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Space-Time Characteristics of ALOHA Protocols in
High-Speed Bidirectional Bus Networks
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Abstract—We study the space-time characteristics of ALOHA
multiple-access protocols in bidirectional bus networks where
transmissions are in the form of packets of constant length.
For point-to-point communications, the maximum throughput of
unslotted ALOHA is known to be 1/(2¢), independent of station
configuration. We show that, with a uniform probabilistic station
configuration, the maximum throughput of slotted ALOHA tends
to a nonzero constant that is less than 1/(2¢), when a, the end-
to-end propagation delay normalized with respect to the packet
transmission time, tends to infinity. However, when N stations
are evenly spaced on the bus, the maximum throughput of slotted
ALOHA vanishes as a tends to infinity. For broadcast commu-
nications, the maximum throughput of slotted ALOHA is well
known to be 1/{e(1+a)}. For unslotted ALOHA, we show that, if
the offered load intensity is constant along the bus, the maximum
broadeast throughput achievable by a station varies along the bus
and is maximized at its center. We also derive the optimal profile
of the offered load intensity for achieving a constant throughput
intensity. In both cases, the maximum broadcast throughput is
greater than that derived by conventional analysis.

I. INTRODUCTION

HE ALOHA protocol, which is the first and simplest

contention-based multiple-access protocol, may either be
asynchronous or require packet transmissions starting only
at the beginning of fixed-length time slots [1], [2]. The
former version is known as unslotted ALOHA, and the latter
slotted ALOHA. In this paper, we present the space-time
characteristics of both slotted and unslotted ALOHA protocols
in bidirectional bus networks where transmissions are in the
form of packets of constant length. We assume that the bus
is of unit length and has perfectly nonreflecting terminations
at both ends. We consider both point-to-point and broad-
cast communications. For point-to-point communications, each
transmission is designated for successful reception by exactly
one station. For broadcast communications, each transmission
must be successfully received by all stations.

A bus network is often specified by a parameter a, which
denotes the end-to-end propagation delay normalized with
respect to the packet transmission time [3]. The end-to-end
propagation delay for a bus of length D meters is given by
D /v, where v is the propagation velocity in meters per second.
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Let W be the data rate of the channel in bits per second, and B
the packet length in bits. Then, a = DW/(vB). With the bus
length normalized to 1, we focus our attention on the change
of a due to variations in the packet length or data rate. The
normalization does not affect the final results. Without loss of
generality, we let positions on the bus be specified with respect
to the center of the bus, so that any position must fall within
the range [—1/2,1/2]. We are particularly interested in high
speed bidirectional bus networks where a > 1. We will not
consider carrier sensing since it is known to be inefficient for
contention-based multiple-access protocols for this case [4].

The bidirectional bus is a possible configuration for high-
speed all-optical networks using optical amplifiers to com-
pensate fiber and coupler losses. Although fiber is largely
a unidirectional medium, one can implement a high-speed
bidirectional bus network using two unidirectional buses with
signals propagating in opposite directions, and each transmit-
ter/receiver pair attached to both buses for cost saving (e.g.,
see [S]-[7]). In these networks, a can be significantly greater
than 1.

When propagation delay is negligible, as conventionally
assumed, there is no difference in the performance of the
ALOHA protocols between point-to-point and broadcast com-
munications. The vulnerability of a transmission is simply
characterized by the time interval over which any other packet
transmitted could cause a collision. During this time interval,
the vulnerable period, the given transmission is vulnerable
everywhere on the bus [1], [3]. There is also no difference
in performance between point-to-point and broadcast commu-
nications when there is a central repeater, as in satellite and
some packet radio networks.

The effect of propagation delay on the performance of
ALOHA systems was not recognized initially, even though that
on CSMA systems was investigated as early as in 1975 [3].
It was later shown in [8] that propagation delay may actually
stabilize the ALOHA systems. In [9], Maxemchuk showed that
for unidirectional bus networks, slotted protocols are always
more efficient than unslotted protocols, even when propagation
delay is taken into consideration. We show a different result
for bidirectional bus networks.

