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We consider the admission control problem in video servers that retrieve video data from disk
storage. Admission control decides whether or not a new client can be accepted without affecting
the quality of service promised to the already admitted clients. Assuming variable bit rate (VBR)
video streams, we consider an admission control policy that provides statistical service guarantees
and evaluate its performance in terms of the number of clients admitted.
The admission control criterion needs to take into account how the data are retrieved from disk
We assume GCDL retrieval [1] that reads the video data from the disk as several constant size
data blocks. We are the first to introduce and analyze statistical admission control with GCDL
retrieval and to establish the correspondence between GCDL retrieval and ON-OFF sources in
ATM networks.We show that statistical admission control for GCDL, compared to a deterministic
admission control, admits up to twice as many clients with one overload event every few hours of
video server operation.

Keywords: Video server, admission control, disk storage, disk retrieval.

1. Introduction

Video servers store digitized, compressed continuous media information on sec-
ondary or tertiary storage. The secondary storage devices allow random access and
provide short seek times compared to tertiary storage. Video server design differs sig-
nificantly from that of traditional data storage servers due to the large size of the
objects stored and the real-time requirements for their retrieval. The critical resources
in a video server are disk bandwidth, storage volume, and main memory. Given a fixed
amount of these resources, a video server can only deliver a limited number of video
streams simultaneously. Before admitting a new client, a video server must use an
admission control algorithm to check if there are enough resources for serving the
additional client.

The admission control criterion needs to take into account how the data are
retrieved from the disk.
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1.1 Retrieval Schemes in Video Servers

A video server must meet the requirements that stem from the continuous nature
of audio and video and must guarantee the delivery of continuous media data in a
timely fashion. We assume that video information is encoded as avariable bit rate
stream (VBR) of constant quality. VBR requires sophisticated resource reservation
mechanisms for the server and network to achieve a good utilization of the resources
while maintaining a constant quality playback.

1.1.1 Deterministic Constraint Function for VBR Video

To provide deterministic quality of service (QOS) for VBR video, the admission
control must employworst-case assumptionsabout the data rate of the VBR video
when computing the number of streams to be admitted. To offer deterministic service,
we use a traffic model that is deterministic. The so-called empirical envelope presented
in [5] provides a deterministic traffic constraint function for a given video trace. If

 denotes the amount of video data consumed by a stream  in the interval
[t, t + τ], an upper bound on can be given by the empirical envelope function

 that is defined as:

(1)

1.1.2 Round-Based Retrieval Schemes

In the simplest case, continuous playback can be ensured by buffering the entire
stream prior to initiating the playback [4]. Such a scheme, however, requires very large
buffer space and causes a very large start-up latency. Consequently, the problem of
efficiently servicing a single stream becomes one of preventing buffer starvation while
at the same time minimizing the buffer requirement and the start-up latency. A video
server that operates in rounds generally avoids starvation byreading ahead an amount
of data that lasts in terms of playback duration through the next round (see figure 1).
Data retrieval techniques determine the way data is read from the disk during a service
round. Scheduling determines the order in which the requests within a round are
served. Throughout the paper we assume SCAN scheduling that minimizes the seek
overhead between adjacent retrievals.

The admission control scheme considered in this paper allows VCR functions
such as fast forward, reverse, or pause) under the condition that the data rate required
to support these functions isnot higher than the data rate for normal playback.
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Using VBR as data model for a video, one can map video data ontodata blocks
(segments)stored on the disk in two ways:constant time length (CTL ) andconstant
data length (CDL ) [2]. Throughout the paper we assume CDL retrieval. For a com-
parison between CDL and CTL see [3].

