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ABSTRACT

This paper presents a method of modeling a speaker’s pro-
nunciation of a given language as a blend of “standard”
speech and other non-standard speech varieties (regional di-
alects and foreign accented pronunciation styles) by way of
speaker-dependent modification of a lexicon. In this system,
a lexicon of Standard American English (SAE) forms, the
”canonical” lexicon, is filtered and transformed via a group
of speech variety (SV) dependent rule sets into a speaker
specific set of pronunciation variants (and associated proba-
bilities) for use during recognition. The relative importance
of these rule sets depends on the speaker’s pronunciation
characteristics and is represented by a Speech Variety Pro-
file (SVP) associated with each speaker. A speaker’s in-
dividual SVP is acquired through feedback from an adap-
tation process. Convergence to a speaker’s SVP represents
adaptation of the lexicon (symbolic adaptation) to those SV-
specific forms that speaker is likely to utter.

1. INTRODUCTION

Pronunciation modeling methods are typically applied at the
lexicon level and focus on generating new surface form tran-
scriptions to better match pronunciation variability. At the
same time, such methods select only the most representative
variants in order to limit the risks of lexical confusability.
However, in this general strategy, pronunciation variants
reflecting potentially many distinct speech varieties are in-
evitably omitted, and it would be desirable to increase pro-
nunciation coverage by optimizing the existing pronunci-
ation space. An example of work that addresses this is-
sue is the use of SV-specific pronunciation models ([1]).
These methods achieve good pronunciation modeling and
limit lexical confusability to only the considered speech va-
riety. Furthermore, they may be combined with existing SV
classification methods (e.g., [2]) for multiple pronunciation
targeting. However, these methods are designed to activate
one single speech variety at a time. It would be better to
have more flexibility and the freedom to activate more than
one speech variety whenever needed, so that pronunciation
characteristics are not represented by a single SV-specific
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model, but rather a combination of them. This assumption
is especially true for speakers who are best characterized
by several speech varieties of the same language, but re-
mains valid for any person who speaks with a predominate
dialect or accent but sometimes pronounces words in a way
better described by some other speech variety. Given this
observation, it would, nonetheless, be ill-advised to merge
all SV-specific dictionaries since lexical confusability in-
creases with the number of considered speech varieties.

One way to address this issue is to limit the number of
pronunciations by weighting the available SV-specific mod-
els differently depending on the speaker. The method pro-
posed in this paper simultaneously targets a limited set of
speech varieties that are associated with each speaker in
his/her Speech Variety Profile (SVP). The SVP is a defini-
tion of the speaker’s pronunciation characteristics and con-
sists of a list of speaker-associated speech varieties and their
corresponding probabilities (cf. section 4.1). The SVP thus
functions to dynamically constrain lexicon content to model
each individual speaker. The algorithm defining this process
is described in the following sections.

2. OVERVIEW

Let us consider a new speaker who wishes to use a speech
recognition system for the first time. The system initially
has no information about this new user’s pronunciation char-
acteristics, but we make the assumption that the speaker is
well modeled by a subset of the speech varieties for which
the system has existing pronunciation models.

The objective is then to identify the probable speech
variety(ies) of the enrolled speaker as accurately as possi-
ble. This is done through a Symbolic Speaker Adaptation
(SSA) process, where the person is asked to utter a set of
known sentences. It should be noted that, in contrast to
standard Acoustic Speaker Adaptation (ASA), SSA does
not alter the acoustic models, but rather only modifies the
speaker’s (very compact) SVP, leaving the acoustic models
truly speaker independent.

The adapted profile is then used to expand a baseform,
canonical lexicon with new pronunciation variants, the set



of which is constrained by the SV probabilities contained in
the speaker’s SVP. Each speaker’s SVP is saved for future
sessions?.

This method remains an offline process at this stage.
Nevertheless, it is quite amenable to online utilization as
well - it does not face any more challenge than any other
adaptation method that might be used online.

3. PRONUNCIATION MODELS

Two different methods were investigated to expand the canon-
ical (SAE) lexicon with new pronunciation variants. The
first method uses generally applicable knowledge-based rules,
while the second method uses decision trees derived from
the data set of these experiments.

