
The VLDB Journal manuscript No.
(will be inserted by the editor)

Efficient Filtering of XML Documents with XPath
Expressions

Chee-Yong Chan, Pascal Felber�, Minos Garofalakis, Rajeev Rastogi

Bell Laboratories, Lucent Technologies. 600 Mountain Ave. New Jersey 07974, USA.
�cychan, pascal, minos, rastogi�@research.bell-labs.com

The date of receipt and acceptance will be inserted by the editor

Abstract The publish/subscribe paradigm is a popular model for allowing pub-
lishers (i.e., data generators) to selectively disseminate data to a large number of
widely dispersed subscribers (i.e., data consumers) who have registered their inter-
est in specific information items. Early publish/subscribe systems have typically
relied on simple subscription mechanisms, such as keyword or “bag of words”
matching, or simple comparison predicates on attribute values. The emergence of
XML as a standard for information exchange on the Internet has led to an increased
interest in using more expressive subscription mechanisms (e.g., based on XPath
expressions) that exploit both the structure and the content of published XML doc-
uments. Given the increased complexity of these new data-filtering mechanisms,
the problem of effectively identifying the subscription profiles that match an in-
coming XML document poses a difficult and important research challenge.

In this paper, we propose a novel index structure, termed XTrie, that supports
the efficient filtering of XML documents based on XPath expressions. Our XTrie
index structure offers several novel features that, we believe, make it especially
attractive for large-scale publish/subscribe systems. First, XTrie is designed to
support effective filtering based on complex XPath expressions (as opposed to
simple, single-path specifications). Second, our XTrie structure and algorithms are
designed to support both ordered and unordered matching of XML data. Third, by
indexing on sequences of elements organized in a trie structure and using a so-
phisticated matching algorithm, XTrie is able to both reduce the number of unnec-
essary index probes as well as avoid redundant matchings, thereby providing ex-
tremely efficient filtering. Our experimental results over a wide range of XML doc-
ument and XPath expression workloads demonstrate that our XTrie index structure
outperforms earlier approaches by wide margins.

� Present address: Institut EURECOM, Sophia Antipolis, France. Email: Pas-
cal.Felber@eurecom.fr

2 Chee-Yong Chan et al.

1 Introduction

The exploding volume of information (e.g., stock quotes, news reports, adver-
tisements) made available on the Internet has fueled the development of a new
generation of applications based on selective data dissemination, where specific
data is selectively relayed to a large number (e.g., millions) of distributed clients.
This trend has led to the emergence of novel middleware architectures that asyn-
chronously propagate data from a set of publishers (i.e., data generators) to a
large number of widely dispersed subscribers (i.e., data consumers) who have pre-
registered their interest in specific information items [6]. In general, such publish-
subscribe architectures are implemented using a set of networked servers that se-
lectively propagate relevant messages to the consumer population, where message
relevance is determined by subscriptions representing the consumers’ interests in
specific messages.

The majority of existing publish/subscribe systems have typically relied on
simple subscription mechanisms, such as keyword or “bag of words” matching,
or simple comparison predicates on attribute values. For example, systems such
as Gryphon [1], Siena [6], and Elvin [18], all use filters in the form of a set of
attributes and simple arithmetic or boolean comparisons on the values of these at-
tributes. The recent emergence of XML (eXtensible Markup Language) [21] as a
standard for information exchange on the Internet has led to an increased interest
in using more expressive subscription/filtering mechanisms that exploit both the
structure and the content of published XML documents. In particular, the XPath
language [20], which is a W3C proposed standard for addressing parts of an XML
document, has been adopted as a filter-specification language by a number of re-
cent XML data dissemination systems (e.g., XFilter [2], Intel’s NetStructure XML
Accelerator [7]). Given the increased complexity of structural, XPath-based data
filters, the problem of effectively identifying the subscriptions that match an in-
coming XML document poses a difficult and important research challenge. More
specifically, the key problem faced in XPath-based data-dissemination systems can
be abstracted as the following XPath Expression (XPE) Retrieval Problem: “Given
a large collection� of XPath expressions (XPEs) and an input XML document�,
find the subset of XPEs in � that match �.”

The key technique for expediting XPE retrieval is to construct an appropri-
ate index structure on the given collection of XPE subscriptions. Since XPEs can,
in general, represent complex tree-tructured patterns with one or more wildcards,
building index structures for efficient XPE retrieval is a non-trivial problem. Fur-
thermore, simplistic approaches (e.g., building an index based solely on the ele-
ment names contained in the XPEs) can result in very ineffective retrieval schemes
that incur a lot of unnecessary checking of (irrelevant) XPE subscriptions.

Our Contributions. In this paper, we propose a novel index structure, termed
XTrie, that supports the efficient filtering of XML documents based on XPath ex-
pressions. Our XTrie index structure offers several novel features that make it espe-
cially attractive for large-scale publish/subscribe systems. First, XTrie is designed
to support effective filtering based on complex XPath expressions (as opposed to
simple, single-path specifications). Second, our XTrie structure and algorithms are

Efficient Filtering of XML Documents with XPath Expressions 3

designed to support both ordered and unordered matching of XML data. Note that
ordered matching is an important requirement for many applications (e.g., docu-
ment processing) that has typically been overlooked in existing data dissemination
systems. Third, by indexing on sequences of element names (i.e., substrings) or-
ganized in a trie structure and using a sophisticated matching algorithm, XTrie
is able to both reduce the number of unnecessary index probes as well as avoid
redundant matchings, thereby providing extremely efficient filtering.

Indexing on a carefully-selected set of substrings (rather than individual ele-
ment names) in the XPEs is a key ingredient of our approach that enables us to
minimize both the number and the cost of the required index probes. The key intu-
ition here is that a sequence of element names has a lower probability (compared
to a single element name) of matching in an input document, resulting in fewer
index probes. In addition, since there are fewer indexed XPEs associated with a
“longer” substring key, each index probe is likely to be less expensive as well.

To support on-line filtering of streaming XML data, our XTrie indexing scheme
is based on the event-based SAX parsing interface [14], to implement XML data
filtering as the XML document is parsed. This is in contrast to the alternative DOM
parsing interface [19], which requires a main-memory representation of the XML
data tree to be built before filtering can commence. To the best of our knowledge,
the only other SAX-based index structure for the XPE retrieval problem is Altinel
and Franklin’s XFilter [2], which relies on indexing the XPE element names using
a hash-table structure. By indexing on substrings rather than individual element
names, our XTrie index provides a much more effective indexing mechanism than
XFilter. A further limitation of XFilter is that its space requirement can grow to a
very large size as an input document is parsed, which can also increase the filtering
time significantly. Our experimental results over a wide range of XML document
and XPath expression workloads validate our claims, demonstrating that our XTrie
index scheme scales well to high volumes of XPEs and complex documents, and
consistently outperforms XFilter by significant margins (factors of up to one or
two orders of magnitude).

Roadmap. The remainder of this paper is organized as follows. In Section 2,
we give an overview of the XPath language and discuss both the unordered and
ordered matching mode for XPEs. Section 3 discusses our methodology for de-
composing complex XPEs into substrings for effective indexing. In Section 4, we
present our novel XTrie index structure and algorithms. Section 5 discusses two
optimized variants of XTrie: the first variant is optimized to further reduce the
number of unnecessary index probes, and the second variant is optimized for the
special case where the indexed XPEs are simple, single-path expressions (rather
than arbitrary trees). Section 6 compares XTrie against related work. In Section 7,
we present the results of an extensive experimental study comparing the various
variants of XTrie against the XFilter index [2]. Finally, we conclude in Section 8.

4 Chee-Yong Chan et al.

2 Background

In this section, we first present an overview of the XPath language for specifying
path expressions over XML documents [20], followed by a discussion of the two
modes of matching (unordered and ordered) for XPath expressions.

XPath Expressions (XPEs) and XPE-trees. An XML document comprises a hi-
erarchically nested structure of elements, starting with a root element; sub-elements
of an element can themselves be elements and can also contain character data (i.e.,
text) and attributes. Elements can be nested to any depth and the scope of an el-
ement in the XML document is defined by a start-tag and an end-tag. The XPath
language treats XML documents as a tree of nodes (corresponding to elements)
and offers an expressive way to specify and select parts of this tree. XPath expres-
sions (XPEs) are structural patterns that can be matched to nodes in the XML data
tree. The evaluation of an XPE yields an object whose type can be a node-set, a
boolean, a number, or a string. For our XPE retrieval problem, an XML document
matches an XPE when the evaluation result is a non-empty node set.

The simplest form of XPEs specify a single-path pattern, which can be ei-
ther an absolute path from the root of the document or a relative path from some
known location (i.e., context node). A path pattern is a sequence of one or more
location steps. In its basic form, a location step specifies a node name (i.e., an
element name), and the hierarchical relationships between the nodes are specified
using parent-child (“�”) operators (i.e., at adjacent levels) and ancestor-descendant
(“��”) operators (i.e., separated by any number of levels). For example, the XPE
������� selects all � element descendants of all � elements that are direct children
of the root element � in the document. XPath also allows the use of a wildcard
operator (“�”) to match any element name at a location step.

Each location step can also include one or more predicates to further refine the
selected set of nodes. Predicate expressions are enclosed by “�” and “�” symbols.
The predicates can be applied to the text or the attributes of the addressed elements,
and may also include other path expressions. Any relative paths in a predicate ex-
pression are evaluated in the context of the element nodes addressed in the location
step at which they appear. For example, the XPE ������� � ����������� specifies
a tree-structured pattern starting at the root element � with two child “branches”
��� and ��� such that the element � has an attribute � with a value of at least ���.

In this paper, we focus on a fragment of the XPath language commonly re-
ferred to as tree patterns, which represents a significant and useful fragment of
XPEs; in fact, tree patterns have been used extensively in the literature as a natural
and intuitive means for specifying tree-structured constraints in XML and LDAP
applications [3,4,17,16]. A tree pattern is an ordered rooted tree, where each node
is labeled with an element name (prefixed by either “�” or “��” followed by an
optional sequence of one or more “*/”), and the ordering of the child nodes for
each parent node is based on their order of appearance in the XPE. We refer to
such a tree-structured representation of an XPE as an XPE-tree. As an example,
Figure 1(a) depicts the XPE-tree of the expression � � ����	���������	�����
 .
Note that in Figure 1(a), the child node for ��� precedes the child node for � since
the former precedes the latter in the expression for �. Our tree patterns allow for

Efficient Filtering of XML Documents with XPath Expressions 5

e 2 b 4

a 1

c 5d 3

//a

/b /*/d

/c

f

d 7

6

(a) (b)

Fig. 1 Unordered and Ordered Matchings. (a) XPE-tree of � � ������������������ . (b)
Example XML tree of a document 	.

predicates comparing element/attribute values against constants, but not join pred-
icates involving a comparison of two path expressions; we believe that our tree
patterns probably capture the key features of XPEs that will prove most useful in
data-dissemination applications.

Unordered and Ordered XPE Matchings. Before we describe the two modes of
matching XPEs, we first introduce some new definitions and notation. Given two
nodes � and �� in a rooted tree � , we say that � precedes � � in a pre-order traversal
of � , denoted by ����� �

�, if � is visited before �� in a pre-order traversal of � .
Given an XML document tree, we associate each node � in the tree with a level
number, denoted by
���
���, where
���
��� � � if � is the root element of the
document; otherwise,
���
��� �
���
���� 	 �, where �� is the parent node of �.
For example, in Figure 1(b), the element “
” is at level
. Also, given an XPE-tree
� , we associate each node � in � with a relative level (with respect to its parent
node in �), which is defined to be at least �, denoted by ��
����
��� � �����,
if the label of � is prefixed with “��” followed by �� � �� “��”; otherwise, if the
label of � is prefixed with “�” followed by ��� �� “��”, then the relative level of �
is defined to be exactly �, denoted by ��
����
��� � ��� ��. Figure 1(a) shows the
relative-level annotations for the nodes in our example XPE-tree.

Consider an XPE-tree � and an XML document tree �. We say that a node � �
in � matches at a node � in � if the element name of � � is equal to that of �. In
the unordered matching model, where � is treated as an unordered tree, � matches
� if there exists a mapping, referred to as a node mapping (denoted by
), from
the nodes in � to the nodes in � such that (1) for each node � � in � , �� matches at

���� in�, and (2) for each child node �� of a node �� in � ,
���� is a descendant of

���� in � such that
���
�
������
���
�
����� � ��
����
����. In other words,
our definition ensures that both (1) the labels of individual elements in the XPE are
matched in the document, and (2) the positional constraints specified in the XPE
are met. As an example, consider the XPE-tree � of � � ����	������������
 in
Figure 1(a), and the XML document tree � in Figure 1(b), where � matches �
with the node mapping indicated by the set of dashed arrows from the nodes in �
to those in �.

In addition to the model of unordered matchings, XPath also allows the order
of matching to be explicitly specified. A key reason for this is that the preserva-

6 Chee-Yong Chan et al.

tion of ordering constraints is a basic requirement in several application domains
(e.g., document processing). Consider again the XPE-tree in Figure 1(a) for �. If
we wish to indicate that the branch ��� must match in the document before the
branch �, this can be expressed using the XPE � � � ����	���� � �
�

�����-
���
���::������
 1. Referring again to Figure 1(b), if the positions of the two sub-
trees rooted at � and � in � are swapped, then � � would not match � while �
would still match �. In the ordered matching model, where � is treated as an or-
dered tree, � matches� if (1) � matches� in the unordered matching model, and
(2) for each pair of child nodes �� and �� of each internal node �� in � , ������ ��
in � if and only if
��������
���� and
���� is the least common ancestor node
of
���� and
����. Condition (2) basically ensures that sibling substrings matched
along distinct branches in the XML document tree.

To simplify the presentation, we discuss unordered and ordered matchings of
XPEs in terms of their XPE-trees. Abstractly, for ordered matching, the order in
which the child branches of each XPE-tree node are matched is the same as the
left-to-right ordering depicted in the XPE-tree, whereas for unordered matching
this order is immaterial. Thus, for the remainder of the paper, we focus mainly
on XPEs that are formed using the basic operators (i.e., child-operator “�” and
descendant-operator “��”) and view their XPE-trees as ordered (unordered) trees
for ordered (resp., unordered) matchings. Hybrid matchings of XPEs, involving
both unordered as well as ordered node matchings, are also discussed later in the
paper.

3 XPE Decompositions and Matchings

In this section, we describe the mechanisms employed in our XTrie index for de-
composing XPEs into sequences of XML element names (i.e., substrings), and
explain how the substrings resulting from such a decomposition can be organized
into substring-trees for effective matching over streaming XML documents. We
also define several important concepts for matching based on substring-trees that
play a key role in our XTrie indexing structure and matching algorithms.