Constant data length (CDL) retrieval performsnon-periodic retrieval ofconstant
amounts of data from the disk (see figure 2). To make CDL compatible with round-
based disk retrieval, we introduce the restriction that the distances between retrieval
operations must bemultiples of a service round , which will yield a sequence of
active andidle rounds. During an active round, aconstant size data block is read from
the disk. Since the data must always (even in the worst case) be sufficient to supply the
client with sufficient video data during the following round, the (fixed) size of the data
block retrieved is of size . During an idle round, no data at all is retrieved. The
decision, whether a round will be active or not, can be made on-line: If there is still
enough data in the buffer for the current and the next round, the current round is idle,
otherwise it must be active.

Time
Service round τ

Figure 1. Sequence of service rounds with SCAN scheduling

Stream B

Stream C

Stream A

Data transfer

τ

εi τ( )

Time

Data
length

Service round τ

Figure 2. Constant data length retrieval
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1.2 Generalized CDL

1.2.1 Introduction

Traditionally, the papers on periodic retrieval schemes have assumed that

• thedisk service round, during which data for each stream are read exactly once
from disk, and

• thesmoothing interval, for which we compute the peak consumption rate

have thesame length.

We have recently proposed [3] to distinguish the two and to make the smoothing
interval amultiple of a disk service round. In detail, GCDL retrieval works as follows:

• The disk scheduling and retrieval still proceeds in rounds of lengthτ.

• However, we use a set  of smoothing intervals with . To
avoid starvation, we require that the amount of data retrieved for stream  from
the disk during each interval  must last for at least a period of . The smooth-
ing interval duration  is an integer multiple  of the disk service round dura-
tion τ (see figure 3).  being the deterministic upper bound on the amount of
data retrieved for stream  during any period , we require that the amount of
data retrieved during any of the  disk service rounds is the same,
namely .

The separation of disk service round and smoothing interval reduces thepeak
consumption rate defined as . We see from figure 3 that the peak consump-
tion rate decreases with increasing . GCDL gives the possibility to choose an optimal
smoothing interval for each stream, which significantly reduces the buffer demand and
the start-up latency while admitting the same number of clients.

A sequence of  consecutive disk service rounds where data for stream  are
retrieved is also called anactive CDL round. When during  consecutive disk ser-
vice rounds no data are retrieved, that sequence is called anidle CDL round  (see fig-
ure 3).

During an active CDL round a fixed amount  of data is read, during an idle
CDL round no data is read. Note that , i.e. the amount of data that
must be retrieved during an active disk service round becomes smaller, since increas-
ing the smoothing interval  reduces the peak consumption rate. Therefore, the
smoothing effect gets stronger and less disk bandwidth is wasted. As the worst-case
server load  becomes smaller, less disk bandwidth must be reserved for that
particular stream.
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In the following, we will refer to the CDL retrieval where smoothing intervals and
disk rounds have the same length ( ) astraditional  CDL. When smoothing inter-
vals and disk rounds have different length ( ), the scheme is referred to asgener-
alized CDL (GCDL) retrieval. The traditional CDL can be regarded as a special case
of GCDL with .

2. Admission Control Strategies

Because of its limited resources in terms of buffer space and disk bandwidth, a
video server needs to decide for each new client whether an additional multimedia
stream can be admitted without degrading the quality of service (QoS) of all other cli-
ents that are already admitted. Two major service models are:

• Deterministic: In order to assure a deterministic service without any loss or delay

Figure 3. Peak consumption rate  for 4 different videosε i τ( ) τ⁄
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of frames at any time, the admission control algorithm considers only worst-case
scenarios before admitting a new client. Deterministic service for VBR traffic
results in a very inefficient allocation of resources.

• Statistical: The decision whether a new client will be admitted or not depends on
the overload probability that all clients (admitted and new ones) are willing to
accept. This service models achieves a much more efficient resource utilization
than deterministic service. The deterministic case can be regarded as a special
case with an overload probability of zero.

