
1

Traffic Engineering in a Multipoint-to-Point
Network

Guillaume Urvoy-Keller , Ǵerard H́ebuterne , and Yves Dallery

Abstract—The need to guarantee Quality of Service (QoS) to multimedia
applications leads to a tight integration between the routing and forwarding
functions in the Internet. MPLS tries to provide a global solution for this
integration. In this context, multipoint-to-point (m2p) networks appear as
a key architecture since they provide a cheaper way to connect edge nodes
than point-to-point connections. M2p networks have been mainly studied
for their load balancing ability. In this paper, we go a step further: we pro-
pose and evaluate a traffic management scheme that provides deterministic
QoS guarantees for multimedia sources in an m2p network. We first derive
an accurate upper bound on the end-to-end delay in an m2p architecture
based on the concept of additivity. Broadly speaking, an m2p network is
additive if the maximum end-to-end delay is equal to the sum of local max-
imum delays. We then introduce two admission control algorithms for ad-
ditive networks: a centralized algorithm and a distributed algorithm, and
discuss their complexity and their scalability.

Keywords—Multipoint-to-point networks, MPLS, Quality of Service, De-
terministic Bounds, Admission Control.

I. I NTRODUCTION

Provisioning of Quality of Service (QoS) in high-speed net-
works has received much attention in the last decade. The ATM
community advocated for a connection oriented solution while
the Internet community advocated for a connectionless solution.
Today, there is a trend to combine these solutions since the back-
plane of many core routers is an ATM switch fabric. ATM
switches provide an high-speed and low cost per port solution
for the Internet. However, they are not universally used. Mul-
tiprotocol Label Switching (MPLS) [1], has been developed to
offer a universal forwarding layer to the Internet. MPLS may
inter-operate adequately with ATM [2] or Frame Relay [3] or
provide an ad-hoc forwarding service.
An Internet Service Provider (ISP) may use MPLS to establish
a set of routes between its ingress nodes and its egress nodes. If
point-to-point (p2p) routes are used and there aren edges, then
O(n2) routes are required to connectn nodes. Another possi-
bility to cover the network is to use multipoint-to-point (m2p)
connections rooted at the egress nodes. With m2p connections,
only O(n) routes are required. The use of m2p Label Switch
Paths (LSPs) allows to merge several p2p LSPs: m2p LSP ease
traffic management since they reduce the amount of states (cor-
responding to LSPs) at each node, i.e. not only at edge nodes but
also at interior nodes (see Figure 1). In this paper, we propose
and evaluate a traffic management scheme for an m2p network
that guarantees a deterministic QoS to variable bit rate sources.
Sources are assumed to be leaky bucket constrained with a max-
imal end-to-end delay requirement. We assume a fluid model

Manuscript received February 21, 2001; revised November 23, 2001.
G. Urvoy-Keller is with Institut Eurecom, 2229, route des Crêtes, 06904

Sophia-Antipolis, France. E-mail:urvoy@eurecom.fr
G. Hébuterne is with Institut National des Télécommunications, 9, rue Charles

Fourier, 91011 Evry cedex, France. E-mail: hebutern@hugo.int-evry.fr
Y. Dallery is with Ecole Centrale de Paris, Avenue des Vignes, 92 295 Chate-

nay Malabry cedex, France. E-mail: dallery@pl.ecp.fr

Egress
node

Ingress
node

Ingress
node

Ingress
node

Ingress
node

Egress
node

Ingress
node

Ingress
node

Ingress
node

Ingress
node

(a) (b)

Fig. 1. P2p strategy (a) vs m2p strategy (b)

that closely approximates the behavior of a packet network with
a small packet size compared to the service rates of the servers.
The fluid model enables us to concentrate on the central issues.
The proposed scheme is based on the FIFO scheduling policy,
because of its scalability. It is quite likely that more complex
policies such as PGPS [4], [5] will be used in the future. How-
ever, these policies will not run at a connection level but rather
at a class level (to ensure scalability), and a given class will see
the m2p network as a FIFO network (with a time-varying ser-
vice rate). Thus, a first problem to solve is the case of a FIFO
m2p network. To our best knowledge, this problem has not been
treated previously.
The remainder of the paper is organized as follows. In Section
2, we review the related work in the fields of m2p architectures
and end-to-end bounds in FIFO networks. In Section 3, we re-
call the main results of the Network Calculus [6], [7], [8] that
we use to obtain a bound on the end-to-end delay. In Section
4, we emphasize the difficulty to directly derive an end-to-end
delay bound for a FIFO network from the concept of service
curve introduced in the Network Calculus. In Section 5, we
study the maximum end-to-end delay in the case of an m2p net-
work with two servers. The analysis demonstrates that a bound-
ing approach is required for the case of larger networks. We
also introduce the concept ofadditivity, which is central to our
analysis in the case of larger networks carried in Section 6. In
Section 7, we propose and evaluate two admission control algo-
rithms based on our end-to-end delay bound. In Section 8, we
conclude and provide some insights for future work.

II. RELATED WORK

A first step toward the provision of QoS service is the ability
to balance load in the network. In the traditional Internet, this
is achieved with metric-based routing. Network administrators
adjust link metrics to balance the traffic. However, this ad-hoc
solution is not satisfying in the context of QoS provisioning and
there exists a need to explicitly control the routes of the flows
in the network. Such a control may be achieved with MPLS.
Such a solution has been investigated in [9] in the context of IP



2

over ATM and in [10] in the context of IP over MPLS. In [10],
Saito et al. propose a traffic engineering scheme for Internet
backbones that tries to provide an optimal load balancing for re-
liability. The proposed scheme uses multiple m2p Label Switch
Paths (LSPs) between each ingress/egress pair to achieve load
balancing and reliability. Traffic demands are expressed as ser-
vice rates. Sources are thus implicitly assumed to be constant
bit rate sources.
A first step toward the design of our traffic management scheme
is the derivation of an accurate bound on the end-to-end delay
for an m2p network. Determining an end-to-end delay bound
in a network based on the FIFO scheduling discipline is a chal-
lenge since the stability of a FIFO network with a general archi-
tecture has not been established yet. Tassiulas et al. [11] proved
that the ring architecture is stable under any work-conserving
scheduling discipline (and thus under the FIFO scheduling dis-
cipline). The result is interesting since the ring architecture is
often considered as a “worst-case” architecture due to the high
dependency it induces among sessions. However, this result has
not yet been extended yet to the case of a general architecture.
Chlamtac et al. [12] have focused on FIFO networks with peak
rate constrained sources. The authors show that if the peak rate
of each source in the network satisfies a constraint related to the
number of sources that the source meets on its route, then the
network is stable and bounds on end-to-end delays and back-
logs exist. The result applies to FIFO networks with a general
architecture, but it is restricted to the case of constant bit rate
sources. In the present work, we concentrate on a specific ar-
chitecture, the m2p architecture, however with variable bit rate
sources.

III. N ETWORK CALCULUS

The Network Calculus [13], [6], [7], [8], [14] is an analytical
method to derive deterministic bounds on end-to-end delays and
backlogs. The Network Calculus has been developed both for
continuous time [13] and discrete time [8]. We use here the
continuous version that is better suited for a fluid-flow analysis.
We present, in the following, the basic concepts of the Network
Calculus that will be used in the rest of this paper.

A. Sources and Network Elements Modeling

A.1 General Sources

Consider a sourceS. Let S be a given trajectory ofS andΓS

be the set of all possible trajectories forS.
Definition 1: The cumulative rate functionAS(t) of S is de-

fined as the cumulative amount of bits issued byS in the inter-
val [0, t] (the cumulative rate function of a given trajectory fully
characterizes this trajectory).

Definition 2: A functionα is an arrival curve forS if:
AS(t+ τ)−AS(t) ≤ α(τ),∀S ∈ ΓS,∀τ ≥ 0,∀t ≥ 0.

An arrival curve forS provides an upper bound on the number
of bits thatS can send on any time interval.

Definition 3: We defineΞS as the set of arrival curves asso-
ciated toS:

ΞS = {α | ∀S ∈ ΓS, ∀(t, τ), AS(t+ τ)−AS(t) ≤ α(τ)}.
Theorem1: (See [13] for proof)ΞS as a minimum element

α∗, called the minimum arrival curve and defined as follows:

α∗(τ) = maxS∈ΓS maxt (AS(t+ τ)−AS(t)),∀τ ≥ 0.
In the remaining of the paper, and for sake of simplicity, the term
“source” may be used to refer to a trajectory.

A.2 Source Model

In the remaining of this paper, we consider sources that are
leaky bucket constrained with an additional constraint on their
peak rate. A traffic descriptor for a given sourceS has three
parameters(p,R,M) (we noteS ∼ (p,R,M)) that are respec-
tively the peak rate, the mean rate and the maximum burst size
of S. Such a source is able to traverse the leaky bucket controller
depicted in Figure 2 without experiencing any loss. The size of
the token bucket isM ′ = M p

p−R > M since the peak rate of
the source is finite. LetΩ(p,R,M) be the set of sourcesS such

Tokens rate R

Token bucket depth 
M’

peak rate p

Source

Fig. 2. Leaky bucket controller

asS ∼ (p,R,M). The greedy source (trajectory), associated to
Ω(p,R,M), plays an important role in worst case analyses and
is defined as follows:

Definition 4: For a given setΩ(p,R,M), GΩ(p,R,M) (or
simply G) is the source that consumes tokens as soon as pos-
sible. With a token bucket initially full at timet = 0, the greedy
sourceG emits at its peak rate during[0, Mp ] and then emits at
its mean rateR, i.e.:

AG(τ) = min
(
p · τ,R · τ +M p−R

p

)
The following results hold for the greedy source (proof is left

to reader):
• α∗G(τ) = AG(τ),∀τ ≥ 0 (the minimum arrival curve of the
greedy source is its cumulative rate function).
• ∀S ∈ Ω(p,R,M)∀τ ≥ 0, α∗S(τ) ≤ α∗G(τ) (the minimum
arrival curve of the greedy source is the minimum arrival curve
of all the sources ofΩ(p,R,M))

The minimum arrival curve of a multiplex of leaky bucket
constrained sources is the sum of the minimum arrival curves of
the sources of this multiplex (see [14]). The resulting source has
a concave piece-wise linear arrival curve. We make use of the
two notions (source constrained by a single leaky bucket or by a
set of leaky buckets) in the remaining of this paper.

