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Abstract

We describe an iterative method for Mazrimum
Likelihood (ML) parameter estimation corrupted by
additive white Gaussian noise. In the objective func-
tion we subtract/ add Kullback-Leibler (KL) distance
function or euclidean distance function to keep the old
parameter set close to the new ones and can be con-
sidered as penalty term. The above augmented cost
function can be maximized/ minimized over the con-
straint that the detected data vector lie on the sphere.
We simplify this constraint function by using first or-
der Taylor expansion at the old parameter value. The
useful behavior of the proposed algorithm is verified by
numerical experiments.

1 Introduction

Code Division Multiple Access (CDMA) is one of
the most common multiple access techniques for wire-
less communication systems involving non orthogonal
signalling. In CDMA system all resources are in prin-
ciple available to all users simultaneously. The users
are distinguished from each other by user specific sig-
nature sequences, modulating the transmitted data
sysmbols using direct sequence spread spectrum tech-
niques. In the past many iterative techniques have
been considered. Talwar et al [1] proposed iterative
least square with enumeration (ILSE), which solves
the problem by estimating the channel by short train-
ing sequence or from previous estimate and find data
sequence over all possible data in the finite alphabet
(FA). They also proposed iterative least square with
projection (ILSP), which also initially estimates the
channel with the same method as for ILSE and treats
the problem as continous optimization problem and
projects the result onto the closest discrete alphabet.
In [3], a constrained Maximum Likelihood problem
was considered with the data vector to lie with in hy-
percube and called it as Box constrained ML. Simi-
larly, they also proposed problem of maximizing like-

lihood function over sphere, i.e. confine the solution
vector to lie within the sphere and project the solution
vector on the sphere. Infact, in the sphere constrained
problem the solution vector lies on the sphere and not
in the interior of the constraining sphere (as is done
in [2]). The other problem with their method is that
small error in the solution vector can cause large error
when projected on to sphere (provided the solution
vector is well inside the sphere). In this paper we con-
strain the solution vector to lie almost (very close) on
the sphere and jointly estimate the complex channel
coefficients and data vector. The rest of the paper is
organized as follows: The signal model for our prob-
lem is described in section 2. In section 3, we develop
sphere constrained approximate penalized likelihood
function. In section 4, we analyze the performance of
the proposed method and simulations are presented.

2 Signal model

In this section, discrete-time base band uplink sig-
nal model for CDMA communication system is de-
scribed. We consider asynchronous CDMA with single
path channels. The signal is corrupted by the pres-
ence of the additive white Gaussian noise (AWGN)
with zero mean and variance % = 02. The num-
ber of users in the system are assumed to be K. The
processing gain, N = Ty/T,, where T, is symbol dura-
tion and 7. is the chip duration. The users transmit
binary information symbol stream di(n) € {—1,1},
n = 0,1,.....,L — 1 is symbol interval index and L
is the length of the data block. sg(n) = (sg(nN +
D.oosg(n + 1)N)T with s (i) € (—1/V/N,1/V/N)
is the spreading code of the user k to modulate nt"
bit. In mobile radio channel, each transmission path
encounters temporal and spatial fading [5]. Further-
more, each user is transmitting at a specific power
level. In our single path K-user system this corre-
sponds to each user being received with a random,
time-dependent amplitude and phase, or equivalently,



an arbitrary user k is affected by a random, time de-
pendent complex channel coefficients, ¢x(¢). The re-
ceived base band signal can be written as

r= ich(i)xk(i)—i—n (1)

L-1 K 0iN+'rk
r=3 Y c(i)dy (i) sk (1) +n (2
i=0 k=1 O(L—i)N—r.—1

The convenient matrix notation is given by
r=5Cd+n (3)

where data symbol vector is given by d =
(d1(0),d2(0), ..., dx(L — 1)) = (d1,da, ..., drx)T
and C' is LK x LK diagonal matrix containing the
physical channel parameters. The complex channel
coefficients ¢ (i) contains all the fading and attenua-
tion effects of the radio channel. S is the matrix of
transmitted waveforms with the column j expressed
as
OiN 474
sj = sk (1) (4)
OL—iyN—r.—1

A minimal set of sufficient statistics of dimension LK
is obtained through correlation, matched to the re-
ceived signal. This also ensures the maximization of

the SNR, i.e,

y=S8"r=58"sCd+ S"n=RCd+z (5

where R is the correlation matrix and z is zero mean
Gaussian vector with covariance o2 R.