2.1 Deterministic Admission Control for GCDL Retrieval

The number of streams admitted is limited by the length of a disk service round,
the available buffer space and the disk bandwidth. If we assume that the buffer space is
not a scarce resource, the admission control criterion for GCDL, when SCAN schedul-
ing is used, is given by [1]:

(2)

In this formula  bit/s denotes the disk bandwidth,
bit equals the capacity of a single cylinder and  ms,  ms and

 ms denote the track-to-track seek time, the rotational latency and the
maximum seek time for a complete scan over the entire disk, and  denotes the num-
ber of disk service rounds within a single CDL round.

2.2 Statistical Admission Control for GCDL Retrieval

A deterministic service can be assured at any time during the playback by using
theworst case traffic characterization, given by , for the admission control crite-
rion. Deterministic service results an inefficient use of the server’s resources, such as
disk bandwidth and buffer space. Figure 5 shows histograms of a client’s data con-
sumption per stream during a CDL round of 4 sec for 18 different video traces1. Obvi-
ously, during the majority of all CDL rounds, a client consumes much less video data
than the envelope function  (worst-case consumption) suggests, i.e. in most
rounds the server allocates much more bandwidth than necessary. Therefore, a high
number of CDL rounds will beidle.

1 The video traces were produced by O. Rose using a MPEG 1 codec and are available via ftp anony-
mous on the machineftp-info3.informatik.uni-wuerzburg.de in the directory/pub/MPEG.

εi τi( )
mi

-------------- rdisk
1–⋅

i 1=

n

∑ εi τi( )
mi

-------------- ccyl
1–⋅ ttrack⋅

i 1=

n

∑ n ttrack trot+( ) tseek+⋅+ + τ≤

rdisk 24 106⋅= ccyl 4 106⋅=
ttrack 1.5= trot 11.11=

tseek 20.0=
mi

εi τi( )

εi τi( )



7

2.2.1 Statistical Traffic Characterization

To provide statistical service guarantees, a video server needs a precise statistical
traffic characterization that is used to compute the probability of a server overload,
which is defined as the probability of the occurrence of a situation where the video
server cannot assure the timely delivery of all requested media data to all clients.

If a GCDL round is active,  constant data blocks of size  are retrieved
from the disk during  consecutive disk service rounds. This allows us to describe
the retrieval behavior for all disk service rounds by aCDL sequence
with  depending whether this disk service round is idle or active. If
denotes theaverage bit rate of stream , theprobability of an active round  is
given by

(3)
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The process that produces such a CDL sequence will be called aCDL process. In
this section we present an analysis of CDL processes that introduces an efficient
method for calculating the overload probabilities.

The objective of the characterization of the CDL process is to capture its mathe-
matical properties in order to get a correct approximation of its behavior. The first step
is to test if the CDL process has the same characteristics as a memoryless Poisson pro-
cess. In this case, the On-Off nature of CDL retrieval would allow for a direct applica-
tion of the binomial distribution to model simultaneous CDL processes. For that
purpose we check for video stream , whether equation (4) is fulfilled:

(4)

The results can be seen in figure 6 for a set of four different videos with a lag
between 1 and 25.

Obviously the CDL process differs from an ideal Poisson process for small lags
since there are always consecutive active or idle disk service rounds. On the other
hand, as  increases, we see that the conditional probability  con-
verges to its mean value. This analysis tells us that the considered CDL process is not
memoryless. However, we can also conclude that it can be regarded as approximately
memoryless for , i.e. under the assumption that two clients of the same video
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watch at the same instant of time parts of the video that are at least 10 disk service
rounds apart. Since in reality this assumption normally holds true, the retrieval opera-
tions of these two streams that take place within the same disk service round can be
regarded as independent even for the same video. Furthermore we assume that two
CDL sequences obtained from two different videos are fully independent.

As our simulations showed, the binomial distribution delivers a very good approx-
imation for the distribution of the number of active streams during any round (see fig-
ure 7). Interestingly, the binomial distribution produces an estimation of the overload
that yields values slightly higher, i.e. is more conservative, which assures that we do
not underestimate the actual overload probabilities.