The source model presented above encompasses the case of
an IP source declared with a TSPEC and the case of a VBR ATM
source. An ATM VBR source is constrained by a pair of GCRA
algorithms with parameters(T, τ) and(T ′, τ ′+ τ). Let δ be the
cell size in bits. A minimal arrival curveα for a VBR source is
(see [15]):

α(t) = min(p · t+ bp, R · t+ bM )
wherep = δ

T is the peak rate of the source inbit/s, R = δ
T ′ is

the sustainable rate inbit/s, bp = p · τ + δ corresponds to the



3

bits

time

v(α,β)

(α,β)h

α

β

Fig. 3. Upper bounds on backlogs and delays

cell jitter (in bits) andbM = τ ′R corresponds to the maximum
burst size of the source (in bits).

Similarly, an IP source described with a TSpec has a minimal
arrival curveα(t) = min(M + p · t, b + r · t) whereM is the
maximum size of a packet of the source,p its peak rate,r its
sustainable rate andb its bucket depth.

A.3 Network Elements

Within the Network Calculus framework, a network element
is characterized by its service curve that intuitively represents a
lower bound on the service it provides. Several definitions of a
service curve exist. We use the extended service curve defined
by Le Boudec [13].

Definition 5: A network element offers an extended service
curveβ to a given sourceS if:
∀S ∈ ΓS,∀t ≥ 0,∃t0 ≤ t : ASout(t)−AS(t0) ≥ β(t− t0)

whereASout is the cumulative rate function ofS seen at the
output of the network element.

Example:a service curveβ for a work-conserving server with
a service rateC is β(τ) = C · τ . The proof is straightforward:
t0 is equal to the beginning of the busy period thatt belongs to,
or t0 = t if there is no backlog at timet.

B. Advanced Results

B.1 Bounds on Delays and Backlogs

Consider a system, seen as a black box. LetR(t) (resp.
R∗(t)) be the cumulative rate function seen at the input (resp.
output) of the system. The backlog at timet is b(t) = R∗(t) −
R(t). Cruz [8] has introduced the virtual delayd(t) defined as
follows:

d(t) = inf {T : T ≥ 0, R∗(t+ T ) ≥ R(t)}
Theorem2: Consider a source with an arrival curveα

traversing a system that offers a service curveβ. Then:
b(t) ≤ v(α, β) and d(t) ≤ h(α, β)

wherev(α, β) andh(α, β) represent respectively the maximum
vertical and horizontal distances betweenα andβ (see Figure
3):

v(α, β) = sups≥0(α(s)− β(s))
h(α, β) = sups≥0(inf {T : T ≥ 0, α(s) ≤ β(s+ T )})

B.2 Output Characterization

Theorem3: (See [13] for proof) An arrival curveαout for a
source seen at the output of a system that offers a service curve
β is:

αout(τ) = sup
v≥0

(α(τ + v)− β(v)),∀τ ≥ 0

whereα is the arrival curve of the source seen at the input of the
system.

B.3 Network Service Curve

A straightforward way to obtain end-to-end delay bounds is
to apply Theorems 2 and 3 at each stage in the network and sum
the obtained local bounds. It is however possible to obtain a
tighter result with the network service curve paradigm:

Theorem4: (See [13] for proof) Consider a sourceS travers-
ing p network elements. Each network element is characterized
by an extended service curve(βj)j∈{1,...,p}. S may see thesep
network elements as a single network element characterized by a
network service curveβ that is the convolution of(βj)j∈{1,...,p}:

β(t) = inf
t1+...+tp=t

(β1(t1) + . . .+ βn(tn))

The strength of Theorem 4 is that the obtained end-to-end delay
bound is smaller than the one obtained through summation of
local delay bounds (using Theorems 2 and 3).

IV. END-TO-END DELAYS: A SERVICE CURVE APPROACH

To define a complete traffic management scheme for m2p net-
works, we first need to derive an accurate bound on the end-to-
end delay. As seen in the previous section, the Network Calculus
provides a way to derive end-to-end bounds using network ser-
vice curves. In the present section, we investigate this approach.

A. Service Curve Offered by a FIFO Server

Consider 2 sources,S1 andS2 (with respective arrival curves
α1 andα2) and a server that implements the FIFO scheduling
policy with a service rateC. Let λC be the function such that:
∀t ≥ 0, λC(t) = C · t, andRi (resp. R∗i ) be the cumulative
rate function ofSi at the input (resp. output) of the server. For a
given timet, lets0 be the last time instant with no backlog in the
server (s0 ≤ t). Thus,R∗1(s0) = R1(s0) andR∗2(s0) = R2(s0).
Since the scheduling policy is work conserving, this yields:

R∗1(t)−R∗1(s0) +R∗2(t)−R∗2(s0) = C · (t− s0). (1)

Causality implies thatR∗2(t) ≤ R2(t). Thus:
R∗2(t)−R∗2(s0) ≤ R2(t)−R2(s0)

SinceS2 is constrained byα2 and the server adds a constraint
on the peak rate of the output source, we obtain:

R∗2(t)−R∗2(s0) ≤ min(C · (t− s0), α2(t− s0)). (2)

From equation (1) and (2), we obtain:
R∗1(t)−R1(s0) ≥ C · (t− s0)−min(C · (t− s0), α2(t− s0)).
Let us define(x)+ asmax(0, x). Then,β1 = (λC − α2)+

is a service curve forS1, sinceC · t − min(C · t, α2(t)) =
(λC(t)− α2(t))+.

B. Discussion

The service curveβ1 is conservative. Indeed, ifS2 were pre-
emptive overS1, the obtained service curve would be the same
since, in this case,S1 receives only the extra capacity unused by
S2. Besides, assume thatS1 andS2 transit in a second server
where they mix with a third sourceS3. To derive a service curve
for S1 in the second server, we need an arrival curve forS2 at



4

the input of the second server. This arrival curve may be ob-
tained by applying Theorem 3 to the arrival curve ofS2 at the
input of server 1 and its service curve at server 1. However,
the arrival curve forS2 at the second server is also pessimistic
since the service curve forS2 at server 1 is pessimistic. Thus,
the conservative aspect of the result increases with the size of
the network. This approach leads inevitably to pessimistic re-
sults. For instance, consider a single server and assumeS1 and
S2 have the same traffic descriptor, namely(p,R,M). The fol-
lowing relation exists between the delay boundDSC obtained
with the service curve approach and the maximum delayDmax:
Dmax = C−R

C DSC . Thus, whenR→ C
2 (stability requires that

C > 2R),DSC → 2Dmax.
The weaknesses of this service curve approach demonstrates the
necessity of a new approach the problem. Note, however, that a
better (more accurate) service curve thanβ1 for a FIFO server
may exist. The determination of such a service curve remains
an open issue.

V. END-TO-END DELAY IN A TANDEM NETWORK

In this section, we study the end-to-end delay in a network
with two servers in sequence, called a tandem network (except
in the first part where the results hold forp servers in sequence)
and stress the complexity of an exact analysis.

A. Single Source /p Servers in Sequence

Let S be a source traversingp servers in sequence. The
service rate of serverj is Cj . We assume thatS is con-
strained by a concave piece-wise linear arrival curveα (i.e. S
is constrained by a set of leaky buckets). We also assume that
∀(i, j) ∈ {1, . . . , p}2, i ≤ j, Ci ≥ Cj , without any loss of gen-
erality, since ifCj is greater thanCi the traffic outgoing of server
i experiences no delay inj since its peak rate is lower than the
service rate ofj.

A.1 Worst-Case Analysis

The analysis addresses two dual problems: computation of
the maximum end-to-end delay and computation of the buffer
requirement at each server. Note that the latter is equivalent to
compute the local maximum delay at each server in the case of
FIFO scheduling policy.

A.1.a End-to-end Delays.
Lemma 1: Consider a sourceS traversingp FIFO servers

with respective service rates(Cj)j∈{1,...,p}. The end-to-end de-
lay of a bit ofS is the same as if the network were restricted to
a single server with a service rateminj∈{1,...,p} (Cj).
Proof : As noted previously, we can assume that the servers rates
are decreasing. Let us also assume that serverj is backlogged
during[0, Tj ]. This means that during[0, Tj ], the output process
of serverj has a constant rateCj . SinceCj ≥ Cj+1, server
j + 1 is also backlogged during[0, Tj+1] with Tj+1 ≥ Tj . As a
consequence, any backlog period of a given serverj is included
in a backlog period of any serverk with j ≥ k ≥ p.
Now consider a bit that experiences some delay in the network.
Let j be the first server where it experiences delay. It will also
experience some delay at serverj + 1, . . . , p. The backlog pe-
riod at serverp has begun at a certain time in the past that we

choose to be time zero. The bit has entered the network at time
t ≥ 0. Since the backlog periods are included into each other,
the bit that enters at timet, has to wait for all the bits sent in
[0, t] to be served by serverp. Thus its end-to-end delay is the
same as if the network would only comprise serverp. 2

Theorem5: The maximum end-to-end delay of a source
constrained by a concave piece-wise linear arrival curveα
traversingp FIFO servers in sequence is achieved when the
source is greedy.
Proof : The maximum end-to-end delay in the network is the
same as if the network would only comprise the slowest server
(Lemma 1). For the case of a single node, the maximum delay
is achieved when the source is greedy since the cumulative rate
function of the greedy source is equal to the arrival curve of the
source(Theorem 2). This proves the result. 2

A.1.b Buffer Requirements. Let us now compute the mini-
mum buffer capacity required at each server to ensure a zero
loss rate. We first establish a relation betweenS ∈ ΓS andG
at the output of the first server. LetSin,i andSout,i be the input
and output sources at serveri for trajectoryS (AS = ASin,1).
The following result holds:

Lemma 2: ∀t ≥ 0, AGout,1(t) = min (AGin,1(t), C1 · t) =
min (α(t), C1 · t)
The proof is straightforward (see Figure 4). From Lemma 2, we
can deduce thatAGout,1 is a concave piece-wise linear function.
Moreover,AGout,1 is an arrival curve for the outgoing traffic of
server 1 for any sourceS ∈ ΓS.