The spatial properties of the ALOHA protocol were first
studied by Abramson, who analyzed the spatial densities of
traffic and throughput in a packet radio broadcasting network
with capture [10]. The space-time behavior of the ALOHA
protocol on bus networks was reported in [6], [7], [9], and
[11]. Gonsalves and Tobagi conducted a simulation study of
the effects of station locations on the broadcast performance
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of Ethernet type bus networks using the CSMA/CD protocol
[12]. They observed that, with stations uniformly distributed
along the bus, those near the center of the bus obtain better
performance than those near the ends. We confirm the above
behavior analytically for unslotted ALOHA.

Due to propagation delay, packets transmitted in different
directions may overlap nondestructively. When this occurs, we
say that there is channel reuse [11], [13]. Allowing for channel
reuse, point-to-point transmissions are generally less demand-
ing on channel resources than broadcast transmissions, and
one expects the former to have better throughput performance.
Although such distinction was previously explored in [6] and
[7], it is seldom emphasized in the literature because the
difference is insignificant in networks with small propagation
delays.

The analysis of multiple-access protocols in bus networks
makes extensive use of space-time diagrams. They were used
in [14] and [15] for deterministic analysis of a token bus net-
work and of demand assignment multiple-access bus networks,
respectively. They were also used in stochastic models for
the analysis of CSMA protocols in bidirectional bus networks
[16]-[20], and in star-like networks [21].

In [17], offered load was characterized by a load intensity
function, which is an adaptation of the traffic density function
originally defined by Abramson [10]. We also use the load
intensity function in our space-time models.

In a bidirectional bus network where channel reuse is possi-
ble, vulnerable time periods do not adequately characterize the
vulnerability of transmissions. We need to consider space-time
vulnerable regions instead. A vulnerable region associated with
a specific transmission is the space-time region over which any
other packet arriving at the network could cause a collision.
The size of the vulnerable regions is a limiting factor on the
performance of a contention-based protocol. In general, the
larger the size of the vulnerable regions, the smaller is the
probability of success of each transmission. One notion of
the vulnerable region was developed by Sohraby et al., where
the region is defined with respect to “idle points” and a is
constrained to be less than 0.5 [16]-[18]. We make use of a
notion of the vulnerable region that is defined differently and
that requires no upper limit on a. As the vulnerable region
associated with a transmission depends on the location of the
source and destination, the throughput of the system depends
on the traffic pattern.

Levy and Kleinrock used a space-time model in [6] and [7]
to study the behavior of a high-speed bidirectional bus network
where there are N evenly spaced stations and a = (N —1). In
their model, every transmission from a station is vulnerable to
transmissions from every other station, as their definition of a
slot is different from ours. We provide a throughput analysis
that is valid for a > (N — 1).

We discuss slotted ALOHA and unslotted ALOHA in
Section II and Section III respectively. In each case, we first
specify our ALOHA model, and review the basic results from
conventional throughput analysis. We then examine the space-
time characteristics of the protocol, and present some new
results on maximum throughput. We show how maximum
throughput depends on the offered load intensity. For slotted
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ALOHA, we show that, with a uniform probabilistic station
configuration, the maximum point-to-point throughput tends
to a constant when a tends to infinity. Nevertheless, with a
deterministic station configuration where NN stations are evenly
spaced on the bus, the point-to-point throughput of slotted
ALOHA vanishes as a tends to infinity. For unslotted ALOHA,
we show that if the offered load intensity is constant along
the bus, the maximum broadcast throughput achievable by a
station varies along the bus and is maximized at its center. We
also derive the optimal profile of the offered load intensity for
achieving a uniform throughput intensity.

II. SLOTTED ALOHA

In this section, we study the slotted ALOHA protocol in a
bidirectional bus network. Time is divided into slots of length
(1 + a) units of packet transmission time. Our definition of a
slot is different from that in [6], [7], and [9], but consistent with
[1] and [2] where a slot is the duration of time during which the
transmission of a packet is in progress in the network. While a
was assumed to be small in [1] and [2], we allow it to be large.
A packet arriving at a station during a slot is transmitted at
the beginning of the following slot, and is completely received
by the designated station before the end of the same slot. We
summarize our slotted ALOHA model as follows:

o large population of users located along a bus of unit
length;

« synchronous transmissions at discrete points in time with
period (1 + a) units of packet transmission time;

o offered traffic including retransmissions is a memoryless
random process, and is characterized by an offered load
intensity function;

« statistical equilibrium.

