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Signal-Adapted Multiresolution Transform for
Image Coding

Philippe Desarte, Benoit Macq, and Dirk T. M. Slock

Abstract—Wavelet-type multiresolution transforms have recently been
introduced in digital image coding, and have been shown to offer some
advantages over classical block transform techniques such as the discrete
cosine transform (DCT). This correspondence is mainly concerned with
the problem of designing suitable multiresolution transforms that are
adapted to the given image signal, in the sense that they maximize the
coding gain at each resolution level. A simple alternating optimization
algorithm is derived for solving this problem in the framework of the
lattice realization of para-unitary quadrature mirror filters (QMF). The
resulting image coding scheme is discussed in some detail, and its
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performance is compared with the DCT (JPEG) technique and with
some non-adapted multiresolution transforms.

Index Terms—Multiresolution, wavelet, signal-adapted transform,
para-unitary lattice filters, image coding.

I. INTRODUCTION

The key to securing data compression is signal representation. To
obtain a more efficient representation, a transform coder represents
a random sequence in terms of specific basis vectors. In the synthe-
sis part, the signal is reconstructed by an appropriate linear combi-
nation of the basis vectors. To obtain the appropriate combination
coeflicients is the task of the analysis section. A key issue now is the
efficiency of the transform coder. One meaningful objective measure
of the efficiency of an orthogonal transform is the coding gain G,
given by [10]

1 X 2 A 2 o
GTC=(Ni§ Ui)(irzll Oi) s (1)

where o7 is the variance of the output of the ith analysis filter. G~
indicates the factor by which the mean-square reconstruction error is
reduced when applying an optimal separate quantizer to each trans-
form component, as compared to quantizing the signal samples
directly (PCM). The transformation that maximizes G, is the
Karhunen-Loe¢ve Transform (KLT). The KLT is computationally
involved and, therefore, a whole class of suboptimal transforms
have been proposed which have the advantage of being signal-inde-
pendent and for which fast algorithms (of complexity O(N log N))
exist. The DCT is perhaps the most popular example in this class.

Recently, image coders [1], [15] based on the wavelet transform
(WT) [13], [6], [5] have been introduced which offer the following
advantages.

e The WT is a multiresolution description of an image: the
decoding can be processed sequentially from a very low resolu-
tion, corresponding to a very compact code, to the highest
resolution. Schemes based on the Laplacian pyramid also offer
this advantage, but the WT allows furthermore perfect recon-
struction.

e The WT is closer to the human visual system that the DCT
transform. Hence, the artifacts introduced by WT coding with
a high compression ratio and adequate perceptual quantiza-
tion are less annoying than those introduced at the same bit
rate by the DCT.

e The wavelet transformation of an image generates a data
structure known as the scale-space representation [16]: in this
representation, the high (spatial) frequency signals are pre-
cisely located in the pixel domain, while the low-frequency
signals are precisely located in the frequency domain. Whereas
the DCT has a spatial resolution that is independent of fre-
quency, the spatial resolution of the WT increases linearly with
frequency. Therefore, sharp edges, which are well localized
spatially and have a significant high-frequency content, can be
represented more compactly with the WT than with the DCT
(zooming capacity of the WT). On the other hand, the overall
spectrum of most images is very much of a low-pass type.
Now, while the frequency resolution is independent of fre-
quency for the DCT, it is inversely proportional to frequency
in the WT. This allows the WT to separate the dominating low
frequency end of the spectrum into increasingly finer sub-
bands. For strongly low-pass signals, the spectra of the-
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subband signals provided by the WT will be whiter in the
subbands that contribute significantly to the signal power.