3.1. Rules

A distinct set of rules was defined per speech variety, with
each rule tagged with an a priori probability of being ap-
plied. Selection of rules and probabilities comes from sev-
eral SV-specific studies in phonetics and phonology as well
as reports and pedagogical materials concerned with English-
language acquisition by speakers of other languages (e.g.,
[4]). The following are some examples of SV-specific rules:

N. Inland /ao/ — /aa/ (e.g., “call” — /kaal/)
Indian fthl — It/ (e.g., “three” — /triyl/)
British laa r#tl — laa#/ (e.g., “car” — /k aa/)

(“#”: word boundary)

3.2. Decision trees

For each speech variety and phone combination a separate
tree was trained to predict SV-specific phone(s) from a canon-
ical phone and its left and right contexts. The training method
is similar to the one presented in [1]: for each training sen-
tence, the reference words are mapped using the SAE lex-
icon to a pronunciation string. This phone string is then
aligned, using a Dynamic Programming (DP) technique, to
an SV-specific transcription of phones selected from a recog-
nition results network. The only difference from [1] is that
rather than obtaining the SV-specific transcription candidate
set from an unconstrained phone recognizer (which gener-
ates too many transcription errors), we first generate a pro-
nunciation network from the baseform transcription(s) us-
ing all sets of rules mentioned in the previous subsection,
and then select the best transcription using Viterbi align-
ment. Questions used to build the trees concern phonetic
features (e.g., front, back, round, ...) for the immediate left

1A discussion of automatic speaker identification goes beyond the
scope of this paper and is not addressed here, but current existing meth-
ods in this field could be suitable for this purpose (see for example [3]).
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and right contexts. The CART algorithm [5] was used to
train the decision trees from the DP alignment results.

Generation of pronunciation variants depends on these
sets of rules or trees, but the choice of set(s) to be applied
and their relative importance is governed by the speaker’s
SVP. A mathematical formulation of their relationships will
be described in section 4.3.

3.3. Limitations

In this initial stage of the project, several constraints were
observed that precluded the building of an optimal set of
pronunciation models. Perhaps most crucially, only the SAE
phone inventory (consisting of 39 symbols) was used to de-
scribe pronunciation variability of all speech varieties. It
was therefore not possible to account for non-SAE sound
distinctions. For example, retroflexion of alveolar conso-
nants is a strong acoustic cue for Indian English, but is not
represented in the SAE phone inventory. This limitation
prevented both the training of more specific acoustic mod-
els and the definition of additional rules to account for these
sound differences (decision tree methods were also affected
since their training was derived from rule productions).

Next, the a priori probabilities assigned to rules derive
from reports of general usage in the targeted SV commu-
nities and were not re-estimated from the actual data used.
Since these values help to guess the probable speech vari-
ety(ies) of the enrolled speaker (as will be shown in section
4.2), (likely) inaccuracies in their estimation would have
(negative) repercussions throughout the system.

Finally, an overwhelming majority of sentences used to
train the decision trees was uttered in SAE or in a phono-
logically similar SV. Although we consider the remaining
sentences to still be sufficient for training the other speech
varieties, additional non-SAE data would have been prefer-
able in order to build more reliable pronunciation models.

4. SYMBOLIC SPEAKER ADAPTATION

4.1. Overview

The adaptation process is depicted in Figure 1. The follow-
ing steps are applied for each enrolled speaker and his/her
adaptation sentences:

1. Each word in the adaptation sentence is mapped to its
baseform transcription(s) (canonical pronunciation(s)).

2. SV-specific transcriptions are derived from the base-
form(s) using all rule sets or decision trees, and used
to generate a pronunciation network. For each SV-
specific form, a list of symbol transformations is kept.

3. A Viterbi alignment is performed using the network
to return the most likely sequence of phones actually
uttered by the speaker.
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Fig. 1. Symbolic Speaker Adaptation

4. The symbol transformations corresponding to the se-
lected phone sequence are added to a list.

5. Once all adaptation sentences are processed, proba-
bilities for the speaker profile are computed using all
transformations found in the list.

An example of a profile after adaptation for an Indian
English speaker might be something like this:

Standard American English  0.10

Northern Inland English 0.07
British English 0.02
Indian English 0.80
Asian-accented English 0.01

The next section will describe how the SVP probabilities
are computed.