A. Conventional Analysis

Conventional analysis of slotted ALOHA without channel
reuse is based on the assumption that a transmission in a given
slot is successful only if there are no other transmissions within
the same slot. Let N be the number of stations on the bus. Let
G be the average offered traffic per slot, in packets per packet
transmission time. The offered traffic is assumed to be uniform
across all stations. By symmetry, each station is active during
a slot with probability (1 + a)G/N. Thus, the probability of
success is

G N-1
Pa(G):{l—(1+a)N} fora>0. (1)

The throughput is then S,(G) = G - Pa(G). For large
N, S.(G) = Ge~(+9)¢ whose maximum with respect to

G is
. 1 1
S = (1+a)z

The above analysis applies to both point-to-point and broadcast
communications. Note that S¥ vanishes as a tends to infinity.
When channel reuse is taken into consideration, we reach a
different conclusion, depending on the station configuration,
for slotted ALOHA with point-to-point communications.

for a > 0. 2)
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Fig. 1. Totally and potentially destructive collisions. (a) Totally destructive
collisions. (b) Potentially destructive collisions.

B. Space-Time Characteristics

For broadcast communications with a > 0, and point-to-
point communications with 0 < a < 1, the entire previous slot
is the vulnerable region. Hence, the maximum throughput is
the same as that derived by conventional analysis. For point-to-
point communications with a > 1, a vulnerable region may be
considerably smaller than a whole slot. We show that the point-
to-point throughput of slotted ALOHA does not necessarily
degrade indefinitely as a becomes very large.

In Fig. 1, we show how two simultaneously transmitted
packets may collide destructively in the same time slot. We
call the inverted V-shaped space-time region covered by a
transmission a transmission region.

In the case of Fig. 1(a), two transmitting stations are within
(1/a)~ units of distance from each other, where

(*)” = min(x*, 1).

3)

There is a totally destructive collision since no station can
successfully receive the transmission. The spatial interval, in
which no other transmission may originate without causing
a totally destructive collision, is called a totally vulnerable
interval. Let the length of the interval be W,(x) where z is
the position of the transmitting station [see Fig. 1(a)]. Then,

we have
Wa(z) = (%)‘

In the case of Fig. 1(b), two transmission regions cross each
other, and there is a potentially destructive collision. The colli-
sion is nondestructive if neither of the two designated receivers
is located within the spatial interval where the transmission
regions cross each other. This spatial interval is (1/a)~ units
long. The spatial interval in which no other transmission may
originate without causing a potentially destructive collision is
called a potentially vulnerable interval. It does not exist if y,
the position of the receiving station, falls outside the following

range [see Fig. 1(b)]:
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Fig. 2. Vulnerable regions for slotted ALOHA.

In Fig. 2, we show a typical transmission, and its cor-
responding totally and potentially vulnerable regions, which
are, respectively, specified by the totally vulnerable inter-
val, [L(z), R;(z)], and the potentially vulnerable interval,
[Lp(x’ y)’ Rp (.’E, y)] where

Re(z) = min { (x + é) , %} ©)
Lt(m):max{(m-§>,—%} @)

1

Rp(x,y)=max{min{<2y—x+%),§}, }(8)
Lytey) = min {max{ (20 -2 - 1) =3} Lo

2
Note that R,(z,y) = Ly(z,y) when y falls outside of Y. ().
Let X.(z) denote the length of the totally vulnerable inter-
val, and Z,(z,y) that of the potentially vulnerable interval.
Then, it can be verified that

1

2
1

2

X.(z) = Re(z) — Le(z) < (g) ) (10)
and
Zua ) = Rylog) ~ Ly(o) < (2 forye Ve
an

Note that for a > 1, end effects are negligible, and the above
relations hold with equality (see Fig. 3). From (5), we see that
1 1} 1 1
1(=3)3(2))
and the length of Y,(z) tends to 1/2 as a tends to infinity.
We refer to the union of the vulnerable intervals as the
vulnerable interval-set, and the union of the vulnerable regions
as the vulnerable union. The larger the size of the vulnerable
union, the smaller is the maximum throughput of slotted
ALOHA.

lim Y,(z) =

a—o0

(12)
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Fig. 3. Vulnerable intervals for a >> 1.

C. Maximum Point-to-Point Throughput

We consider two kinds of station configurations. In the uni-
form probabilistic station configuration, each packet originates
at a randomly chosen point, and the configuration represents
a large number of stations uniformly distributed on the bus.
In the deterministic station configuration, the location of each
station on the bus is fixed. A special case of the deterministic
configuration is the regular bus network, in which the distance
between any two adjacent stations is a constant.

