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Abstract

Recently, the MPEG—4 standard has been enriched with a new encoding tool designed
to be used for video streaming, namely, the Fine—Grained Scalability (FGS). In this report,
we present a publicly available library of frame size and quality traces of long MPEG-4
FGS encoded videos. A first analysis of these traces give useful insights for video streaming
algorithms. In particular, we find that the base layer encoding process and the internal
structure of the FGS—EL bitstream play an important role in the statistical characteristics

of FGS—encoded videos.

1 Introduction

Fine Grained Scalability (FGS) has been recently added to the MPEG-4 standard [1] in order
to increase the flexibility of streaming of encoded videos over networks. Similar to the other
types of video scalability (SNR, spatial, or temporal), FGS encodes the video into a Base Layer
(BL) and one or several Enhancement Layers (EL). However, with FGS, any number of bits of
the enhancement layer can be suppressed at the server before transmission, and the decoder
can use all of the truncated bitstream to maximize the video quality at the client [9]. When
streaming FGS—encoded videos, the server typically chooses the number of bits to stream for

each FGS-EL image (or any sequence of images) given the network conditions, as in [7].
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In order to optimize the streaming of a given video, streaming algorithms should take the
specific video characteristics into account [11]. In particular, by exploiting the rate—distortion
characteristics of the individual images of the video, the video application may maximize the
overall quality, while meeting the rate constraints imposed by the underlying network [3].
Maximizing the overall perceived quality of the video can be achieved by maximizing the quality
of all individual images and minimizing the variations in quality between successive images [16].
This type of problem is in general approached by complex optimization algorithms that take
the rate—distortion functions of all individual images for all video layers into account [3, 16].
In order to assess the performance of such algorithms for various video types and encoding
methods, it is essential to have a database of rate—distortion functions of individual images
from a range of complete videos. Generally, rate (i.e., frame sizes) and distortion depend
strongly on the semantic video content. Therefore, in order to obtain results with meaningful
statistical confidence levels, we need to use a large representative library of long videos (of
several minutes). In this report, we present and analyze a publicly available library of frame
size and quality traces of long MPEG-4 FGS encoded videos.

This report is organized as follows. We first review the main properties of MPEG-4 FGS
encoding. Then, we present a framework for evaluation of streaming mechanisms that aim
to maximize the overall video quality. Our framework considers the streaming at different
aggregation levels: images, GoPs and scenes. Next, we explain how we obtained the rate-
distortion traces for a representative library of long videos. Based on our framework, we analyze
the statistical properties of these traces. We find that the base layer coding and the internal
structure of the FGS—EL bitstream (in particular the bit—plane structure) play an important
role in the statistical characteristics of FGS—encoded videos. All traces and statistics for long

videos are made available on our web site (http://peach.eas.asu.edu/index.html).

2 Properties of the MPEG—4 FGS encoding

The FGS layered—encoding technique, as defined by MPEG—4 [1], encodes the quantization
error between the original image and the corresponding BL—encoded image [9]. Figure 1 shows
the architecture of the MPEG—4 FGS decoder as defined by the standard. Before transmission
by the server, any number of bits can be truncated from the FGS-EL and all the remaining

bits can be used by the decoder to enhance the quality of the BL at the client. The rendered
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Figure 1: MPEG-4 FGS decoder structure
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Figure 2: Example of bit—plane coding

image quality is directly proportional to the number of bits decoded.

The fine granularity property of the FGS—EL comes from the bit—plane encoding of the DCT
coefficients (of the difference between the original image and the BL image after reconstruction).
As shown in the example from Figure 2, the bit—plane coding method considers each DCT
coefficient (for each 8 x 8 block) as a binary number of several bits [9]. After zig-zag ordering,
the bits are ordered in bit-planes (from MSB to LSB) and each bit-plane is converted into
(RUN,EOP) symbols. The number of bit—planes to code for each block depends on the block
visual complexity, and should not exceed 8 (the MSB plane of each block is the first bit—plane
that has a non zero bit). Less significant bit—planes usually have to be compressed using more
bits because they have higher entropy.

With conventional non—layered encoders which feature different types of images (e.g. I, P



and B in MPEG—1,2,4), the rate—distortion characteristics depend strongly on the type of the
image which is considered (e.g., in general, fewer bits are needed to code B pictures compared
to I or P pictures). This is thus also true for the BL of any scalable video. Moreover, since the
FGS coding method, such as in MPEG-4, does not include motion compensation, one would
expect that the amount of quality improvement brought by the EL frames depends only on the
complexity of the individual images, and on the quality of the corresponding BL frame (which
in turn depends on its encoding type). This is reflected in our results as we demonstrate later

in the report.