These remarks still apply when one substitutes the DCT by
(uniform) subband coders or schemes based on the short-time
Fourier transform. The nice properties of the WT just sketched only
depend on the multiresolution structure of the WT. However, the
choice of the particular wavelet remains an open issue. In applica-
" tions in physics, particular attention is paid to the degree of smooth-
ness of the wavelet function [S]. In this paper, we address the
wavelet design issue when using the WT for transform coding
images. In fact, we shall consider a more general class of multireso-
lution transforms (MT), of which the WT is just a particular
instance. This MT is still built up by an iterative application of
two-band filter banks. The choice of the wavelet in the WT corre-
sponds in the more general MT to the design of the filter banks. We
shall design the filter banks so as to maximize the coding gain.
Whereas the KLT maximizes the coding gain over the set of all
linear orthogonal transforms, we shall seek the optimal transform
when the maximization is performed over the subset of linear
orthogonal transforms that have the multiresolution structure (with
the additional constraint that the filters in the filter bands are taken
to be FIR filters). Another interpretation would be to consider the
optimized MT as the cascade of a fixed MT followed by (con-
strained) adaptive predictive coding in each subband, in the sense
that here the adaptive filter is incorporated in the filter bank.

II. PARA-UNITARY LATTICE FILTERING SYSTEM

Consider a two-band analysis filter bank as depicted in Fig. 1,
with a low-pass FIR filter H(z) and a high-pass filter G(z), and
critical (factor 2) downsampling. In this paper, the synthesis filter
bank is assumed to be the dual of the corresponding analysis filter
bank. Furthermore, the overall system is required to enjoy the
perfect reconstruction property [2], [19], i.e., to satisfy X = x in
the absence of quantization. It is interesting to translate these
conditions in terms of the scattering matrix S(z) of the analysis
filter bank, by use of the ‘‘polyphase approach’ [19]. S(z) is
defined by

Hy(z) H(z)

S =16y(2) 6.2

; (2)

from the even/odd decomposition H(z) = Ho(zz) + z"H,(zz)
and G(2) = Go(zz) + z‘lGl(zz) of the filters H(z) and G(z).
The duality and perfect reconstruction properties are expressed by
the fact that S(z) is para-unitary, i.e., satisfies ST(z71H8(z) = I
The H(z) and G(z) filtering operations followed by downsam-
pling in the analysis bank induce operators [5], [13], [14]
H1N(Z)-122Z), %:1*(2)-1*(22), (3)
where /2 denotes the space of doubly infinite square-summable
sequences. Similarly, the H(z~") and G(z!) filtering operations
preceded by downsampling in the synthesis bank induce the opera-
tors #*:122Z) = I*(Z) and ¥*:1*(2Z) — I*(Z), where the star
symbol denotes the adjoint. This adjoint property follows from the
para-unitarity of S(z), which furthermore leads to

HIH+ G¥XG=1, #H#*=9GG*=1] HG*=

O

So #*# and ¥*% are projection operators onto the two sub-

gH#* = 0.

Gz)

Fig. 1. Critically subsampled two-band filter bank.

Fig. 2. Analysis section of a two-level multiresolution filter bank.
spaces in the following orthogonal decomposition

Vo2 P(z) =Im(#*)®Im(F*) £ v, ®W_,.

)

In the usual case where H and G form a low-pass and high-pass
filter pair, the signals #*# xe ¥_, and Y*Yxe W_, can be
interpreted as the approximation and the detail signal of x at the
resolution 2~ '. In multiresolution analysis (of dyadic type), the
decomposition described above is applied in a ‘‘recursive manner’’
to the approximation signals (see Fig. 2). In general, the scattering
matrix used at each level can be different. If the above method is
applied n times, then we get the decomposition

7/0: W—I®W—2®.”®W-n®/y/—n

WAm=Im(Jfl* “fm*—lgn;k)' 1/7”’:["](%;1* f*)

m

(6)

/, correspond to the scattering matrix §,(z) at
resolution level m. The signal x gets thus transformed into its sets
of detail coefficients x,, X,,," ", Xp ... g at the resolutions 27",
272 ....27" and the residual set of approximation coefficients
X, ... py at the resolution 27" (see Fig. 2). This procedure is known
in the literature as the Laplacian pyramid decomposition, with n
octaves (see [3], [13], [15]).