C
1

Avin vout

T

A

time

bits

Fig. 4. Output cumulative rate function for a greedy source

Lemma 3: ∀S ∈ ΓS, α
∗
Sout,1

≤ AGout,1
Proof: To prove thatAGout,1 is an arrival curve for any trajec-
toryS, we use the definition of an arrival curve: an upper bound
on the amount of traffic emitted on any time interval. Suppose

A*
1,out

Q

Qp

1

2

D
Q

1,in

1 2 p

A*
2,out

A*G

C C

p,out
A*

G

G G

max

C

time

bits

Fig. 5. End-to-end Delay (D) and Buffer Requirements (Q1,Q2,Q3)



5

that there exists a trajectoryS, a time instantt and a time inter-
val τ such that:x = ASout,1(t+ τ)−ASout,1(t) > AGout,1(τ).
Then, necessarily,τ > T whereT (see Figure 4) is the maxi-
mum time where the server is backlogged (and thus, its effective
output rate isC1). ForSout,1 to producex duringτ , Sin,1 = S
must have at least producedx during a time interval of at most
τ in the past, since the scheduling policy is work-conserving:

∃t′ ≤ t, ASin,1(t′ + τ)−ASin,1(t′) ≥ x > AGout,1(τ)

From Lemma 1 andτ > T , we have:

AGout,1(τ) = AGin,1(τ) = α(τ)

Combining the last two equations, we obtain:

∃t′ ≤ t, ASin,1(t′ + τ)−ASin,1(t′) > α(τ)

We thus have a contradiction sinceS is constrained byα. 2

A recursive application of Lemma 2 indicates that the worst-
case source for each server is generated by the greedy source.
Thus, the greedy source yields the maximum backlogs.

Theorem6: The maximum backlog at each server for a
sourceS with a concave piece-wise linear arrival curveα
traversingp servers in sequence, is obtained when the source
is greedy (see Figure 5).
Note that the arrival curve obtained from Lemma 2 is better
(smaller) than the arrival curve that could be obtained with The-
orem 3. However, the result holds only for FIFO servers whereas
Theorem 3 holds for any scheduling discipline.

B. Multipoint-to-Point Tandem Networks

Consider a tandem m2p network, i.e. a tandem network where
sources may enter at node 1 or 2 but exit at node 2 only. Sources
that enter the network at nodei may be aggregated since they
have the same route in the network. LetSi be the resulting
source at nodei. Si is constrained byni leaky buckets, whereni
is the number of sources entering at nodei. Let αi be the min-
imum arrival curve ofSi. Unlike the single source case, buffer
requirements and end-to-end delay bounds must be estimated
separately.

B.1 Buffer Requirements

The results of this part are obtained for m2p withp servers in
sequence. LetQj be the minimum buffer requirement at server
j that guarantees a zero loss rate. Using Theorem 2, we obtain
an upper bound forQj with the minimum arrival curve of the
input flow at serverj. This yields the minimum buffer require-
ment, provided that one can prove that there exists a trajectory
of the system such that the input flow at serverj has a cumula-
tive arrival curve equal to this minimum arrival curve.
A consequence of Lemma 2 is that the minimum arrival curve
(α∗Sout) at the output of a FIFO server for an aggregation of leaky
bucket constrained sources is maximum when the sources are
greedy and strictly synchronous (i.e. they start emitting at the
same time instant). Moreover, this minimum arrival curve is a
concave piece-wise linear function. Thus,Sout, the source seen
at the output of the server, is multi- leaky bucket constrained.

If this source is to be mixed with a second (leaky bucket con-
strained) sourceS2 and injected in a second server, the max-
imum backlog is achieved whenSout andS2 are greedy and
synchronous. This result can be extended to m2p networks of
any size:

Theorem7: For a given m2p network with leaky bucket
constrained sources, the maximum backlogQj at serverj is
achieved when all the sources are greedy and strictly syn-
chronous, i.e. when the sources start emitting at the same time
instant.

B.2 End-to-end Delay

For the single server case, the maximum backlog corresponds
to the maximum delay. We prove here that for the case of a tan-
dem m2p networks, achievement of the local maximum delays
does not necessarily results in the maximum end-to-end delay.
For the single server case, two conditions must be met to ob-
tain the maximum delay: greediness and a strict synchroniza-
tion (they start emitting at the same time instant) of the sources.
For the case of a tandem m2p network, we prove that greediness
property is still mandatory (this is intuitively logical since “be-
ing greedy” means generating traffic at the maximum possible
rate during a maximum period of time, a basic condition to cre-
ate some backlog), while the synchronization between sources
is no more a strict one.

B.2.a Synchronization: A Simple Counter-example. Consider
a system with two servers with respective service ratesC1 and
C2 (C1 < C2) and two sourcesS1 (entering at server 1) and
S2 (entering at server 2). We assume thatS1 andS2 have the
same leaky bucket parameters(p,R,M). We also assume that
0 ≤ R ≤ C2 − C1. According to the results obtained in the
previous section, the maximum backlogs are obtained whenS1

andS2 are strictly synchronous. This corresponds to the tra-
jectories depicted in Figures 6 and 7. Letdimax (i ∈ 1, 2) be
the maximum delay at serveri (achieved when the sources are
greedy and synchronous) anddmaxS1,S2

the maximum end-to-
end delay for a given trajectory ofS1 andS2. SinceC2 ≥ C1,

C
1

p+R

p

M/p M/C1

d
1 max

bits

time

Fig. 6. Maximum Backlog Generation (Server 1)

and since the 2 sources have the same traffic descriptor, the bit
that experiencesd1max does not experienced2max. Thus, the
maximum end-to-end delay is strictly less than the sum of the
local maximum delays, i.e.dmaxS1,S2

≤ d1max + d2max. Also,
since,R ≤ C2−C1, the maximum backlogs are experienced by
the bits that enter the two servers at timet = M

p .
Let us now delay the beginning of emission ofS2: S1 starts



6

p+C 1

M/p

d
2 max

R+C
1

C 2

2R

M(C1+p)/(pC2) time

bits

Fig. 7. Maximum Backlog Generation (Server 2)

at time zero andS2 starts at timet = M
C1
− M

p , S1 andS2

still being greedy. The bit that experiencesd1max enters the
network at timet0 = M

p . It exits the first server at time

t0 + d1max = M
p + M

C1
. During [MC1

− M
p ,

M
p + M

C1
], S1 has

producedC1 · Mp . Thus, the maximum local delayd2max is

achieved at server 2 at timet1 = M
p + M

C1
, which is the time

instant when the bit that experiencedd1max at server 1 reaches
server 2. Thus, this bit experiences an end-to-end delay equal to
d1max +d2max, which is strictly greater than in the strictly syn-
chronous case. This example clearly emphasizes the impact of
the synchronization among the sources on the end-to-end delay.

B.2.b Worst Case Conditions. We now investigate the con-
ditions yielding the maximum end-to-end delay. The bit that
experiences the maximum end-to-end delay is chosen as the ref-
erence bit. There are two cases:
1. the reference bit experiences delay in servers 1 and 2.
2. the reference bit experiences delay in server 2 only.

Note that the case “delay in server 1 only” is not possible
since if the reference bit experiences some delay in the first
server, this means that the server is in a backlog period. Thus,
the output process of server 1 has a rateC1 during a certain time
interval. If we mix this flow withS2 emitting at its peak rate (we
assumep2 + C1 ≥ C2, otherwise server 2 would be transparent
to the flow), this resulting flow would create some backlog at
server 2 and thus the reference bit would necessarily also expe-
rience some delay at server 2.
The case “delay in server 2 only” is easy to solve since the prob-
lem transforms into determining the maximum delay in a sin-
gle server with two leaky bucket constrained sources:S1, with
a peak rate equal toC1 andS2. We can thus apply Theorem 5:
the maximum delay is achieved when the two sources are greedy
and synchronous.
The case “delay in the two servers” is far more complex as we
now see.

B.2.c Delay Equations. We adopt the following notations:
1. θ1 andθ2 are the epochs of beginning of the backlog periods
where the reference bit enters server 1 and 2 respectively. We
setθ1 = 0. θ2 might be positive or negative.
2. d1(t) (resp.d2(t+d1(t))) is the delay experienced by the bit
entering server 1 at timet (resp.t+d1(t)). Note thatt+d1(t) ≥
θ2 since we focus on the delay of bits ofS1 experiencing some
delay in the two servers.