3 Framework for Evaluating Streaming Mechanism

One of the particularities of videos is that successive images have strong temporal correlations.
We define a sequence of images or frames as a temporal alignment of consecutive frames.
Consecutive images of the same encoding type I, P, or B are likely to have roughly the same
image quality for the same encoding rate. Therefore, the problem of maximizing the overall
quality of the video can be approached by maximizing the overall quality of a sequence of
images, and the problem of minimizing the variations in image quality can be approached by
minimizing the differences in quality between the consecutive sequences. In this case, the server
chooses the bit rate of the FGS—EL to stream to the client for every sequence of images, instead
of for every single image. Because there is no motion compensation in the MPEG-4 FGS-EL
and the decoding of the VBR-BL is supposed to achieve a roughly constant image quality, the
server can choose to stream the same number of EL bits for each image within the sequence.
This approach has the potential to reduce the computational load on video servers. In this
study, we propose to analyze the traces image by image, but also GoP by GoP, and scene by
scene. An example of streaming algorithm for stored FGS—encoded videos that operates scene
by scene is given in [6].

Typically, long videos feature many different scenes composed of successive images with
similar visual characteristics. Following Saw [13], we define a video scene as a sequence of
images between two scene changes, where a scene change is defined as any distinctive difference
between two adjacent images (this includes changes in motion as well as changes in the visual

content).



3.1 Notations

In this paper, we use the terms “images” and “video frames” interchangeably. The frame period
is constant and denoted by T seconds. The video is composed of N frames, which are indexed
by n, n = 1,...,N. Frame n is supposed to be decoded at discrete instant ¢ = n -T. The
BL and FGS-EL of the video are VBR-encoded, with constant bitrates ry(¢) and r.(¢) during
frame period n fromt = (n—1)- T tot =n-T,n=1,...,N. According to the FGS property,
the EL can be truncated anywhere before decoding. We refer to any part of the EL which
is to be added to the BL as an FL substream. We say that an EL substream is encoded at
rate C'(t) € [0,7.(t)], when the last T" - [r.(¢t) — C'(t)] bits of the frame which is supposed to be
decoded at time ¢, t =7T,..., N -T, have been removed from the original EL bitstream. We
allow C'(t) to change only at discrete time instants n - 7. The BL Group of Pictures (GoP) is
composed of 12 images throughout our study, and its pattern is fixed to IBBPBBPBBPBB.
We suppose that the video is partitioned into consecutive scenes. Let S denote the total
number of scenes in a given video. Let s, s = 1,...,5, denote the scene index and N, the
length (in number of images) of scene number s. (Note that 3°°_ N, = N.) For simplicity
of presentation, we extend all notations that relate to scenes to GoPs, by considering that
grouping the successive images within a same GoP is a special case of video segmentation. In
the rest of the report, we specify explicitly each time the notations relate to GoPs instead of

visual scenes.

3.2 Image-based metrics

Let Q,(C), n = 1,...,N, denote the quality of the n!* decoded image, when the EL is
encoded with rate C'. Let Q% = (,(0), denote the quality of the same image, when only the
BL is decoded. We define Q¢ (C') = Q,,(C) — Q" as the improvement (increase) in quality which
is achieved when decoding the EL encoded with rate C', as well as the BL of frame n.

The mean and sample variance of the individual images qualities, are estimated as:

_ 1 X
QC) = (), (1)
:_1 al _ 1 (& i}
ap(C) = N1 Z[Qn(c) - QO = N1 {Z[Qn(c)]2 - [Q(C)]Z} : (2)



The coefficient of quality variation is given by:

7Q(C)
QC)
The autocorrelation coefficient of the image qualities pg(C, k) for lag k, k = 1,... N, is

CoVg =

estimated as:
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We denote the total size of image n by X,(C) = X! 4+ X2(C), when the EL is encoded
with rate C. Let X2 ¢ =1,...,8 n=1,..., N, denote the size of EL bit—plane ¢ of image
nand Y, i=1,...,8, n=1,...,N denote the aggregate size of bit—planes 1,... 1, that is,
Y5 = 22‘21 X,7. In our notations, bit—plane number 1 denotes the Most Significant Bit—plane
(MSB).

Let Q;,(C), s = 1,...,58, n = 1,...,N,, denote the quality of the n’* decoded image
of scene s, when the EL is encoded with rate C, i.e., Qs (C) = QN +..+N._; +(C). Similar
to @, (C'), we denote the quality of image n within scene s, when only the BL is decoded by

b n = Qsn(0), and the improvement in quality achieved when decoding the EL by Q¢ (C) =
Qs (C) — Q0. The Rate-Distortion (RD) characteristics of each image n within scene s are
obtained by plotting the curves Q)5 ,,(C).

The mean and sample variance of the qualities of the images within scene s, s = 1,...,5,
are denoted by Q(C) and 03 (C). They are estimated in the same way as the mean and

sample variance of individual image quality over the entire video.

3.3 Scene-based metrics

We define a general framework for studying the quality of long videos scene by scene. The mean
in quality of all individual images of a scene, (),(C'), may not be appropriate to account for the
overall quality of the scene. First, the quality of individual images does not measure temporal
artifacts, such as mosquito noise (moving artifacts around edges) or drifts (moving propagation
of prediction errors after transmission). Secondly, high variations in quality between successive
images within the same scene may decrease the perceptual global quality of the scene. For
instance, a scene with alternating high and low quality images may have the same mean image
quality as if the scene was played with medium but constant image quality, but the quality

perceived by the user is likely to be much lower.