1) Uniform Probabilistic Station Configuration: We  con-
sider slotted ALOHA in a bidirectional bus network with
a uniform probabilistic station configuration where a > 1,
and show that it is less efficient than unslotted ALOHA for
point-to-point communications.

Let g(x,y) and S,(z,y) respectively denote the offered
load intensity and the point-to-point throughput intensity for
transmissions from position z to position y. Let g(z) be
the offered load intensity for transmissions originating from
location z. By definition, we have

1/2
g(x) = / 29(30,1/) dy. (13)

Let the aggregate throughput that depends on g(z,y) be

1/2

1/2
S = lim S, = lim / Sa(z,y) dy dz.
—1/2J-1/2

(14)
We characterize S*, the maximum of S, in Theorem 1 for two
different cases.
Theorem 1:
Case 1—Constant Offered Load Intensity: If g(z,y) is
constant for all z and y in [—1/2,1/2], then
S* = 0.1304. (15)

Case 2—Constant Throughput Intensity: If Sa(z,y) is
constant for all z and y in [—1/2,1/2], then

S* =0.1167. (16)
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Proof of Theorem 1: Let B,(x,y) represent the vulnera-
ble interval-set. Then, the spatial intensity of the probability
of success for transmissions from position z to position y is

Pa(m,y):exp{—/ . )(1+a)g(z)dz}. (17
2€ Ba(z,y

Consider a >> 1. Using Figs. 2 and 3, it is easy to verify that
lim P.(z,y)

_ {exp(—2g(ﬂ:) —29(2y—x)) if-3<Qy-2)<3
exp(—2g(x)) otherwise.

(18)

The point-to-point throughput intensity for transmissions from
position z to position y is

Sa(z,y) = g(z.y) Pal, y)-
From (18) and (19), we obtain S,(z,y) as follows, for a > 1:
Sa(z,y) =

(19)

g(z,y) exp(~2g(z) ~29(2y — ) f§-F<y<$F+g
g(z,y) exp(—2¢(z)) otherwise.
(20)
Case 1—Constant Offered Load Intensity: Suppose  that
g(z,y) = G. From (20), we obtain
: Ge™C ifg-1<y<$+g
Jim_ Sa(=, y) = {Ge“ZG otherwise. 2D

From (14) and (21), we obtain the following aggregate
throughput:
G
S = E{e—ZG + e74CY. (22)

The maximum of S with respect to G is numerically deter-
mined to be 0.1304, and this is achieved with G = 0.38.

Case 2—Constant Throughput Intensity: Since Sa(z,y) is
constant, g(z,y)Pa(z,y) is independent of z and y. We
show that there exist two constants, o and (3, such that the
assignment

9(z,y) = {

e 1 1
a if-5<2y—2<3

B otherwise. (23)

leads to a constant S,(z,¥).
Equation (23) implies that g(x) has a constant value G that
relates to o and 3 as follows:

(24)

1/2
9(‘”):/ 2g($,y)dy=%(a+ﬁ)=g

From (20), (23), and (24), and requiring g(=, y)Pa(z,y) to be
constant, we obtain

4G _ ﬂe_ZG.

S.(z,y) = ae” 25)

Hence,

—-2G

[ =ae (26)
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We thus obtain two simultaneous equations, (24) and (26),
from which we can solve for a and (3. Using additionally (14)
and (25), we obtain

2Ge 4G

§= 28
1+e2C

@7
The maximum of S with respect to G is numerically deter-
mined to be 0.1167, and this is achieved with G = 0.30. O

Note that for 0 < a < 1, there is no channel reuse, and
the maximum throughput of slotted ALOHA is the same
as in (2). For a > 1, S < S7 = 1/(2e), which is
the maximum throughput of unslotted ALOHA (see Section
IITI-A2). We have thus shown that slotted ALOHA, as we have
defined it, is less efficient than unslotted ALOHA for point-to-
point communications in a very high speed bidirectional bus
network. This interesting result is analogous to a result for
CSMA protocols in Molle et al. [17].