Although our multiresolution filtering system is closely related to
the ‘“‘discrete wavelet transform’’ [6], [14], [17], it does not belong
to wavelet theory in a strict sense, for two reasons. First, the filter
bank (H, G) is allowed to differ from one resolution level to the
next (which is not the case in the Mallat-Meyer multiresolution
theory). Second, even if the filter banks were the same at all
resolution levels, the only constraint imposed (@ priori) on our
QMEF systems is the para-unitarity property (see a remark in Section
V-A though). While the recurrence coefficients of orthogonal wavelet
theory define para-unitary QMF systems, the converse statement is
true only if the given QMF system (H, G) enjoys some additional
properties (ensuring that the well-known ‘‘dilation equation’ of
orthogonal wavelet theory has an appropriate solution for the *‘scal-
ing function”). The simplest property of this type is the relation
H(—-1) = G(1) = 0 (see again the same remark in Section V-A).
Finally, let us note that the multiresolution unitary transform de-
scribed above for infinite sequences x can be made to apply to finite
sequences, when extending these to periodic sequences (see [11]).

A para-unitary scattering matrix S(z), of a given degree N + 1
(corresponding to FIR filters H and G of length 2N + 2), is

where #,,, 9
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known to admit a canonical factorization of the form

S(Z.)=QNZ‘l Q,Z’IQO, with Z = 1®z, (7)
where Q, denotes a constant orthogonal 2 X 2 matrix (see [18]).
Without real loss of generality, we only consider the case where
each Q, is a rofation matrix, i.c.,

Ck Sk
Qk:[_sk Ck}’ (8)

with ¢, = cos a; and s, = sin a, for some angle «p€(—m, 7].
The parametrization (7) corresponds to a lattice implementation of
the analysis filter bank [20], [19]. It is depicted in Fig. 3. The inputs
Po and g, of the lattice are deduced from the given signal x by the
formulas

Po(2) = Xo(2), P\(z) = z7'X,(z), )
where X,(z) and X,(z) are the even and odd parts of X(z),
defined via X(2) = X(z%) + 27! X,(z?). (Throughout this corre-
spondence, the z-transform of a discrete-time signal y is repre-
sented by Y(z) = Zf;"im y()z~i) More generally, let p, and
gy denote the inputs of the (k + 1)st lattice cell, for k = 0,---, N.
Then, we can write the relation

X,(z)
X,(z)

P(2)

0:(2) ]’ (10)

] = 8:(2)Q,

where S, (z) is the scattering matrix of the cascade formed with the
last N — k lattice sections. In particular, Sy(z) = S( z)Qg . By
definition, we have the recurrence

with S,(z) = I.

(11)

Sk—l(z) =S (2)0, 277,

III. DERIVATION OF THE RING ALGORITHM

A. The Minimization Criterion

For a two-band QMF bank, the coding gain is given by (1) with
N =2, and o, = o(x,), 0, = a(x,). Since the sum o2(x,) +
az(xg) equals the constant 2¢2(x), due to para-unitarity, the
maximization of the coding gain naturally leads to the following
criterion: minimize the variance az(xg ) of the ‘‘high-pass
branch’ output signal X, of the filter bank. More precisely, the
distinction between the H-branch and the G-branch is defined from
the minimization criterion itself. In the Laplacian pyramid structure,
it is natural to apply this criterion to all ‘‘high-pass branches,”” i.e.,
to the detail signals x,, Xpg» Xpng» and so on. Since most images
have an overall low-pass spectrum however, this design will lead to
H and G being actual low-pass and high-pass filters, respectively.

In the framework of image coding, we have to deal with two-di-
mensional discrete signals. We shall restrict ourselves to the simple
case of separable filters (see [13], [15] and Fig. 4). Thus, we have
a filter bank (H(z), G(z)) for the ‘‘horizontal variable,” and a
filter bank (H(w), G(w)) for the “‘vertical variable.”” Note that
these two filter banks need not be the same (in spite of what the
notation might suggest). In this case, as we wish to keep a ‘‘one-
variable technique,” we suggest that the same criterion be applied
to the downsampled output X of the horizontal filter G(z), and to
the downsampled output x¢ of the vertical filter G(w), although the
latter does not appear “‘physically”’ in the filtering system under

Fig. 3. Lattice realization of the analysis part of a two-band filter bank.