We begin by summarizing (in Table 1) some of the key notational conventions
used in our discussion in the remainder of the paper. We provide detailed defi-
nitions of the parameters in the text once all the relevant concepts are presented.
Additional notation will be introduced when necessary.

3.1 Substring Decompositions and Substring-Trees

Given an XPE �, we define a sequence of element names � � ��	��	 � � � 	�� to be
a substring of � if � is equal to the concatenation of the element names of the
nodes along a path � ��� ��� � � � �� � in the XPE-tree of �, such that each �� is the
parent node of ���� (� 	 � � �) and the label of each �� (except perhaps for ��) is

1 Other order-related operators in XPath include �
��
�
��::, ������
��::, and
������
��-�
��
��:: [20].

Efficient Filtering of XML Documents with XPath Expressions 7

Table 1 Notation.

Symbol Description

� Set of XPEs being indexed.

 Set of distinct substrings from the simple decompositions

of all the XPEs in � .
���� Number of substrings in the simple decomposition of � �.
��	� �
� substring in a decomposition of XPE ��.
��
� Maximum number of levels in XML document.

���
��� Label of trie node � in XTrie.
���� Substring pointer of trie node � in XTrie.
���� Max-suffix pointer of trie node � in XTrie.

prefixed only by “�”. In other words, each pair of consecutive element names in a
substring of � must be separated by a parent-child (“�”) operator. As an example,
consider the XPE � � ������������������
 ��� � � � ���
 whose XPE-tree is
depicted in Figure 2(a). The set of substrings of � includes ���, ���, �
 and �; on
the other hand, ����, ��
 , and ��
 are not substrings of �, since they involve an
intermediate element name (i.e., �) that is not prefixed by “�”.

Let � � ��� ��� � � � � �� � be a sequence of paths in the XPE-tree of an
XPE � that satisfies all the following three properties: (1) for each � � in , the
concatenation of the element names of all the nodes along � � is a substring of �
(denoted by ��); (2) �� precedes �� in iff the last node in �� precedes the last
node in �� in the pre-order traversal of the XPE-tree of �; and, (3) each node in the
XPE-tree of � is contained in at least one path in . We refer to the sequence of
substrings � ��� ��� � � � � �� � corresponding to as a substring decomposition of
p. A substring decomposition ! is a minimal decomposition of p if each substring
�� of ! is of maximal length; that is, there does not exist another longer substring
in �’s XPE-tree that contains ��. Clearly, a minimal decomposition of � comprises
the smallest possible number of substrings among all possible decompositions of �.
Figures 2(a) and (b) show two possible substring decompositions for our example
XPE �, where each dashed region encloses a path of nodes defining a substring.
Note that !
 is the (unique) minimal decomposition of �.

Our XTrie index relies on substring decompositions for installing XPEs into
the indexing structure. The choice of a specific class of substring decompositions
impacts both the space and performance of the index. Minimal decompositions,
in particular, have two important performance advantages. First, since longer sub-
strings have a lower probability of being matched in the input XML document,
the maximal-length substrings chosen in a minimal decomposition generally re-
sult in fewer index probes. Second, since there are fewer XPEs associated with
a longer substring, the cost of each index probe is generally lower with minimal
decompositions. On the other hand, using only a minimal decomposition for an
XPE can result in problems when checking for an unordered match under our
SAX-based parsing model for XML documents. As an example, consider again
the minimal decomposition!
 of an XPE � in Figure 2(a) with �� � ����, �� � �,

8 Chee-Yong Chan et al.

/b

/a

/c

/d

//e

/g /*/*/e

/f//e

/f

/b

/a

/c

/d

//e

/g /*/*/e

/f//e

/f

(b) S b(a) S a

(d)

x c

y e d

f e

a

b

g

e

f

1

2

3

4

5

6

7

8

9

10

11

12

[1,]8 8[2,]ef

abg

e

ab

abcd

(c)

[2,2]

[2,2] [1,1] ef [4,4]

Fig. 2 Substring Decompositions. (a) �� � � ����� �� ���� ��� �� � (b) �� � �
��� ����� �� ���� ��� �� � (c) Substring-tree for �� (d) Example XML document tree 	.

�� � ���, �� � �
 , �� � �
 , and the XML document tree� in Figure 2(d), where
the numeric subscripts denote the order in which the document elements are seen
through the SAX parsing interface. Clearly, � matches � in the unordered match-
ing model. A matching algorithm for � that relies on �’s substring decomposition
needs to match the substrings in that decomposition in some partial order that en-
ables the positional constraints between each matching substring and its “parent”
to be checked as the document nodes are streaming by through the SAX-based
document parser. For example, to correctly detect a matching of � �, the element �
must be matched at exactly three levels below where the element � in ���� (or ���)
is matched. The problem with this example is that the matching of �
 (after
 � is
parsed in �) occurs before the matchings of both �� � ���� and �� � ��� and,
therefore, there is no matching ocurrence of either of these substrings to enable
checking the positional constraints for �
 . The key problem here, of course, is that
�� appears only as a prefix of substrings �� and ��, and not as an explicit substring
in the decomposition of �.

Intuitively, to avoid such problems, we need to enrich the minimal decomposi-
tion of an XPE so that it “takes note” of the branching nodes in the XPE-tree. Our
XTrie indexing scheme accomplishes this through the use of simple XPE decom-
positions. Formally, a substring decomposition ! is said to be a simple decompo-
sition of an XPE � if ! can be partitioned into two sequences !� and !�, where:

Efficient Filtering of XML Documents with XPath Expressions 9

(1) !� is the minimal decomposition of �; and, (2) !� consists of one substring �
for each branching node v in �’s XPE-tree, such that � is the maximal substring
in � with � as its last node and � is not already listed in !�. As an example, the
decomposition !� depicted in Figure 2(b) is the simple decomposition of our ex-
ample XPE �. Note that !� simply adds the substring �� (� is a branching node) to
the minimal decomposition !
. Also note that, for a single-path XPE, its simple
decomposition is equal to its minimal decomposition.

The substrings of the simple decomposition of an XPE � can be organized into
a unique rooted tree, referred to as the substring-tree of �. Let! �� � �� ��� � � � � �� �
denote the simple decomposition of � corresponding to the sequence of paths
 � � ��� ��� � � � � �� �. Then, the substring-tree of � is constructed as follows:

1. The root substring is ��.
2. For each substring �� � !, � � �, the parent substring of �� is �� (or equiva-

lently, �� is the child substring of ��), if the last node of �� (among all the paths
in) is the nearest ancestor node of the last node of � �.

3. The ordering among sibling substrings is based on their ordering in !.

As an example, Figure 2(c) shows the substring-tree for the simple decomposition
!� of � depicted in Figure 2(b). We define the rank of a substring � � to be equal to
� if �� is the �
� child of its parent substring; the rank of the root substring is �.
A substring that has no child substrings is called a leaf substring. For example, in
Figure 2(c), the ranks of �� and �� are � and �, respectively; and the leaf substrings
are ��, ��, and ��.

We now extend the notion of relative level that was defined for nodes in XPE-
trees to substrings. Abstractly, the relative level of a substring � refers to the
range of possible differences in levels between the last elements of � and its
parent substring in a matching. More formally, let ! � � ��� ��� � � � � �� � be
the substring decomposition of an XPE � corresponding to the sequence of paths
 � � ��� ��� � � � � �� �. Consider a substring �� in ! (with parent substring ��),
and let " denote the set of nodes in �� that are not in �� . Let � denote

�
����

#�,
where ��
����
���� � �#�� $��. Then, the relative level of �� is defined to be at
least �, denoted by ��
����
���� � �����, if �
����� �$�
 � �; otherwise, it
is defined to be exactly �, denoted by ��
����
���� � ��� ��. Figure 2(c) shows
the relative-level annotations for the nodes in the substring tree for the simple de-
composition !�.

3.2 Matching with Substrings

Consider an XML document tree � and an XPE � with XPE-tree � and simple
decomposition� ��� ��� � � � � �� � corresponding to the sequence of paths � �
��� ��� � � � � �� �. Suppose � matches �; i.e., there is a node mapping
 from the
nodes in � to those in �. We can extend the definition of matching for XPE nodes
to substrings as follows: �� matches at a node � in � (or there is a matching of � �
at � in �) if
��� matches at � in �, where � is the last node of ��. For notational
convenience, we use
���� � � to denote a matching of �� at node � under the node

10 Chee-Yong Chan et al.

mapping
 . We say that there is a matching of �� at level # in � if �� matches at
some node at level # in�. Clearly, to fully match �, we need to find a matching for
each of the substrings of � such that the positional constraint defined by � between
each substring and its parent is satisfied.

As the nodes in � are parsed in a pre-order traversal (by the SAX parser), the
ordered matching of � in � also progresses incrementally following a pre-order
traversal of the substring-tree of � such that each substring � � is matched before
����. Thus, to determine if � matches �, we need to keep track of the partial
matchings of � in �. However, since we are interested only in whether or not �
matches � and not in the actual number of match occurrences, partial matchings
of � that are redundant should be ignored in order to improve the effectiveness of
the filtering process.

We now formally define the notions of partial and redundant matchings. Let � �

be a new XPE that is equivalent to � except that � � is formed using only the first �
paths in , for some � � ��� ��. We say that there is a partial matching of substring
�� at a node � in � if �� matches � such that the last node of �� matches at � in
�. We represent a partial matching by its node matching
 that maps nodes from
� to nodes in �. It follows that we have a (complete) matching of � in � if there
is a partial matching of �� at some node in �.

A partial matching of �� at node � in�, where � is the �
� node in the pre-order
traversal of �, is defined to be a redundant matching if for each XML document
�� (that is equivalent to � for the first � nodes) that matches � under a mapping

with
���� � �, there exists an alternative mapping
 � that also defines a complete
matching of � but with
 ����� ���� �. As an example, consider again Figure 1,
where the simple decomposition of � is � �� �� �� ��� �
 �. Note that each of the
partial matchings indicated by the dashed arrows in Figure 1 is a non-redundant
matching. There are, however, two redundant matchings (which are not explicitly
shown): (R1) the partial matching of substring � at the � node under the node %,
and (R2) the partial matching of substring � at the second � node under the node �.

Informally, a partial matching of a substring � � is redundant if there already ex-
ists a preceding partial matching of �� such that ignoring the later partial matching
would not affect the correctness of deciding whether or not �matches�. Since we
are not interested in the actual number of occurrences for a match, the efficiency of
filtering documents with XPEs can be improved by detecting and ignoring redun-
dant substring matches so as to reduce the overhead of book-keeping operations to
maintain such partial matchings. To enable efficient detection of redundant match-
ings, we introduce the notion of subtree-matchings.

A node mapping
 is said to define a subtree-matching of � � if
 defines a par-
tial matching of each descendant of � �; that is,
 actually captures a matching that
includes the entire XPE subtree rooted under � �. As an example, consider again the
substring-tree in Figure 2(c), and assume that a partial matching of the substring
�
 (whose parent substring is ���) has just been detected. This implies that there is
a subtree-matching for each of the following four substrings: ����, ���, � and �

itself. Subtree-matchings provide a useful operational means to capture redundant
matchings. Referring to the two redundant matchings (R1) and (R2) in Figure 1,
the partial matching of substring � in (R1) is redundant because there already ex-

Efficient Filtering of XML Documents with XPath Expressions 11

d 1

d 2

d 3

d 4 d 5

d 7d 6 6

fc

a

d

c f

(a)

d

b

d

(c)

e

c

b

(d)(b)

//d

/f

/e

//c

//b

//a

2

S1

S4 S5

S6S3

S2

S1

S4 S5

SS3

S

a

b

a

eb

fc

d

Node Mapping fNode Mapping f’

x

Fig. 3 Subtree-Based Conditions for Redundant Matchings.

ists a subtree-matching of its ancestor substring �, while the partial matching of
substring � in (R2) is redundant because there already exists a subtree-matching of
the substring � itself.

Thus, a convenient approach to detect redundant matchings is to keep track of
subtree-matchings for the various substrings. More formally, a partial matching of
�� (defined by a mapping
) is redundant if there exists another partial matching of
�� (defined by a mapping
 �) such that: (1)
 ����� ����
����; and, (2) there exists
an ancestor substring �
 of �� such that: (a)
 ���
� �
��
�, and (b)
 � defines a
subtree-matching of the child substring of �
 whose subtree contains ��.

An example to illustrate the above subtree-based conditions for redundant
matchings is depicted in Figure 3(a), where two node mappings,
 and
 �, are
shown for matching a substring-tree with (six substrings) to an XML document
(with seven nodes). Suppose that the node �� in the XML document has just been
parsed and it matches the substring ��. By our subtree-based conditions, the par-
tial matching of �� at �� (defined by
) is redundant because there already exists
an earlier partial matching of �� at �� (defined by
 �) which is part of a subtree-
matching (in this example, a subtree-matching of �� itself), where both
 � and

map ��, the parent substring of ��, to the same node ��. To understand why we
require the condition that
 ���
� �
��
�, consider the XPE-tree and XML doc-
ument tree in Figures 3(b) and (c), respectively. Without this condition on �
, the
partial matching of substring � to the circled � node in Figure 3(c) would have been

12 Chee-Yong Chan et al.

//d

b

a

bc /e

//b

//c //d

(a)

/a

(d)

//c

Redundant Matching

Non−Redundant Matching

/a

//b

/a

(c)

/d

(b)

//b

//c

Fig. 4 Redundant and Non-redundant Matchings.

incorrectly considered to be redundant since there is subtree-matching of substring
� at an earlier � node. The XML document tree in Figure 3(d) illustrates why we
need the condition that there be a subtree-matching at the child substring of �
 (as
opposed to at some descendant substring of �
) whose subtree contains ��. If the
weaker condition is used, then the partial matching of substring � to the circled �
node in Figure 3(c) would have been incorrectly regarded as redundant since there
is a subtree-matching of substring � at an earlier � node.