2) Deterministic Station Configuration: For a bidirectional
bus network with deterministic station configuration, each of
the stations along the bus may transmit at most one packet in
any period of length (1 + a). Moreover, by considering only
totally vulnerable intervals, one can show that the maximum
possible number of successful synchronous transmissions can-
not exceed (1 + a). Hence, when there are /V stations, an
upper-bound on the maximum point-to-point throughput of
slotted ALOHA is

(28)

S;S(L) <1 fora>0.
1+a

The bound in (28) is valid for any station configuration. We
don’t observe the factor N/(1 + a) in Theorem 1 because,
in the case of uniform probabilistic station configuration, the
number of synchronous transmissions that one may squeeze
on the bus implicitly grows as a increases.

We now consider the case where N stations are evenly
spaced on the bus and a > (N — 1). We number the stations 1
through N from one end of the bus to the other. Let G(m, n)
and S,(m,n) respectively denote the offered load intensity
and the point-to-point throughput intensity from station m to
station n. We assume that G(m,m) = 0. Let G(m) be the
offered load intensity for transmissions from station m. By
definition, we have

(29)

(30)

We characterize SZ, the maximum of S,, in Theorem 2 for
two different cases.
Theorem 2:
Case 1—Constant Offered Load Intensity: If G(m,n) is
constant for any m # n, then

S*:l N <1
2 2\14+a/ — 2

fora>(N—-1). (3D
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time slot

@ potentially destructive collision

O collision-free

Fig. 4. A very high-speed regular bus network.

Case 2—Constant Throughput Intensity: If Si(m,n) is
constant for any m # n, then

Sy = 0.3431<—N——> <0.3431 fora> (N -1). (32)
1+a

Proof of Theorem 2: Let Cy(m,n) be the number of
stations located within the vulnerable interval-set associated
with any transmission from station m to station n. For a >
(N —1), no stations are sufficiently close to each other to allow
any simultancous transmissions that are totally destructive,
and any transmission from station m to station n is always
successful unless L(m) < n < U(m), where L(m) is the
smallest integer greater than (m + 1)/2, and U(m) is the
smallest integer greater than (N +m —1)/2 (e.g., see Fig. 4).
Moreover, if L(m) < n < U(m), a transmission from station
m to station n is vulnerable only to transmissions that originate
from station (2n — m). Thus, for a > (N — 1), we have

1 if L(m) <n <U(m)

0 otherwise. (33)

Catmm) = {

The probability of success for a transmission from station m
to station n is

Pu(m,n) = (1 — (1 + 2)G(2n — m))“=™m), (34)
The throughput intensity from station m to station n is
S.(m,n) = G(m,n)Pa(m,n). (35)

It follows that

Sa(m,n) =

{G(m,n)(l — (14 a)G(2n —m))
G(m,n)

if L(m) <n <U(m)
otherwise.
(36)

Case 1—Constant Offered Load Intensity: Since
is constant, there is a constant G such that

G(m,n) = (-N—l_—l) %

G(m,n)

(37
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It follows from (35) and (37) that
1 G
Sa(m, 'n,) = (F_—I) ‘]‘V'Pa(m,n).

The throughput intensity for transmissions originating from
station m is

(38)

N
Sa(m) =Y Sa(m,n). (39)
n=1
We thus obtain
1 G
sum) = (5=5) == Kom)
cm(1-a+0))
_G[. K(m) G
_N{l ———N_1(1+a)ﬁ} (40)
where
(N —2)/2 if N is even
K(m)=<¢(N-1)/2 if N and m are odd
(N -3)/2 if N is odd but m is even.
(41)
Since K(m) < (N — 1)/2, we obtain
Sa(m)z%{l—(1+a)%}. 42)

For large N, S,(m) approaches the bound in (42) asymptoti-
cally. Hence, the aggregate throughput is

N
Sa=Y Sa(m) = {1 —(1+ a)%}G. (43)

Then, we can show that

1 N
S ==
@ 2(1+a)

N/(1 + a). Since a >

(44)

and S¥ is achieved when G =
(N -1),5; < 1/2.

Case 2—Constant Throughput Intensity: Since S,(m,n) is
constant, G(m,n) P.(m,n) is independent of m and n. We
show that there exist a(a) and 3(a) such that the assignment

G(m,n) = o(a)
(mm) = {563
leads to a constant S,(m,n).