Fig. 4. Separable 2-D extension of a two-band filter bank.

consideration. So in the multiresolution two-dimensional case, we
apply the optimization of a twoband filter bank consecutively to all
resolution levels, and on a given resolution level to the horizontal
and the vertical direction.

In what follows, we shall be interested in minimizing the function
oz(xg) over all para-unitary FIR filtering systems (H, G) of length
2N + 2, for given second-order statistics of the input signal x. The
proposed minimization strategy is based on the observation that
o( X ) is quadratic in (the cosine and sine of) one rotation angle o i
when all other angles are frozen, and hence is trivially optimized
w.r.t. one such angle. This suggests an alternating optimization
strategy whereby in each sweep through the lattice, the rotation
angles oy, ..., ay are updated one after the other; the new angle
«, is determined so as to minimize the function az(xg). By its very
nature, the algorithm is guaranteed to converge to a local minimum
of this function, whatever the initial values of the angles. (The
initialization «, = 0, for all k, seems to be a good choice.) The
final result of a given sweep can be used to initialize the next sweep.
For this reason, the proposed method has a kind of “‘ring structure”’
(see Fig. 5); for easy reference, we shall call it the ring algorithm.

The optimization procedure for a twoband filter bank described
here can also be used for the design of such a filter bank in a more
general context. Typically [9], [20], one considers a least-squares
measure for the stopband attenuation, or hence oz(xg) with an
appropriate weighting function playing the role of the spectral
density of the input signal (see (28)). In [9], an iterative minimiza-
tion procedure is proposed based directly on the coefficients of the
filters H and G. This leads to a quadratic criterion subject to a
number of quadratic constraints. Apart from advantages in a
finite-wordlength environment, the lattice realization has the advan-
tage of structurally incorporating all the QMF constraints so that the
lattice parameters represent explicitly the actual degrees of freedom.
These advantages were also exploited in [20], where a quasi-New-
ton algorithm is used to optimize the lattice parameters. These
parameters are first initialized by a calculation which is similar to
the first sweep in our algorithm. However, a so-called ‘‘unnormal-
ized”” lattice is used in [20] so that the paraunitarity property is lost.
In that case, the minimization of az(xg) does not correspond to the
maximization of the coding gain.

B. Computation of the Optimal Section

Let us explain how to determine the updated elements ¢, and s,
of the (k + 1)st lattice section (without performing any ‘‘trigono-
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o / .

Fig. 5. Ring algorithm schematically.

metric calculation’”). The scattering matrix S,(z) has the form

B, ()
Ax(2)

25 N4, (z7")

8.(z) = B,(2)

. (12)

with Ay (2) = 70 A, ;27" and By(2) = =N By,z™7 for
some real numbers A, ; and B, ;. The second entry of (10) can be
written as

Xg(z) = ¢, Vi(2) = 5,Ui(2),

(13)

where U,(z) and V,(z) are given by

U(2)
Vi(2)

B,(z)
Ai(z)

-A,(z)
B,(z)

Pz

)
0:(2)

] - (14)
From (13), we deduce

0%(x,) = cio?(u;) — 2¢xsicov (uy, v) + s2a?(ve), (15)
where cov (u,, v,) is the covariance of the signals #, and v,.