3 Sphere constrained approximate ML

Given the set of data y € RYX | our goal is to find
parameters that miximize the logP(y|#) or minimize
the negative of it. In iterative parameter estimation,
given old set of parameters 6; we need to find new
set of parameters ;41 that improves the likelihood at
each iteration. In our approach, we want the detected
data vector to lie close to the sphere, therefore we also
require that the new parameter vector to stay ”close”
to the old set of parameters. In order to achieve it,
we encorporate a distance function , which can also
be thought as penalty function. We now search for
new set of parameters ;41 that minimizes the distance
function summed with the negative loglikelihood func-
tion subject to spherical constraint. We will call this
function as ” augmented loglikelihood”. More formally,
the update is found by setting 0,41 = argmin, L(6)
where

L(0) = —logP(y|0) + d(0,0;) + \(d*d — LK) (6)

Lagrange multiplier A is used to enforce the spherical
constraint on symbols. The distance function d(, ;)
in our case is KL divergence but other distance func-
tion can also be used. The KL divergence is given

by
10,0) = [ Pllotoa 5 M0y 0

We approximate the sphere constraint by the first or-
der Taylor expansion around d; (old parameter set),
ie.

d'd—LK = (d"d— LK) 4,4+ (d—d;)* V4(d* d—LK))| 4=a;

(8)
where d; is the value of parameter at iteration :. Sub-
stituting equation (7) and equation (8) in equation (6)
we get

L(6) = —logP(yl9)
—|—d(9, 91) + )\((d — dl)TVd(de — L[{)|d:d,)

(9)
The first order approximation is valid because distance
function (penalty function) will force the new param-
eters to remain close to the old ones at each iteration
and hence the estimated vector d will always be close
to the surface of the sphere. The KL divergence after
bit of algebra can be written in the following form

d9,0;) = % + %trace([)

10
+#(mg — mgi)TR_l(mg — mgl) ( )

where [ is idendity matrix and my is mean of the dis-
tribution. The above expression is convex function.
Plugging in values from the received signal and omit-
ting constant terms give

d(9,0;) = L(R(Jd— R(Cd)))" (Cd - (Cd);) (11)
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and
log P(yl0) =
%10_(](271') — 525 (y — RCd)" R~ (y — RCd)
(12)
which after permuting C and d gives
log P(yl0) =
LR Jog(27) — 522 (y — RDe)T R=1(y — RDc)
(13)

where D is diagonal matrix with diagonal entries given
by (d1(0), d2(0)...... dg(L — 1)) and ¢ = diag(C) is vec-
tor composed of diagonal elements of matrix C'. The
loglikelihood equation can be further simplified as (af-
ter omitting constants)

—logP(y|0)
= #(yTR_ly —yI'De — DTy + ' DT RDc)

(14)



Taking gradient with respect to ¢ of the above function
gives

1
—V logP(y|0) = ﬁ(—DTy + DT RDc) (15)

The distance function after permuting C' and d is writ-
ten

d(9,0;) = %(RDC — R(Dc);)" (De — (De);)  (16)

the subscript 7 denotes the value of the parameters at
ith iteration. Rearranging and taking gradient with
respect to ¢ gives

1
V.d(0,0;) = F(DTRDc — DT R(Dc);) (17)
Putting the above two gradient in the augmented log-
likelihood equation and equating the resulting equa-
tion to zero gives

c= %(DTRD)_l(DTy + DY R(Dc);)  (18)

Similarly we take the gradient of the augmented log-
likelihood function with respect to d and equating it
to zero gives

d= (%CTRC)”(%CT;U + %CTR(Cd)Z» —2)\d;)
(19)
This expression is function of A, i.e. Lagrange multi-
plier, which is given by

h 4 \/h?—4gj
N VAT —49) (20)

2g9
where
h=4e"Ud; (21)
j=e'Ue—~ LK (22)
g =4dUd; (23)

and U = X7 X, e = a4+ v where X is

2 o
X = (FC RC)™! (24)
’ 1 T =4
a=—C"y (25)

and .
v=—CTR(Cd); (26)

We also calculated the formulas for €' and d when
euclidean distance function is used instead of KL dis-
tance function. The euclidean distance between two
parameters set is defined by

