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ABSTRACT

The main advantage of backward over forward adaptive coding
schemes is to update the coding parameters with the data avail-
able at the decoder, avoiding thereby any excess bit rate. In this
work, the performances of two practical backward adaptive trans-
form coding schemes are analyzed in terms of rate and distortion
for two transforms: the KLT (Karhunen-Lo`eve transform) and the
LDU (based on a Lower-Diagonal-Upper factorization of the co-
variance matrixR of the data) transform. For both algorithms, we
model the expected distortion w.r.t. the number of vectors avail-
able at the decoder. Our analysis shows that for an algorithm using
Sheppard’s correction on the second order moment estimates, the
distortion should converge to the target distortion. Without this
correction, the effects of backward adaptation are shown to move
the actual r(D) point of the system from the target point by the
same term for both transforms. Simulations results confirming the
theoretic analysis are then presented.

1. INTRODUCTION

For non- or locally- stationary data, the efficiency of transform
coding relies on the updating of the coding parameters according
to the source statistics changes. These updates aim to keep the per-
formance of the structure close to a predetermined rate-distortion
trade-off. Classically, they are sent as side information to the de-
coder, though this excess bit rate could be saved by using closed-
loop, or backward adaptive algorithms.
We propose to model the effects of the backward adaptation for
two simple algorithms and for two different transforms, the uni-
tary KLT and the causal LDU transform [5, 6], which are known
to be optimal for Gaussian signals in the ideal case (whereR is
constant and known from the coder and the decoder).A transform
coding scheme is in the ideal case designed to reach a target point
of the rate-distortion functionD(r). Some value of the distortion
D will for example be chosen to be acceptable for the purpose of
some application, resulting in an average bit rater dedicated to
represent the quantized signals. Assuming now that we use some
backward adapted algorithm, an interesting question is to know if
the corresponding distortion will converge or not to the target dis-
tortion, and if yes, how fast. Also, one may desire to control the
rate which will then actually be required to represent the resulting
quantized signals.
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Although classical transform coding theory may appear as rather
old and routine, the problem of backward adaptation in transform
coding has, to our knowledge, received few attention until recently.
Indeed, the interdependence of quantization and estimation noise
on the several estimates makes the analysis of the recursive back-
ward adaptation somehowdelicate. Some convergenceresults have
however been proven in the unitary case [1]. A theoretic compar-
ison between causal and unitary approaches was lead in [3, 4],
which did however not describe how practical backward adaptive
transform algorithms would perform. This is the aim of this work,
where we lead an analysis based on small perturbations.
Section2 reviews and formalizes some results from the ideal cod-
ing schemes. Section3 states how both the transformations and
the quantization stepsize are perturbed, and the two adaptive algo-
rithms are presented. Section4 derives the distortion analysis for
the two proposed algorithms and section5 considers the problem
of the rates. The last section presents some simulations results.

2. TRANSFORM CODING
2.1. Framework
Consider a stationary Gaussian vectorial sourcefXg. This source
may be composed of any scalar sourcesfxig. In the classical
transform coding framework, a linear transformationT is applied
to each N-vectorXk to produce an N-vectorYk = TXk whose
components are independently quantized using scalar quantizers
Qi. A number of bitsri is attributed to eachQi under the con-
straint

P
i ri = Nr. For an entropy constrained scalar quantizer

of a Gaussian sourceyi, the high resolution distortion isE(yqi;k �
yi;k)

2 = �2qi = c2�2ri�2yi , wherec = �e
6 . At the decoder, the

quantized vectors are computed by recovering the quantized value
Y q from the received codeword, and applyingXq = T�1Y q.
An important property of commonly used transformations is that
Ek ~Xk2(T ) = Ek ~Y k2(T ) = D, wherek ~Xk2(T ) denotes the variance
of the quantization error onX, obtained for a transformationT .