It is a simple exercise to minimize the function (15) with respect

to the variable o, for fixed values of o%(u;), o%(v,), and
cov (u,, v;). The result is the following:

(16)

with a, = (‘72(uk) - oz(uk))/Z, Ty = [ai + (cov (1, Uk))z]”z,
and 1,[2r,(a; + r;)]'/2. This yields the value 02(x,) = (¢2(u,)
+ 02(vy))/2 — 1y

e = (@ +r)/t, s =cov(ug, v)/ty,

C. Computation of the Covariance Data

Next, let us examine how to compute the quantities 02(14 i)
az(uk), cov (U, vy), from the input data. From P,(z) and Q,(z)
construct the vector of length 2(N — k£ + 1)

W(z) = [(2P)5) ()] m)

Let o/, = (A, )Nk and B, = (B, )NF denote the row-vectors
formed with the coefficients of the filters A ,(z) and B,(z). Define
$, as the covariance matrix of the signal vector having W, (z) as its
z-transform. By use of (14) we obtain the formula

o?(uy) cov (U, vi)
cov (uy, vy) a2 (vy)
B

'ézk _"Q/k
", g % r
k k ~ )

T
‘@k

%] (19)

This involves approximately 4(N — k + 1)? arithmetic operations;
hence, each sweep of the ring algorithm has O(N?) complexity.

As to the covariance matrix ®,, it can be computed recursively
as follows. Consider the ‘‘expanded version’’ of the input-output
relation of the kth lattice cell, that is

Wi(z) = Re_ Wi i(2),

(19)
with the 2(N — n) X 2(N — n + 1) matrix R, given by

s, 0
c, Il

(20)

(Here, I and O stand for the unit matrix and the zero column vector
of size N — n.) From (19) we deduce

¢, = Rk—ld’k—lRI{—l'

(21)

This allows us to determine the ®, sequence (for k = 1,- -+, N).
The initial matrix &, of order 2(N + 1), is formed with the input
covariance lags cov (x, z7‘'x) for i = 0,*++,2N + 1. It should be
noted that the ®, matrices have the Toeplitz-block structure, which
entails a substantial economy in the actual computation scheme (21).
We shall not elaborate on this issue.

D. Computation of the Filter Data

Let us now see how to recursively compute the filter coefficients
&, and %,, involved in (18), for k = 1,---, N, from the initial
row-vectors &/, and %, by a suitable downdating procedure, for
every sweep of the ring algorithm. In view of (12), the second row
of the inverse form of (11) can be written as

[# %)=, % ,]|Di, (22)

with the 2(N — k + 1) X 2(N — k + 2) matrix
Spd
c Il

(Here, I is the unit matrix of size N— k+ 1 and O is the
(N — k + 1) X 2 zero matrix.)

To complete the algorithm description, we will finally explain
how each sweep (except the first one) can be initialized directly
from the results obtained at the end of the preceding sweep.
Consider the scattering matrix Sy(z) = S(z)QJ we are interested
in, and its factorized form deduced from (11). For k = 1,---, N,
compute the ‘‘partial”’ scattering matrix 7,(z) by the recursion

D cl 0
K7l =5, O

(23)

Ti(2) = % Z7'T,_(2), To(z) = 1. (24)
The outcome yields the desired matrix, i.e., So(z) = Ty(z). Let us
give some details about this computation scheme. The matrix 7,(z)
has for form

()
E.(z)

7Z_kEk(Z_l)

T (z) = Fo(2)

, (25)
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with Ey(z) = ¥ E ;27" and Fy(z) = X, F ;27" In view
of (8) and (25), the recurrence (24) amounts to

E(z) = k2 By y(2) - szt TR (271,

Fi(2) zskz]_kEk—l(z_])+Ckz-le»l(z)' (26)

The initial values in (26) are Ey(z) =0 and Fy(z) = 1. The

desired filter data ./, and %, (for the new sweep) are given by
Ao(z) = Ex(z2),

By(2) = Fy(2). (27)

E. Further Comments About the Filter Design

For a stationary input signal x, we can write the variance of the
high-pass subband signal in terms of the spectral density S,(w) of x
as follows (note: [ G(e’)|% + | G(e/™~ )| = 1);

oz(xg)

= [T16(e)s.(0) a
- % /:Sx(w) do

+ l /j ’G(ej“’)lz[sx(w) - S.(7— w)] dw. (28)