3. D(t) is the end to end delay of the bit that enters server 1 at
time t: D(t) = d1(t) + d2(t+ d1(t)).
The following equations hold:

d1(t) =
AS1,in(t)− C1t

C1

d2(t+ d1(t)) =
A′S1,out

(t+ d1(t)) +AS2,in(t− θ2 + d1(t))

C2

−(t− θ2 + d1(t))

whereA′S1out
is the amount of bits generated byS1, which have

already reached server 2 when the bit emitted at timet arrives at
server 2. SinceD(t) = d1(t) + d2(t+ d1(t)), we obtain:

D(t) =
A′S1,out

(t+ d1(t)) +AS2,in(t+ d1(t)− θ2)

C2

−(t− θ2) (3)

If θ2 ≥ 0, C2 ≥ C1, since during[0, θ2] server 1 is back-
logged and thus emits at a constant rateC1 and no backlog
appears at server 2. As a consequence:A′S1,out

(t + d1(t)) =
AS1,in(t)− C1θ2.
If θ2 ≤ 0, S1 may emit some traffic during[θ2, 0] as long as its
instantaneous emission rate is smaller thanC1. Let a−S1,in

(θ2)
be the amount of traffic sent byS1 during [θ2, 0]. Note thatS1

can emit at least at a constant rateR (the sum of the mean rates
of the sources composingS1). Indeed, a source constrained
by a leaky bucket always receives tokens at a rateR (the ar-
rival rate of tokens in its token pool) and thus can emit bits at
this constant rate without affecting its ability to send later at a
rate greater thanR. As a consequence :A′S1,out

(t + d1(t)) =
AS1,in(t) + a−S1,in

(θ2).
Equation (3) may thus be rewritten as follows:

D(t) =
AS1,in(t) + a−S1in

(θ2) +AS2,in(
AS1,in (t)

C1
− θ2)

C2

−(t− θ2) if θ2 ≤ 0 (4)

=
AS1,in(t)− C1θ2 +AS2,in(

AS1,in (t)

C1
− θ2)

C2

−(t− θ2) if θ2 ≥ 0 (5)

B.2.d Greediness. Consider the caseθ2 ≥ 0. The end-
to-end delayD is a function of the cumulative rate functions
AS1,in andAS2,in . These cumulative rate functions are upper
bounded by the corresponding arrival curves:∀i ∈ {1, 2},∀t ≥
0, ASi,in(t) ≤ αi(t). SinceD is an increasing function of
(ASi,in)i∈{1,2}, D is maximized when the sources are greedy.
We can conclude that, whenθ2 ≥ 0, the maximum end-to-end
delay is achieved for sources that are greedy starting at a certain
time.
Whenθ2 ≤ 0, we have that:

AS1,in(t) + a−S1in
(θ2) ≤ α1(t− θ2) (6)

sinceS1 is constrained byα1 and the considered time interval
has a durationt − θ2. The rhs and lhs of equation (6) are not



7

necessarily equal since during[θ2, 0], S1 must have an instanta-
neous emission rate less or equal thanC1. We make use of the
following lemma to prove that equation (6) is an equality:

Lemma 4: The maximum end-to-end delay is achieved at a
time instantt such that aftert, S1,in is not able to emit at a rate
greater thanC1.
Proof: Let us prove the result by contradiction. Suppose that the
maximum end-to-end delay is achieved for a bit sent at timet
and suppose that, after timet, S1 is still able to send at a rate
greater thanC1, say during[t, t + δ]. The end-to-end delay at
time t is given by equation (3):

D(t, θ2) =
AS1,out(t+ d1(t)) +AS2,in(t− θ2 + d1(t))

C2

−(t− θ2)

Let us now delay the beginning of emission ofS2 by an offset
δ and compute the delay at timet+ δ (with the assumption that
S1 emits at rateC1 during[t, t+ δ]). Equation (3) gives:

D(t+ δ, θ2 + δ) =
AS1,out(t+ δ + d1(t+ δ))

C2

+
AS2,in((t+ δ)

C2

+
(θ2 + δ) + d1(t+ δ))

C2

−((t+ δ)− (θ2 + δ))

Sinced1(t+ δ) = d1(t) + δ (during [t, t+ δ], the backlog at
server 1 is increased byC1 · δ), we obtain:

D(t+ δ, θ2 + δ) > D(t, θ2)
The result is thus proved by contradiction. 2

A consequence of Lemma 4 is that equation (6) may be an
equality for the instant of interest (where the maximum delay is
achieved): it is possible to sendα1(t) during [0, t] and,α1(t −
θ2) − α1(t) during [θ2, 0], since during this period of time, the
emission rate ofS1 is less thanC1.
As a consequence,D is an increasing function ofAS1,in(t) +
a−S1in

(θ2) (and also of(ASiin)i∈{1,2}) in the case whenθ2 ≤ 0.
Thus, the end-to-end delay is maximized when the sources are
greedy starting at a certain time.
To summarize, the greediness of the sources is mandatory in any
case (backlog at server 2 only or in the two servers withθ2 ≥ 0
andθ2 ≤ 0):

Lemma 5: For any tandem m2p network, the maximum end-
to-end delay is achieved when the sources are greedy with dif-
ferent starting times.
Equations (5) and (7) can be rewritten using Lemma 5:

D(t) =
α1(t− θ2) + α2(α1(t)

C1
− θ2)

C2

−(t− θ2) if θ2 ≤ 0 (7)

=
α1(t)− C1 · θ2 + α2(α1(t)

C1
− θ2)

C2

−(t− θ2) if θ2 ≥ 0 (8)

B.2.e Delay Function Study. We consider sources with piece-
wise linear concave arrival curves.D, as defined in equation
(8), is thus a concave function since concavity is preserved by
summation and composition. It has a bell-shaped curve, which
starts from zero at timet = 0 and goes back to zero at time
t = T , whereT is the duration of the network backlog. There is
thus only one local maximum. For the remaining of this section,
we assume thatθ2 ≥ 0. A similar study (though not obvious)
could be carried out forθ2 ≤ 0.

B.2.f Synchronization. We want to study the influence ofθ2.
To do so, we consider the derivative functiondDdθ2 (t). Equation
(8) (f ′ stands for the derivative off ) gives:

dD

dθ2
(t) =

(C2 −R)− α′2(α1(t)
C1
− θ2)

C2
if θ2 ≥ 0 (9)

D is maximized forθ2 = θ2max andt = tmax. We study, fort
set totmax, the influence ofθ2. Sinceθ2 ≥ 0, C2 ≥ C1. Also,
since the bit that experiences the maximum end-to-end delay ex-
periences some delay in the two servers,S2 must start emitting
no later than at the arrival time of the reference bit in the second
server, i.e. at timeθ2max = α1(tmax)

C1
. D(t) has thus one maxi-

mum in[0, α1(tmax)
C1

]. The derivative function can be interpreted
as follows: it is all benefit to triggerS2 sooner than a givenθ2

(say at timeθ2 − δ) if the value ofα′2 is greater thanC2 − C1

after α1(tmax)
C1

− θ2 (arrival time of the reference bit at server 2,
which is backlogged from timeθ2), that is if the amount of work
done by server 2 in[θ2 − δ, θ2], i.e. C2 · δ, is less than whatS2

andS1 can produce during the interval[θ2max − δ, θ2max], i.e.
C1 · δ + α′2(α1(tmax)

C1
− θ2)δ.

B.2.g Conclusion. We usually do not know the conditions
leading to the maximum end-to-end delay (whether the refer-
ence bit experiences some delay in the two servers or in the sec-
ond server only). For the two server cases, it is possible to derive
the value ofθ2 (see [16]). However the analysis does not scale
easily to larger networks. A bounding approach is thus neces-
sary for larger networks. A first step toward this objective is the
introduction of the concept ofadditivity.

B.2.h Delay Additivity. We say that the delay in a tandem m2p
network is additive if the maximum end-to-end delayDmax is
equal to the sum of the local maximum delaysdGimax. Note that
it is not the case in general. Indeed, ifdimax is the maximum
delay at serveri for the trajectory leading to the maximum end-
to-end delay, we have:∀i, dimax ≤ dGimax and thusDmax ≤∑
i d
G
imax.

B.2.i Additivity conditions. Let us first remark that the only
chance for the end-to-end delay to be equal to the sum of the
maximum local delays is that the bit that experiences the maxi-
mum delay in server 1 also experiences the maximum delay in
server 2.
We adopt the following conventions:
1. t = 0 is the time instant corresponding to the beginning of
the activity period at the first server.
2. t1max is the arrival time of the reference bit that expe-
riences the maximum delay in the first server (t1max =
max(t | dαS1 (t)

dt > C1)).



8

3. t1max+d1(t1max) = t1max+d1max is the arrival time of the
bit at the second server (d1max is the maximum delay at server
1. d1max = α1(t1max)

C1
− t1max ).