Let O4(C) be the overall quality of video scene number s, s = 1,...,S5, when the EL
has been coded at rate C' for all images of the scene. Similar to the measure of quality of the
individual images, we define ©,(C) = ©°+0%(C'), where ©% = ©,(0) denotes the overall quality
of scene s when only the BL is decoded, and O%(C') the improvement in quality achieved by the
EL coded at rate C'. We analyze the mean, sample variance, and autocorrelation coefficients of
the scene qualities, denoted by ©(C), 02 (C) and pe(C, k). They are estimated using the same
way as for the image—based metrics.

For each scene s, the rate—distortion characteristics are obtained by plotting the curves
©,(C). The mean and variance of the scenes’ qualities give an overall indication of the per-
ceived quality of the entire video. However, the variance of scene quality does not capture
the differences in quality between successive video scenes, which degrade the perceived overall
quality of the video. To this end, we introduce a new metric, called variability, which is defined

S
V(C) = 50 3 104(C) ~ 0,4(C)]. (5)

s=2

Note that our measure for overall scene quality does not account for differences in the length
of the successive scenes. However, our analysis with a simple weighted measure of quality gave
very similar results, so they are not presented here. Moreover, the perception of the overall
quality of a scene may not be linearly proportional to the length of the scene, but may also
depend on other factors, such as the content of the scene.

Also, we define the maximum quality variation between two consecutive scenes as:

Vinaz = max [0,(C) — O,_1(C)]. (6)

2<s<S
Recalling that X,(C) denotes the mean size of the frames in scene s, the correlation coeffi-
cient between the mean frame size X,(C) of a scene and the overall quality ©,(C) of a scene
is estimated as

1 - (XL (C) = X(O)(0,(C) — 0,(C
Z(() (C)(Os(C) (@)

pX,G)(C) = S—1 O'X(C) .06 (C) ’ (7)

s=1
where X (C) denotes the mean of the successive mean frame sizes of all scenes composing the
video (X (C) = 3°7_, X,(C)/S). We denote the correlation coefficient between the BL quality
and the total (BL+EL) quality of a scene by pge o (C'). It is estimated the same way as pg o (C').

Finally, we monitor the length (in video frames) of the successive scenes Ng, s = 1,...,5.

We denote the mean and sample variance of Ny as N = N/S and o%.



3.4 MSE and PSNR measures

Although our analysis method is intended to be independent of the particular quality measure
which is considered, we give results in terms of the MSE (Mean Squared Error) and the PSNR
(Peak Signal to Noise Ratio). Recently, the Video Quality Expert Group (VQEG) released
its first report, in which are described a series of experiments to account for the performance
of some objective quality measures [12]|. Subjective results showed that no quality measure
performed better than PSNR. As it is recalled in [15], for video pictures of size X x Y pixels,

the PSNR of the video sequence between images n; to ng is defined by:
2

where M is the maximum value of a pixel (255 for 8-bit grayscale images), and MSE(nq, ng)

PSNR(TLh ng)

is defined as:
Y

ny X
MSE(ny,ng) = XY (s i PR Z ZZ[I(:L’, y,m) — f(ib‘, v, n)]?7 (9)

n=n1 y=1z=1

where I(z,y,n) and I(z,y,n) are the gray-level pixel values of the original and decoded frames
number n, respectively. The MSE and PSNR measures are not always reliable but they give a
good estimate of the perceived quality and can be easily computed. According to [15], the PSNR,
and MSE are only well-defined for luminance values, not for color. Moreover, as noted in [12],
the HVS (Human Visual System) is much more sensitive to the sharpness of the luminance
component than that of the chrominance component. Therefore, we only consider luminance
PSNR.

Henceforth, assuming that the EL is encoded with constant bitrate C', we set:

Q.(C) = PSNR(n,n), (10)

Qsn(C) = PSNR(Ts+n—-1,Ts+n—1), (11)

Os(C) = PSNR(Ts, Tsy1 — 1). (12)

where Ty € {1,..., N} is the absolute frame number of the first frame of scene s, i.e. Ty =
L+ 32520 Ny

4 Generation of Traces

In our experiments, we used the Microsoft encoder/decoder [4] with FGS functionality. We

generated our traces according to the following methodology:



1. First, we encode a sequence video.yuv using 2 different sets of quantization parame-
ters for the BL. This gives compressed BL bitstreams of high quality (with quantization
parameters (4,4,4) for (I, P, B) frames) and low quality (with quantization parameters

(10,14, 16)), as well as the associated EL bitstreams.

2. We segment the video into S successive scenes. This can be done based on the compressed
BL bitstream or the raw yuv video, according to the segmentation tool which is used.
This yields a file containing the image numbers delimiting the scenes (scene-nb(s),

last-image-nb(7s + Ny — 1)).