2.2. Quantization Stepsize and Optimal Bit Assignment
The optimal bit assignment yields the well known distortion for
the vectorial signalfY g : Ejj ~Y jj2T = 1

N

PN
i=1 �

2
qi = Nc2�2r

�(QN
i=1 �

2
yi)

1=N = N�2q . Thus, the noise�2qi should be indepen-
dent ofi. The number of bits assigned to the ith component is then
r+ 1

2
log2�

2
yi=(
QN

i=1 �
2
yi)

1
N:Under high resolution assumption, the

quantization noise resulting from quantization with stepsize�i is
a uniformly distributed (over[��i

2 ; �i

2 [) random variable (r.v.),

with variance�2qi =
�2
i

12 . A simple way of realizing the optimal
bit assignment is therefore to quantize all the components with an
equal stepsize�. If now the yqi are entropy coded, the bitrate



(correponding to the average lengths of the codewords represent-
ing the transformed signals) is given by the zeroth order discrete
entropyH of these signals. For Gaussian signalsri = H(yqi ) �
1
2 log2 2�e�

2
yi � log2 �: It can then easily be checked that choos-

ing � =
p
2�e2�r(

QN
i=1 �

2
yi)

1
2N =

p
2�e2�r det(TRTT )

1
2N

ensuresri = H(yqi ) = r 8i. Both approaches are equivalent as
long as the rate dedicated to each component is at least1 bit per
sample [1]. The corresponding distortion is then

D =
�2

12
=

�e

6
2�2r det(TRTT )

1
N : (1)

2.3. Optimal Transforms
In the causal case,Y = LX = X � LXq, whereLXq is the
reference vector. The outputXq is Y q + LXq. Note that the
reconstruction error~X equals the quantization error~Y :

~X = X �Xq = X � LXq � Y q = Y � Y q = ~Y ; (2)

as in ADPCM. If we neglect the fact that (2) uses quantized data,
one shows [6, 5] that the optimal (unimodular)L in terms of cod-
ing gain is such thatLRLT = diagf�2y1 ; :::�2yN g;wherediagf:::g
represents a diagonal matrix whose elements are�2yi . In other
words, the componentsyi are the prediction errors ofxi with re-
spect to the past values ofX, theX1:i�1, and the optimal co-
efficients�Li;1:i�1 are the optimal prediction coefficients. The
distortion is then
D0 = �e

6
2�2r det(LRLT )

1
N = �e

6
2�2r det(V RV T )

1
N

= �e
6 2�2r det �

1
N = �e

6 2�2r det(R)
1
N ;

(3)

whereV denotes a KLT ofR, and� its eigenvalue matrix.
If we take now into account the fact that (2) uses quantized data,

the actual prediction error variances�
02
yi are greater than the op-

timal ones�2i [6] due to a quantization noise feedback similar as
that occuring in ADPCM, and are given by (�2q is the variance of
the quantization noise)

NY
i=1

�
02
yi � det(R)

 
1 + �2q

NX
i=1

(
1

�i
� 1

�2i
)

!
; (4)

3. BACKWARD ADAPTIVE ALGORITHMS

As can be seen from (1) and (3), the design of a transform coding
scheme indeed results, as every source coding problem, from a rate
distortion trade-off. The higher the bitrate dedicated to the trans-
form signals, the less the resulting distortion. SinceT depends on
R, as well as� (for a given target rater, � is related toR by (1)),
changes in the statistics of the source require to updateT and�
if one want the system to perform close to a chosen target point of
the r(D) function. We now propose two algorithms updatingT
and� with the data available at the decoder only.
Suppose that the coder deals with locally stationary data. We as-
sume zero mean independent identically distributed (i.i.d.) Gaus-
sian vectors (which is for example the case if the sampling period
is high in comparison with their typical correlation time), and that
the firstN vectors are very accurately quantized and sent (without
transformation) to the decoder.

Algorithm [1]:
� Step 1: The decoder disposes then of a first estimate of the co-
variance matrixbRN = 1

N

PN
i=1XiX

T
i .

� Step 2: A transformbTN is computed such thatbTN bRN
bTT
N is

diagonal, wherebTN is either a KLT, either an LDU factorization ofbRN , and a stepsizeb�[1]
N is computed by

p
2�e2�rdet(bTNbRN

bTT
N)

1
2N.