™

T )
Hence, S, (w)> S(7 - w)Vwe (0, E) implies G(e’®) = 0,

Ywe (0, 5) So, if for instance the spectrum of the signal x is

nonincreasing, then the optimization problem leads to a perfect
half-band filter. Since many natural images have a low-pass spec-
trum, an obvious design goal for a nonadapted filter G would be to
approximate a perfect half-band filter. With a finite filter complex-
ity, this will lead to a uniform attenuation in the lower half-band.
Now imagine that the signal x is perfectly low-pass with bandwidth

T
65 (B €(0, 1)), then the width of the stop-band can be reduced by

a factor 8 and hence the uniform attenuation in the stop-band will
improve (for a filter with constant complexity). Hence, as 8 de-
creases, the adapted filters will give increasing improvement over
nonadapted ones (see [8], [7] for examples).

Of course, not all signals have a nonincreasing spectrum. For
instance, images that are dominated by a piece of texture may show
strong peaks (see the shirt in the image COUPLE below). Consider
the extreme case of a spectral peak, namely a sinusoidal component.
The adapted filter G can eliminate its contribution to a?( X,) with
one pair of zeros. More generally, peaks in the spectrum of x are
advantageously exploited in the adaptive approach. The optimum
filter for real images is usually smoother than the half-band approxi-
mations (see {8], [7] for examples). In practice, it leads to recon-
structed images that are visually more pleasing because they contain
less ringing effects.

IV. A MULTIRESOLUTION IMAGE COMPRESSION ALGORITHM

Compression results from the quantization and the entropy coding
of the transform coefficients. The decorrelative property of the
transform allows one to encode the transform coefficients indepen-
dently from each other. The match of the multiresolution transform
with the human visual system allows an efficient quantization of the
transform coefficients. In particular, the high-frequency transform
coefficients can be encoded in a coarse manner, since this will

produce high-frequency noise, with low visibility. Furthermore, the
adaption of our transform leads to the minimization of the energy in
the detail subbands. In this section, we will briefly describe a
specific perceptual quantization scheme, adapted to multiresolution
transforms, and a specific block-adaptive Huffman code.

A. Perceptual Quantization

We have designed a weighted quantization scheme so as to
minimize the weighted noise power (see [12])

1
= — W 2
(PN)W §%Nn1Nn2 n1,n2%1,n2

(29)
where
W = K [[ W, 0)|Ey o, o) dwav. — (30)

The summation is over the different subbands; 0,31‘,,2 is the variance
of the quantization error in subband (nl, n2); N,,, N,, are the
downsampling factors for the subbands; u, v are the horizontal and
vertical frequencies, in cycles per image height; F (U, v) is the
transmittance of the reconstruction filter; K is an energy factor;
W(u, v) is a weighting curve: we have chosen the extension of the
CCIR 451-2 recommendation for random wide-band noise affecting
the quality of television transmission (see [12] for more details)

-15
u? + v?

Wi(u,v) = 15321 +
(u. ) (3.952 arC1 1 gogreey(1/2 L) )

(31)

where L is the distance in image height from the screen.

It is shown in [12] that, in the case of entropy coding, the
optimum quantization is achieved by linear quantization steps in-
versely proportional to V,, ., = W,1 n2 - This can be achieved
by a preaccentuation before the quantization: each wavelet trans-
form coefficient is multiplied by a visibility factor Vi na- We have
computed the visibility factors for a wavelet transform with four
octaves on a 512 X 512 image for a viewer at four times the image
height. For computational simplicity, we have assumed that the
filters G and H are perfect half-band filters. The visibility factors
are given in the following list where the lowest frequency factor is

normalized (V244" = 1):

Octave 0: V¥ = 0.738, Viii* = 0.738, Vilhs = 0.596,
Octave 1: V3¢ = 0.584, Vi = 0.584, V¢ = 0.411,
Octave 2: V3¢ = 0.355, V' = 0.355, V¢ = 0.230,
Octave 3: ¥V = 0.189, V" = 0.189, V£ = 0.119.