Let A2 be the cumulative rate function ofS2 andθ2 its instant
of beginning of emission. Since the maximum delay at server 2
must be achieved at timet1max + d1max, the following condi-
tions must hold:

d(α1out +A2)(t)
dt

> C2 for t ∈ [θ2, t1max + d1max](10)

d(α1out +A2)(t)
dt

< C2 for t > t1max + d1max (11)

In the interval[0, t1max + d1max], the output rate of server 1 is
C1 (backlog period). Thus, equations (10) and (11) become:

dA2(t)
dt

> C2 − C1 for t ∈ [θ2, t1max + d1max] (12)

dA2(t)
dt

< C2 − C1 for t > t1max + d1max (13)

For the previous conditions to hold, a necessary condition is
C2 ≥ C1. We also know that a necessary condition to gener-
ated2max is thatS2 is greedy. Lett2max = max(t | dα2(t)

dt >
C2 − C1). A necessary and sufficient condition for the bit ar-
riving at time t1max + d1max (and experiencedd1max) to ex-
perienced2max is that t2max ≤ t1max + d1max (since then
θ2 = t1max + d1max − t2max). We obtain the following the-
orem:

Theorem8: In a tandem m2p network, sources can be syn-
chronized so as to generate an end-to-end delay equal to the sum
of the local maximum delays if and only if:

C2 ≤ C1 and t1max + α1(t1max)
C1

≥ t2max , with:

t1max = max(t | dα1(t)
dt > C1)

t2max = max(t | dα2(t)
dt > (C2 − C1))

(14)

B.2.j Lower Bound. Let us now assume that the conditions of
Theorem 8 are not fulfilled, i.e.t1max + α1(t1max)

C1
≥ t2max

where:

t1max = max(t | α1(t)
dt

> C1) (15)

t2max = max(t | (α1out + α2)(t)
dt

> C2) (16)

Note that the definitions oft2max given in equations (14) and
(16) are equivalent since in equation (14),C1 is the rate of the
greedy source seen at the output of server 1. The key idea is to
build a trajectory ofS1 where the burst leading tod1max is de-
layed in such a way that the reference bit (experiencingd1 max)
exits server 1 at timet2max (we still assume thatS2 is greedy
during[0, t2max]). This trajectory is defined as follows:
1. S1 is silent during[t2max − d1max, t2max]
2. S1 is greedy during[t2max−d1max−t1max, t2max−d1max]
We still have to define the trajectory ofS1 during [0, t2max −
d1max − t1max]. We assume that it is maximal, i.e. that
S1 produces as much traffic as possible, under the constraint
that it remains able to generate a burst leading tod1max for
t ≥ t2max − d1max − t1max. S1 is thus able to generate

as many bits as the greedy source during[0, t2max − d2max],
i.e. α1out(t2max − d1max). If the sources were greedy and
synchronous, the second server would receiveα1out(t2max) in
[0, t2max]. Thus, one “looses” (as compared to the strictly syn-
chronous case) the differenceQ between these two quantities,
that isQ = α1out(t2max) − α1out(t2max − d1max). Thus the
bit of S1 that experiencesd1max in the first server experiences
d2max − Q

C2
in the second server. The end to end delay of this

bit is thus :

D = d1max+d2max−
α1out(t2max)− α1out(t2max − d1max)

C2
(17)

Sinceα1out is given by Lemma 1, we can easily computeD. We
have thus obtained a lower bound for the end-to-end delay since
D corresponds to a trajectory of the system. IfD is close to
the sum of the local maximum delays, this would prove that the
sum of maximum local delays provides a good approximation
of the end-to-end delay. We further investigate this approach in
the next section to obtain a bound on the end-to-end delay for
m2p networks of arbitrary sizes.

VI. GENERAL MULTIPOINT-TO-POINT NETWORKS

In the previous section, we proved that a tandem m2p net-
work is additive if and only ift2 max ≤ t1max + d1max. We
also characterized the corresponding additive trajectory:S1 and
S2 greedy respectively from timesθ1 = 0 andθ2 = t1 max +
d1 max − t2 max. In the following, we call additive bound, the
sum of the local maximum delays along the route of an m2p net-
work. We generalize the approach of the previous section to the
case ofp servers in sequence. First note that any m2p network
with p servers in sequence can be partitioned in a set of subnet-
works for which the following property either holds or not:

Property 1: For any two adjacent serversj and j + 1, we
have:t(j+1) max ≤ tj max + dj max .

A. Additive Networks

Consider an m2p network withp servers in sequence for
which Property 1 holds. Let(θj)j∈{1,...,p} be defined as fol-
lows:
1. θ1 = 0
2. θj+1 = θj+(tj max+dj max−t(j+1) max), j ∈ {1, . . . , p−
1]
If Sj is greedy, starting from timet = θj , (note thatθj+1 ≥ θj),
the bit experiencingd1 max at server1 experiencesdj max at
serverj for all j ∈ {1, . . . , p}. The end-to-end delay of this
bit is thus:Dmax =

∑p
j=1 dj max. An m2p network for which

Property 1 holds is thus additive. Besides, since the only way
for a bit to experience

∑p
j=1 dj max is to experiencedj max at

serverj (j ∈ {1, . . . , p}), it follows that a network that does not
fulfill Property 1 is not additive. This means that Property 1 is
a necessary and sufficient conditions for m2p networks withp
servers in sequence to be additive.

B. Non-additive Networks

In this section, we generalize the lower bound approach initi-
ated in the tandem network case. We then use this lower bound
to test the accuracy of the additive bound in the case of non-
additive networks. A straightforward generalization would hide



9

t
1 max

part

First

part

Second 

1

Third

Part

time

bits

1T
M/p
S

S
α

Σ R

Fig. 8. S1 initial trajectory

S 1

M/p
T

S 1

M/p
T

time

  - t 1 max

bits

Fig. 9. S1 modified trajectory

the difficulty of the construction of the trajectory. Therefore, we
first present the three-server case.

B.1 Three-server Case

B.1.a Lower Bound. First, consider a two-stage network. If
it is non-additive, this means intuitively that the burst leading to
d1 max is not sufficient to obtaind2 max at server 2 (considering
the greedy trajectory of the system), since when all the bits from
this burst have reached server2, the local delay on this server is
less thand2 max. The idea behind the lower bound approach is
to delay the burst at server 2 so as to synchronize local maximum
delays. Obviously, the delay at the second server will necessar-
ily be less than the delay in the greedy synchronous case.
Consider now an m2p network with three servers and three
sources(Si)i∈{1,...3} (Si entering at nodei). The trajectories
of the sources are chosen so as to maximize the amount of bits
in buffer j when the reference bit (the one experiencingd1 max

at server 1) arrives.

B.1.b Trajectory of Sources. Consider the greedy trajectory
of S1 (see Figure 8). It can be divided into three parts. The
first part corresponds to the part of the trajectory necessary to
achieve the local maximum delayd1 max. The second part cor-
responds to the time interval necessary for the last bucket of the
sources composingS1 to empty. In the last part, all the sources
composingS1 emit at their mean rate.

Now consider the trajectory ofS1 given in Figure 9.S1 is
a multiplex ofn1 sources. The traffic descriptor of sourcek is

(pk, Rk,Mk) (k ∈ {1, . . . n}). For the greedy trajectory of the
system, the source with indexk emits at its peak ratepk during
[0, Mk

pk
] and then emits at its mean rateRk. Let us define:

TS1
M
p

= max
k∈{1,...,nS1}

(Mk

pk

)
.

TS1
M
p

corresponds to the beginning of the third part defined in

Figure 8. The modified trajectory is built by changing the be-
ginning of emission of the sources composingS1 as follows:
1. if Mk

pk
≤ t1 max thenSk:

(a) emits at its mean rate during[0, TS1
M
p

− t1 max],

(b) becomes greedy fort ≥ TS1
M
p

− t1 max (this is possible

since its bucket is still full at this time).
2. if Mk

pk
≥ t1 max, thenSk:

(a) emits at its mean rate during[0, TS1
M
p

− Mk

pk
],

(b) becomes greedy fort ≥ TS1
M
p

− Mk

pk
.

The modified trajectory has two parts (see Figure 9):
1. A first part where some sources emit at their peak rate
whereas others emit at their mean rates. This part corresponds
to the second part of the initial greedy trajectory with a slight
modification: if a source emits at its peak rate duringτ1 and
then at its mean rate duringτ2 in the initial trajectory, then, in
the modified trajectory, it first emits at its mean rate duringτ2
and then at its peak rate duringτ1. Due to this inversion between
τ1 andτ2, we term this part the ’inverted part’ of the modified
trajectory.
2. A second part, strictly equivalent to the first one in the initial
trajectory.
Note that, as with the initial trajectory, the last bucket empties at
time t = TS1

M
p

. A modified trajectory is built forS2 andS3 using

the same method. We now set the synchronization parameters.

B.1.c Synchronization of Sources. With the modified trajec-
tory described above forS1, the last bit of the burst (reference
bit) experiences a delayd1 max at the first server.S2 is triggered
so that the end of its burst corresponds to the arrival of the ref-
erence bit. This bit will then experienced2 ≤ d2 max in the
second server. Since, a priori,TS1

M
p

6= TS2
M
p

, the previous syn-

chronization method leads one of the sources to start emitting
before the other. Assume thatS2 starts emitting beforeS1. To
maximize the number of bits backlogged at server 2 at the time
where the reference bit arrives, it is possible to modify the trajec-
tory ofS1 such that it emits at its mean rate before the beginning
of the modified trajectory, in an interval of lengthTS2

M
p

− TS1
M
p

.

This trajectory ofS1 is valid with respect to its leaky bucket
constraint. The same method is applied to synchronizeS3, as
shown in Figure 10.

B.1.d Result for Delay. The lower bound on the maximum
end-to-end delay is obtained as the end-to-end delay of the ref-
erence bit in the modified trajectory. Since all the sources are
leaky bucket constrained, the initial and modified trajectories
correspond to piece-wise linear curves. Computation of the in-
trinsic parameters as well as the delay of the reference bit is thus
straightforward from the algorithmic point of view.