3. For each BL quality, we cut the corresponding FGS-EL bitstream into m EL CBR-
encoded substreams of increasing and equally spaced bitrates C' =¢, 2-¢,... ,m-c <r..
c is the step size at which we increase the FGS cutting rate. In all our experiments we

used a step size of ¢ = 200 Kbps.

4. For each tuple of compressed bitstreams (BL quality, EL substream encoded at rate C'),
we compute the PSNR for each image after decoding, and then the PSNR for each scene.

Finally, for each BL quality, we obtain the following traces:

e afile containing the BL statistics for each image number (image-nb(n), decoding-timestamp(n-

T), image-type, frame-size(X"), PSNR-Y(Q), PSNR-U, PSNR-V),

e afile containing the size of each EL bit—plane (up to 8 bit—planes) for each image number

image-nb(n), size-of- L), ..., slze-of- 8)),
image-nb(n), si £-BP1(X /1) i £-BP8(X %)

e afile, for each EL encoding rate C', containing the image quality (in PSNR) obtained after
decoding the BL and the truncated EL for all frames (image-nb(n), PSNR-Y(Q,.(C)),
PSNR-U, PSNR-V).

4.1 TLimitations

Due to an encoder limitation, we had to encode separately two 30 minute sequences of our
1 hour videos and then concatenate the traces. For the video News, a few bidirectionally
predicted frames at the end of the sequence are skipped at the encoder, so we repeated the last

encoded frame until the original end of the sequence (this is visible on the BL traces when the



frame—type stays constant for some frames at the end of a 54000 image sequence). Since this
only concerns 4 frames of the videos, we do not expect it to change the statistical results.
Because of a software bug (probably loss of synchronization between the BL and the EL
due to the cut of a system header during the partitioning of the EL into substreams), some
PSNR results (particularly at low EL bit-rates) are not coherent. It has a minor impact for
short videos, because the trend of the RD curves for all individual images and video scenes is
clear enough, so that we can estimate the quality that will be reached without this bug at these
particular low bit-rates. However, for long videos, only high quality BL encoding gives valid
results for most EL bit-rates, so we can only study the case of high BL quality for long videos.
Because the automatic extraction of scene boundaries is still a subject of ongoing research
([5], [8], [10]), we restricted the segmentation of the video to scene shot changes only. However,
our approach remains valid for any finer segmentation. Many commercial applications can now
detect shot cuts with good efficiency, and we used the MyFlix software [14]. MyFlix is a
MPEG-1 editing software which can find cuts directly on MPEG-1 videos. Therefore we had
to encode each video into MPEG-1 once in order to detect shot cuts. We have observed during

our experiments with long videos, that MyFlix was giving overall good performance.

4.2 Organization of the Web Site

All our traces for long videos, together with some statistics, can be found on our public web
site. The site is organized as follows. For each movie encoded at high BL quality, we have the

following directories:

e stats/, which contains the traces of the bit—plane sizes, the boundaries of the scenes and
the total (BL+EL) coding rate by scene and GoP. It also features some overall statistics,
such as statistics for scene length (S, N and ox) and the graphs of scene and GoP
quality statistics as a function of the FGS rate (0(C), 0o(C), V(C), px.0(C), por.o(C))
for C' = 0,800, 1000, - - - , 2000 Kbps. Note that for the graphs in this directory, we did
not plot the statistics corresponding to the FGS cutting rates C' = 200,400, 600 Kbps

because of the phenomenon explained in section 4.1.
e srd/, which contains the Rate—Distortion trace files for each scene (O4(C)).

e q0/ ... q2000/, which contain, for each FGS cutting rate C' = 0,---,2000 Kbps, the

trace of individual image quality (n, Q,(C)), the graphs of the autocorrelation in scene or

10



GoP quality (pe(C, k)), the graph of the scene quality as a function of the scene number
and the graph of the GoP quality as a function of the GoP number (0,(C)).

5 Analysis of traces - Short Clip

In this section, we present the analysis of a short video clip of 828 frames encoded in CIF format,
obtained by concatening the sequences “coastguard”, “foreman” and “table” in this order. We
segmented (by hand) the resulting clip into 4 scenes (T} = 1, Ty = 301, T5 = 601, Ty = 732)
corresponding to the 4 shots of the video (the table sequence is composed of 2 shots). The (I,
P, B) quantization parameters used to encode the BL were fixed to (4,4, 4) and (10, 14, 16) for
the high and low quality versions of the BL, respectively.