Furthermore, we see that the Gaussian distribution proposed by Vin [7] does not
properly approximate the behavior obtained in our simulation. In particular, in the
probability range of interest the Gaussian distribution commits an average error of one
stream. We also see that the Gaussian distribution is not conservative, i.e. for a certain
number of streams yields a lower number of concurrent requests than the actual value
obtained in our simulations. Therefore, the overload probability will beunderesti-
mated when using the Gaussian distribution. If we compare the plots for 20 and 80
streams, respectively, we see that Gaussian approximation gets better for a higher
number of streams due to the central limit theorem.

Using the Binomial distribution, the probability of  active rounds for  homoge-
neous streams  is then given by

(5)

Figure 7. Comparison of simulations to the binomial distribution and the Gaussian distribution.
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Note that this calculation is equivalent to histogram convolution using a histogram
that contains only two values.

2.2.2 Overload Probability for Homogeneous Streams

If all clients request the same video (homogenous case), the maximum number of
parallel requests that can be served during one disk service round is equivalent to the
maximum number of simultaneous streams in the deterministic case , and can be
stated as follows (see Eq (2)):

(6)

An overload event will occur when more than  streams are active during the
same disk service round. Therefore, we compute the overload probability  as:

(7)

2.2.3 Overload Probability for Heterogeneous Streams

In the heterogenous case, where different clients request different videos, the prob-
abilities can be calculated byhistogram convolution. The histogram of a stream
contains only two values that are non-zero, namely the probability  of an idle
round, where no data are read, and the probability  of an active round, where

 data are read. However, we also need to take into account the overhead that
occurs when reading the data for a stream2, which amounts to . For this
purpose, we assume that the amount of data to be read during an active round is

 instead of . Therefore, the characteristic
data rate histogram  for stream  is defined as follows:

•

• .

• All the other values of  are zero.

2 We assume that two track-to-track seek operation occur when reading the data for a stream: One
during the retrieval of the stream’s data block and another one when the server switches from one stream to
the next. In our simulations this simplification has no influence on the results since the capacity of a disk cyl-
inder is always larger than the size of a data block for all considered  and , i.e. .
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The characteristic server load histogram after the admission of the (n+1)-th stream
 can be computed by convolving theserver load histogram  with the histo-

gram of the newly requested video, . The result  is a histogram whose k-th
element is given by:

(8)

If the random variable  denotes the server load during a disk service round, the
probability of a server overload  is obtained by computing the tail of

 beyond the maximum data rate :

(9)

 is the maximum amount of data that can be retrieved during a single disk ser-
vice round .  can be defined as the product of the time available for data transfer
and the disk’s transfer rate:

(10)

Having given the formulas for computing the overload probabilities, we are now
evaluating the performance gains due to statistical admission control. We assume the
use of a single disk with the parameters given in 2.1 and the video traces given in 2.2.

2.2.4 Performance Comparison for Homogeneous Streams

In the following, we will restrict our evaluation of statistical admission control of
GCDL to the homogeneous case. The number of admitted streams is given for differ-
ent overload probabilities ,  and , where  denotes the number of
streams that can be admitted without exceeding an overload probability of . For
example, an overload probability of  means that on the average every -th disk
service round an overload occurs. For s, this is equivalent to an overload event
every 2.8 hours. The values are compared to the following results of deterministic
admission control:  denotes the maximum number of admitted streams for deter-
ministic GCDL retrieval as given in Eq (6).

To compare the deterministic and the statistical admission control, we use the gain
, which is defined as the improvement in terms of the number of streams admitted

in the statistical case when compared to the deterministic case:

(11)
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The results for the homogenous case are summarized in table 1. We note that the
gain to be achieved by a statistical service depends on the mean bit rate

 of a video. The range of the gain varies widely, going from 0%
for the video ’Race’ up to 89% for ’Lambs’.

However, there is no linear dependence between the mean bit rate and the gain:
For instance, the ’Terminator’ trace achieves a lower gain than ’Movie2’ although
’Terminator’ has a lower mean bit rate. We observe that the highest gain is obtained for
a stream  in which both,

• the probability  of an active round and

• the peak consumption rate

aresmall (see figure 8).