Equation (45) implies that G(m) has a constant value Gn
that relates to a(a) and J(a) as follows:

if L(m) < n < U(m)

otherwise 5

o N N
G(m) = _ G(m,n) = (@) + 5 pa) =Gy.  @6)
n=1
From (36), (45), (46), and requiring G(m,n)P.(m,n) to be
constant, we obtain
S.(m,n) = B(a) = a(2){1 — (1 + a)Gn}.

We thus obtain two simultaneous equations, (46) and (47),
from which we can solve for a(a) and 3(a). Using additionally

(47)
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(30) and (47), and asuming N > 1 for simplicity, we obtain
the following aggregate throughput.

Sa = 2(1—11—21)((1 +a)Gn) (12%((1;%2—]:) (48)

Maximizing with respect to Gy, we obtain

S = (6 —4V2) (iii—a) = 0.3431 (%)

The above maximum occurs when Gn = (2 — v2)/(1 + a).
Since a > (N — 1), S < 0.3431. This maximum throughput
was obtained independently by Sibal [22]. O

As a tends to infinity, the maximum throughput for the
case with uniform probabilistic station configuration tends to
a nonzero constant, whereas the maximum throughput for
the case with deterministic station configuration with evenly
spaced stations vanishes. When the N stations are not evenly
spaced, the maximum throughput for a > (N — 1) may be
higher because a smaller fraction of the potential receiving
points are vulnerable to collisions. For a given N, the station
configuration that offers the maximum throughput remains to
be a subject for further study.

It is interesting to observe that, when a is large, the
maximum point-to-point throughput of the ALOHA protocol
is better for the unslotted version than the slotted version.
For slotted ALOHA, the maximum throughput is worse in the
case where stations are evenly spaced on the bus than the
case where stations are uniformly distributed. In general, we
conclude that slotting time or space, as done here, can do more
harm than good to the performance of the ALOHA protocol
in high-speed bidirectional bus networks since bunching of
transmissions in space and time increases the chance of
destructive collisions.

(49)

III. UNSLOTTED ALOHA

In this section, we study the following model of the unslot-

ted ALOHA protocol in a bidirectional bus network:

» asynchronous transmissions;

o offered traffic including retransmissions is a Poisson
process, and is characterized by an offered load intensity
function;

« statistical equilibrium.

A. Conventional Analysis

We first review the conventional analysis of unslotted
ALOHA for both broadcast and point-to-point communi-
cations.

1) Broadcast Communications: Conventional analysis of
unslotted ALOHA without channel reuse is based on the
assumption that a transmission is successful only if there are
no other transmissions within a vulnerable period of 2(1 + a).
This time interval is chosen for the worst case in which an
end-station broadcasts a packet to every other station. The
conventional vulnerable region for unslotted ALOHA with
broadcast communications is shown in Fig. 5.

Let G be the constant offered traffic rate, in packets per
second, including retransmissions. Then, the probability of



LEE AND HUMBLET: SPACE-TIME CHARACTERISTICS OF ALOHA PROTOCOLS

AL

2(1+a)

time

R mis aa)

Unslotted
ALOHA

Fig. 5. Conventional vulnerable region.
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Fig. 6. Vulnerable region for point-to-point communications.

success is

P, =e20+9¢  fora>0. (50)
The broadcast throughput is given by S, = Ge 2(F)G,

whose maximum with respect to G is

(7=)

Note that S vanishes as a increases to infinity, with a factor
of 2 faster than that of unslotted ALOHA. When channel reuse
is taken into consideration, we obtain different results.

2) Point-to-Point Communications: Allowing for channel
reuse, the vulnerable region for point-to-point communications
is factually smaller than that for broadcast communications.
As shown in Fig. 6, the space-time area of a point-to-point
vulnerable region is always equal to 2 (i.e., 2 units of packet
transmission time X 1 unit of bus length), independently of
a provided the bus length remains normalized to 1. It is well
known that the throughput of unslotted ALOHA for point-to-
point communications is Ge 2%, whose maximum is 1/(2e)

(see [1]).

1

S = —
2e

a

for a > 0. 51
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Fig. 7. Vulnerable region for broadcast communications.

B. Space-Time Characteristics for Broadcast Communications

For broadcast communications, the vulnerable region for a
transmission is shown in Fig. 7. Let V,(z) be its area. It is
easy to verify that

Va(z) = 2+ a/2 + 2az® (52)
Va(z) is symmetric about, and minimized at, = 0. Hence,
we could expect the throughput performance to be a function
of z, and to be largest in the middle of the bus. Since Va(z)
increases with a, and is less than (2 + a) < 2(1 + a), the
broadcast throughput of unslotted ALOHA indeed degrades as
a increases, but more slowly than that under the conventional
assumption.