B. Adaptive Entropy Coding

For the entropy coding of the quantized wavelet coefficients, we
have developed a block-adaptive Huffman code (for more details see
[12]). The use of a Huffman code requires the probability distribu-
tion of the MT coefficients. A good approximation is the Laplace
distribution, viz.

p(x) =exp(_1x,§)/(m),

in which the variance, o, varies as a function of the subband, the
quantization level and the location in the subband, suggesting the
use of an adaptive Huffman code. We construct vectors of 128
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(b)

Fig. 6. LENA 512 x 512, coded at 0.1 b/pixel with a four-level MT; (a)
with 4-cell adapted filters, (b) with a 16-cell standard half-band approxima-
tion.

coefficients belonging to the same subband. The vectors are obtained
by scanning the horizontal subbands column by column, the vertical
subbands line by line, and the diagonal subbands diagonally. The
code consists of three classes of words:

e a prefix, which indicates the number of nonzero values in the
vector (the prefix allows an estimation of the variance ¢ inside
the vector); .

* Huffman codes for the nonzero values adapted to the measured
Laplace distribution (127 different Huffman codes have to be
memorized);

(b)

Fig. 7. COUPLE 512 x 512, coded at 0.08 b /pixel with a 4-level MT; (a)
with 4-cell filters adapted to LENA, (b) with 4-cell adapted filters.

e Adaptive truncated runlength (ATRL) codes for the zero val-
ues.

V. SOME RESULTS

The implementation of our coding scheme has allowed us to draw
the following conclusions.

e low-order filters (four cells for most natural images) are enough
to reach the minimum bit-rate with our scheme;

e the ring algorithm requires at least 150 sweeps (in the case of
four cells);

e the filter bank obtained by the ring algorithm leads to a better
quality of the decoded image than the corresponding half-band
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Fig. 8. Frequency response of the 4-cell adapted filters H and G, for the

horizontal direction at resolution 1/2 in COUPLE.

approximation; furthermore, for most natural images, the sig-
nal-adapted filter G has a pole close to dc (G almost satisfies
the regularity condition appearing in the wavelet theory);

e the filter bank obtained by the ring algorithm allows one to
better preserve a large area with a specific structure, and to
better preserve the moving information when the algorithm is
applied to images of interlaced video sequences;

e for a given compression ratio, the proposed multiresolution
coding scheme leads to a better quality than the JPEG standard
DCT scheme.

Some of these points are illustrated next.

A. Comparison with Nonadapted Filter Banks

In order to compare the coding obtained with adapted filters and
standard half-band filters, we have compared the coding of LENA at
a bit rate of 0.1 b/pixel (compression factor 80) with a 16-cell filter
similar to one in [20], to the result obtained by means of the 4 cell
adapted filter at the same bit rate. This comparison is presented in
Fig. 6 and leads to the following two remarks. First, the standard
half-band produces more ringing effects near the edges. Second, a
standard half-band filter does not have a zero at dc. For this reason,
the reconstructed images exhibit some blocking artifacts. Such
artifacts can be interpreted if the subband coding is described in
terms of orthogonal transforms on overlapping blocks. Indeed, in
the case of orthogonal transforms it is easy to show that large errors
on the dc component will produce large blocking artifacts (see [12]
for more details). The importance for the high-pass filter to have a
zero at dc, in order to avoid blocking artifacts, leads us to propose a
slight modification of our signal-adapted filter design: after the ring
algorithm computation, we suggest to modify the last cell so as to
have a high-pass filter that enjoys the required property: ay = 7 /4
- Zﬁ‘ol a;. For most natural images, this correction is small.

In the image COUPLE, there is a large area, the shirt of the man,
containing a specific texture, leading to a peak in the spectrum. The
signal-adapted filter bank adapts to this peak and the texture is better
preserved at high-compression factors. In Fig. 7, the coding of
COUPLE at a bit rate of 0.08 b/pixel with the 4-cell LENA filter is
compared with the 4-cell signal-adapted version. On the latter
version, it can be observed that the stripes of the shirt are preserved.
Fig. 8 shows the signal-adapted filter in the horizontal direction, on
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(b)

Fig. 9. LENA 512 x 512, coded at 0.2 b/pixel; (a) with a 4-cell adapted
four-level MT, (b) with the JPEG DCT scheme.

the highest-resolution level: there is a ‘*hole”” at the frequency of
the shirt stripes.