� Step 3: These parameters are used to transform and quantize the
(N + 1)th vector byY q = [bVNXN+1]

b�[1]
N

in the unitary case, or

Y q = [XN+1 � bLXq]
b�
[1]
N

in the causal case, where[:]� denotes

uniform quantization with stepsize�. The expected distortion for

the(N + 1)th vector is thenD[1](N + 1) = E b�[1]2

N =12.
� Step 4: Back to Step 1: the decoder disposes then of an es-
timate of the covariance matrixbRN+1 = 1

N+1 (
PN

i=1XiX
T
i +

Xq
N+1X

qT
N+1), from which bTN+1 and b�N+1 can be computed,

used to code the(N + 2)th vector, and so on.
Algorithm [2]:
A simple improvement to the previous algorithm can be made by
using the following result. Suppose that thefXKg are quantized
without transformation using the same (constant) stepsize�. Then
it can be shown [1] that

EXq
KX

qT
K = Rq = R+

�2

12
I + C; (5)

where I denotes the Identity matrix andC ! 0 elementwise as
� ! 0. In the previous algorithm now, if the stepsize converges
to some small stepsize�1(T ), one may expect that the estimate

of the covariance matrix converges to someR +
�2
1

(T )

12 I. Thus,
a better estimate ofR can be computed after a certain amount of

vectors, sayN1, by substracting
b�2
K

12 I to the current estimate ofR.
This correction on the estimate of the second order moment of the
data by their quantized version is usually referred to as Sheppard’s
correction [2]. Except from this difference concerningbR, the steps
of Algorithm [2] are the same as in Algorithm [1].
The estimate of the covariance matrix for the second algorithm can
now be expressed as

bR[2]
K= 1

K
(
NX
i=1

XiX
T
i +

N1X
i=N+1

X
[1]q
i X

[1]qT

i +
KX

i=N1+1

X
[2]q
i X

[2]qT

i )�
b�[2]2

K�1

12
I

= 1
K

0@NR +

N1X
i=N+1

(R+D[1](i)I) +
KX

i=N1+1

(R+D[2](i)I)

1A
+ 1

K

0@NX
i=1

�R(1)
i +

N1X
i=N+1

�Rq[1](1)
i +

KX
i=N1+1

�Rq[2](1)
i

1A� b�
[2]2

K�1

12 I

(6)

whereD(i) denotes the distortion obtained for theith vector, and
where we used the following notation:
- superscript[j] refers to algorithm [j],
- superscriptq refers to quantization,
- superscript(1) refers to estimation noise occuring by estimating
a covariance matrixR by the estimateXXT = bR(1)= R+�R(1),
- subscriptK refers to the total number of vectors available at the
decoder (except indeed fromXi, which denotes theith vector).
The corresponding estimate for the first algorithmbR[1]

K can also be
computed from (6), where in this case the underlined terms vanish.

By writing
b�
[2]2

K�1

12 = D[2](K) + �D[2](K), the estimate (6) can



also be written asbR[2]
K = R+�R

[2]
K , with

�R[2]
K =

"
1

K

 
N1X

i=N+1

D[1](i) +
KX

i=N1+1

D[2](i)

!
�D[2](K)

#
I

| {z }
�R

[2]
K det

+
1

K

 
NX
i=1

�R(1)
i +

N1X
i=N+1

�Rq[1](1)
i +

KX
i=N1+1

�Rq[2](1)
i

!
�
b�[2]2

K�1

12
I;

| {z }
�RK;sto

(7)

where�R[2]
K;det is a deterministic diagonal matrix, and�R[2]

K;sto

is a stochastic matrix. The update of the transform (to simplify
the notations, the subscript[2] will be omitted for bT [2]

K ) is then
computed so thatbTK bR[2]

K
bTT
K is diagonal, and the updated stepsizeb�[2]

K=
p
2�e2�rdet

� bTK bR[2]
K
bTT
K

� 1
2N

is used to quantize the(K+1)th

transform vector. The expected distortion is then

D
[2]
K+1 = E b�[2]2

K =12 =
�e

6
2�2r det(bTK bR[2]

K
bTT
K)

1
N : (8)

Using the unimodularity property of the transforms and consider-
ing�R

[2]
K in (7) as a perturbation term on R, one should compute

in both unitary and causal cases (tr denotes the trace operator)