The above subtree-based conditions essentially detect redundant matchings
based on information about earlier substrings that have already been matched.
However, since there could be redundant matchings that can only be detected
through information about “yet-to-be-matched” substrings, our subtree-based con-
ditions are in fact only sufficient for redundant matchings. For example, consider
the XPE � and XML document � in Figures 4(a) and (b). Note that the partial
matching of the substring � at the leaf � node is actually redundant, but this would
not be detected by our subtree-based conditions since there is no subtree-matching
of the substring �. The reason for this redundancy is because the � substring has
only one unmatched child substring � that has a prefix of �� which means that
subsequent matchings of � will not affect the overall matching outcome. This type
of redundant matching clearly depends on the contents of the “yet-to-be-matched”
substrings; for instance, if the prefix of substring � had been � as in Figure 4(c),
or if the � substring had another child substring that is prefixed with � (e.g., Fig-
ure 4(d)), then the partial matching of the substring � at the leaf � node would have
been non-redundant. Since our subtree-based approach relies only on information
about substrings that have already been matched, it is incapable of detecting such
redundant matchings. Detecting such redundancies is more complex and would
require more elaborate book-keeping operations. Our proposed XTrie index struc-
ture is based on the simple approach of detecting redundant matchings using earlier
subtree-matchings so as to minimize the book-keeping overhead.

4 The XTrie Indexing Scheme

In this section, we present our novel XTrie indexing scheme for filtering XML doc-
uments based on XPEs. We first describe the XTrie index structure and matching

Efficient Filtering of XML Documents with XPath Expressions 13

algorithm for the ordered matching model (Sections 4.1 and 4.2), and then explain
how our approach can be extended to handle unordered matchings (Section 4.3)
and hybrid matchings (Section 4.4). To simplify the presentation, our discussion
in this section focuses mostly on XPEs that (1) do not refer to any attribute names
or text data, and (2) do not involve boolean combinations of XPEs. Section 4.5
then explains how our approach can deal with boolean combinations of XPEs (i.e.,
composite XPEs) with attributes and/or text data.

4.1 The Index Structure

Let � � ���� ��� � � � � ��
 denote the set of XPEs being indexed, and
 denote the
set of distinct substrings derived from all the simple decompositions of the XPEs
in � . An XTrie index consists of two key components: (1) a Trie [13] (denoted
by �) constructed on
 to facilitate detection of substring matchings in the input
XML data; and, (2) a Substring-Table (denoted by !�) that stores information
about each substring of each XPE in � . The information in !� is used to check
for partial matchings. We now describe each of these two XTrie components in
detail, and briefly discuss the maintenance issues for the XTrie index.
The Substring-Table. The substring-table!� contains one row for each substring
of each indexed XPE; i.e., there are

�
��� ��� rows in !� with each row corre-

sponding to some ��	� (denoting the �
� substring in the decomposition of ��). The
rows in !� are physically clustered in terms of the XPEs such that the substrings
belonging to an XPE � are stored in consecutive rows ordered based on the simple
decomposition of �. The order of the XPEs in !� is arbitrary. Since each row �
in !� corresponds to some substring, for convenience, we use the symbol � �	� to
denote the row in !� that corresponds to substring � �	� .

To facilitate locating all XPEs that contain some substring, the rows in !� are
also logically partitioned into �
� disjoint blocks such that each block contains all
the rows that correspond to the same substring. This substring-based partitioning
of the rows in !� is achieved by chaining the rows within each block using a
singly-linked list, giving a total of �
� singly linked lists in !� with one list for
each distinct substring in
 2.

Each row in!� (corresponding to some substring � �	�) is a 5-tuple � �����&���
&�
����
� &���� �$'(%�
�� ������ where:

– �����&�� refers to the row number of the tuple in !� corresponding to the
parent substring of ��	� . (�����&�� � � if ��	� is a root substring.)

– &�
����
 is the relative level of ��	� (i.e., ��
����
���	��).
– &��� is the rank of ��	� (i.e., &��� � � if ��	� is the �
� child substring of its

parent substring).
– �$'(%�
� is the total number of child substrings of � �	� .

2 Note that clustering the rows by XPEs in �� simplifies its maintenance. If updates
are very infrequent, an alternative scheme is to cluster rows that correspond to the same
substring together. In this way, �� becomes more space-efficient since we can effectively
eliminate the next pointers required for the linked lists.

14 Chee-Yong Chan et al.

– ����, which is a “pointer” for a singly linked list, is the row number of the
next tuple in !� that belongs to the same logical block as the current row. If
the current row is the last row in the linked list, then ���� � �.

The Trie. The trie � is a rooted tree constructed from the set of distinct substrings

, where each edge in � is labeled with some element name. Each node � in
� is associated with a label, denoted by
���
���, which is the string formed by
concatenating the edge labels along the path from the root node of � to node �
(the label of the root node is the empty string). The construction of � ensures that
(1) for each � �
, there is a unique node � in � such that
���
��� � �, and (2)
for each leaf node � in � ,
���
��� �
. In addition to the pointers to nodes at
the next level of the trie, each node � in � has two special pointers:

– The Substring pointer (denoted by ����) points to some row in !� (i.e.,����
is a row number) determined as follows: if
���
��� �
, then ���� points to
the first row of the linked list associated with substring
���
���; otherwise,
���� � �.

– The Max-suffix pointer (denoted by ����) points to some internal node in �
and its purpose is to ensure the correctness of the matching algorithm. Specifi-
cally, ���� � � � if
���
�� �� is the longest proper suffix of
���
��� among
all the internal nodes in � ; if � � does not exist, then ���� points to the root
node of � .

Example 41: Figure 5 depicts the XTrie index structures for a set of four XPEs
� � ���� ��� ��� ��
 (shown in the figure), where their respective simple de-
compositions are as follows: !� � � ����� �� �, !� � � ��� ����� ��� �,
!� � � ��� ���� �� �� �, and !� � � ��� ��� � �. The number within each trie
node� in Figure 5(a) represents the node’s identifier, and the values of ���� and
���� are shown to the left and right of � , respectively. Figure 5(b) depicts the
corresponding substring-table with the rows clustered in the order of the XPEs in
� .

Maintaining the XTrie Index. The maintenance of the XTrie index structure
when XPEs are inserted into or deleted from it is rather straightforward, with
the exception of maintaining the max-suffix pointers in the trie which is slightly
more involved. One approach to efficiently maintain these pointers is to build an
auxiliary suffix trie structure ���� on the set of reversed substrings so that for
each node � in � , there exists an unique node � � in ���� such that
���
��� �
��������
���
�� ���. By enhancing ���� with special node pointers)�	� so that
)�� �� points to its associated node in � (i.e.,)�� �� � � iff
���
��� �
��������
���
�� ���), the max-suffix pointer value of a node� in � can be deter-
mined easily by traversing ���� using ��������
���
����: if � � is the last node
reached by ��������
���
���� in ���� , and � �� is the closest ancestor node of
� � that has a non-null value for)�	�, then ���� is given by)�� ���. The details
of the auxiliary structure and the XTrie maintenance algorithms can be found in
Appendix A.

Efficient Filtering of XML Documents with XPath Expressions 15

1

2

6

11

14 15

12

7 8

13

3 4 5

109

1

1 1 1 1

1

2 3 3

10

4

8

12

7

5

a
b c

dp4 = //c/b//c/d/*/*/d

p1 = //a/a/b/c/*/a/b

p2 = /a/b[c/e]/*/b/c/d

p3 = /a/b[c/*/d]//b/c

b

b c

ec

c

d

0

0

a

0

0

1 4

7

2 9

5

0

db

0 8

1110

(a)

Parent Rel Num
Row Level Rank Child Next

1 0 ��	�	 1 1

2 1 ��	 �	 1 0 3
3 0 ��	 �	 1 2 6
4 3 ��	 �	 1 0

5 3 ��	 �	 2 0

6 0 ��	 �	 1 2

7 6 ��	 �	 1 1

8 7 ��	 �	 1 0 12
9 6 ��	�	 2 0

10 0 ��	�	 1 1

11 10 ��	�	 1 1

12 11 ��	 �	 1 0

(b)

Fig. 5 XTrie Example. (a) Trie � . (b) Substring-Table �� .

4.2 The XTrie Matching Algorithm

Our XTrie indexing scheme is designed to support on-line filtering of streaming
XML data and is based on the SAX event-based interface that reports parsing
events. Figure 7 depicts the search procedure for the XTrie, which accepts as input
an XML document � and an XTrie index �!�� � �, processes the parsing events
generated by �, and returns the identifiers of all the matching XPEs in the index.

The basic idea of our search algorithm is as follows. We use the trie � to
detect the occurrence of matching substrings as the input document is parsed. For
each matching substring � detected, we iterate through all the instances of � in the
indexed XPEs (by traversing the appropriate linked list of rows in the substring-
table !� associated with �) to check if the matched substring � corresponds to
any non-redundant matching. Since !� only stores static information on the XPE
substrings, we need to maintain some additional dynamic run-time information to
ensure that we check only for non-redundant matchings. Of course, we also need

16 Chee-Yong Chan et al.

to appropriately update this dynamic information as the parsing of the document
progresses and new substring matchings are discovered.

Our XTrie matching algorithm maintains run-time information using two ar-
rays � and � each of which is a two-dimensional array of size �!� � � ��
�,
where �!� � denotes the number of rows in the substring-table !� , and ��
� is
the maximum number of levels in an XML document 3.

– The first array � is an integer-array such that ��� �	� � #� � �, � � �, if there is
a non-redundant matching of � �	� (represented by a node mapping
) at level #
such that the �
� child substring of ��	� is the leftmost child substring of ��	� for
which a subtree-matching has not yet been detected (i.e.,
 defines a subtree-
matching of the ��� ��
� child substring of ��	�). Intuitively, ����	� � #� records
the rank of the next child subtree of ��	� that we need to match for this non-
redundant occurrence of ��	� at level
. Thus, we know that an XPE �� matches
the input document when ����	�� #� � ' 	 � for some value of #, where '
is the number of child substrings of the root substring � �	�. Each ����	� � #� is
initialized to �, and is incremented to � after a non-redundant matching of � �	�
at level # is detected. As more substring matchings are detected, the value of
����	� � #� is incremented from � to � 	 �, � � �, when there is a subtree-
matching of the �
� child substring of ��	� . The value of ����	� � #� is reset to �
when the end-tag corresponding to the start-tag at level # is parsed.

– The second array � is a bit-array that is used to ensure that sibling substrings
match along distinct branches (as defined in Section 2) for an ordered match-
ing. Each entry ����	� � #� corresponds to a matching of the substring � �	� at
level #, and is initialized with a value of �. Whenever the value of ��� �	� � #�
is incremented to some value � � �, indicating that a subtree-matching of the
�����
� child substring of ��	� has been detected, ����	� � #� is set to �. ����	� � #�
is then reset back to � right before the next document node at level # is to be
parsed (i.e., when an end-tag corresponding to a start-tag at level # is parsed in
the input XML document). Informally, a value of ��� �	� � #� � � indicates that
the nodes parsed in the input document are along the same branch as the one
that matched the �� � ��

� child substring of ��	� ; therefore, any matching of
the �
� child substring of ��	� (with ��	� matching at level #) detected during
this period can not be considered a valid partial matching.

To understand how the arrays � and � are used to detect non-redundant match-
ings, suppose that a matching of substring � �	� at level # has been detected, and
��	� is the �
� child substring of ��	�. This matching is a partial matching of ��	� if
there exists a matching of ��	� at level #� such that (1) ����	�� #�� has a value of �,
(2) # � #� � ��
����
���	�� (i.e., the positional constraint between ��	� and ��	� is
satisfied), and (3) ����	�� #�� � � (i.e., we have subtree matchings for at least the
� � � left-siblings of ��	� rooted at ��	�). If, in addition, the value of ����	�� #�� is

3 Note that the value for the ���� parameter can be set to a sufficiently large value
by exploiting apriori knowlege of incoming XML documents. In the event that the ����

value is exceeded at run-time, more space for the run-time information can be dynamically
reallocated.

Efficient Filtering of XML Documents with XPath Expressions 17

3

S
3

S
2

S

S
8

SS
4

S
6

S
5

7

1

S
3

S
2

S
1

S
8

SS
4

S
6

S
5

7

(c)

1

4

2

0

1

1

1

3 S
3

S
2

S
1

S
8

SS
4

S
6

S
5

7

(d)

3

1

1

1

31

1

4

(b)(a)

S
3

S
2

S
1

S
8

SS
4

S
6

S
5

7

1

1

1 0

0

0

2

2

3

1

0

1

1

1

0

Fig. 6 Propagation of Subtree-Matchings.

exactly �, then this partial matching is non-redundant; otherwise, we have already
discovered a subtree matching for � �	� , so the current matching is redundant and
can safely be ignored. Note that since both � and � are large sparse arrays, their
implementation can be optimized to minimize space (e.g., using linked lists)

As an example of how the � array is used to detect non-redundant matchings,
consider the substring-subtree (consisting of substrings �� to ��) in Figure 6(a),
which shows a partial matching of ��. A shaded node for �� means that there is
a partial matching of ��; and for notational convenience, assume that the partial
matching of �� (� 	 � 	 �) is at some node at level #� of some XML document. The
number to the right of each node � � represents its ����� #�� value. For instance, in
Figure 6(a), the � array value for �� is equal to � since only its first child substring
(i.e., ��) is part of a subtree-matching. Subsequently, when a partial matching of � �
is detected (shown in Figure 6(b)), it also trivially follows that there is a subtree-
matching of �� since �� is a leaf substring. In order to correctly maintain the �
array values, we need to propagate information about the subtree-matching of � �

up to its parent substring (i.e., ��) to indicate that a subtree-matching has been
detected for its second child substring. This update propagation (indicated by an up
arrow from �� to �� in Figure 6(b)) therefore increments ��’s � array value by one

18 Chee-Yong Chan et al.

to
, which in turn indicates that there is a subtree-matching of � �. Consequently,
we need to further propagate the update upwards to � � and increment its � array
value by one to
. The update propagation stops at this point since there is no
subtree-matching of ��. Given the updated � array values in Figure 6(b), it is
clear that a subsequent partial matching of �� would be considered redundant since
����� #�� is now greater than the rank of ��. For a similar reason, a subsequent
partial matching of either ��, ��, or �� is also considered redundant. Figures 6(c)
and (d), show how the � array values are updated after a partial matching of � �
and ��, respectively.

As a more concrete example to illustrate how the � array values are updated
and used, Table 2 depicts an execution trace of the changes to the � array when
matching XPE � against the XML document � in Figure 1. The second column
of the table describes the changes to the � array after processing the start tag
indicated in the first column4. For instance, after the first � node in � is parsed,
a partial matching of �, which is also a subtree-matching, is detected; and this is
propagated to its to its parent substring � resulting in updates to both *��� �� and
*��� ��.

Table 2 Execution trace of changes to � array for the matching of � on 	 in Figure 1.

Start Tag Changes to � array after processing start tag

g
a ���� �� � �.
b ���� �� � �.
b ���� �� � �.
e
c ���� �� � �, ���� �� � �.
d ����� 	� � �, ���� �� � �, ���� �� � �, ���� �� � �.
h
c Redundant matching of � since ���� �� is greater than the rank of �.
b Redundant matching of � since ���� �� is greater than the rank of �.
f ����� �� � �, ���� �� � �, Complete matching of �.