10

3

S
2

3 max

3
S

2d

1 maxdS 1

d
1 max 3 max

2 max
t

2 max
t

3 max
t

2d

d
1 max

d1 max

t

t

d

time

bit

Fig. 10. Synchronization of sources

B.2 Numerical Results

We want to estimate the accuracy of the additive bound in a
non-additive m2p network by using the lower bound presented
above. Accuracy means here the relative difference between the
additive bound and this lower bound. We consider m2p net-
works with p = {4, 5, 8, 10} servers in sequence. For each
server, we draw the number of sources entering at this stage in
a uniform fashion in the set{1, . . . , 5}. Characteristics of the
sources are also randomly chosen from Table I using a uniform
law. We have to set the capacities of the servers. A necessary

TABLE I

SOURCES DESCRIPTORS

Peak ratep Mean rateM BurstinessM
10 0.1 10

100 1 100
1000 10 1000

condition for a network to be additive is that the rates of the
servers increases (from the leaves to the root). Conversely, if ca-
pacities decrease, the network is non-additive (sufficient but not
necessary). We set the service rate of all servers to be equal to
the sum of the mean rates of all the sources timesγ = 1.01 (γ
is used to ensure stability). This sum represents the minimum
capacity of the last server. Doing so, the most important part
of the end-to-end delay is concentrated on the last server of the
network. To obtain significant results, we calculate the relative
range, defined as the difference between the lower bound and
the additive bound divided by the additive bound, for this ini-
tial system, i.e. a particular random generation of the sources
descriptors and capacities of servers. We then change the in-
put server of some of the sources. The following algorithm is
applied:
Step 1: the initial network is built.
Step 2-9:each source is “moved” from nodej to nodej − 1
with probability 0.1.
Applying this algorithm, the m2p network heuristically “wors-
ens” and thus the relative range should increase.

The results, presented in Figure 11, are obtained for 10000
successive random generations of networks. The x-axis is in-

dexed following the steps of the algorithm. For each step of
the algorithm and for each network size, we compute the mean
relative range.

25

30

35

40

45

50

55

# 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

M
ea

n 
R

el
at

iv
e 

R
an

ge
 (

%
)

Steps of the algorithm

10 nodes

8 nodes

5 nodes

4 nodes

Fig. 11. Accuracy of the additive bound

B.2.a Discussion. For non-additive m2p networks, we have
proposed an upper bound on the end-to-end delay, the additive
bound, and a heuristically obtained lower bound. The maxi-
mum, exact, end-to-end delay over all possible trajectories of
the system lies between these two bounds and gives full mean-
ing for considering the relative range as a performance param-
eter. The obtained results confirm the good accuracy of the ad-
ditive bound. The mean relative ranges remain reasonable even
for large size of networks. The maximum error, not presented
here is no more than 67%. It thus remains within the same order
of magnitude, which clearly indicates that the additive bound is
a valid approximation of the end-to-end delay.

C. Well-formed Multipoint-to-Point Networks

Our expectation is that the additive bound always represents
an accurate upper bound on the maximum end-to-end delay for
m2p networks. Proving such a statement requires an exhaustive
study, which is not possible. We restrict our study to a specific
class of m2p networks, that we term well-formed m2p networks.
A well-formed m2p network is an m2p network where the fol-
lowing rule applies: capacities of the servers increase from the
leaves to the root of the tree. We extend here the previous re-
sults to the case of well-formed m2p networks withp servers
in sequence, using the same lower bound as in the non-additive
case. Indeed, the method used to build the trajectory leading to
the lower bound is based only on the set of intrinsic parameters
(tj max, dj max). It does not rely on any assumption concerning
the additivity of the network. It may thus be applied to the case
of well-formed m2p networks.

C.1 Results

The method used to generate a well-formed network is the
following:
1. For each server, the number of sources (between 1 and 5)
entering at this node and their characteristics are drawn from
Table 1 using uniforms laws.



11

2. The service rate of serverj is then set to the sum of the mean
rates of the sources served by this server times a coefficientα. α
can take one of the three following values{1.1, 1.5, 2.0}, which,
for each set of sources, leads to three different networks.

We present in Table II the numerical results obtained for net-
works of various sizes (from 3 to 20 servers). For each network
size, 10000 networks are drawn. The performance parameter
computed for each network is the relative range between the
lower bound and the additive bound.

TABLE II

AVERAGE RELATIVE RANGES (IN %) WITH NETWORKS OF DIFFERENT SIZES

Size=3 Size=5 Size=10 Size=15 Size=20
α = 1.1 0.72 1.29 2.03 2.89 3.87
α = 1.5 1.97 3.36 5.67 8.42 11.23
α = 2.0 1.96 3.13 5.06 7.64 10.18

C.2 Discussion

The results in Table II strongly confirm our claim: the ad-
ditive bound represents an accurate approximation of the end-
to-end delay. These results are also interesting since the way
well-formed m2p networks are built here is close to a real di-
mensioning process. Indeed,α−1 is the rate of the server di-
vided by the sum of the average rates of the sources it serves. It
thus represents the average activity rate of the servers and tun-
ing activity rates at a given value is a common way to dimension
networks. Compared to the results obtained in the previous sec-
tion, the relative ranges obtained here are significantly smaller:
for instance, for a network with 10 servers, the relative range
was close to 50% whereas, here, it is close to 5%. This is due to
the method used to set the server rates in each case. In the case of
strictly non-additive m2p networks, all the servers had the same
capacity, which lead to a strictly non-additive network, whereas
here, the rates increase from one server to another, which is a
necessary (though not sufficient) condition to obtain an additive
network.

VII. A DMISSION CONTROL ALGORITHM

In this section, we derive an admission control algorithm
based on the additive bound presented in the previous section.
We propose two versions of the algorithm, a centralized and a
distributed version.

A. Centralized Algorithm

Consider first a single FIFO server andn leaky bucket con-
strained sources. The maximum delay is obtained when all the
sources are greedy and strictly synchronous. An arrival curve
of the aggregated source is the sum of the arrival curves of all
the sources. Since summation is a commutative operation, the
maximum delay does not depend on the order in which sources
are introduced in the network. Thus, from the admission control
algorithm point of view, the answer to the admission request
of a new source in a single-server network withn established
sessions is equivalent to the answer to the request of then + 1

sources simultaneously.
Consider now an m2p network. With an admission control algo-
rithm based on the additive bound, the admission of a new ses-
sion requires to compute the local maximum delay at each server
along the path of the session up to the root server. Since the root
server belongs to the path of all sources, admitting a new source,
with n sessions already set-up, is equivalent to admit thesen+1
sources simultaneously. We make use of this property to sim-
plify the presentation of the centralized algorithm. The problem
to solve is the following: “Givenn sources with specific QoS
requirements, is it possible to admit thesen sources simultane-
ously?”. The algorithm has two phases: (i) computation of the
additive bounds along each path of the network and (ii) checking
the non-violation of the QoS constraint of each session.

A.1 Computing the Additive Bound

So far, the computation of the additive bound as been pre-
sented only in the case of m2p networks with servers in se-
quence. Generalization to a tree m2 networks relies on the fol-
lowing observation: the flow seen at the output of a given subtree
of a given m2p network is multi-leaky bucket constrained (see
Lemma 2 and 3). As a consequence, (i) maximum local delays
are obtained when all the sources are greedy and synchronous,
and (ii) computation of these delays can be made starting from
the leave servers and moving to the root server.

A.2 Checking the QoS Constraint

Once the maximum local delays are obtained, we can com-
pute the additive bound along each path of the network. We as-
sume that the centralized algorithm has a complete knowledge
of the network topology and of the input server of each source
(which is equivalent to know its path in the network). We must
thus compare, for each session, the required end-to-end delay
and the additive bound along its path to accept or reject the new
session request.

B. Distributed Algorithm

When executed, withn sources already accepted, the admis-
sion control algorithm must process the request from a new
source. Let(Si)i∈{1,...,n} be these already accepted sources,
(Di)i∈{1,...,n} their delay requirements and(Deff

i )i∈{1,...,n}, the
effective delays, i.e. the additive bounds along the path of the
sources.
Since (Si)i∈{1,...,n} have already been accepted,Di ≤ Deff

i

(∀i ∈ {1, . . . , n}). The quantitiesδi = Deff
i − Di (i ∈

{1, . . . , n}) represent safety margins for the sources.
The admission of a new sourceSn+1 requires to re-compute lo-
cal delays for all servers along the path ofSn+1, but not on all
the servers in the network. As explained before, this operation
can be made sequentially starting from the input server ofSn+1

and moving down to the root server. To limit the amount of com-
putation, each server stores the arrival curve of the flow seen at
each of its inputs. LetIi be the set of indices of the servers
along the path ofSi and(∆j)j∈In+1 the variations of the local
maximum delays induced bySn+1 at the servers ofIn+1. The
admission algorithm must check whether the admission of the
new source violates the QoS requirements of the other sources,



12

which can be expressed through the following system of equa-
tions:

δi ≥
∑

k∈Ii∩In+1

∆k, ∀i ∈ {1, . . . , n} (18)

For each sourceSi, i ∈ {1, . . . , n}, Ii∩In+1 is the set of servers
whereSi andSn+1 meet. This set is never empty: it contains at
least the root server. The problem with the distributed algorithm
is that checking equations (18) can be made only at the root
server, since this is only at this server that all the local delay
variations(∆j)j∈In+1 are known. The final admission decision
is thus made at this last step. Therefore, we have two options :
1. If we want to limit the amount of messages exchanged be-
tween servers, safety margins should be stored in the root server
only. Then, to check equations (18), the root server needs to
have a complete knowledge of the network topology and of
the path of each session. This is possible only for small net-
works and a small number of sources. Another drawback of this
method is that QoS violations are detected at the last possible
moment. For instance, if at the input server ofSn+1, the delay
variation∆ is greater than the safety marginδ of a source served
by this server, the admission algorithm could have been aborted
at this step of the procedure.
2. On the opposite, if we impose that a server only has a lo-
cal vision of the network, then, once a source is accepted, the
following operations must be performed:
(a) the safety marginδ must be distributed among all the

servers of the path of this source.
(b) if a safety margin is modified because of a new source has

been accepted, it must be transmitted to the next server since the
two sources now share the same path and thus the new source
will change this safety margin on every server until the root
server is reached.
(c) if a source is accepted, one must ensure that all safety mar-

gins are correctly updated.
We now present an algorithm that does not rely on the as-

sumption that the root server has a complete knowledge of the
network topology and of the routes of the sources. We describe
the data structures used at each server and provide a skeleton
of the two phases of the algorithm: in the first phase, local de-
lay variations are computed and QoS violations are checked. In
the second phase, called the termination phase, the decision to
admit or reject the new source is made.