Table 1: Statistical admission control for GCDL data retrieval (homogeneous case)

This table shows the results of statistical admission control for different
videos and s, s, and bit/s. The videos
are sorted in increasing order of their mean bit rate.

Video

Det.
adm

Statistical
admission

[Mbit/s]
[Mbit/s]

Lambs 19 36 0.89 0.85 0.24 0.22

StarWars 17 28 0.65 0.97 0.27 0.28

Terminator 25 29 0.16 0.57 0.54 0.33

Movie2 16 20 0.25 1.04 0.39 0.43

News 10 15 0.50 1.89 0.23 0.46

MrBean 10 13 0.30 1.75 0.28 0.53

Simpsons 13 15 0.15 1.33 0.40 0.56

MTV2 8 11 0.38 2.47 0.22 0.59

Asterix 11 12 0.09 1.61 0.39 0.67

MTV 7 8 0.14 2.53 0.27 0.74

Fuss 11 11 0.00 1.66 0.46 0.81

Race 9 9 0.00 1.98 0.44 0.92
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Our observation is in conformance with what has been defined asstatistical mul-
tiplexing gain for ATM nodes [6]. Figure 9 illustrates the ‘classical wisdom’ of statis-
tical multiplexing.

In order to achieve a high statistical multiplexing gain:

• Theburstiness  of a stream, which is defined as the ratio between peak rate and
average rate, must be high. In our case, the ratio of the peak rate and the average
rate is given by , i.e. the burstiness is inversely proportional to  and takes
values between 2 and 4.

• The number of streams must be large, i.e. the peak rate of any individual stream
should be low with respect to the link rate. In our case, the link rate corresponds to
the disk bandwidth and the peak consumption rate of stream  to .

Figure 8.  and  as function of  and
All computations were done for s, s, and
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When reading from disk, a significant overhead occurs due the required head
movement and disk rotation between read operations that does not have an equiv-
alent in the model of the service of an ATM node. Therefore, we must use
as value for the ratio of peak rate to link rate.

In table 2, we have increased the disk transfer rate by a factor of four compared to
the value used in table 1.

Increasing the disk rate results in higher values for , which means that the
ratio of the peak rate of a stream to the disk rate will become smaller, while the bursti-
ness of a stream remains unchanged. For small values of burstiness, as is our case, the
slope of the curves for the gain is quite flat (see figure 9), the increase of the gain
is modest. The gain obtained is now between 0.33 and 1.41, as compared to values
between 0.0 and 0.89.

Table 2: Statistical admission control for GCDL data retrieval (homogeneous case)

This table shows the results of statistical admission control for different
videos and s, s, and bit/s. The disk
transfer rate was increased by factor of four compared to table 1.

Video

Det.
adm.

Statistical
admission

[Mbit/s]
[Mbit/s]

Lambs 41 99 1.41 0.85 0.24 0.22

StarWars 39 84 1.15 0.97 0.27 0.28

Terminator 48 62 0.29 0.57 0.54 0.33

Movie2 34 60 0.58 1.04 0.39 0.43

News 28 64 1.29 1.89 0.23 0.46

MrBean 29 56 0.93 1.75 0.28 0.53

Simpsons 34 52 0.53 1.33 0.40 0.56

MTV2 23 49 1.31 2.47 0.22 0.59

Asterix 30 45 0.50 1.61 0.39 0.67

MTV 23 42 0.83 2.53 0.27 0.74

Fuss 30 40 0.33 1.66 0.46 0.81

Race 27 36 0.33 1.98 0.44 0.92
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2.2.5 Performance Comparison for Heterogeneous Streams

We also simulated the heterogeneous case, where clients request videos out of a
set of three different videos. For each triple of videos, we computed the number of
streams admitted under deterministic and the statistical admission control. We
assumed that videos are requested in a round-robin fashion, i.e. client  requests video