Details of Matching Algorithm. Our XTrie SEARCH algorithm (depicted in Fig-
ure 7) begins by initializing the search node � to be the root node of the trie �
(Step 6). For each start-tag � encountered, if there is an edge out of � with the
label � (to another trie node � � in �), the search continues on node � �. For each
trie node� � visited, a matching substring (corresponding to
���
�� ��) is detected
if ��� �� �� �; in this case, Algorithm MATCH-SUBSTRING is invoked to process
the matching substring using the substring table !� . Furthermore, for each trie
node� � visited, we also need to check for other potential matching substrings that
are suffixes of
���
�� ��; this is achieved by using the max-suffix pointer (i.e.,

4 For simplicity, we have omitted showing the changes to � after the processing of end
tags.

Efficient Filtering of XML Documents with XPath Expressions 19

Algorithm SEARCH (, �� , �)
Input: 	 is an input XML document. (�� , �) is an XTrie index.
Output: � is the set of XPEs that matches 	.
1) Initialize � to be empty;
2) Initialize �
���
� = root node of � for
 = 0 to ����;
3) Let � be a ��� � � ���� integer-array with all values initialized to
;
4) Let � be a ��� � � ���� bit-array with all values initialized to
;
5) Initialize � �
; �� � is the current document level
6) Initialize � to be the root node of � ; �� � is the current trie node
7) repeat
8) if (a start-tag � is parsed in) then
9) � � �� �;
10) while ((there is no edge labeled ”t” from �) and

(� is not the root node of �)) do
11) � � ���
;
12) if (there is an edge labeled ”t” from � to �� in �) then
13) �
����� � � �; � � � �;
14) while (� � is not the root node) do
15) if (��� �
 �
) then
16) � � � � MATCH-SUBSTRING (����� �� ��� �
� �);
17) � � � ��� �
;
18) else if (an end-tag is parsed in) then
19) Reset ��
� �� to
 for
 = 1 to ��� �;
20) �
����� = root node of � ;
21) � � �	 �;
22) Reset ��
� �� to
 for
 = 1 to ��� �;
23) � � �
�����;
24) until (has been completely parsed);
25) return �;

Fig. 7 Algorithm to search XTrie.

��� ��) in Step 17. On the other hand, if there is no edge out of a node � with the
current tag �, this means that the concatenation of
���
��� and � is not a match-
ing substring. Therefore, we need to check for other potential matching substrings,
which are formed by the concatenation of some suffix of
���
��� and �, by using
the max-suffix pointer in Step 11. For each end-tag � encountered (correspond-
ing to some start-tag at level #), the run-time information � is updated by resetting
���� #� to � for all rows � (Step 19), and the search node is re-initialized to its previ-
ous location before the tag � was encountered (Step 20). This is achieved by using
an array ���� to keep track of the location of the search node at each document
level (Step 13).

Algorithm MATCH-SUBSTRING (Figure 8) is invoked when a substring �
(matching at level #) is detected. The algorithm checks for non-redundant match-
ings of �, updates the run-time information �, and returns the identifiers of all the
matching XPEs that have � as their last substring. More specifically, the algorithm
iterates through each instance of � in !� (i.e., each row in the linked list associ-

20 Chee-Yong Chan et al.

Algorithm MATCH-SUBSTRING (�� , �, �, �, �)
Input: �� is the substring-table of an XTrie index. � is a 2-dimensional integer-array.

� is a 2-dimensional bit-array.
� refers to the first row in �� that corresponds to some substring
that is matched at level �.

Output: Set of matching XPEs.
1) Initialize � to be empty;
2) while (�
�
) do
3) �� � �� ���� ������
�;
4) Initalize !���" � �����;
5) if (�� ��
) then
6) if (� � �� ���������#��) then
7) ���� �� � �;
8) if (�� �����$!%"
�� ��
) then
9) !���" � ��$�;
10) else
11) if (� �� � ��� �	 �� such that �	 �� � �� ���������#��,
12) ����� ��� �� �� �������&, and ����� ��� ��
) then
13) ���� �� � �;
14) if (�� �����$!%"
�� ��
) then
15) !���" � PROPAGATE-UPDATE (����� �� �� �);
16) if (!���") then
17) Insert the id. of the XPE corresponding to row � into �;
18) � � �� ������'�;
19) return �;

Fig. 8 Algorithm to process a matched substring.

ated with �) to check for non-redundant matchings of �. There are two scenarios
for the instance of the matching substring (say � �	�) corresponding to row �. For the
special case where ��	� is a root substring (Steps 5-9), if its positional constraint
is satisfied (Step 6), then the matching is a partial matching (and obviously non-
redundant, since it is a root substring), and ���� #� is updated to � (to indicate that
we can start looking for matchings of child subtrees). If, in addition, � �	� is a leaf
substring, then we have a matching of � � (Step 9). For the general case where ��	�
is a non-root substring (Steps 10-15), if there is a non-redundant matching of � �	�
(Step 11), then ���� #� is updated to �. If, in addition, � �	� is a leaf substring, then
Algorithm PROPAGATE-UPDATE is called to update the run-time information ar-
rays � and �, and check for a matching of the full XPE � �. We should point out
that, since we are not interested in finding multiple matches of the same XPE, we
should eliminate unnecessary processing and checking in MATCH-SUBSTRING
for XPEs that have already been matched. This can be easily achieved by using a
bit-mask (consisting of one bit per XPE); we have omitted details of this additional
filtering step from Figure 8 to simplify the presentation.

Algorithm PROPAGATE-UPDATE (depicted in Figure 9) is used to implement
such “update propagations” and correctly update both � and � whenever a non-
redundant subtree-matching of some non-root substring (� �	� matching at level #

Efficient Filtering of XML Documents with XPath Expressions 21

Algorithm PROPAGATE-UPDATE (�� , �, �, �, �)
Input: �� is the substring-table of an XTrie index. � is a 2-dimensional integer-array.

� is a 2-dimensional bit-array. � refers to a row in
�� that corresponds to some substring � of �
for which there is a subtree-matching of � at level �.

Output: Returns ��$� if there is a matching of �; ����� otherwise.
1) �� � �� ���� ������
�;
2) ������ ����� � �� ���������#��;
3) if ����� ��

 then
4) ������� �

�

���� � ��� �	 �����;
5) else
6) ������� �

�

���� � ��	 ����� �	 �����;
7) Initialize !���" � �����;
8) Initialize �� � �����;
9) while (!���" �� �����) and (�� � ������� �

�

����) do
10) if (����� ��� �� �� �������&) then
11) ����� ��� � ����� ��� � �;
12) ����� ��� � �;
13) if (����� ��� �� �� ������$!%"
�� � �) then
14) if (�� ����� ������
� ��
) then
15) !���" � ��$�;
16) else
17) !���" = PROPAGATE-UPDATE (�� , �, �, ��, ��);
18) �� � �� 	 �;
19) if (!���" �� �����) and (���� ��
) then
20) for
 = � to �	 � do
21) if (����
� �
) then
22) ����
� � �� �����$!%"
��� �;
23) return !���";

Fig. 9 Algorithm to update run-time information arrays and detect complete matchings.

corresponding to row � in !�) is detected. The algorithm iterates through each
matching of ��	�’s parent substring (at level #� � �#����� #

�
�
��) and updates its

� and � entries if the matching forms a non-redundant matching of � �	� . If this
matching is also a subtree-matching for the parent substring of � �	� (Step 13),
then there are two cases to consider. If the parent substring is a root substring
(Step 14), then we have found a matching of � �; otherwise, we recurse the up-
date propagation of the � and � entries for the ancestor substrings of � �	� as well
(Step 17). The algorithm returns ��$� if a matching of � � has been detected; oth-
erwise, if it is possible to have multiple matchings of the parent substring of � �	�
(i.e., ��
����
���	�� � �#������ for some #���), then, to avoid any subsequent
redundant matchings of descendants of � �	� , the algorithm updates the � entries of
all the earlier matchings of ��	� (Steps 19 to 22), and returns
�
��.

Space and Time Complexity. The space requirement of the XTrie index is dom-
inated by the total number of substrings in � ; that is, the space complexity is

22 Chee-Yong Chan et al.

+�
����

�
� �����, where ���� denotes the number of substrings in the simple decom-
position of ��. To analyze the search-time complexity, let denote the length of
the longest root-to-leaf path in the trie � , let � denote the maximum length of a
linked list in !� (i.e., the number of distinct occurrences of any substring), and let
, denote the maximum height of a substring-tree. The worst-case time complexity
of Algorithm PROPAGATE-UPDATE is +�, ��
��. Since Algorithm MATCH-
SUBSTRING makes at most � calls to Algorithm PROPAGATE-UPDATE, the
complexity of Algorithm MATCH-SUBSTRING is +�� , ��
��. For each start-
tag in the input document, Algorithm SEARCHmakes at most calls to Algorithm
MATCH-SUBSTRING; thus, the worst-case complexity of processing each start-
tag in an input document is+� �, ��
��. Finally, it is easy to see that process-
ing an end-tag takes +��!� �� time; thus, the overall (worst-case) time complexity
of processing each tag in an input XML document is+ ��
�� � , ��
� � �!� �
�.

4.3 Dealing with Unordered Matching

We now describe how our XTrie indexing scheme can handle an unordered match-
ing model. For convenience, we refer to the two variants of XTrie as ordered XTrie
and unordered XTrie.

Recall that in the ordered matching model, since the child substrings of each
parent substring are matched in a specific order (based on their ranks), it is suffi-
cient, for each parent substring, to keep track of only its “leftmost” child substring
for which a subtree-matching has not been detected using the integer-array �.
However, in the unordered matching model, since child substrings can be matched
in any order, it becomes necessary to explicitly keep track of the subset of child
substrings for which subtree-matchings have been detected. Thus, the first main
difference between the two variants of XTrie lies in the type of run-time infor-
mation maintained in �. Specifically, for unordered XTrie, � is a bitstring-array
instead of an integer array, where each bitstring consists of �� 	 �� bits, and � is
the maximum number of child substrings over all substrings in an XPE-tree. For
notational convenience, we number the bits in a bitstring from zero to � such that
the leftmost bit is the �
� bit, and the rightmost bit is the �
� bit. The bitstring
values in � are initialized and updated as follows:

(1) For each #, ����	� � #� is initialized to all zero bits except for the leftmost ��	��
bits which are all set to one, where � denotes the number of child substrings of
��	� .

(2) The �
� bit of ����	� � #� is reset to � when a partial matching of ��	� at level # is
detected.

(3) The �
� bit of ����	� � #�, � � �, is reset to � when a subtree-matching of the
�
� child substring of ��	� at level # is detected.

(4) Each ����	� � #� is re-initialized (as explained in (1)) when an end-tag (corre-
sponding to a start-tag at level #) is parsed.

It follows that, when there is a subtree-matching of � �	� at level #, the value of
����	� � #� is �. The second main difference is that the � array is not required for

Efficient Filtering of XML Documents with XPath Expressions 23

unordered matching, since the matchings for two sibling substrings can in fact be
along the same branch of the XML document.

The algorithms for unordered matching are very similar to those for order
matching (shown in Figures 7, 8, and 9) except that there is no need for the �
array, and the operations/checks on the � array have to be modified accordingly
based on the above discussion. (The detailed changes to our XTrie algorithms are
straightforward and omitted here for the sake of brevity.)

4.4 Dealing with Hybrid Matching

We now discuss how our XTrie scheme can be extended to handle hybrid match-
ings involving a combination of ordered and unordered matchings. An example of
an XPE that requires hybrid matching is � � �����
�

�����-���
���::������
�

�����-
���
���::���
 , where the root element � has a set of five child elements ��� �� �� ��

such that � must precede � and � must precede �.

We first consider the simpler scenario where, for each non-leaf substring � of
an XPE �, the matchings required for its child substrings are either completely
unordered or completely ordered; we refer to � as an unordered substring and or-
dered substring, respectively. (Leaf substrings are considered ordered substrings.)
To handle the matching of such XPEs, we need to enhance XTrie with the follow-
ing two extensions. First, to indicate whether a substring is an unordered or or-
dered substring, one simple approach is to store the rows in the substring-table !�
such that !� is partitioned into a block of consecutive rows for ordered substrings
and another block of consecutive rows for unordered substrings. Second, since the
type of run-time information needed for unordered and ordered matchings is dif-
ferent, instead of maintaining a single � array, we now need to use two smaller ar-
rays, �������� and ����������, for ordered and unordered substrings, respectively.
Specifically, �������� is an (�������� � ��
�) integer-array and ���������� is an
(���������� � ��
�) bitstring-array, where �������� and ���������� denote the
number of ordered and unordered substrings, respectively. Similarly, � is now a
smaller (�������� � ��
�) bit-array to be used only for ordered substrings. The
search algorithms need to update ��������, ����������, and � accordingly for or-
dered and unordered substrings.

We now briefly explain how the above approach can be further extended to han-
dle the most general case of hybrid matchings, where a parent substring is allowed
to have both unordered and ordered child substrings. The basic idea is to introduce
additional “dummy” nodes to the XPE-tree so as to transform the complex case to
the simpler case that we have just described. To illustrate our approach, consider
again the earlier example with � � �����
�

�����-���
���::������
�

�����-
���
���::���
 . For this example, we will create a modified XPE-tree by adding
two dummy nodes -�� and -�� (each with an empty string as its label), such that
the root node � now has three child nodes: -��, -��, and
 , where -�� is the parent
node of � and �; and -�� is the parent node of � and �. The substring-tree for this
modified XPE-tree consists of eight substrings: �� � � is the root substring with
three child substrings: �� � �, �� � �, and �� � �
 , where �� has two child

24 Chee-Yong Chan et al.

substrings �� � �� and �� � ��, and �� has two child substrings �� � �� and
�� � ��. Among these eight substrings, only the root substring is an unordered
substring. Thus, by adding two dummy nodes, we have reduced the problem to the
simpler scenario of ordered/unordered substrings that we have already addressed.

4.5 Attributes, Text Data, and Composite XPath Expressions

So far, our discussion of XTrie has been limited to XPEs that do not refer to any
attributes or text data, and that are not composite XPEs (i.e., boolean combinations
of XPEs). In this section, we explain how XTrie can be easily extended to handle
attributes, text data, and composite expressions.