D
[2]
K+1=

p
2�e2�r det

� bR[2]
K

� 1
2N�D0[1+ 1

N
Etrf�R[2]

K R�1g
+ 1

2N2E(trf�R[2]
K R�1g)2 � 1

2NEtrf�R[2]
K R�1�R[2]

K R�1];

(9)

4. DISTORTION ANALYSIS

In order to compute the three expectations in (9), we can describe
the r.v.s involved in (7) as follows. The elementary termf�R(1)

i g
corresponds to ”one-shot” estimates ofR based on a single ob-
servation. Since thefXKg are i.i.d., so is�R(1)

i . The elemen-
tary termsf�Rq[1;2](1)

i g correspond to ”one-shot” estimates of

R + E(b�[1;2]2

i�1 =12)I which, from (5), can be approximated as
R+D[1;2](i)I. These terms are indeed not identically distributed.
They are neither independent since�Rq[1;2](1)

i depends onb�[1;2]
i�1 ,

which depends onbR[1;2]
i�1 , which in turns depends on�Rq[1;2](1)

i .
However, we assume that this is the case, since this dependence
concerns only the noise part of the quantized vectors. Because of
the quantization noise, theXq

K are not Gaussian; again, for high
resolution, we assume that this is however the case. The follow-
ing result is now necessary to compute (9). Let�R(1)

l = Rl =
XkX

T
k be the (symmetric) estimate of someRl = [rl1 :::rlN ] by

means of one real zero mean Gaussian vectorXk, withEXkX
T
k =

Rl. Then it can be shown that�R(1)
l is a zero mean r.v., and

that among theN2 blocks ofEvec�R(1)
l vecT�R(1)

l , the(i; j)th

block(Evec�R(1)
l vecT�R

(1)
l )block(i;j) equals(Rl
Rl)block(i;j)

+rlj r
T
li
;where
 denotes the Kronecker product. If nowRl =

R+DlI, the previous expression may, for highly correlated sources,
be approximated as

Evec�R(1)
l vecT�R(1)

l �2Rl
Rl�2[R
R +Dl(R
 I+ I
R)] :
(10)

The first term of (9) may be written as

1
N
Etrf�R[2]

K R�1g= 1
N

0B@trf�R[2]
K;detR

�1g+Etrf�R[2]
K;stoR

�1g| {z }
0

1CA
� 1

N

h
1
K
�tot �D[2](K)

i
trfR�1g;

(11)

with �tot=
PN1

i=N+1D
[1](i)+

PK
i=N1+1D

[2](i). The second term
leads to

1
2N2E(trf�R[2]

K R�1g)2 = 1
2N2E(trfR�

1
2�R[2]

K R�
1
2 g)2

� 1
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TR�
1
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1
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� Evec�R[2]
K vecT�R[2]

K ;| {z }
vec�R
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K;det

vecT�R
[2]
K;det

+Evec�R
[2]
K;sto

vecT�R
[2]
K;sto

(R�
1
2 
 I)vecR�

1
2

(12)

where the term corresponding to the deterministic part can be com-
puted using the fact that�R[2]

K;det is diagonal. The stochastic term
in (12) generates, according to (7), fours terms, which can be com-
puted using (10). The second term in (9) leads finally to

1
2N2E(trf�R[2]

K R�1g)2 � 1
KN

+ trfR�1g( 2�tot
K2N2 )

+
(trfR�1g)2

2N2

��
�tot
K

�D[2](K)
�2

+ E�D
[2]2

K

�
;

(13)

where for the purpose of this first order analysis, only the domi-
nating terms needs to be retained. For example, the term

E�D[2]2(K) = E b�[2]4

K =122 �D
[2]2

K will be neglected.