. New clients are admitted in a round-robin fashion as long as the
overload probability is smaller than . Our results are summarized in table 3. For
the heterogeneous case, statistical admission control yields similar improvements as in
the homogeneous case. The gain obtained always lies somewhere between the gains
we observe for the considered videos in the homogeneous case. The same holds for the
number of admissions in the deterministic and the statistical case, i.e. an estimation of
the performance in the heterogeneous case can easily be obtained using the results
from the homogeneous case. However, the gain in the heterogeneous case is not sim-
ply the mean of the three gains obtained in the homogeneous case, since a gain of a
video with a large retrieval block size  will have a stronger impact on the
gain in the heterogeneous case than a video with a small retrieval block size.

Table 3: Statistical admission control for GCDL data retrieval (heterogeneous case). This table shows the

results for different videos and s and s.

Videos

Det.
adm.

Statistical
admission

[bit/s]

Lambs, StarWars, Terminator 19 29 0.53

Movie2, News, MrBean 11 15 0.36

Simpsons, MTV2, Asterix 10 12 0.20

MTV, Fuss, Race 9 10 0.11

[bit/s]

Lambs, StarWars, Terminator 42 78 0.86

Movie2, News, MrBean 31 59 0.90

Simpsons, MTV2, Asterix 28 49 0.75

MTV, Fuss, Race 26 39 0.50

i
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εi τi( ) mi⁄

τ 1= τ i 4=

Ndet
N

10
4– G

10
4–

rdisk 24 106⋅=

rdisk 96 106⋅=
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2.3 Conclusion

We have introduced a statistical admission control criterium for GCDL data
retrieval and evaluated the improvement in terms of additional streams admitted com-
pared to the case of deterministic admission control. We also established the corre-
spondence between the CDL retrieval process and the On-Off process used to model
ATM data streams, which allowed us to use the results about the statistical multiplex-
ing gain in ATM nodes to explain and predict the performance improvements obtained
for the statistical admission control criterium applied to the data retrieval from disk.
For very low overload probabilities in the order of one overflow round within 2.8
hours, the maximum number of streams can be significantly increased when using sta-
tistical admission control.

References

[1] E. W. Biersack, F. Thiesse, and C. Bernhardt. Constant data length retrieval
for video servers with variable bit rate streams. InIEEE Conf. Multimedia Sys-
tems, pages 151–155, Hiroshima, Japan, June 1996.

[2] E. Chang and A. Zakhor. Admission control and data placement for VBR vid-
eo servers. InProceedings of the 1st International Conference on Image Pro-
cessing, Austin, Texas, November 1994.

[3] J. Dengler, C. Bernhardt, and E. W. Biersack. Deterministic admission control
strategies in video servers with variable bit rate streams. In B. Butscher,
E. Moeller, and H. Pusch, editors,Interactive Distributed Multimedia Systems
and Services, European Workshop IDMS’96, Berlin, Germany, volume 1045
of LNCS, pages 245–264. Springer Verlag, Heidelberg, Germany, Mar. 1996.

[4] D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A. Rowe. Mul-
timedia storage servers: A tutorial and survey.IEEE Computer, 28(5):40–49,
May 1995.

[5] E. W. Knightly, D. E. Wrege, J. Liebeherr, and H. Zhang. Fundamental limits
and tradeoffs of providing deterministic guarantees to VBR video traffic. In
Proceedings Sigmetrics ’95 / Performance ’95, volume 23 ofPerformance
Evalution Review, pages 98–107, Ottawa, Canada, May 15-19 1995.

[6] D. E. McDysan and D. L. Spohn.ATM: Theory and Application. McGraw Hill,
New York, 1995.

[7] H. M. Vin, P. Goyal, A. Goyal, and A. Goyal. A statistical admission control
algorithm for multimedia servers. InProceedings of the 2nd ACM Internation-
al Conference on Multimedia, San Francisco, CA, October 1994.