Figures 3 and 4 show the quality of the successive images (), for the 4 scenes, when only the
BL is decoded and when a substream of the FGS-EL (at rate C' = 3 Mbps) is added to the BL
before decoding. We make the following observations for both low and high BL qualities. (7)
First, the average image quality changes from one scene to the other for the BL—only stream and
also when a constant rate EL is added. This is confirmed for all EL rates in Figures 13 and 15
which show the average image quality achieved for the images within the same scene. This
trend in the image quality time series suggests to analyze the quality statistics of each scene
separately [2]. (¢i) For a given scene, we see that for the BL there are significant differences
in the quality achieved for successive images. Most of these differences are introduced by the
different types of BL images (I, P, B) — the frames with the highest quality correspond to
I-frames. When adding a part of the EL (at rate C' = 3 Mbps in the figures), we see that these
differences are still present, even if they have changed in magnitude. Therefore, this suggests
to distinguish between the different types of images in order to study the RD characteristics
of the FGS-EL. (¢i7) We notice that scenes 2 and 3 feature high variations of the quality for
a given frame type within the same scene. Scene 2 corresponds to the ’foreman sequence’ in
which the camera pans from the foreman’s face to the building. A finer scene segmentation
tool would have segmented scene 2 into two different scenes, since the foreman’s face and the
building have different complexities.

Figures 5 and 6 show the aggregate size of the EL bit—planes Y, and Figures 7 and 8 the
size of the BL frames X?. We observe that, in general, I pictures have fewer bit—planes than P

or B pictures and the total number of bits for the EL images is larger for P and B pictures than

11



for I pictures. This is because I images have higher BL quality. Therefore, fewer bit—planes
and fewer bits are required to code the EL of I images. For the same reason, when comparing
high and low BL qualities, we see that the EL corresponding to the high BL quality needs, for
most images, fewer bit-planes than the EL corresponding to the low BL quality. Also, when
comparing the average size of EL frames for all scenes with the average size of the corresponding
BL frames, we see that the larger the average BL frame size the larger the average EL frame
size. This can be explained by the different complexities of the scenes. For example, we see that
it requires fewer bits to code I images in the first part of scene 2 than to code I images in scene
1, meaning that the complexity of scene 1 images is larger than those of scene 2. Therefore,
the average number of bits required to code the EL of scene 1 images is larger than for the
first part of scene 2. Note that, for both BL qualities, the bit—planes number 5, 6, 7 and 8 are
empty for all frames, which indicates that the EL contains up to 4 bit—planes.

We plot in Figures 9, 10, 11, and 12, the RD functions Qf 15(C), @f 14(C), @5 4,5(C), and
(5.214(C) (improvement in quality brought by the EL as a function of the FGS encoding rate)
for different types of images within the same GOP. Note that some RD functions feature a
few outliers (at low FGS bitrate) which correspond to the phenomenon that we explained in
Section 4.1. The plots confirm that the RD functions of the EL do depend on the type of
image of the BL and the particular scene. We first see that RD functions are different for
each bit—plane, indicating that bit—planes have different characteristics (in general, the RD
functions of lower bit—planes are closer to a linear function than the functions of higher bit—
planes). Also, the maximum gain in quality for the same amount of EL. data added to the BL,
ie. Q°((k+1)-¢)—Q°%(k-c), for c =200 Kbps and k = 1,...,m— 1, is always achieved when
we get closer to the end of a bit—plane. This may be due to the bit—plane headers. Indeed, the
more bits there are in a given bit—plane after truncation, the smaller the share of the bit—plane
header in the total data for this bit—plane.

Figures 14 and 16 give the standard deviation of the image quality for the different scenes
of the video for both low and high BL qualities. Scene 2 is the scene with the largest variance,
because of the variations in average image quality from the beginning to the end of the scene.
We see that, for a given scene, the variance in quality can change considerably with the FGS
rate. These variations include I, P, B variations, as well as longer term variations. Figures 17
and 18 give the standard deviation of both image quality og and GoP quality og for the

entire video. As we see, the standard deviation of GoP quality is negligible compared to the

12



standard deviation of image quality. This means that most of the variations in quality are due
to variations in image quality between the images of different type within a given GoP — which
are in turn due to the BL encoding (single-layer encoder and quantization parameters used).
Finally, Figures 19 and 20 give the autocorrelation function of the image quality for the
BL and the FGS rates C' = 1, 2 and 3 Mbps. We observe periodic spikes which correspond to
the GoP pattern. We verify that, at small lags, there are high correlations in quality for the
different types of pictures at all FGS rates. Moreover, we see that autocorrelation at small lags
slightly increases with the FGS rate. This means that the FGS layer smoothes the difference in
quality between near images. Indeed, for the same number of FGS-EL bits added to the BL,
the gain in quality is different for consecutive I, P and B frames. In general, the gain in quality
for I frames increases slower than the gain in quality for P or B frames: as pointed out earlier,
the BL achieves a higher quality for I frames, so for I frames the EL bits which are added to

the BL correspond to higher (less visible) frequencies than for P and B frames.