Concerning the third term of (9), letG beR�
1
2�R[2]

K R�
1
2 . Then

we havevecG = (R�
1
2 
R�

1
2 )vec�R[2]

K , and we get

� 1
2NEtrf�R

[2]
K R�1�R

[2]
K R�1 = E � 1

2N trfGGg
= � 1

2NEtrfvecGvecTGg
= � 1

2NEtrf(R�
1
2 
R� 1

2 )Evec�R[2]
K vecT�R[2]

K (R�
1
2
R� 1

2)g
(14)

where again, the arising terms can be computed using (10).
Finally, the distortion occuring with the second algorithm can be
approximated by the recursive expression

D
[2]
K+1 � D0 �"

1+ 1
K (1N �N)+trfR�1g

 
1
N

"
1
K

 
N1X
i=N+1

D[1](i)+
KX

i=N1+1

D[2](i)

!
�D[2](K)

#!#
:

(15)

Inspecting the vanishing terms in (6), we obtain then the following
recursive expression for the algorithm without correction

D
[2]
K+1 � D0

"
1 +

1

K
(
1

N
�N) +

trfR�1g
KN

 
N1X

1=N+1

D[1](i)

!#
:

(16)

On the one hand, the recursive expression (15) shows that the al-
gorithm based on the Sheppard’s correction should, asK ! 1,
converge to the target distortionD0. On the other hand, the model
provided by (16) does not converge toD0 but to someD1 > D0.
It can be shown that

D1 � D0

1�D0
trfR�1g

N

: (17)



5. RATE ANALYSIS

This section analyzes the bitrate required to entropy code the trans-
form signals asK ! 1. For the algorithm using the correction
on the second order moment estimate, one should compute

r
[2]
(T )�

1

2N

NX
i=1

log2 2�e�
2
yi;1� log2�0�r+ 1

2N
log2

QN
i=1 �

2
yi;1

detR
;

(18)

where�2yi;1 are the variances of the transform signals obtained by

using the transform based on the asymptotic estimatebR[2]
1 , which

in this case isR. Thus, the estimated KLT and LDU should con-
verge to the optimal transforms. The variances of the transform
signals in the unitary case are then�i and

r
[2]
(V ) = r: (19)

In the causal case, a quantization noise feedback occurs which
increases the variances of the transform signals, because the ref-
erence signal is composed with quantized data. Using (4) with
�2q = �2

0=12 to evaluate (18) gives

r
[2]
(L) � r +

D0

2 ln 2

NX
i=1

�
1

�i
� 1

�2i

�
: (20)

As a conclusion, though the target distortion is reached in both
cases, the unitary approach yields to lowest asymptotic rate.
For the algorithm [1] now, one should compute

r
[1]
(T ) =

1

N

NX
i=1

H(yqi ) �
1

2N

NX
i=1

log2 2�e�
2
yi;1�log2 �1

(21)

where, this time, the�2yi;1 are the variances of the transform sig-
nals obtained by using the transform based on the asymptotic esti-

mate bR[1]
1 � R +

�2
1

12 I. In the unitary case, since a KLT ofR is

also a KLT ofR +
�2
1

12 I, the�2yi;1 should again be equal to the
�i. Using (17), we obtain

r
[1]
(V ) � r � D0

2N ln 2
trfR�1g: (22)

In the causal case, the noise feedback in (4) involves this time
�1 = 12D1=2

1 , and computing (21) yields

r
[1]
(L) � r

[2]
(L) �

D0

2N ln 2
trfR�1g: (23)

Thus, the effect of not using the Sheppard correction in the back-
ward adaptive algorithms is, for both transforms, to deplace the
actual rate-distortion point from the targeted point by a rate�r �
D0

2N ln 2 trfR�1g (or equivalently, as given by (17), by a distortion
�D0 � D2

0trfR�1g=N ).

6. SIMULATIONS

For the simulations, we generated real Gaussian i.i.d. vectors with
covariance matrixRXX = HRAR1H

T . RAR1 is the covariance
matrix of an AR(1) process with� = 0:9. H is a diagonal ma-
trix whose ith entry is(N�i+1)1=3, N = 3. The target rate is3
b/s. Figure (1) plots the averaged observed distorsions for the KLT
and the LDU versusK, the theoretic model as given by (16), and
the theoretic asymptotic distortion from (17). The optimal distor-
tion is given by (3). Similar results are shown in Figure (2) for
the algorithm [2], where the Sheppard’s correction is applied after
N1 = 60 vectors, and where the theoretic model is given by (15).
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Fig. 1. Distortions for Algorithm [1] vsK.
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