa R4 e —Nr{R }<N [K (z_;le (l,il';? (la D ([QD]'
However, we assume that this is the case, since thls dependenc =Nt =

concerns only the noise part of the quantized vectors. Because of (15)
the quantization noise, th& . are not Gaussian; again, for high
resolution, we assume that this is however the case. The follow- Inspecting the vanishing terms in (6), we obtain then the following

ing result is now necessary to compute (9). Mgl) =R = recursive expression for the algorithm without correction
Xz X! be the (symmetric) estimate of sorRg = [r, ...r, ]b 1
eX] (symmetric) | D" NS PYVIE W S LA Lt N O O T
means of one real zero mean Gaussian vekigmwith £X X, = o+ KN KN ol
R,. Then it can be shown thatR!" is a zero mean rv., and (16)

that among théV? blocks OfEUecARg )UecTAR , the(s, j)th

(1) T x (1) On the one hand, the recursive expression (15) shows that the al-
b|OCk(EU60ARl vec ARZ )block(,)j) equals(Rl®Rl)block(l)j)

gorithm based on the Sheppard’s correction shouldy asy oo,

+£lj£17:,Where® denotes the Kronecker product. If no = converge to the target distortidn,. On the other hand, the model
R+ D, 1, the previous expression may, for highly correlated sourcesprovided by (16) does not convergeffg but to some) ., > Dy.
be approximated as It can be shown that

(m, T (1) Do
FvecAR; vec" AR a2 Ri@ Ri=2[ROR + Di(R® I+ I®R)]. Do —————+. (17)

(10) 1 — Do i



5. RATE ANALYSIS

This section analyzes the bitrate required to entropy code the trans{1]
form signals ad< — oo. For the algorithm using the correction
on the second order moment estimate, one should compute

II

N 2
1=1 " Yi,

det R
(18)

wheres;, ., are the variances of the transform signals obtained by

using the transform based on the asymptotic estiite which

in this case isk. Thus, the estimated KLT and LDU should con-
verge to the optimal transforms. The variances of the transform
signals in the unitary case are thenand

21 _
rivy =1

(2]

2]

[
rir ,

N
1 ) 1
)zmgllo& 2medy; —log,Aor+ ﬁ]log2

(3]
[4]

(19)
[5]

In the causal case, a quantization noise feedback occurs which
increases the variances of the transform signals, because the ref[-6]
erence signal is composed with quantized data. Using (4) with
o, = A§/12 to evaluate (18) gives

As a conclusion, though the target distortion is reached in both
cases, the unitary approach yields to lowest asymptotic rate.
For the algorigpm [1] now, one g\pould compute

1 1 A
TElql) = N_E 1 H(y?) ~ ﬁ §_1 10g2 271'60';1700_10%-2 ©
(1)

where, this time, the;, ., are the variances of the transform sig-

N

2

=1

Dy
2In 2

1 1

A o2

2]
Ty R

r—+

(20)

0.012

0.

nals obtained by using the transform based on the asymptotic esti- oo

mateRY ~ R + %I. In the unitary case, since a KLT &f is

also a KLT of R + Ali; I, thes:, ., should again be equal to the
Aqi. Using (17), we obtain

0.

Do
2N In?2
In the causal case, the noise feedback in (4) involves this time
Ao = 12D}/?, and computing (21) yields

oo Do
"0 ¥ T N2
Thus, the effect of not using the Sheppard correction in the back-
ward adaptive algorithms is, for both transforms, to deplace the
actual rate-distortion point from the targeted point by a sates
522 tr{R™"} (or equivalently, as given by (17), by a distortion

§Do ~ D3tr{R™"}/N).
6. SIMULATIONS

For the simulations, we generated real Gaussiani.i.d. vectors with
covariance matriRx x = HRari HT. Ranr is the covariance
matrix of an AR(1) process with = 0.9. H is a diagonal ma-

trix whose th entry is(N —i+1)'?, N = 3. The target rate i8

b/s. Figure (1) plots the averaged observed distorsions for the KLT
and the LDU versug, the theoretic model as given by (16), and
the theoretic asymptotic distortion from (17). The optimal distor-
tion is given by (3). Similar results are shown in Figure (2) for
the algorithm [2], where the Sheppard’s correction is applied after
N1 = 60 vectors, and where the theoretic model is given by (15).

o
vy T

tr{R™'}. (22)

tr{R™'}.

(23)

0,
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