13



scened

3 Mbps ~+——
BL only -t
scene3

EL, C

scene?2

scenel

K em
Kmmmm

45
4

=3
VARY,

200 300 400 500 600 700 800
image number - n

100

Figure 3: Image PSNR @,, as a function of image number n for “Clip” encoded with low quality

BL

scened

3 Mbps ——

BL only -1-x-
scene3

EL, C

scene?2

scenel

300 400 500 600 700 800
image number - n

200

100

Figure 4: Image PSNR Q),, as a function of image number n for “Clip” encoded with high quality

BL

14



400000 . ; . ;

BPl ————
I BP2 ix
350000  BP3 i« i
. BP4 ic
300000 scenel scene2 : scene3 ;scene4_
Se
> 250000
w
=
2200000
E
& 150000
«®
100000 ¥

50000

0 100 200 300 400 500 600 700 800
image number - n

Figure 5: Aggregate size of the EL bit—planes Y as a function of image number n for “Clip”

encoded with low quality BL

300000 T T T T T — T
. BPl ——
¢ BP2
t BP3 ix
250000 . RBP4 o i
scenel scene2 . scene3 Sscene4

200000

size in bits - ¥,&

image number - n

Figure 6: Aggregate size of the EL bit—planes Y% as a function of image number n for “Clip”
encoded with high quality BL

15



100000 | T | T

BL fraime size| AN
scenel scene2 scene3 scened
80000 | ‘
o g
. 60000
E T+ 1 T
=
o 40000
|
20000 “i’m ‘MWU’NWIE
W I iim‘”u
i I
Il
0

0 100 200 300 400 500
image number - n

Figure 7: Size of BL images X! as a function of image number n for “Clip” encoded with low

quality BL

300000 T T T ¥ T T T
BL frame size ——+——
250000 scenel scene2 scenel | scened
5200000
E 150000 JHHTHHHHHHHHH +Tﬂ
R~
g
‘m 100000
50000 ¢

0 100 200 300 400 500 600 700 800
image number - n

Figure 8: Size of BL images X? as a function of image number n for “Clip” encoded with high

quality BL

16



in dB

[+
ke)

I I I i;nage #13 - type | T |
BP1 BP2 BP3 BP4
1000 2000 3000 4000 5000 6000 7000

mn dB

€
n

Q

FGS rate in Kbps - C

8000

b I I irrlmge #14 . type B I |
BP2 BP3 BP4 BP5
0 1000 2000 3000 4000 5000 6000 7000 8000

FGS rate in Kbps - C
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run time S N | CoVx | Npaz/N | 7 (Mbps) Xb | CoVyxs | Xb, 0/ X"
The Firm 1h | 890 | 121 | 0.94 9.36 0.65 | 21765 0.65 6.52
Oprah+com 1h | 621 | 173 | 2.46 39.70 2.73 | 91129 0.14 1.94
Oprah 38mn | 320 | 215 | 1.83 23.86 1.69 | 56200 0.19 2.33
News 1Th | 399 | 270 | 1.67 9.72 0.74 | 24645 0.54 5.30
Star Wars lh | 984 | 109 | 1.53 19.28 0.49 | 16363 0.65 6.97
Silence CIT 30mn | 184 | 292 | 0.96 6.89 1.74 | 57989 0.72 7.85
Toy Story 1h | 1225 88 | 0.95 10.74 1.08 | 36141 0.49 5.72
Football 1Th | 876 | 123 | 2.34 31.47 0.97 | 32374 0.53 3.90
Lecture 49mn 16 | 5457 | 1.62 6.18 1.54 | 51504 0.29 2.72

Table 1: Scene and Base Layer traflic characteristics of long videos

6 Analysis of long videos

We now focus on the statistics for long videos encoded with high BL quality. All videos have
been captured and encoded in QCIF format(176 x 144 pixels), except for the movie Silence of
the Lamb which has been captured and encoded the CIF format(352 x 288 pixels). We show in
Tables 1, 2, 3 and 4 a summary of some statistics for nine videos of different types.

In Table 1, we first see that our nine long videos have various scene characteristics and BL
statistics. The total number of scenes S, mean length N, and standard deviation oy of the
length of the scenes of a video can all have an impact on the resources required by streaming
algorithms that perform optimization scene by scene, in particular on the amount of client
buffering needed. Of particular interest are the videos Oprah with commercials and Oprah
(same video but where we removed the commercials). Both videos have very high average BL
bit-rate 7, small coefficient of variation in BL frame size C'oVy as well as small peak—to—mean
ratio of frame sizes X’ /X" compared to the other movies. We observe that, according to the
common intuition, commercials have reduced the average length of scenes N and increased the
coeflicient of variation in scene length C'oVy as well as the peak—to—mean ratio of scene length
Npaw/N. The Toy Story video has the longest number of scenes, whereas Lecture, which is a.
recording of a class by Professor Martin Reisslein at ASU, has the smallest number of scenes.