C. Maximum Broadcast Throughput

We show that, if the offered load intensity is constant along
the bus, the maximum throughput intensity depends on the
location of the transmitting station. To achieve a constant
throughput intensity, the offered load intensity has to vary
along the bus. In any case, the maximum aggregate throughput
degrades with a.

Let g(z) be the offered load intensity at position z, in
packets per second. We assume that g(zx) is symmetric about
the center of the bus. The throughput intensity at position x
for broadcast communications is

Sa(z) = g(z)Pa(2)

where P.(z) is the spatial intensity of the probability of
success. In Theorem 3, we derive a differential equation
relating the throughput intensity to the offered load intensity.
We then obtain complete solutions for two special cases,
as Abramson did in [10] for a packet radio broadcasting
network with capture. Specifically, we determine bounds on
the maximum aggregate throughput in each case.

Theorem 3: For a > 0, S,(x) is the solution to the follow-
ing differential equation:

Si(z)g(z) = Sa(z){g'(z) — g(z)ha(z)}

(53)

(54)




620

where f’(z) denotes the derivative of a function, f(z), with
respect to z, and

T 1/2
ha(z) = 2a{ / g(2)dz — / g9(z) dz}. (55)
—-1/2 x
Let the aggregate throughput be
1/2
S, = / Sa(z) dz. (56)
—1/2

We characterize S, the maximum of S,, for two different
cases.

Case 1—Constant Offered Load Intensity: If g(z) 1is
constant, then S} is bounded as follows:

1 1 1 1
_ - <5< =
(1+a/2>2e - = (1+a/4>2e

Case 2—Constant Throughput Intensity: If S,(x) is con-
stant, then S} is bounded as follows:

VL 1 V1L
1+a/2 ~— " \1+a/2)2e

Proof of Theorem 3: For a > 0, let k.(z,z) be the
temporal length of the vulnerable region at location 2z when
the transmission originates at location z. For broadcast com-
munications, as shown in Fig. 7,

fora > 0. (57)

fora>0. (58)

ka(x,2) = 2(1 + a|z — z|). (59)
The spatial intensity for the probability of success is
1/2
P =eo{ - [ ko2l dz}. (60)
-1/2

Taking the derivative of (53), multiplying each side by g(x),
and using (60), we obtain

1/2
S (2)9(x) - ¢'()Sa() = 9(x)Sa(x) / | il )a(a) de

(61)
It is easy to verify that

’ _J-2a
ki(z,2) = {+2a

It follows that (54) holds with h,(z) defined below:

ifx<z

ifz>z" (62)

1/2
ha(w)=/ 2kfa(x,z)g(z)dz

= Za{ /:mg(z) dz — L1/2g(z) dz}. (63)
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Fig. 8. Maximum broadcast throughput for unslotted ALOHA.

Case 1—Constant Offered Load Intensity: Suppose that

g(z) = G. (64)

From (55), we have

ha(x) = 4aGx. (65)

From (54), (64), and (65), we obtain the following differential
equation:

S!(z) = —4aGzS,(x). (66)

Solving (66), we obtain the following broadcast throughput
intensity:

Sa(.'I)) — Ge—(2+a)G{e—2aG(m2—1/4)}' (67)
Note that for a given G, S.(z) is minimized at the ends and
maximized at the center of the bus. It follows from (67) that

Ge~(+9C < G () < Ge™ /G, (68)

Using (56) and (67), we can write

1/2 1/2
Sa:Ge—<2+a/2>G(§§5) erf({§} ) (69)

where erf(*) is the following standard error function:

2 4 —w?
erf(y) = —ﬁ A e dw.

We can now determine S} by maximizing S, with respect to
G.

From (56) and (68), we obtain the bounds in (57). Note that
for large a, the lower bound is twice the maximum broadcast
throughput derived by conventional analysis. In Fig. 8, we
show S* and its bounds. We have included the result of Case
2 and that of conventional analysis for comparison.