1
d(0,6;) = §||9—0i||2 (27)

The euclidean distance function after bit of simplifi-
cation is written as

d(0,0;) = %(cTc +d"d—2c"c; —2d"d; + ¢l ¢; + d] d;)

(28)
where the subscript ¢ denotes the value of the param-
eter at the ¢th iteration. In our case the parameter set
is given by 0 = (c¢,d), where ¢ is vector composed of
diagonal elements of C'. With the same procedure as is
done for KL distance case, i.e., taking gradient of the
distance function with respect to ¢ and d and also tak-
ing gradient of the loglikelihood function with respect
to ¢ and d and plugging the results into augmented
loglikelihood fuction and imposing the spherical con-
straint.The update equations for ¢ and d are given by

1 1
c= (FDTRD + 1)—1(§DTy +a)  (29)
where [ is identity matrix. Similarly for d, we have
L BRI
d:(FC RC+1) (FC y+di —2Xd;)  (30)

where A is given by

vVm? — 4l
\— m+vm n (31)
21
where | = 4dTUd;, m = 4dTUW, n = WTUW — LK
and U = XTX. The expression for X abd W are as
follows

1
X = (FCTRCHLI)—1 (32)

and

1
W = FCTy +d; (33)

The algorithm works as follows, 1) We start with the
initial estimate of C; and d;, 2) We calculate C' (the
updated value), the updated value of C' is used to cal-
culate A\.These values are inturn plugged into update
expression for d to get updated d. These two steps are
continued until ||vec(Ci41 — Ci)|| < d, where § is small
number. Noting that in the update equations for C
and d (in case of KL distance), there are matrix inver-
sions, i.e, we have to invert a matrix at each iteration
which is computationally expensive. In the following



lines we will derive low complexity algorithm by elim-
inating matrix inversion. This is done by polynomial
expansion of the signature correlation matrix, R, i.e.

o0

RI=(1+Q7 =Y (- (34

i=0

where @ is equal to matrix R with diagonal elements
put to zero and Q° = I, where I is identity matrix.
If the elements of @ are small compared to one i.e.
low cross-correlation. The matrix R™! can be approx-
imated by first order expansion (neglecting higher or-
der terms), i.e.,

R'=1-Q (35)

In this way matrix inversion is replaced by adding two
simple matrices.

4 Simulations

In this section we investigate the amplitude error
and BER performance based on the simulations. The
codes were selected at random and we considered two
different scenarios. A lightly loaded case with six num-
ber of users as well as highly loaded case with, K = 24.
In both the cases the processing gain was kept 32. We
plot figure for the amplitude estimation error versus
different values of SNR. As is clear from the figure (4),
the estimation error decreases as the value of the SNR,
increases for both cases. However, estimation error of
highly loaded case is more than lightly loaded case.
We also simulated for BER for lightly loaded case. It
is clear from the figure (1) and figure (3) that our
receivers ( with KL distance function and euclidean
distance function ) performs better than MMSE and
the receiver proposed in [2] (they have the same per-
formance). The MMSE receiver on average constrain
the data vector to lie within sphere [2]. In [2] the au-
thors considered the constraint that the data vector lie
within sphere. On the other hand as we approximate
the spherical constraint with the first order Taylor ex-
pansion but at the same time we do not want previous
esitmated data vector to be far from the new estimate
because of the distance function that we incorporated
in the augmented likelihood function. Therfore we are
always close to the sphere. Hence, we can consider our
constraint to be shell region between two concentric
hyperspheres, which is more constraining than sphere
constraint proposed in [2]. We also plot the BER for
approximate proposed receiver in figure (2). The ap-
proximation is done to reduce the complexity of the
receiver.It is hoped that with the increase in the num-
ber of users better results are expected owing to the
fact that the first order approximation of the sphere
will almost lie on the surface of the sphere, i.e. we

will be almost on the surface of the sphere. In the
figure (2), we also compared the low complexity ver-
sion of the algorithm with the MMSE. As is clear from
the figure that it performs better than MMSE and the
performance is almost identical with that of exact pro-
posed receiver. In all the simulations for the BER the
estimated values of the amplitudes were used. While
in the case of MMSE true amplitudes were used in the
simulations.
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Figure 1: Average BER for MMSE and proposed re-
ceiver with KL didtance function
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Figure 2: Average BER for MMSE and Approx. pro-
posed receiver
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