Table 2 indicates that the mean scene quality is very different from one video to the other.
In particular, while Oprah with commercials and Oprah have the highest BL encoding rates

(see Table 1), the average overall quality achieved for the BL of both videos is low compared
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BL only C =1 Mbps C' = 2 Mbps

O | CoVo | Omin/© O | CoVo | Omin/© O | CoVo | Omin/©
The Firm 36.76 | 0.013 0.97 | 40.10 | 0.017 0.88 | 43.70 | 0.003 1.99
Oprah+com | 35.71 | 0.015 0.99 | 38.24 | 0.013 0.99 | 42.30 | 0.010 0.99
Oprah 35.38 | 0.003 1.00 | 38.18 | 0.003 1.00 | 42.84 | 0.007 0.99
News 36.66 | 0.018 0.97 | 39.65 | 0.027 0.96 | 43.76 | 0.021 0.98
Star Wars 37.48 | 0.025 0.95 | 41.14 | 0.031 0.94 | 43.83 | 0.013 0.99
Silence CIF | 37.88 | 0.01b 0.96 NA NA NA | 39.70 | 0.020 0.96
Toy Story 36.54 | 0.021 0.97 | 39.57 | 0.029 0.97 | 43.95 | 0.013 0.97
Football 37.42 | 0.034 0.95 | 40.69 | 0.041 0.94 | 43.97 | 0.018 0.99
Lecture 35.54 | 0.000 1.00 | 38.48 | 0.000 1.00 | 43.64 | 0.001 0.99

Table 2: Scene quality statistics of long videos for the BL and FGS bit-rates C' = 1 and 2 Mbps

BL only C =1 Mbps | C'=2 Mbps
V| Vimae V| Viae V| Vinae
The Firm 0.06 | 1.83 | 0.16 2.37 1 0.00 1.26
Oprah+com | 0.04 | 12.15 | 0.05 | 11.31 | 0.03 7.32
Oprah 0.00 | 0.36 | 0.00 0.42 | 0.00 1.13
News 0.11 | 3.15 | 0.29 3.17 | 0.12 2.36
Star Wars 0.29 | 8.25 | 0.57 8.83 | 0.13 6.28
Silence CIF | 0.05 | 1.42 | NA NA | 0.25 4.45
Toy Story 0.19 | 9.77 | 0.40 | 11.25 | 0.12 6.23
Football 0.51 | 9.79 1 0.72 | 10.12 | 0.19 6.36
Lecture 0.00 | 0.14 | 0.00 0.20 | 0.00 0.64

Table 3: V and V,,,, statistics of long videos for the BL and FGS bit-rates C' = 1 and 2 Mbps
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BL only C =1 Mbps | C =2 Mbps

PX,© | Pere | PX,0 | Pere | PX,0 | Pore
The Firm -0.71 1.00 | 0.00 0.92 | 052 | -0.18
Oprah+com | -0.20 1.00 | 0.01 0.99 | 0.07 0.83
Oprah 0.42 1.00 | 0.00 084 | -0.04 0.48
News -0.66 1.00 | 0.00 083 | 0.25 0.25
Star Wars -0.47 1.00 | -0.02 0.97 | 0.51 0.67
Silence CIF | -0.80 1.00 NA NA | 0.00 0.53
Toy Story -0.39 1.00 | -0.01 0.98 | 0.16 0.90
Football -0.54 1.00 | -0.02 0.97 | 0.33 0.81
Lecture -0.14 1.00 | 0.00 0.52 | -0.11 | -0.17

Table 4: Scene-based correlation statistics of long videos for the BL and FGS bit-rates C' =1
and 2 Mbps

to the average quality achieved by the other videos. The normalized minimum scene quality
O,,in/0 is very closed to 1 for all videos, more particularly at C' = 2 Mbps. Note that some
scene PSNRs can be artificially high, for example when the scene is very simple (such as a black
screen). Therefore, in order to make our statistics more significant, we limited the PSNRs to
the maximum value of 50 for all videos.

In Table 3, we first observe that Oprah has the smallest quality variability V' at all FGS
rates, whereas the Football video has the largest quality variability for the BL and C' = 1 Mbps.
For most videos, V and V,,,, are both minimum at C' = 2 Mbps. We see, from V., that the
difference in quality between successive scenes can be as high as 12 dB. However, in general,
such a high difference is due to low complexity scenes which can have an artificially high PSNR,
as noted earlier. We expect that a better quality measure than PSNR would not give such
high variations. Still, for most videos, the value of V,,,, is higher than 2 dB at all FGS rates,
indicating that there are significant variations in quality between some successive video scenes.

In the following, we provide plots for the QCIF videos The Firm, Oprah with commercials,
Oprah (without commercials) and News. We first show in Figures 21, 22, 23, 24, 25, 26, 27
and 28, the scene quality achieved as a function of the scene number (04(C')) for the BL and
FGS cutting rates C' = 1 and 2 Mbps, as well as the BL, and BL+EL average encoding bitrates.

As we see, for a given video, the statistics of the BL dictate the statistics of the aggregate
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BL+EL stream. In particular, significant differences between the quality or the coding rate
of successive scenes in the BL remain also in the EL (for instance, we see that the smooth
quality achieved for Oprah with commercials is conserved). At a high FGS rate (C'= 2 Mbps),
the quality achieved by all videos is almost constant for all scenes. In this situation, we may
have reached the maximum encoding rate for all scenes (all scenes are encoded at maximum
achievable quality).