(70)
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Case 2—Constant Throughput Intensity: Suppose  that
Sa(x) is constant. This corresponds to the interesting case
where all stations have the same throughput. By symmetry,
we have

g9(z) = g(—x). (1)
Taking the derivative of (55) and using (71), we obtain
hy(z) = dag(z). (72)
Since S.(z) = 0, we obtain from (54) that
g'(z) = ha(z)g(). (73)

Taking the derivative of (73), multiplying each side by g(z),
and using (72), we obtain

9" (2)g(z) = dag®(x) + {g'(2)}*.

Solving the above differential equation, using (71), we obtain

(714)

b? b?
9(z) = 2acos?(ba) ﬂsec%bz) 7
for a given constant b. Define R as follows:
R =x/(2b). (76)
Note that g(z) is unbounded if
|z| > R. amn

If b > 7, then R < 1/2, and (60) implies that P,(z) = 0
for z € [-1/2,1/2]. It follows that S, can only be zero. For
a given b, [10] defines the Sisyphus Distance as the value of
z with which g(z) in (75) becomes unbounded. It does not
appear to have any physical meaning in this case (without
capture), as b is an arbitrary parameter. In the analysis below,
b is always smaller than 7, so that R > 1/2 > z.

To evaluate P,(z), we make use of the following indefinite
integral [23]:

/ zsec’(bx) dz 2 =

Using (59), (60), (75), and (78), we obtain

Py(z) = exp{—b{tan(b/2)} (1 + 3) - 1n{sec2(bx)}}.
(719)

xz

tan(bz) + — In{cos(bz)}.  (78)

From (53), (75), and (79), we obtain the following aggregate
throughput:

b2
Sa = —exp{ b

a

(80)

52 {tan(b/2)}(a + 2)}

We can now determine S} by maximizing S, with respect to
b. Taking the derivative of the right-hand side of (80) with
respect to b, and setting it to zero, we obtain

(5) () + () (5) + (B) o

Equation (81) can be solved numerically to determine the
value of b that maximizes S,. Making use of the fact that

a
a+2
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Fig. 9. Optimal offered load intensity.

tan(b/2) > (b/2), we obtain from (80) the upper bound in
(58). The lower bound in (58) follows from the fact that the
vulnerable region considered in the analysis is smaller than
that assumed in the conventional analysis. O

We show in Fig. 8 the behavior of S7 as a function of a.
The optimal offered load intensity, g*(x), which is obtained
from (75) with the optimal value of b, is shown in Fig. 9. Note
that g*(z) decreases with increasing value of a. As g*(x) is
proportional to the number of retransmissions, this confirms
the observation in [12].

IV. CONCLUSION

We have evaluated the throughput performance of slotted
and unslotted ALOHA in a bidirectional bus network by giving
special attention to the inherent channel reuse characteristics
of the protocols. We have particularly examined the behavior
of the ALOHA protocols when propagation delays are much
larger than the packet transmission time. We have shown that
conventional analysis sometimes overestimates the maximum
throughput by neglecting the effect of propagation delay,
and sometimes underestimates the maximum throughput by
not considering channel reuse. We have investigated how
the ALOHA protocols depend on offered load and through-
put intensities. In both slotted and unslotted ALOHA, the
maximum aggregate throughput is higher for the case with
constant offered load intensity than for the case with constant
throughput intensity.

For point-to-point communications in a bidirectional bus
network with uniform probabilistic station configuration, the
maximum throughput for slotted ALOHA degrades below
that of unslotted ALOHA when propagation delay is large,
but remains above zero. When the station configuration is
deterministic with a fixed number of stations evenly spaced on
the bus, the maximum throughput for slotted ALOHA vanishes
as a tends to infinity. We learn that slotting time or space, as
done here, can do more harm than good to the performance of
the ALOHA protocol in high-speed bidirectional bus networks
since bunching of transmissions in space and time increases
the chance of destructive collisions.

For unslotted ALOHA with broadcast communications, we
have shown that, if the offered load intensity is uniform along
the bus, the maximum throughput achievable by a station
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varies along the bus, and is maximized at its center. To achieve
a uniform throughput intensity, the offered load intensity has
to vary along the bus. We have derived the optimal profile of
the offered load intensity.

In conclusion, this paper contributes to a better understand-
ing of contention-based multiple-access protocols on high-
speed bidirectional bus networks. The results reported in
this paper are a significant generalization of some of those
in [6] and [7]. They are also largely consistent with and
complementary to those obtained for CSMA in [16], [17], and
[18] where the range of a is limited to small values.
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