B.1 Data Structures

Each server stores a table with, for each source that it serves,
an identifier and its safety margin. Each server must also store
the arrival curve of the input flow at each of its interfaces (when
a new source arrives, only one arrival curve is modified). An
arrival curve is stored as a list of points since with leaky bucket
constrained sources and FIFO servers, arrival curves are piece-
wise concave linear functions. The maximum local delaydmax
must also be stored.

B.2 First step: admitting a new source

This step of the algorithm is initiated by the input server of the
new source and is propagated sequentially until the root server
is reached. LetD be the sum of the maximum local delays be-
tween the input server of the new source and the current server.

D becomes equal to the additive bound when the current server
is the root server.

Algorithm at server j (j ∈ In+1):
1. Upon receipt of a new session request: computation of the new arrival curve
of the input flow.
2. Safety margins are (temporarily) updated using the list of modified safety
margins received from the previous server. They become effective only if the
request is accepted.
3. Computation of the new value of the maximum local delaydmax, which
gives the variation∆j and the new value ofD, i.e.D + dmax.
4. If [(mini | j∈Ii δi ≥ ∆j) and(D ≤ Dn+1)] then: (the source is locally
accepted)

(a) if (serverj == root server) then:
i. A Confirmation of Acceptance Messageis sent to the previous server in the

path ofSn+1 with the new values of the safety margins of the sources arriving
at this interface.

ii. Updating Messagesare sent on the other interfaces with the final value of
the safety margins (which are known only at this stage)

(b) else:
i. Storage of the new (temporary) value of the safety margins:∀i, j ∈
Ii, δi = δi −∆j

ii. Transmission to the next server inIn+1 of:
A. the set(δi)j∈Ii
B. the new value ofD
C. the arrival curve at the output

5. Else: aRejection Messageis sent to the previous server inIn+1.

B.3 Second Step: Updates

This phase is initiated by the root server or by the server
where a QoS violation is detected. There are three cases:

1. Receipt of aConfirmation of Acceptance Message. Only servers fromIn+1

may receive this message. The server must:
(a) update the safety margins with the received values (includingSn+1)
(b) forward this message to the previous server inIn+1

(c) sendUpdating Messageson the other ingress links with the corresponding
safety margins values
2. Receipt of aRejection Message. Only servers fromIn+1 may receive this
message. They have to:

(a) release the temporary structures (safety margin values, arrival curve and
maximum local delay)

(b) forward this message to the previous server inIn+1

3. Receipt of anUpdating Message. Only servers that do not belong toIn+1

may receive this message. The server must:
(a) update its current safety margins with the received values
(b) forward this message with the corresponding safety margins on each of its

ingress links.

B.4 Session Termination

The admission control algorithm is also executed at each ses-
sion termination. The local delays for the servers of the path of
this session must be updated as well as the safety margins of the
sources. The procedures involved are similar to the ones used
for acceptance.

B.5 Discussion

To ensure the correctness of the algorithm, two admission
procedures cannot be made simultaneously. They must be se-
quentialized. If the two admission procedures are initiated on
two disjoint paths in the tree network, the root server will have
to choose which source is treated first. This will obviously have
an impact on the other source since the source that is treated first
is more likely to be accepted than the second one. Note, how-
ever, that the admission procedure for the second source does
not have to be re-initiated. For the case where the two admis-
sion procedures are initiated on the same path, the first one that



13

reaches the first server that the two sources share, gains priority
over the other one. This means that the second procedure is de-
layed until the decision for the first source is made.
Note finally that the algorithm converges as long as no message
is lost. A reliable communication channel, such as a permanent
TCP connection, may be used to ensure that no messages are
lost between adjacent servers.

C. Example

We further illustrate the distributed admission control algo-
rithm presented above for the case of the m2p network of Figure
12. For this figure as well as Figures 13 and 14, we adopt the
following conventions:
1. Each source is constrained by a single leaky bucket.
2. Sj is the source entering the network at serverj, Dj its re-
quired end-to-end delay andδj its safety margin.
3. For each server,dj max is the current maximum local delay
at a given step of the algorithm andd′j max the new value of the
maximum local delay.∆j is the maximum local delay variation,
i.e. ∆j = d′j max − dj max.
4. Procedures used at each server are represented with squares
linked to servers in Figures 13 and 14. Expressions like “D =
d′1 ≤ D1?” correspond to tests performed by the server. We
suppose that all the tests succeed, which allows to study the ac-
ceptance of a new source.
5. Arrows between squares correspond to data exchanges.
6. D represents the value of the additive bound along the con-
sidered path at the consider server. It becomes equal to the ad-
ditive bound at the root server.

We assume that sourcesS4, S5, S7 andS8 are already set up
and consider the admission ofS1. There are two steps in the
algorithm. The first one (Figure 13) corresponds to the compu-
tation of the additive bound. It begins at server 1 and moves
down to server 3. At each server, the algorithm tries to detect
any QoS violation for the already established sessions as well
as for the new source. The second step (onceS1 is accepted -
Figure 14) corresponds to the updates of the safety margins of
all sources.

�

��

��

�

���
	��


��������


��������


��������


�������� 
��������

� �

� � ��� �"! �$#%#

� ��&�� �"! ��� ! � #�#

� ����� �"! �$#�#

� � ��� �"! �'#�#� � ��� �"! �$#%#

� � (�� �"! �$#%#

� ��)*� �"! ��� ! ��� ! ��� ! �'#�#

Fig. 12. m2p network with 8 servers

D. Complexity

To study the complexity of the admission control algorithm
presented above, we evaluate its storage requirement and the

3

45

67

8

1 2

���������� �
	�	���
���������������	� ��������
���
������ !�#"$��� �&% ���
�(')�*� �'
 ' "+���' % � '

�(,-�����, �,)"$���,.% �(,

�0/ �2143(�5�76!��89�:��
��;��
�����<�=
�?>
@A"B����#CED �GF @A"H@JIK���,LCBD �4F

M �N " M N %  �,LOQP(F M �R " M R %  ' OQP(F

M �S " M S %  ' OQP(FM � �N " M �N %  ' OTP(F

@U"B@HIV���' CTD �GF

W-X:Y�ZQX

WL[�Y�ZB[

W)\�Y�ZT\

W)]�Y�ZT] W-^7Y�ZQ^

M �_ " M _ %  �'LOQP(F �����`<���
������7a

Fig. 13. First step: bound determination

3

45

67

8

1 2

���������

�	�
�����

�
�
�����

����
� ��
������ �������

� ��
� ��

� � �
� ����
����

� ��

Fig. 14. Second step: updating phase

amount of data to transfer. We study successively the two main
phases of the algorithm, namely “Computation of the bound”
and “Updates”.
Let us consider a sourceS that traversesp servers (see Figure
15). We adopt the following conventions:
1. The index of the interface whereS enters at each server is
denoted as (0).
2. For each serverj, we define a pair(nj , kj), wherenj is the
number of sources entering at serverj by an interface other than
(0) andkj is the number of servers belonging to the paths of
these sources (each server is counted only once).
3. N =

∑p
j=1 nj is the total number of active sources in the

network andK =
∑p
j=1 kj is the total number of active servers.

1 2 p

1

(0)

(0) (0) (0)
j

k
1

2 p
k

p
k

2
k

j

j

S

n n n n

Fig. 15. Reference Configuration for estimating the complexity

D.1 Phase 1: Bound Computation

D.1.a Storage RequirementQ. Each server stores the arrival
curve for the incoming flow and the safety margins of each
source that it serves. An arrival curve is stored as a list of points.
Considering a single server withn input sources, the number of



14

points to store is upper bounded byn + 1 since each greedy
source adds one point corresponding to the time where its emis-
sion rate decreases from its peak rate to its mean rate and the
server adds one point corresponding to the time instant where it
clears the backlog. Applied to serverj of Figure 15, we obtain
that the total number of points of the arrival curve for the incom-
ing flow is upper bounded by the sum of the number of sources
crossing this server and the number of servers that have already
treated these sources. For each point, the total amount of data to
store is constant (λ). The storage capacity required to store the
arrival curve of the input flow is:
1. At server 1:
λ((n1 + p1 + 1︸︷︷︸

S

) + 1︸︷︷︸
server

)

2. At server 2:λ((n1 + 1 + p1 + 1) + (n2 + p2))
3. . . .
4. At serverp, λ(

∑p
j=1(nj + kj + 1) + 1)

The total amountQ1 of memory required to store the arrival
curves can be upper bounded byp times the amount of data re-
quired at serverp. We obtain:

Q1 ≤ pλ(
p∑
j=1

(nj + kj + 1) + 1) ≤ λp(N +K + p+ 1). (19)

Thus ,
Q1 = O(p(N +K + p)). (20)

As for safety margins, each server stores the safety margins of
all the sources that is serves. Letγ be the size of the memory
used to store a safety margin. Then, server 1 has to allocate a
memory of size(n1+1)γ, server 2 has to allocate(n1+1+n2)γ
and serverp, (

∑p
j=1 nj + 1)γ. The total amountQ2 of memory

required to store the safety margins may be upper bounded byp
times the amount of memory required at serverp. We obtain:

Q2 ≤ pγ(
p∑
j=1

nj + 1) ≤ γp(N + 1). (21)

Thus,
Q2 = O(pN). (22)

Eventually, we obtain:

Q = Q1 +Q2 = O(p(N +K + p)) (23)

D.1.b Amount of Transmitted DataX1. Each server provides
its neighbors with its output arrival curve and its set of safety
margins. As a consequence, the amountX1 of data to transfer is
of the same order of magnitude asQ.