To handle XPEs with attributes, we just need to extend the substring-table !�
with an additional column, Attribute, which is a pointer to a list of attributes (in-
cluding any predicates) associated with the elements in a substring. For example,
consider the XPE � � ������'�������������������� 	 ���������, where ele-
ment � must have two attributes “��'�” and “�������”, and element � must have
an attribute “����” with a value of no more than ���. The simple decomposition
of � consists of three substrings: �� � ��, �� � ���, and �� � ���. Let ��, ��,
and �� denote the rows in !� that correspond to ��, ��, and ��, respectively. Then,
the Attribute value of row �� points to a linked list consisting of two entries with
information about the attributes associated with the elements � and �. (Note that
this information will not be repeated in rows �� and �� to avoid redundancy.) Also,
since both elements � and � are not associated with any attributes, their values
for Attribute is a null value representing an empty attribute list. By keeping track
of the attributes (and their values if any) associated with the elements as they are
parsed in an input XML document, the additional constraints on attributes can be
easily verified for each matching substring. Thus, a matching for a substring � is
considered to be a partial matching of � if all the attribute constraints associated
with � are also satisfied.

Note that predicates that involved text values are handled in a similar manner as
described for predicates involving attributes; where the substring-table is extended
with an additional column, Text, which is a pointer to a list of predicates on the
text values associated with the elements in a substring. Essentially, in XTrie, we
used the SAX parser to generate a single event for each start-element tag which
consists of the element name, all the attributes specified in the start-element tag,
and any text value enclosed after the start-element tag. In this way, any predicates
associated with an element can be checked after its start-element event is reported
by the SAX parser.

To handle composite XPEs, a simple and efficient approach is to split each
composite XPE into its constituent simple XPEs and index these simple XPEs.
The matching of each composite XPE can be checked by examining the matching
results of its constituent XPEs after the document has been completely parsed.
(A similar approach is also adopted by XFilter [2].) For example, the composite
XPE � � ����� OR ����� can be split into two basic XPEs �� � ����� and
�� � ����� so that there is a matching of � if and only if there is a matching of � �
or ��.

Efficient Filtering of XML Documents with XPath Expressions 25

Furthermore, absolute path expressions in predicate expressions that do not
involve join expressions are easily supported by XTrie. For example, the XPE � �
���������� � ����� is treated as two XPEs �� � �������� and �� � ���� � ��.

5 Optimizations for XTrie

In this section, we describe two optimizations for XTrie. Our first optimization is
based on a “lazy” XTrie variant that aims to further reduce the number of unnec-
essary index probes. Our second optimized XTrie variant tries to improve the per-
formance for the special case where all the indexed XPEs are single-path XPEs.
For simplicity, we shall discuss these optimizations under the ordered matching
model.

5.1 Lazy XTrie

The XTrie variant that we have presented so far (referred to as Eager XTrie) probes
the substring-table !� for every matching substring detected in the input doc-
ument. Our optimized Lazy XTrie variant (described in this section) tries to re-
duce the number of unnecessary index probes by postponing the probing of the
substring-table !� so that !� is probed for a matching substring � only if � ap-
pears as a leaf substring in some XPE; otherwise, Lazy XTrie only updates infor-
mation about the level at which � is matched in the input document. In this section,
we explain the main differences between the lazy and eager variants of XTrie; the
details of the search algorithm for Lazy XTrie are given in Appendix B.

An important consequence of this optimization is that the order in which sub-
string matchings are processed in Lazy XTrie follows a bottom-up approach as op-
posed to Eager XTrie which follows the pre-order traversal of the XPE’s substring-
tree. To illustrate this difference, consider again the substring-tree in Figure 6. For
Eager XTrie, the order of the partial matchings for the substrings follow the se-
quence ��, ��, � � �, ��. On the other hand, for Lazy XTrie, it first processes the
matching of the leaf substring �� and then propagates upwards to process the
matchings of substrings �� and �� (if they exist). Next, it detects and processes
the matching of the second leaf substring �� followed by an upward propagation
to process the matching of �� (if it exists). The remaining substrings (which are all
leaf substrings) are detected and processed in the order ��, ��, and ��. Thus, Lazy
XTrie does not always immediately check if a matched substring constitutes a par-
tial matching, but only does so in a bottom-up manner when the matched substring
is a leaf substring. This difference in operation introduces a number of structural
and algorithmic differences between Eager and Lazy XTrie.

Structurally, Eager and Lazy XTrie are almost equivalent except for the fol-
lowing three differences. First, since Lazy XTrie only probes the substring-table
when the matched substring � is some leaf substring, we need to “remember” all
the matched substrings that have been detection prior to the matching of a leaf sub-
string. For this book-keeping, we maintain an additional data structure, denoted by
�, which is a ��
����
�� bit-array such that���� #� is set to � if and only if the

26 Chee-Yong Chan et al.

substring � is matched at level # of the input document, where � � ��� �
�� repre-
sents the identifier of �. For ease of access to the substring identifiers, we explicitly
store the substring identifiers in a new attribute, denoted by !.�, in the substring-
table such that !� ���	� �	!.� is the identifier of the substring ��	� . Second, in order
to ensure that the substring-table is only probed for a matching leaf substring, we
need to distinguish between leaf and non-leaf substrings. This is achieved by sim-
ply negating the values of ���� in the trie if
���
��� does not correspond to
a leaf substring. Finally, unlike Eager XTrie, where there are �
� linked lists in
!� (with one list per distinct substring in
); Lazy XTrie has only �
 ��
� � linked
lists in !� , where
��
� � �� �
 � s is a leaf substring in some XPE
; with one
linked list for each substring in
��
� such that a row ��	� in !� belongs to a linked
list for substring � if and only if ��	� is a leaf substring of �� and ��	� � �. Thus,
many of the rows in !� would not belong to any linked list at all.

Algorithmically, the main search algorithm for Lazy XTrie is almost equiva-
lent to that for Eager XTrie (in Figure 7) except that it now records ocurrences of
all matched substrings and probes the substring-table only when the matched sub-
string is a leaf substring. However, checking if a matched substring � constitutes
a partial matching in Lazy XTrie is more complex than in Eager XTrie due to the
bottom-up approach of processing matched substrings in Lazy XTrie. In contrast
to Eager XTrie, where the � array information about the ancestor substrings of a
matched substring � have already been properly initialized to be used for process-
ing �, this is not necessarily the case in Lazy XTrie. In particular, if � is the first
child substring of its parent substring � �, then the � array information on � � has not
been initialized and we first need to determine that there is a partial matching of
�� itself, which might in turn lead to further propagation up the chain of ancestor
substrings.

5.2 XTrie for Single-Path XPEs

We now present an optimized variant of XTrie for the special case where all the
indexed XPEs are single-path XPEs. Since single-path XPath expressions are sim-
pler, we believe that they could be typical in applications where, for example, the
users do not have sophisticated requirements. Moreover, since matching single-
path XPath expressions is more efficient than tree-structured ones, even in a gen-
eral scenario where only some of the indexed XPEs are single-path ones, it might
be more efficient to separately index the single-path and tree-structured patterns.
By exploiting the simple structure of such XPEs, both the data structures as well
as the algorithms of XTrie can be further fine-tuned. In the following, we focus
on the optimized Lazy XTrie for single-path XPEs; the details of the single-path-
optimized Eager XTrie are given in Appendix C. Note that, for single-path XPEs,
ordered and unordered matchings are equivalent.

Lazy XTrie for single-path XPEs differs from Lazy XTrie for tree-structured
XPEs in the following ways. First, since each substring in a single-path XPE has
at most one child substring, the substring-table !� for single-path XPEs is sim-
pler than that for tree-structured XPEs. Specifically, each row in !� (correspond-
ing to some substring ��	�) is a 4-tuple �&�
����
� &���!$����� !.�� �����,

Efficient Filtering of XML Documents with XPath Expressions 27

where&�
����
,!.�, and���� are defined as earlier (Sections 4.1 and 5.1), and
&���!$���� is a single bit that is set to � if and only if ��	� is the root substring
of �� (i.e., � � �). Note that the attributes &��� and �$'(%�
�, which are nec-
essary for tree-structured XPEs, are redundant for single-path XPEs. Furthermore,
for each XPE, by ordering a parent substring before its child substring in !� , the
attribute �����&�� need not be explicitly stored, since each parent substring is
always located in the row preceding the row of its (only) child substring. Second,
since each parent substring has exactly one child substring, there is no need to
maintain the run-time information arrays � and �.

The main search algorithm for single-path XPEs is equivalent to that for tree-
structured XPEs (shown in Figure 21) except that the � and � arrays are not
needed; the detailed matching algorithms are depicted in Figure 10. Algorithm
LAZY-MATCH-SUBSTRING for single-path XPEs is almost equivalent to that for
tree-structured XPEs (in Figure 21) except that it involves fewer parameters. Algo-
rithm MATCH-SUBSTRING-SUB for single-path XPEs, however, is clearly sig-
nificantly simpler than its general-case counterpart. For each substring � �	� �
��
�
(corresponding to row � in !�) matching at level #, Algorithm LAZY-MATCH-
SUBSTRING is invoked to check whether or not this matching forms a com-
plete matching of ��. The algorithm recursively looks for a matching of the par-
ent substring of ��	� at level #� that is consistent with the matching of ��	� (i.e.,
#� #� � !� ���	&�
����
); the algorithm returns ��$� if and only if the root sub-
string of �� is finally matched, implying a complete matching of � �.

6 Related Work

Earlier work has proposed various approaches for the problem of filtering data
using “flat patterns” in the form of conjunctions of simple predicates on data at-
tributes. This includes research on rule/trigger processing systems [10,12] and
publish-subscribe systems [1,11,15]. In contrast, our work focuses on filtering
XML documents based on tree patterns (i.e., XPath expressions), which demands
more sophisticated indexing techniques, since such patterns comprise both data
content and structure.

The only work that is closely related to ours is the XFilter index which is
also designed for filtering XML documents with XPath expressions [2]. While our
XTrie index is based on decomposing tree patterns into collections of substrings
(i.e., sequences of element names) and indexing them using a trie, XFilter essen-
tially treats each tree pattern as a set of finite state automata, with each automaton
responsible for the matching of some path in the tree pattern. Each automaton is
represented by a linked list of nodes, where each node represents a state in the
automaton; and each link, which is labeled with an element name, represents a
state transition. Note that each node has at most one out-going link labeled with
an element name; and the collection of linked lists of nodes is indexed using a
hash table on the element names (i.e., automata transitions) such that nodes whose
incoming links share the same element name label are chained together in the hash
table. Specifically, each hash table entry (corresponding to some element name �)

28 Chee-Yong Chan et al.

Algorithm LAZY-MATCH-SUBSTRING (�� , �, �, �)
Input: �� is the substring-table of an XTrie index. � is a 2-dimensional bit-array.

� refers to the first row in �� that corresponds
to some leaf substring that matches at level �.

Output:Set of matching XPEs.
1) Initialize � to be empty;
2) while (�
�
) do
3) !���" = MATCH-SUBSTRING-SUB (����� �� �);
4) if (!���") then
5) Insert the id. of the XPE corresponding to row � into �;
6) � � �� ������'�;
7) return �;

Algorithm MATCH-SUBSTRING-SUB (�� ,�, �, �)
Input: �� is the substring-table of an XTrie index. � is a 2-dimensional bit-array.

� refers to a row in �� that corresponds to some substring ���	
that matches at level �.

Output:Returns ��$� if there is a complete matching of ��; �����, otherwise.
1) Initialize !���" � �����;
2) if (�� �����

��$����) then ��� corresponds to a root substring
3) if �� � �� ���������#��
 then
4) !���" � ��$�;
5) else ��� corresponds to a non-root substring
6) �� � � 	 �;
7) �������
� � �� ������(;
8) Initialize �� � �	 ����, where �� ���������#�� � ������ �����;
9) while �!���" �� �����
 and ��� �

 and ��	 �� � �� ���������#��
 do
10) if (���������
�� ���) then
11) !���" = MATCH-SUBSTRING-SUB (�� ,�, ��� ��);
12) �� � �� 	 �;
13) return!���";

Fig. 10 Algorithm to process a matching substring in Lazy XTrie for single-path XPEs.

consists of two linked lists: a dynamic candidate-list and a static wait-list. The
candidate-list for element name � consists of nodes representing potential next
states that are reachable by a transition on element name �, and it is initialized with
states that are reachable from start states; the wait-list consists of all the remain-
ing states reachable with a transition on element name � from non-start states. As
the input XML document is parsed, the potential next-states of the automata are
updated by copying nodes from the appropriate wait-lists to their corresponding
candidate-lists or deleting nodes from the candidate-lists.

XTrie is more space-efficient than XFilter since the space cost of XTrie is
dominated by the number of substrings in each tree pattern, while the space cost
of XFilter is dominated by the number of element names in each tree pattern. In the
worst case, a candidate-list in XFilter can grow to a length of ����� after an ele-
ment at level� is parsed, where ��� is the total number of XPEs being indexed. We

Efficient Filtering of XML Documents with XPath Expressions 29

illustrate this exponential space complexity of XFilter with the following example.
Consider a set of � XPEs � � ���� ��� � � � � ��
, where each of the � XPEs shares
the same prefix expression given by “����/ � �������/ � ����� � � � ����/ �
���”. The prefix expression essentially consists of a sequence of ' number of
element � that are separated by descendant operators such that each element � is
associated with a distinct predicate “/ � ��”, where / is another element and each
�� is a distinct constant value. Therefore, for element �, its initial candidate list
consists of � nodes (one node for each XPE), and its wait list consists of ��'���
nodes ('� � nodes for each XPE); while for element /, its initial candidate list is
empty, and its wait list consists of �' nodes (' nodes for each XPE). Consider an
XML document tree � that consists of only a single path of element names all of
which are labeled �. Since the first element � in � matches the first � element in
all the XPEs (i.e., all the nodes in the candidate list of element � are matched), the
candidate list for element � is updated by copying � nodes from its wait list (cor-
responding to the second element � in each XPE). Similarly, the candidate list for
element / is updated by copying � nodes from its wait list (corresponding to the
expression “/ � ��” in each XPE). Subsequently, when the second element � in
� is parsed, it again matches all the nodes in the candidate list of element � (i.e., it
matches both the first and second element � of each XPE); therefore, the candidate
list for element � is updated by copying �� nodes (corresponding to the second and
third element � in each XPE) from the wait list of element � into its candidate list.
Similarly, the candidate list for element / is updated by copying �� nodes from its
wait list (corresponding to both the expressions “/ � ��” and “/ � ��” in each
XPE) thereby increasing its number of nodes to
�. At this point, each XPE � �
is associated with two nodes that correspond to the expression “/ � ��” in the
candidate list for element /. It is important to note that these two nodes are not
equivalent (and therefore the second copy is not redundant) because they are as-
sociated with different meta information; in particular, their values for the “
���
”
attribute (which indicates the level at which the nodes should be matched) are �
and
. Thus, it follows that the candidate list for element / would have a total of
����� distinct nodes after the element � at the �
� level in � is parsed.