Figure 29 shows the average scene quality achieved by the four videos as a function of the
FGS rate (©(C)). We notice that there is a significant difference between the average quality
achieved by the BL for The Firm or News and the average quality achieved by the BL for Oprah
or Oprah with commercials (around 1 dB). This difference roughly remains at all FGS rates,
indicating that the average quality achieved by a video at all FGS rates strongly depends on
the average quality of the BL. This is confirmed in Figure 32 which shows the coefficient of
correlation between the BL and the BL+EL quality of the scenes as a function of the FGS rate
(pov.e(C)). The correlation decreases slightly with the FGS rate but stays high at all rates.
This is confirmed for most videos in Table 4.

Figure 30 shows the variability as a function of the FGS rate (V(C')). As we see, the
difference in quality between the successive scenes first increases with the FGS rate for The
Firm and News. At high FGS rates the variability starts to decrease because some scenes have
reached their maximum quality (this is confirmed in Table 3 for most videos). For Oprah and
Oprah with commercials the variability stays very low at all FGS rates. Indeed, for these videos,
the VBR-BL encoder has been able to smooth the differences in scene quality almost perfectly,
as we have seen earlier.

Figure 31 shows the coefficient of correlation between the average size and the quality of
the scenes (pg o(C)). Except for Oprah, the coefficient of correlation is negative for the BL
because the BL encoder allocates more bits to the more complex scenes. Then, the coefficient of
correlation globally increases with the FGS rate and become positive for most videos as shown
in Table 4. Indeed, most of the complexity of the diverse scenes has been absorbed by the
VBR-BL and then adding the EL increases the quality of the scenes more evenly. The Oprah
video is a special case: the coefficient of correlation is already positive for the BL and then
decreases with the FGS rate. In this case, the diversity of scene complexity has been almost
totally absorbed by the BL, which explains the very low scene quality variability V' achieved
for Oprah.
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Finally, Figure 33 shows, for each video, the autocorrelation in scene quality pg for the BL
and FGS rates C' = 0, 1 and 2 Mbps. As we can see, for the four videos, the autocorrelation
function for the BL+EL quality follows closely the autocorrelation function for the BL only,
except for Oprah with commercials at C' = 2 Mbps. The difference in autocorrelation at low
lags between Oprah and Oprah with commercials can be explained by the higher diversity of

successive scene types when adding commercials.
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Figure 22: Average encoding bitrate X,/T as a function of scene number s for The Firm

encoded with high quality BL
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Figure 25: Scene PSNR O as a function of scene number s for Oprah without commercials

encoded with high quality BL

5000 | T T T

il .
’l"nlmqrxl. i !m!‘dh‘ P gl N i

il ik RTINF ’M"7‘!!:'1‘vlv“v“ﬂ.vlvll.ql' 0 1
3500 r i i

BL + total EL —+——

4500 BL only -

4000

3000 1
2500

2000 -&

average bitrate in Kbps

1500

1000

500 1 1 1 1 1 1
0 50 100 150 200 250 300 350

scene number - s

Figure 26: Average encoding bitrate as a function of scene number s for Oprah without com-

mercials encoded with high quality BL



quality in PSNR - O4(C)

0 50 100 150 200 250 300 350 400
scene number - s

Figure 27: Scene PSNR © as a function of scene number s for News encoded with high quality
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Figure 28: Average encoding bitrate as a function of scene number s for News encoded with
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7 Conclusion

In this report, we have presented a publicly available library of traces from long MPEG-4 FGS
encoded videos. It is intended to be used by researchers world—wide, in particular in order to
test streaming algorithms with FGS—encoded videos.

A first analysis of the quality of individual images has shown that in order to maximize
the gain in quality brought by the FGS-EL, streaming algorithms should take into account
the internal structure of the MPEG—-4 FGS bitstream. In particular, by prioritizing cutting the
bitstream close to the end of an EL bit—plane, streaming algorithms could maximize the quality
gain achieved by the EL for each image. This may suggests that the streaming algorithm only
cuts the EL bitstream at bit—plane boundaries. However, such an approach does not exploit
the main advantage of FGS—encoded videos over standard layered—encoding methods, namely
the fine—granularity property which provides more flexibility in adapting the video encoding
rate to varying network conditions [7].

Another main result of our analysis is that the EL statistics of individual images and video
scenes depend strongly on the BL statistics — it is then essential to optimize the encoding
of the BL. We have observed that the VBR-BL typically features significant variations in
quality between the different types of successive images and the different scenes. Alternatively,
streaming algorithms could tend to smooth these variations by selecting the FGS coding rate
to stream for each image or each scene accordingly. In a sense, the FGS—EL could also be used
to compensate the flaws of the BL encoding process.

Finally, we have presented a framework for analyzing quality statistics of videos scene by
scene, rather than just considering the quality of individual images separately. We believe that
optimizing the streaming for successive complete visual scenes has the potential to decrease the
complexity of quality optimization procedures when streaming video over best—effort networks,
without significantly decreasing the overall perceived quality. This is what we intend to show

in future work, using the traces that we have generated in this study.
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