D.2 Phase 2: Updates

In the second phase of the admission control algorithm (when
a new session is accepted), the root server provides each server
with the new values of the safety margins of the sources that
it serves. There areN safety margins and a given server must
at most transmit all these safety margins. Since there areK
servers, the total amount of data to transferX2 in the second
phase is such that:

X2 = O(KN) (24)

E. Discussion

Q, X1 andX2 depend on the number of sources, the number
of servers and the length of the path ofS. To provide orders of
magnitude, helping at discussing complexity issues, we use the
following assumptions :
1. the length of the path is equal to the mean length of a path in
a binary tree network, i.e.p ∼ log2K.
2. the network is dimensioned so that the number of servers is
proportional to the number of sources, i.e.K ∼ O(N).
With the two above assumptions, equations (23) and (24) be-
comeQ = O(Nlog2N) andX1 + X2 = O(N2). Thus, when
the number of sources is increased by a factor of two, the amount
of data to be transferred increases by a factor of four. This non-
linearity indicates that the admission algorithm may not scale
well. A detailed analysis of the algorithm indicates that while
the first phase of the algorithm (bound computation) is compu-
tationally intensive, the lack of scalability is mainly due to the
second phase (updates). Indeed, this second phase results in a
flooding of the network so as to ensure the exactness of the ad-
mission algorithm. However, we should keep in mind that the
concentration of the traffic at the edge servers results from their
role as interfaces between backbones of different ISPs. It is not
due to the m2p architecture. The m2p architecture is used to
reduce the cost in terms of number of connections (or LSPs) re-
quired to cover the network (O(n) rather thanO(n2)).
We are now at the point where we can provide some guidelines
for the design of an operational admission control algorithm for
our traffic management scheme:
• If the backbone has a moderate size or, more precisely, if there
is a moderate number of edge routers, then a centralized solution
is a good option. A dedicated server, connected to all the edge
routers via an m2p LSP, acts as an admission control server, the
so-called bandwidth broker in the DiffServ terminology [17],
[18]. The bandwidth broker must have a complete knowledge
of the paths of each source (and thus the topology of the net-
works) with their characteristics and their safety margins. Note
that the bandwidth broker only interacts with edge routers, not
with interior routers (but it must keep track of the changes in the
topology, which can be done through the routing protocol for
instance).
• If the backbone is large, a distributed algorithm should be
used. However, in this case, some additional means must
be used to guarantee the scalability of the traffic management
scheme. Note that in the distributed case, not only edge routers
but also all interior routers are engaged in the admission control
procedure. A way to ensure scalability could be to minimize
the frequency of execution of the admission control algorithm.
This may be achieved with an adequate grouping of sessions at
the ingress servers. For instance, the set of sources issued by an
other ISP with the same QoS constraint, can be grouped. This
could be done by the bandwidth broker of a given domain or by
the clients of an ISP who would rent VBR trunks.

VIII. C ONCLUSION AND OUTLOOK

Traffic engineering is getting more and more important with
the emergence of applications with QoS constraints and poten-
tially a highly varying emission rate. Current routing algorithms
do not take QoS constraints into account while ISPs need to



15

have more control over the routes followed by packets in their
network. A mixed solution that combines routing and forward-
ing, as proposed by MPLS, is very appealing. In the context of
MPLS, the multipoint-to-point architecture is a key architecture.
In this paper, we have discussed the fundamental problem of de-
signing a complete traffic management scheme for multimedia
applications and for m2p networks. The first problem is to ob-
tain an accurate upper bound on the end-to-end delay in an m2p
architecture. A bounding approach is required as demonstrated
in the study of a tandem m2p network. Therefore, we introduce
the concept of additivity. A path in an m2p network is additive
if its maximum end-to-end delay is equal to the sum of the lo-
cal maximum delays. We show that there exists a whole class
of m2p networks that are additive. For the most intricate case
of non-additive networks, we show that the additive bound rep-
resents an accurate approximation of the maximum end-to-end
delay.
We next propose two admission control algorithms based on the
additive bound. The first algorithm is a centralized one, the sec-
ond algorithm is a distributed one. We discuss the key aspects
of the two algorithms and especially their complexity and their
scalability. This enables us to provide some guidelines concern-
ing the design of a complete traffic management scheme. The
choice of a distributed or centralized version depends heavily on
the number of routers (edge routers and interior routers) in the
backbone. All in all, it seems that a centralized version with an
admission control server acting as the so-called bandwidth bro-
ker in DiffServ, is an appealing solution.
Future work should concentrate on practical experiments to
compare the centralized and distributed versions. Another im-
portant research issue is the use of multiple m2p Label Switch
Paths among a pair of ingress/egress routers. This method al-
lows to achieve reliability and load balancing [10]. Our traffic
management scheme could be extended to the multiple m2p LSP
case with each m2p LSP representing a given class of service.

REFERENCES

[1] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,”Internet Request for Comments, vol. RFC 3031, Jan. 2001.

[2] B. Davie, J. Lawrence, and K. McCloghrie, “MPLS using LDP and ATM
vc switching,” Internet Request for Comments, vol. RFC 3035, Jan. 2001.

[3] A. Conta, P. Doolan, and A. Malis, “Use of label switching on frame relay
networks specification,”Internet Request for Comments, vol. RFC 3034,
Jan. 2001.

[4] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks: The single node
case,”IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344–357,
June 1993.

[5] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks: The multiple node
case,”IEEE/ACM Transactions on Networking, vol. 2, no. 2, pp. 137–150,
Apr. 1994.

[6] R. L. Cruz, “A calculus for Network Delay, Part I: Network Elements in
Isolation,” IEEE Transactions On Information Theory, vol. 37, no. 1, pp.
114–131, Jan. 1991.

[7] R. L. Cruz, “A calculus for Network Delay, Part II: Network Analysis,”
IEEE Transactions On Information Theory, vol. 37, no. 1, pp. 132–141,
Jan. 1991.

[8] R. L. Cruz, “Quality of service guarantees in virtual circuit switched net-
works,” IEEE Journal on Selected Areas in Communications, vol. 13, no.
6, pp. 1048–1056, Aug. 1995.

[9] H. Ahmed, R. Callon, A. Malis, and J. Moy, “IP switching for scalable IP
services,”Proceedings of the IEEE, vol. 85, no. 12, 1997.

[10] H. Saito, Y. Miyao, and M. Yoshida, “Traffic engineering using multiple

multipoint-to-point LSPs,” inProceedings of IEEE Infocom, Tel Aviv,
Israel, Mar. 2000.

[11] L. Tassiulas and L. Georgiadis, “Any work-conserving policy stabilizes
the ring with spatial reuse,” inProceedings of IEEE Infocom, Toronto,
Canada, June 1994.

[12] I. Chlamtac, A. Faraǵo, and H. Zhang, “A deterministic approach to
the end-to-end analysis of packet flows in connection-oriented networks,”
IEEE Transactions on Networking, pp. 422–431, August 1998.

[13] J.-Y. Le Boudec and P. Thiran,Network Calculus, Springer Verlag LNCS
2050, June 2001.

[14] C.-S. Chang, Performance Guarantees in Communication Networks,
Springer-Verlag, 2000.

[15] J.-Y. Le Boudec, “An application of Network Calculus to guaranteed ser-
vice networks,”IEEE Transactions on Information Theory, vol. 44, no. 3,
May 1998.

[16] G. Urvoy, G. H́ebuterne, and Y. Dallery, “Delay-constrained VBR sources
in a network environment,” Tech. Rep. 98-10-04, Institut National des
Télécommunications, 1998.

[17] S. Blake, D. Black, M. Carlson, E. Davies, and W. Weiss Z. Wang, “An
architecture for Differentiated Services,”IETF RFC 2475, 1998.

[18] X. Xiao and L.N. Ni, “Internet QoS : A big picture,”IEEE Network, pp.
8–18, March/April 1999.

Guillaume Urvoy-Keller received the Engineer
Degree from the Institut National des Télécommunications
in 1995 and the Ph.D. in Computer Science from the
University of Paris VI in 1999. In 1999-2000, he was
an Assistant Professor at the University of Versailles.
He is currently an Assistant Professeur at Institut Eu-
recom. His interests are in the Quality of Service pro-
visioning and traffic engineering for the Internet.

Gérard Hébuterneholds a “Doctorat” (PhD) and an
“Habilitation à diriger les Recherches”. He was with
CNET (France Telecom research lab) from 1973 to
1994. He has first specialised in traffic studies in
SPC switches and then participated actively in per-
formance studies for broadband systems (ATM, FR).
He is with the Institut National des Tlcommunications
since July 1994, where he leads the Networks Depart-
ment. He has specialised in traffic studies, and espe-
cially overload control in telecommunications systems
and broadband networks. His present work focuses on

the Quality of Service aspects in multiservices broadband networks.

Yves Dallery received his Ph.D. and the degree of
“Habilitation à Diriger des Recherches” from the In-
stitut National Polytechnique de Grenoble (INPG) in
1984 and 1989, respectively. He is currently Profes-
sor of Manufacturing and Logistics at Ecole Centrale
de Paris. Before that, he was Directeur de Recherche
at the Centre National de la Recherche Scientifique
(CNRS). In 1984-1985, he was a post-doctoral fellow
at Harvard University. In 1991-1992, he was a vis-
iting scientist at M.I.T. and in 1992-1993 he was an
Associate Professor of Manufacturing Engineering at

Boston University. His research interests are in operations management, supply
chain management, and stochastic models.