By indexing on substrings instead of single element names, the substring-table
entries in XTrie are also probed less often than the hash table entries in XFilter.
Furthermore, while XTrie ignores partial matchings of tree patterns that are redun-
dant, XFilter keeps track of all instances of partially-matched tree patterns, which
results in higher processing overheads.

7 Experimental Study

To determine the effectiveness of XTrie, we have conducted exhaustive experi-
ments with the various variants of the XTrie algorithm, as well as XFilter, under
a wide range of XML document and XPath expression workloads. Note that our
implementation of XFilter is based on the description in [2]. Our results indicate
that XTrie scale well to high workloads and consistently outperforms XFilter by
significant margins.

30 Chee-Yong Chan et al.

7.1 Testbed and Methodology

XML Documents. For the experiments presented here, we have used two distinct
data sets. The first one measures the effectiveness of the algorithms with multi-
ple DTDs. This “aggregate” data set was created from �� real-world DTDs used
in major commercial applications. Among the �� DTDs, the smallest DTD con-
tains �� elements with �
�� attributes, while the largest DTD has ���� elements
with ���� attributes. Each DTD was equally represented in the data set, i.e., we
generated ���� of the XML documents and XPEs with each DTD.

The second data set was used to precisely measure how the different algorithms
react to slight variations of the workload. We have used the News Industry Text
Format (NITF) DTD[8], developed as a joint standard by news organizations and
vendors worldwide, and supported by most of the world’s major news agencies.
The NITF DTD (version 2.5) contains ��
 elements with ��
 attributes. Note that
the same DTD was used in [2] for XFilter’s performance study.

Our data set of XML documents has been generated using IBM’s XML Gener-
ator tool [9]. The NITF DTD and most of the other DTDs contain recursive struc-
tures, which can be nested to produce XML documents with arbitrary number of
levels. We have generated sets of ���XML documents with similar characteristics.
The documents of the default data sets have approximately ��� tags and �� levels. 5

The default data sets are used in all experiments, except when measuring the scal-
ability of the filtering algorithms with respect to the size of the documents. For the
latter experiment, we have generated additional data sets by varying the number
of tags. Table 3 shows the main characteristics of our default XML document data
sets.

Table 3 Characteristics of the default XML data sets (100 documents per set)

DTD 10 DTDs NITF

Number of tags � : avg [min, max] ��
�� ��	� ��
� �
��	 ��	� ����

Number of levels: avg [min, max] ����	 �	� ��� ����� ��� ���

XPath Expressions. We implemented an XPath expression generator that takes
a DTD as input and creates a set of valid XPath expressions based on the input
parameters shown in Table 4. The parameter controls the size of the set of in-
dexed XPEs. The parameter � controls the maximal “depth” of the XPEs in terms
of the maximum number of levels. The average depth is approximately equal to
half the maximal depth. The parameters �

�
and ���, respectively, control the prob-

abilities of having a wildcard “��” or a descendant “��” operator at each node;
therefore, the probability of the child operator “�” is given by ��� �

�
� ����. The

parameter �� controls how “bushy” are the XPE-trees of the XPEs; a value of �
5 Note that in the context of data dissemination, documents are generally small. For in-

stance, a typical XML document describing a stock quote has approximately �
 tags and �
levels.

Efficient Filtering of XML Documents with XPath Expressions 31

Table 4 Parameters in XPath Expression Generator.

Parameter Meaning Values

 Number of XPath expressions. 10K to 200K
� Maximum number of levels in the XPEs. 8 to 20
�� Probability of having a wildcard “��” operator. �
�
�	�
��� Probability of having a descendant “��” operator. �
�
�	�
�� Probability of branching. �
�
���
) Skewness of element names. �
� 	�

will generate only single-path XPEs, while a higher value will increase the number
of branches in the XPE-trees. The parameter 0 controls the skewness of the Zipf
distribution [22] used for selecting element names. When set to �, element names
are randomly chosen according to a uniform distribution from the set of allowed
elements. When set to positive values, the choice of the element names is skewed.

Algorithms. We compare the performance of the XFilter algorithms and the XTrie
algorithms. We have implemented two variants of XFilter for single-path XPEs as
described in [2]: the basic variant (referred to as XFilter) and the variant with
the list balancing optimization (referred to as XFilter-LB). We have also added
support for unordered matching of tree-structured XPEs to XFilter, without the
list balancing optimization, according to the informal description in [2]. We have
tested all variants of the XTrie algorithms: eager and lazy, single-path and tree-
structured, ordered and unordered. Unless explicitly mentioned, we use for XTrie
the simple decomposition introduced in Section 3 to split XPEs into substrings.
Note that we did not apply the prefiltering optimization [2] to XFilter because this
optimization is orthogonal to the index approach and is applicable to XTrie as well.

We implemented the algorithms in C++ and compiled them using GNU C++
version 2.96. Experiments were conducted on a 1.5 GHz Intel Pentium 4 machine
with ��� MB of main memory running Linux 2.4.2. All the index structures were
resident in main-memory for all the experiments. For each experiment, the query
evaluation time that we measured includes the CPU time to parse the input XML
document, probe and update the index, and report matches to the application. XML
file parsing was performed using the SAX parser of the Apache Foundation [5].
The average parsing time per document when no filtering takes place was approx-
imately � ms for the default XML document data sets.

7.2 Experimental Results

Scalability. We first compared the scalability of XTrie and XFilter with single-
path XPEs by varying the number of XPEs up to ���� ���. The results with
both data sets (Figures 11(a) and 11(b)) show that the filtering time of the XTrie
algorithms increases linearly with the number of XPEs, with the lazy variant being
� to
 times faster than the eager variant. The performance of the XFilter algorithm
decreases linearly with when using the NITF DTD, and logarithmically with the

32 Chee-Yong Chan et al.

0

200

400

25 50 75 100 125 150 175 200

37

83

381
412

F
ilt

er
in

g
T

im
e

(m
s)

Number of XPEs (x1,000)

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(a) 10 DTDs

0

200

400

600

25 50 75 100 125 150 175 200

35

108

243

598

F
ilt

er
in

g
T

im
e

(m
s)

Number of XPEs (x1,000)

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(b) NITF DTD

Fig. 11 Varying for Single-path XPEs (� � �
� �� �
��� ��� �
��� �� �
�) �

� � � �

).

�� DTDs. This can be explained by the fact that the aggregate data set contains
a large number (more than �� ���) distinct element names. Therefore, the lists
of candidates managed by the XFilter algorithm remain small and never exceeds
about one tenth of at any given time. With the NITF DTD, lists can become
prohibitely long and, unsurprisingly, the list balancing optimization yield a much
bigger performance improvement with that DTD. Note that the XTrie algorithms
consistently outperforms XFilter by almost one order of magnitude.

We then compared the performance of the XTrie and XFilter algorithms with
tree-structured XPEs (Figures 12(a) and 12(b)). The filtering time of the XTrie
algorithms increases linearly with the number of XPEs. Unlike with single-path
XPEs, the lazy variants of the XTrie algorithms do not perform better than their ea-
ger counterparts. With the aggregate data sets, the eager variant performs slightly
better, while the lazy variant has a thin edge with the NITF DTD. This can be
explained by the fact that, since tree-structured expressions have several leaf sub-

Efficient Filtering of XML Documents with XPath Expressions 33

0

200

400

600

800

25 50 75 100 125 150 175 200

380
426

575
612

797

F
ilt

er
in

g
T

im
e

(m
s)

Number of XPEs (x1,000)

Eager Ordered XTrie
Lazy Ordered XTrie

Eager Unordered XTrie
Lazy Unordered XTrie

Unordered XFilter

(a) 10 DTDs

0

200

400

600

25 50 75 100 125 150 175 200

378
407

513
530

F
ilt

er
in

g
T

im
e

(m
s)

Number of XPEs (x1,000)

Eager Ordered XTrie
Lazy Ordered XTrie

Eager Unordered XTrie
Lazy Unordered XTrie

Unordered XFilter

(b) NITF DTD

Fig. 12 Varying for Tree-structured XPEs (� � �
� �� �
��� ��� �
��� �� �
���) �

� � � �

).

strings, the benefits of making fewer accesses to the substring table in the lazy
variant are balanced—and sometimes even surpassed—by the higher costs of these
accesses. Lazy XTrie is expected to perform better than Eager XTrie when leaf
substrings occur infrequently in XML documents. The results also show that the
unordered XTrie algorithms are less efficient that the ordered algorithms, because
the unordered algorithms use more complex data structures and must keep track of
a larger number of partial matches.

With the aggregate data set, the performance of the unordered XFilter algo-
rithm degrades linearly with . When using the NITF DTD, however, the perfor-
mance of XFilter is extremely poor and degrades exponentially 6 with the number
of XPEs. This gap between the aggregate and NITF data sets is analoguous to the

6 We could not represent this behavior in Figure 12(b) as it would have required scaling
down the vertical axis by two orders of magnitude.

34 Chee-Yong Chan et al.

behavior observed with single-path XPEs. With tree-structured XPEs, XFilter fur-
ther suffers from the branching factor, which can dramatically increase the number
nodes copied to the candidate lists.

0

500

1000

1500

2000

2500

200 400 600 800

182
368

2741
2805

F
ilt

er
in

g
T

im
e

(m
s)

Document Tag Size

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(a) 10 DTDs

0

500

1000

200 400 600 800 1000

219

635

956

1302

F
ilt

er
in

g
T

im
e

(m
s)

Document Tag Size

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(b) NITF DTD

Fig. 13 Varying document length � for Single-Path XPEs (� �

*�� � �
� �� �

��� ��� �
��� �� �
�) �
).

Figures 13(a), 13(b), 14(a), and 14(b) analyze the scalability of the filtering al-
gorithms with respect to the average length of the XML documents for single-path
and tree-structured XPEs.7 It appears clearly that the processing time increases lin-
early with the number of tags for all algorithms, with both types of XPEs. Remark-
ably, it appears that the list balancing optimization of XFilter becomes useless and
even penalizes performance with large XML documents. This can be explained
by the fact that large documents use many of tags in a DTD, some of which cor-

7 The data points of Unordered XFilter for tree-structured XPEs do not appear on the
Figure 14(b) due to the scale and the extremely slow performance of the algorithm.

Efficient Filtering of XML Documents with XPath Expressions 35

0

500

1000

1500

2000

2500

3000

3500

200 400 600 800

1574
1678

2218
2362

3399

F
ilt

er
in

g
T

im
e

(m
s)

Document Tag Size

Eager Ordered XTrie
Lazy Ordered XTrie

Eager Unordered XTrie
Lazy Unordered XTrie

Unordered XFilter

(a) 10 DTDs

0

500

1000

1500

2000

2500

3000

200 400 600 800 1000

1875
1928

2528
2555

F
ilt

er
in

g
T

im
e

(m
s)

Document Tag Size

Eager Ordered XTrie
Lazy Ordered XTrie

Eager Unordered XTrie
Lazy Unordered XTrie

Unordered XFilter

(b) NITF DTD

Fig. 14 Varying document length � for Tree-Structured XPEs (� 	
*�� � �
� �� �

��� ��� �
��� �� �
���) �
).

respond to short candidate lists. The use of large documents indirectly yields an
optimization similar to list balancing, but without the extra overhead.

In the rest of this section, unless explicitly mentioned, we present the results
obtained with the NITF DTD.

Effect of Decomposition. As previously mentioned, XTrie is expected to perform
better as the length of substrings grows, because the substring table is accessed
only when an entire substring has been matched. To measure the gain from match-
ing substrings instead of single elements, we have compared the performance of
XTrie with two different decompositions: the simple decomposition (indicated as
Simple) introduced in Section 3 that generates a small number of long substrings,
and a simplistic decomposition called maximal decomposition (indicated as Max-
imal) that basically generates a substring for each individual element (hence giv-
ing rise to a maximal number of substrings). As shown in Figure 15(a), XTrie

36 Chee-Yong Chan et al.

performs significantly better with the simple decomposition. The improvement is
more noticeable for Eager XTrie than for Lazy XTrie, because the former algo-
rithm accesses the substring table for each matching substring (i.e., for each ele-
ment when using the maximal decomposition) while the latter only accesses the
substring table when encountering a leaf substring; therefore, the gain from using
longer substrings is proportionally larger for Eager XTrie than for Lazy XTrie.

0

200

400

600

25 50 75 100 125 150 175 200

35

108
111

586

F
ilt

er
in

g
T

im
e

(m
s)

Number of XPEs (x1,000)

Eager XTrie (Simple)
Eager XTrie (Maximal)

Lazy XTrie (Simple)
Lazy XTrie (Maximal)

(a) Decomposition

0

50

100

150

200

250

300

25 50 75 100 125 150 175 200

35

193

266

F
ilt

er
in

g
T

im
e

(m
s)

Number of XPEs (x1,000)

Lazy XTrie (SP)
Lazy Ordered XTrie (TS)

Lazy Unordered XTrie (TS)

(b) Algorithm Specialization

Fig. 15 Effect of Decomposition and Algorithm Specialization for Single-Path XPEs with
NITF DTD (� � �
� �� �
��� ��� �
��� �� �
�) �
� � � �

).

Effect of Algorithm Specialization. We have presented different variants of the
XTrie filtering algorithm, adapted to different types of XPEs (single-path, tree-
structured ordered and unordered). While the tree-structured variants can be used
to filter single-path XPEs, the variants optimized for single-path XPEs are ex-
pected to be more efficient. We have measured the gain of using specialized al-
gorithms (indicated with SP for single-path algorithms) instead of their generic

Efficient Filtering of XML Documents with XPath Expressions 37

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5

37

101
119

237
F

ilt
er

in
g

T
im

e
(m

s)

Wildcard (’/*’) Probability

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(a) Effect of �� (��� �
��)

0

50

100

150

200

250

300

350

400

450

500

550

600

0 0.1 0.2 0.3 0.4 0.5

45

172

220

486

F
ilt

er
in

g
T

im
e

(m
s)

Descendant (’//’) Probability

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(b) Effect of ��� (�� �
��)

Fig. 16 Varying �� and ��� with NITF DTD (� �

�

� � � �
� �� �
�) �
� � �
�

).

counterparts (indicated with TS for tree-structured algorithms) for filtering single-
path XPEs. The results, shown in Figure 15(b) (for clarity, we only represented the
results for the lazy algorithms as the eager ones had a similar behavior), clearly
demonstrate the benefits of using the optimized algorithms. The tree-structured
algorithms suffer from more complex data structures and matching procedures,
which degrade their performance.