B. Comparison with the JPEG Standard DCT Algorithm

In order to assess the performances of our signal-adapted trans-
form, we have chosen to compare it to the JPEG DCT scheme,
which is recognized as an international standard and which is also
based on perceptual quantization and entropy coding; the main
difference between the JPEG DCT coding and our scheme lies in the
choice of the transform. We have made the comparison for three
compression factors: 10 (0.8 b/pixel), 20 (0.4 b/pixel), and 40 (0.2
b/pixel), on the 512 x 512 image LENA. Both algorithms show no



visible degradation at a compression factor of 10. The artifacts
introduced by our multiresolution coding scheme are nevertheless
less annoying than those introduced by the DCT for higher com-
pression ratios: this can be observed in Fig. 9 for a compression
factor of 40. This is essentially due to the fact that a MT is better
tuned to human vision than the DCT.

It is to be noticed that, for a low-correlated image like LENA
which contains various types of stimuli, there is no significant
difference between the use of a fixed filter bank designed by the ring
algorithm on the basis of typical covariance lags and the use of a
signal-adapted filter bank. A typical fixed filter bank is given by the
4 cell lattice whose successive angles are (in radians): 1.144826,
—0.536006, 0.249848, —0.07327.

VI. ConcLusioN

We have shown that the optimization of the filter banks in a MT
may lead to substantial gains (e.g., a factor of two) in the coding
gain. The coding gain is an objective measure, involving the SNR of
the reconstructed image. However, the ultimate quality of an image
coder is influenced by other aspects than simply the SNR. For
instance, specific artifacts introduced by a coding scheme contribute
significantly to its subjective quality. We have shown that the typical
ringing artifacts in a MT can be bounded since low order FIR filters
usually allow to achieve most of the obtainable coding gain.

Some first principles considerations seem to indicate that the
introduction of linear-phase constraints may lead to a reduction of
artifacts. We are currently investigating signal-adapted MT’s with
the linear-phase constraint. Another issue that deserves further
investigation is the local adaptation of the filter banks. Due to the
nonstationary character of images one may indeed expect that
space-varying filter banks may lead to further improved coding
gains. There is a limit to this varying character though since at some
point the coding of the filters will become predominant. A final
issue concerns an investigation of the convergence properties of the
ring algorithm or of any alternative optimization algorithm (involv-
ing homotopy methods?).
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Correlation Structure of the Discrete Wavelet
Coefficients of Fractional Brownian Motion

A. H. Tewfik, Member, IEEE, and M. Kim

Abstract—1t is shown that the discrete wavelet coefficients of frac-
tional Brownian motion at different scales are correlated and that their
auto and cross-correlation functions decay hyperbolically fast at a rate
much faster than that of the autocorrelation of the fractional Brownian
motion itself. The rate of decay of the correlation function in the
wavelet domain is primarily determined by the number of vanishing
moments of the analyzing wavelet.

Index Terms—Wavelets, fractional Brownian motion, stochastic pro-
cesses, multiscale analysis.

I. INTRODUCTION

Fractional Brownian motion (fBm) [1] is a generalization of the
usual Brownian motion. It was introduced to model processes that
have long memory and/or a statistical self-similarity property.
Although it is not stationary, its increments are stationary and
self-similar. Its sample paths are fractal with probability one [2],
i.e., the graph of fBm has a Hausdorff-Besicovitch dimension that
is larger than its topological dimension with probability one. Frac-
tional Brownian motion has been used in image generation and
interpolation, texture classification and the modeling of burst errors
in communication channels, 1/f noise in oscillators and current
noise in metal films and semiconductor devices.
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