Effect of Wildcards and Descendant Operators. Figures 16(a) and 16(b) show
the influence of wildcard and descendant operators on filtering speed. Interest-
ingly, XFilter performs slightly better as the number of wildcards increases, while
the performance of XTrie degrades. This can be explained by the fact that XFilter
does not use nodes for representing wildcards; thus, the number of nodes decreases
when the percentage of wildcards increases. The performance of XTrie degrades
because substrings become shorter when the number of wildcard increases; as pre-

38 Chee-Yong Chan et al.

0

50

100

150

200

250

300

350

400

450

4 5 6 7 8 9 10 11 12

29

94

141

428

F
ilt

er
in

g
T

im
e

(m
s)

Average XPE Depth

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(a) Effect of � () �
)

0

50

100

150

200

250

300

350

0 1 2 3 4 5
8

62

131
152

F
ilt

er
in

g
T

im
e

(m
s)

Skew

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(b) Effect of) (� � �
)

Fig. 17 Varying � and) with NITF DTD (� �

�

� �� �
��� ��� �
��� �� �

� � � �

).

viously mentioned, XTrie degenerates to a hash table when substrings become
single elements. Both XFilter and XTrie are affected by the probability of descen-
dant operators, but the performance of XTrie degrades slightly more than XFilter.
As with wildcards, this can be explained by the shorter length of the substrings.
Lazy XTrie is less affected by higher probabilities of wildcard and descendant op-
erators than Eager XTrie, because Lazy XTrie only incurs the cost of accessing the
substring table when reaching a leaf node, and the number of leaf nodes remains
constant as the number of substring grows. We observed the same behavior with
tree-structured XPEs and (un)ordered XTrie.

Effect of XPE depth. We have measured the influence of the XPEs’ average depth
on the performance of the filtering algorithms. As show in Figure 17(a), the perfor-
mance of all algorithms degrades as the number of levels grow. The basic variant
of XFilter is the most affected, because longer substrings result is a larger num-

Efficient Filtering of XML Documents with XPath Expressions 39

ber of elements and yields longer candidate lists. The list balancing optimization
attenuates this problem. Similarly, the performance of XTrie degrades because the
number of substrings increases with the XPEs’ depth.

Effect of Skew. Figure 17(b) shows the behavior of the filtering algorithms when
element names are skewed (note that the XML documents are not skewed). The
graph shows that the performance of XFilter (without the list balancing optimiza-
tion) increases sharply with highly skewed XPEs. This is due to the fact only a
small number of candidate lists become large—those associated with skewed ele-
ments. All other lists remain small. As XML documents are not skewed, all lists
are accessed approximately the same number of times, and small lists improve the
algorithm’s performance. With the list balancing optimization, XFilter strives to
keep candidate lists small and is less affected by skewed data. As expected, XTrie
is also less sensitive to skew because it indexes substrings rather than element
names, and the number of identical substrings remains significantly smaller than
the number of identical element name with high skew. The performance of Lazy
XTrie even improves significanly with highly skewed XPEs. As explained before,
the lazy algorithm only accesses the substring table upon matching of a leaf sub-
string, and since the XML data is not skewed, this happens less frequently with
higher skew.

7.3 Space Analysis

Since XTrie essentially uses bounded data structures at runtime, its space require-
ment depends only on the set of XPEs. In contrast, XFilter makes extensive use of
dynamic lists for storing candidate path nodes and its space requirements depends
on both the XPEs and the input XML documents. Figures 18(a) and 18(b) compare
the memory usage of the various algorithms8 as a function of the number of XPEs
for single-path XPEs and tree-structured XPEs, respectively. It appears clearly that
XTrie has lower memory requirements than XFilter, and that the algorithms spe-
cialized for single-path XPEs use less resources. Interestingly, the faster variants
(Lazy XTrie and XFilter-LB) are also those that use less memory. Although the
space requirements of XFilter can be asymptotically very large, in practice they
remain reasonable and none of the algorithms had problems maintaining their in-
dex structures in main memory.

8 Conclusions

In this paper, we have proposed a novel index structure, termed XTrie, that sup-
ports the efficient filtering of streaming XML documents based on XPath expres-
sions. Our XTrie index offers several novel features that make it especially at-
tractive for large-scale publish/subscribe systems. First, the XTrie is designed to
support effective filtering based on complex XPath expressions (as opposed to

8 Ordered and unorderd XTrie have the same memory usage, and are not represented
separately in the figures.

40 Chee-Yong Chan et al.

0

10

20

30

40

50

60

70

80

25 50 75 100 125 150 175 200

4

12

24

37

S
pa

ce
 R

eq
ui

re
m

en
ts

 (
M

B
)

Number of XPEs (x1,000)

XFilter
XFilter-LB

Eager XTrie
Lazy XTrie

(a) Single-Path XPEs

0

10

20

30

40

50

60

70

80

25 50 75 100 125 150 175 200

44
47

80

S
pa

ce
 R

eq
ui

re
m

en
ts

 (
M

B
)

Number of XPEs (x1,000)

XFilter
Lazy XTrie

Eager XTrie

(b) Tree-Structured XPEs

Fig. 18 Memory usage with NITF DTD (� � �
� �� �
��� ��� �
��� �� �
�) �

� � � �

).

simple, single-path specifications). Second, our XTrie structure and algorithms are
designed to support both ordered and unordered matching of XML data. Third,
by indexing on sequences of XML element names (i.e., substrings) organized in
a trie structure and using a sophisticated matching algorithm, the XTrie is able to
both reduce the number of unnecessary index probes as well as avoid redundant
matchings, thereby providing extremely efficient filtering. Our experimental re-
sults over a wide range of XML document and XPath expression workloads have
clearly demonstrated the benefits of our approach, showing that our XTrie index
consistently outperforms earlier approaches by wide margins.

Acknowledgements. We would like to thank the anonymous reviewers for their
detailed comments which helped significantly to improve the presentation of this
paper.

Efficient Filtering of XML Documents with XPath Expressions 41

References

1. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching
Events in a Content-based Subscription System. In Proc. of ACM PODC, pages 53–61,
Atlanta, GA, May 1999.

2. M. Altinel and M.J. Franklin. Efficient Filtering of XML Documents for Selective
Dissemination of Information. In Proc. of VLDB, pages 53–64, September 2000.

3. S. Amer-Yahia, S. Cho, L. V.S. Lakshmanan, and D. Srivastava. Minimization of Tree
Pattern Queries. In Proc. of ACM SIGMOD, pages 497–508, Santa Barbara, California,
May 2001.

4. S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern Relaxation. In Proc. of EDBT,
pages 496–513, Prague, Czech Republic, March 2002.

5. Apache. Xerces C++ Parser. http://xml.apache.org, 2001.
6. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area

Event Notification Service. ACM Trans. on Computer Systems, 19(3):332–383, August
2001.

7. The Intel Corporation. Intel NetStructure XML Accelerators.
http://www.intel.com/netstructure/products/ xml accelerators.htm, 2000.

8. R. Cover. The SGML/XML Web Page. http://www.oasis.open.org/cover/sgml-xml.html,
December 1999.

9. A.L. Diaz and D. Lovell. XML Generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator, September 1999.

10. E. N. Hanson and M. Chaabouni and C.-H. Kim and Y.-W. Wang. A Predicate Matching
Algorithm for Database Rule Systems. In Proc. of ACM SIGMOD, pages 271–280,
Atlantic City, NJ, May 1990.

11. F. Fabret, H.A. Jacobsen, F. Llirbat, K.A. Ross, and D. Shasha. Filtering Algorithms
and Implementations for Very Fast Publish/Subscribe Systems. In Proc. of ACM SIG-
MOD, pages 115–126, Santa Barbara, California, May 2001.

12. E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy, J. B.
Park, and A. Vernon. Scalable Trigger Processing. In Proc. of IEEE ICDE, pages
266–275, Sydney, Austrialia, March 1999.

13. D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3,
chapter 6.3. Addison Wesley, second edition, 1998.

14. D. Megginson. SAX: A Simple API for XML. http://www.megginson.com/SAX/.
15. B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data on the Web.

In Proc. of ACM SIGMOD, pages 437–448, Santa Barbara, California, May 2001.
16. P. Ramanan. Efficient Algorithms for Minimizing Tree Pattern Queries. In Proc. of

ACM SIGMOD, pages 299–309, Madison, Wisconsin, June 2002.
17. T. Schlieder. Schema-Driven Evaluation of Approximate Tree-Pattern Queries. In

Proc. of EDBT, pages 514–532, Prague, Czech Republic, March 2002.
18. B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based Routing

with Elvin4. In AUUG2K, Canberra, Australia, June 2000.
19. W3C. Document Object Model (DOM) Level 1 Specification (Second Edition), Version

1.0. http://www.w3.org/TR/REC-DOM-Level-1/.
20. W3C. XML Path Language (XPath) 1.0. http://www.w3.org/TR/xpath, November

1999.
21. W3C. Extensible Markup Language (XML) 1.0, 2nd Edition.

http://www.w3.org/TR/REC-xml/, October 2000.
22. G.K. Zipf. Human Behaviour and Principle of Least Effort. Addison-Wesley, Cam-

bridge, Massachusetts, 1949.

42 Chee-Yong Chan et al.

A Maintenance Algorithms for XTrie

In this section, we present the maintenance algorithms for XTrie. The maintenance
of XTrie is overall rather straightforward except for the maintenance of the max-
suffix pointers in the trie � which is more involved. One approach to efficiently
maintain these pointers is to build an auxiliary trie structure, denoted by � ���, on
the set of reversed substrings, which we now describe.

The auxiliary structure ���� is basically a suffix trie on the set of reverse sub-
strings9 in
; i.e., ���� is a trie on the set ��� � � �
� �� is a suffix of ����������
10.
The nodes in � and ���� are related by the following invariant condition: for each
node node � in � , there exists a unique node � � in ���� such that
���
��� �
��������
���
�� ���. We explicitly maintain this association between the nodes in
� and ���� by enhancing ���� with additional pointers as follows: for each node
� � in ����, we maintain a special pointer, denoted by)�� ��, that points to the
node � in � (if it exists in �) such that
���
��� � ��������
���
�� ���; other-
wise,)�� �� is initialized to a null pointer value. Note that for the root node� �

���

of � �,)�� �
���
� points to the root node of � . Given ����, the max-suffix pointer

value of a node � in � , ����, can be easily computed as follows. Let � ��
� �
�� �

�
�� � � � � �

�
� � denote the unique path of nodes in ���� beginning from the

root node � �
� down to some node � �

� such that
���
�� �
�� � ��������
���
����.

Then, the value of ���� is given by)�� �
��, where � �

� (� 	 � � �) is the bottom-
most node in � (excluding node � �

�) that has a non-null pointer value. Note that
such a node always exists since)�� �

�� points to the root node of � .

A.1 Maintenance Algorithm for New Insertions

This section presents an algorithm (shown in Figure 19) to update 1���� and
the auxiliary structure ���� when a new set of XPEs ���� is to be added. The
maintenance algorithm to handle insertion of new XPEs consists of three main
phases. The first phase expands � with new nodes (if required) and updates !�
with a new entry for each substring in the simple decomposition of each new XPE.
The second phase expands ���� with new nodes if new nodes have been inserted
into � during the first phase, and updates their)�� pointer values; this phase also
updates the max-suffix pointers of some of the existing nodes in � . Finally, the
third phase updates the max-suffix pointers of the new nodes that were added to �
in the first phase. We now elaborate on the details of these three phases.

In the first phase (Steps 1 to 11), for each substring � in the simple decomposi-
tion of each new XPE, we traverse � using � to first check if there exists a node�
in � such that
���
��� � �. If not, an appropriate path of new nodes is inserted
into � so that a leaf node in � is reachable using �. A new entry corresponding to

9 The reverse of a substring �, denoted by ��#������
, is defined to be �������� � � � ���
if � � ������ � � � ��� is a concatenation of � element names.

10 Note that since the set of suffixes of �� is a proper subset of the set of suffixes of � if �� is
a proper prefix of �, it is sufficient to construct the suffix trie �
�� on the reverse substrings
in ��������
 � N is a leaf node in T�.

Efficient Filtering of XML Documents with XPath Expressions 43

Algorithm INSERT-XPE (���
 , �� , �)
Input: ���
 is a set of XPEs to be inserted; (�� , �) is an XTrie index.
Output: An updated XTrie.
1) Initialize �
����
 to be empty;
2) for each � � ���
 do
3) for each substring � in the simple decomposition of � do
4) Traverse � using � and let � be the last node visited in � ;
5) if ��������

� �
 then
6) Append a new path of nodes � ��� ��� � � � � �� � to �

such that ��������
 � �;
7) Initialize ����
 � �$�� for
 � �� �� � � � � & 	 �;
8) Initialize ����
 to point to a new entry in �� ;
9) Initialize ����
 to point to the root node of � for
 � �� �� � � � � &;
10) �
����
 � �
����
 � ���� ��� � � � � ���;
11) Insert a new entry into �� for �;
12) for each � � �
����
 do
13) Traverse �
�� using ��#������������

 and

let � � be the last node visited in �
��;
14) if �������� �

� ��#������������

 then
15) Append a new path of nodes � ��

�� �
�

�� � � � � �
�

	 � to � �

such that ������� �

	
 � ��#������������

;
16) Initialize +�� �

�
 to point to the root node of � for
 � �� �� � � � � , 	 �;
17) Initialize +�� �

	
 to point to node � ;
18) else
19) Update +�� �
 to point to � ;
20) Let �
����� � �� �� is a descendant node of �� � +�� ��

� �$��,

+�-
 � �$�� for each node - between �� and � �� �;
21) for each node � �� � �
����� do
22) Let �� be the node in � pointed to by +����
;
23) Update ����
 to point to � ;
24) for each � � �
����
 do
25) Traverse �
�� using ��#������������

 and

let �� � �

�� �
�

�� � � ��
�

� � denote the path of nodes visited;
26) Update ���
 to +�� �

	
, where , is the maximum value in ��� !	 ��
such that +�� �

	

� �$��;

Fig. 19 Algorithm to maintain XTrie for insertion of a set of XPEs.

� is also inserted into the substring-table !� . The ��	� pointer values are updated
appropriately, while the ��	� are simply initialized to point to the root node of � at
this point.

In the second phase (Steps 12 to 23), we update ���� to maintain the invari-
ant condition for the newly inserted nodes in � . Therefore, for each newly in-
serted node � in � , we traverse ���� using ��������
���
���� to check if there
exists a node � � in ���� such that
���
��� � ��������
���
�� ���. There are
two possible cases. In the first case, if � � does not exist in ����, then an ap-
propriate path of new nodes (with leaf node � �) is inserted into ���� so that

44 Chee-Yong Chan et al.

���
��� � ��������
���
�� ���. The)�	� pointer values for the newly inserted
nodes in ���� are updated appropriately. In the second case, if � � already exists in
����, then it is necessary that)�� �� has a null pointer value (otherwise, it would
imply that node � already exists in � contradicting the fact that � is a newly in-
serted node in �); thus, what remains to be done is to simply update)�� �� to point
to� . Since there might be some existing nodes in � whose max-suffix pointer val-
ues were initialized to)�� ��, we therefore need to update the max-suffix pointer
values of such nodes to point to� instead. This update is performed in Steps 20 to
23. The set of nodes in ���� associated with the affected nodes in � are represented
by the set �����
�; i.e., for each node � �� � �����
�, we need to update the
max-suffix pointer of the node pointed to by)�� ���. Note that the number of such
affected nodes is bounded by the branching degree of node� � in ����. Finally, the
third phase (Steps 24 to 26), updates the max-suffix pointers for the newly inserted
nodes in � as described in the previous section.

A.2 Maintenance Algorithm for Deletions

This section presents an algorithm (shown in Figure 20) to update1����when an
existing XPE � is to be deleted. The maintenance algorithm consists of two main
phases. The first phase deletes the appropriate entries in the !� that correspond
to the substrings in the simple decomposition of �; nodes in � that have become
“useless” as a result of the changes in !� are also deleted. The second phase
deletes nodes in ���� that have become “useless” and also updates those max-
suffix pointers in � that are now pointing to non-existing nodes as a consequence
of the nodes deleted in the first phase.

In the first phase (Steps 1 to 11), for each substring � in the simple decomposi-
tion of �, we delete the corresponding entry to � in !� by navigating to � via � ���;
that is we first traverse ���� using ���������� to reach a node � � in ���� and then
navigate to its associated node � in � using)�� ��. The reason for this indirect
navigation is because we need to “take note” of node � � in ���� (by marking that
node) if the node � in � is deleted. Note that a node � in � will be deleted if
has become “useless”; i.e., � has become a leaf node and the value of ���� has
become a null pointer value. In order to efficiently ensure that all the useless nodes
in � are deleted, we need to visit these to-be-deleted nodes in a bottom-up manner;
otherwise, we would have missed deleting an internal node that later becomes a
useless leaf node. For this reason, we iterate through the to-be-deleted substrings
in descending order of their lengths by first sorting them into the sequence ! ���
.
For each node in � that is deleted, its associated node in ���� is marked for further
processing in the second phase.

The second phase (Steps 12 to 23) begins once all the relevant entries in !�
and useless nodes in � have been deleted. The purpose of this phase is to delete
useless nodes in ���� and update the max-suffix pointers in � using the updated
����. For each deleted node � in � , we first navigate to its associated marked
node � � in ����. Node � � is deleted from ���� if � � is a leaf node; otherwise,
we update)�� �� to a null pointer value. The updating of the affected max-suffix

Efficient Filtering of XML Documents with XPath Expressions 45

Algorithm DELETE-XPE (�, �� , �)
Input: � is a XPE to be deleted; (�� , �) is an XTrie index.
Output: An updated XTrie.
1) Let �� be the set of distinct substrings from the simple decomposition of �;
2) Let ���
� be the sorted sequence of substrings in �� in

descending order of the substring length;
3) for each substring � in ���
� do
4) Traverse �
�� using ��#������
 to reach node ��;
5) Let � be the node in � pointed to by +���
;
6) Access �� using ���
 to delete the entry corresponding to �;
7) if (the deleted entry is the last entry for �) then
8) Update ���
 to the null pointer value;
9) if (� is a leaf node) then
10) Delete � from � ;
11) Mark the node �� ;
12) for each substring � in ���
� do
13) Traverse �
�� using ��#������
 to reach node ��;
14) if (� � is marked) then
15) Let ���� be the closest ancestor node of �� such that

���� is not marked and +�����

� �$��;
16) Let �
����� � �� �� is a descendant node of �� � +�� ��

� �$���

N” is not marked,
for each node - between ���� and � ��, - is marked or +�-
 � �$���;

17) for each node � �� � �
����� do
18) Let � be the node in � pointed to by +����
;
19) Update ���
 to point to +�����
;
20) if (� � is a leaf node) then
21) Delete � � from �
��;
22) else
23) Update +�� �
 to a null pointer value;

Fig. 20 Algorithm to maintain XTrie for an XPE deletion.

pointers in � , which is performed in Steps 15 to 19, is similar to the procedure
described earlier for the second phase in Algorithm INSERT-XPE.

B Search Algorithm for Lazy XTrie

In this section, we present the detailed search algorithm for Lazy XTrie. The main
algorithm is shown in Figure 21; a comparison between the lazy and eager variants
was described in Section 5.1.

Algorithm LAZY-MATCH-SUBSTRING (shown in Figure 22) is called to it-
erate through each instance of � in the indexed substrings via the linked list asso-
ciated with � when a matching leaf substring � is detected; the input parameter �
refers to the first row in the substring-table that corresponds to �. For each match-
ing substring ��	� �
��
� (matching at level # and corresponding to row � in
!�), Algorithm MATCH-SUBSTRING-SUB (shown in Figure 23) is invoked to

46 Chee-Yong Chan et al.

Algorithm LAZY-SEARCH (, �� , �)
Input: 	 is an input XML document. (�� , �) is an XTrie index.
Output: � is the set of XPEs that matches 	.
1) Initialize � to be empty;
2) Initialize �
���
� = root node of � for
 = 0 to ����;
3) Let � be a ��� � � ���� integer-array with all values initialized to
;
4) Let � be a ��� � � ���� bit-array with all values initialized to
;
5) Let � be a ��� � ���� bit-array with all values initialized to
;
6) Initialize � �
; �� � is the current document level
7) Initialize � to be the root node of � ; �� � is the current trie node
8) repeat
9) if (a start-tag � is parsed in) then
10) � � �� �;
11) while ((there is no edge labelled ”t” from �) and

(� is not the root node of �)) do
12) � � ���
;
13) if (there is an edge labelled ”t” from � to �� in �) then
14) �
����� � � �; � � � �;
15) while (� � is not the root node) do
16) � � .������ �

; �� r is the absolute value of ��� �

17) if ��
�

 then
18) Set ���� �����(� �� to �;
19) if (��� �
 �
) then
20) � � � �

LAZY-MATCH-SUBSTRING (����� ���� ��� �
� �);
21) � � � ��� �
;
22) else if (an end-tag is parsed in) then
23) Reset ��
� �� to
 for
 = 1 to ��� �;
24) Reset ��
� �� to
 for
 = 1 to ���;
25) �
����� = root node of � ;
26) � � �	 �;
27) Reset ��
� �� to
 for
 = 1 to ��� �;
28) � � �
�����;
29) until (has been completely parsed);
30) return�;

Fig. 21 Algorithm to search Lazy XTrie.

check if this matching is a partial matching of � �	� and, if so, whether it also com-
pletes the matching of ��. The algorithm returns one of the following three status
values: ��'�
���2���% if there is a matching of ��, ������
2���% if there is
a partial matching of ��	� at level #, or ��2���% otherwise. The input parame-
ter �$��������2���% is a boolean variable indicating whether or not there is a
matching of the subpattern11 rooted at ��	� (with ��	� matching at level #); and the
input parameter �%�
�!$��������2���% is a boolean variable indicating whether

11 The subpattern rooted at a substring � of a XPE � refers to a XPE �� is derived from �
that consists of only all the substrings in the subtree rooted at � in �.

Efficient Filtering of XML Documents with XPath Expressions 47

Algorithm LAZY-MATCH-SUBSTRING (�� , �, �, �, �, �)
Input: �� is the substring-table of an XTrie index. � is a 2-dimensional integer-array.

� is a 2-dimensional bit-array.
� is a 2-dimensional bit-array.
� refers to the first row in �� that corresponds to
some leaf substring that matches at level �.

Output: Set of matching XPEs.
1) Initialize � to be empty;
2) while (�
�
) do
3) ����$� � MATCH-SUBSTRING-SUB (����� ���� �� �� ��$�� ��$�);
4) if (����$� �� �
!�����/���") then
5) Insert the id. of the XPE corresponding to row � into �;
6) � � �� ������'�;
7) return �;

Fig. 22 Algorithm to process a matching substring in Lazy XTrie.

or not there is a matching of the subpattern rooted at the most recently detected
child substring of ��	� . For the non-trivial case where ��	� is a non-root substring,
the algorithm checks if the matching of � �	� at level # is a partial matching by
iterating through each possible level # � for which the parent substring of ��	� (cor-
responding to row � � in !�) can be matched (i.e., # � #� � !� ���	&�
����
)
in Steps 13 to 27. There are three possible cases to consider. In the first case,
if ����� #�� � !� ���	&���, then the matching is a redundant matching of � �	�
and it can be ignored. In the second case, if ��� �� #�� � !� ���	&���, then the
matching is a non-redundant matching of � �	� ; in addition, if the matching is also
a subtree-matching of ��	� (Step 16), then Algorithm PROPAGATE-UPDATE (in
Figure 9) is invoked to check if this leads to subtree-matchings of the ancestor
substrings of ��	� and possibly a complete matching of � �. In the third and final
case, where ����� #�� � !� ���	&���, we have two possible sub-cases to consider.
If ����� #�� � �, then there exists at least one preceding sibling substring of � �	�
that has not been matched yet, which implies that the matching of � �	� is not a
partial matching and can therefore be ignored. Otherwise, if ��� �� #�� � �, then in
order for the matching of ��	� to be a partial matching, it is necessary that there is
a partial matching of the parent substring of � �	� at level #� and ��	� is its first child
substring. Therefore, a recursive call to Algorithm MATCH-SUBSTRING-SUB is
made in Step 24 to check if there is a partial matching of its parent substring at
level #�. Depending on the status of the matching of � �	� , its � entry is updated
accordingly in Steps 28 to 38.

C Eager XTrie for Single-Path XPEs

We discuss how Eager XTrie can be optimized for the special case where the in-
dexed XPEs are all single-path XPEs. Basically, Eager XTrie for single-path XPEs
differs from Eager XTrie for tree-structured XPEs in the following ways. First,

48 Chee-Yong Chan et al.

Algorithm MATCH-SUBSTRING-SUB
(�� , �, �, �, �, �, �$��������/���", �"
���$��������/���")
Output: Returns one of the following status values:

(1) �
!�����/���" if there is a matching of ��,
(2) ����
��/���" if there is a partial matching of ���	 at level �, or
(3) �
/���", otherwise.

1) Initialize ����$� � �
/���";
2) �� � �� ���� ������
�;
3) if (�� ��
) then ��� corresponds to a root substring
4) if (� � �� ���������#��) then
5) ����$� � ����
��/���";
6) else ��� corresponds to a non-root substring
7) if (�$��������/���" and (�� ������$!%"
�� �� �� �������&)) then
8) �������$��������/���" � ��$�;
9) else
10) �������$��������/���" � �����;
11) �������
� � �� ������(;
12) Initialize �� � �	 ����, where �� ���������#�� � ������ �����;
13) while �����$�
� �
!�����/���"
 and ��� �

 and

��	 �� � �� ���������#��
 do
14) if (����� ��� �� �� �������&) and (����� ��� ��
) then
15) ����$� � ����
��/���";
16) if (�������$��������/���") then
17) ����� ��� � �� ������$!%"
�� � �;
18) if (�� ����� ������
� ��
) or

(PROPAGATE-UPDATE (����� �� ��� ��)) then
19) ����$� � �
!�����/���";
20) else if (�$��������/���") then
21) ����� ��� � ����� ��� � �;
22) ����� ��� � �;
23) else if (���������
�� ��� and (����� ��� ��
) and

(�� �������& �� �)) then
24) ��� � MATCH-SUBSTRING-SUB

(�� , �, �, �, ��� ��� �������$��������/���"� �$��������/���");
25) if ����
� �
/���"
 then
26) ����$� � ���;
27) �� � �� 	 �;
28) if (����$� �� ����
��/���") then
29) if (�$��������/���") then
30) ���� �� � �� �����$!%"
��� �;
31) if ��� ��

 then
32) ����$� � �
!�����/���";
33) else
34) if (���� �� ��
) then
35) ���� �� � �;
36) if (�"
���$��������/���") then
37) ���� �� � ���� �� � �;
38) ���� �� � �;
39) return ����$�;

Fig. 23 Auxiliary algorithm to process a matching substring in Lazy XTrie.

Efficient Filtering of XML Documents with XPath Expressions 49

since each substring in a single-path XPE has at most one child substring, the
substring-table !� for single-path XPEs is simpler than that for tree-structured
XPEs; specifically, each row in !� (corresponding to some substring � �	�) is a
3-tuple �&�
����
� &���!$����� �����, where &�
����
 and ���� are defined
equivalently as before; and &���!$���� is a single bit that is set to � if and only if
��	� is the root substring of �� (i.e., � � �). Similar to Lazy XTrie for single-path
XPEs, the attributes &���, �$'(%�
�, and �����&��, which are necessary
for tree-structured XPEs, are not needed for single-path XPEs. Furthermore, it is
sufficient for the run-time information � of Eager XTrie to be a bit-array (rather
than an integer-array) such that ����	� � #� � � if and only if there is a partial match-
ing of ��	� at level #.

The main search algorithm for single-path XPEs is similar to that for tree-
structured XPEs (in Figure 7) except that � is now a bit-array. The matching algo-
rithm is, however, simpler for single-path XPEs and is shown in Figure 24.

Algorithm MATCH-SUBSTRING(����� �� �)
Input: �� is the substring-table of an Eager XTrie index.

� is a 2-dimensional bit-array. � refers to the first row in �� that
corresponds to some substring that matches at level �.

Output:Set of matching XPEs.
1) Initialize � to be empty;
2) while (�
�
) do
3) !���" � �����;
4) if (�� �����

��$���� �� �) then
5) if (� � �� ���������#��) then
6) !���" � ��$�;
7) else if (� �� � ��� �	 �� such that �	 �� � �� ���������#�� and

��� 	 �� ��� �� �) then
8) !���" � ��$�;
9) if �!���") then
10) Set ���� �� to �;
11) if ��� �� ��� �
 or ��� �� � ����

��$���� �� �

 then
12) Insert the id. of the XPE corresponding to row � into �;
13) � � �� ������'�;
14) return �;

Fig. 24 Algorithm to process a matching substring in Eager XTrie (for single-path XPEs).