4.2. SVP adaptation

The goal of SSA’s process is to calculate the probabilities
that a speaker’s pronunciation characteristics match each of
the speech varieties known by the recognition system. So
given a speaker U who uttered some adaptation sentences
{c}, we compute P(V;|U, {c}) for all speech varieties V;.
On the assumption that the adaptation sentences contain suf-
ficient information for determining a speaker’s speech vari-
ety(ies), these probabilities were approximated by the sum
of the contributions of all words W ; that the speaker uttered
during the adaptation process:

N(Wj)
PVi|U{o})» Y  P(Vi|W;)- P(W;)

Jj=1

()

where N (W) is the number of distinct words uttered. In
recognition of the fact that lexical words may have multiple
canonical (SAE) pronunciations, P(V;|W;) is expressed in
terms of its canonical pronunciations, or baseforms, B,,,:

N(By,)
P(Vi|W;) = > P(Vi|Bm) - P(Bn|W;)

m=1

@)
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where N (By,) is the number of baseforms for the word W ;.
Let us further develop the term P(V;|B,,) to model pronun-
ciation variations at the canonical, or baseform, level. By
using Bayes’ rule and simplifying the problem with the as-
sumption that the phones of a baseform are independent, we
have:

(pv) .
P8, = =t P;fgf)>] - P(Vi)

©)

where py is a phone (in its left and right contexts) and N (p)
is the number of phones in the baseform B,,,. Each phone
in the baseform may be realized as: 1) itself, 2) a different
phone (substitution), 3) a sequence of phones (insertion) or
4) a null phone (deletion). By summing over all possible
realizations of the baseform phone p;, we obtain:

_ 225 P(Vilps, ps) - P(pslps) - P(ps)
P(Vy)

P(ps| V) 4)
where p, represents any phone or sequence of phones re-
alized from the baseform phone p;. After substituting the
expression (4) into (3) and some simplifications, we obtain:

N(ps)

P(Vlem) — 1= Zs P(Vilpbaps) ’ P@S|pb)

P(V)N)-1

®)

P(ps|ps) is the speaker-dependent probability that measures
how often the speaker realizes a phone p; as ps; it is ob-
tained by counting the number of times this transformation
occurs over all realizations of p; during the adaptation pro-
cess: P(ps|pp) %}]:’)") The first term of the sum,
P(V;|ps, ps), is the SV-dependent probability and measures
how accurately the same phone transformation p, — ps
targets the speech variety V;. Using the property of inde-
pendence between p; and V;, and assuming that the speech
varieties V; are disjoint, it can be shown that:

P(ps|ps, Vi) - P(Vy)
SNV P(ps|ps, Vi) - P(V;)

where N (V;) is the number of speech varieties known by the
system. P(ps|pp, V5) is given by either the a priori proba-
bility of the corresponding rule in the V; rule set of being
applied (if it exists, otherwise the probability equals 0) or
the estimation given by the decision tree associated with the
SV V; for the p, — ps realization.

Finally, adaptation of speaker profiles is given by evalu-
ating the expression seen in (1) with the appropriate substi-
tutions, for each speaker and each speech variety.

P(‘/ilpbaps) =

(6)

4.3. SV-specific form probabilities

Any pronunciation variant derived from a lexical baseform
(SAE pronunciation) is assigned a probability of occurrence



to be used during recognition. This subsection describes
how they are obtained.

Let us consider a word W phonologically transcribed
by N(B,,) baseform pronunciations in the lexicon. We
would like to calculate the probability of occurrence of an
SV-specific pronunciation S,, given that word, P(S,|W).
Since a word is entirely represented by its baseforms, we
can write:

N(Bm)
P(Sp[W) = > P(Sp|Bp)-P(BnlW) (7)

m=1

Pronunciation characteristics of a speaker U (who ut-
ters the word W) are represented by N (V;) speech varieties
found in his/her SVP. Since several SVs may accept S,, as
a possible output form derived from a baseform B,,, the
probability P(S,,|Bn,) seen above must take all N (V;) con-
sidered speech varieties V; into account:

N (Vi)
P(Snle) = Z P(Sn|BmaVz) : PI(Vz) 8

i=1

where P'(V;) = P(V;|U,{c}) is the probability that the
speech of the speaker U conforms to the i-th speech variety
(see section 4.2).

The process to evaluate P(S,|By,, V;) differs between
the decision tree and rule methods. The processes are ex-
plained respectively in 4.3.1 and 4.3.2.

4.3.1. SV-specific form probabilities using trees

Evaluation of P(S,|Bm,V;) using decision trees is quite
straightforward. Each phone p; of the baseform B,,, is re-
alized as ps that represents the same phone py, a distinct
phone (substitution, deletion) or a group of phones (inser-
tion)1. The SV-specific form S,, is obtained by simply con-
catenating the successive p, realized from each baseform
phone p;. Assuming that the p;’s are independent, we can
write:
N(ps)
P(Sn|Bm, Vi) = [[ P(pslps, Vi) 9)

b=1

where N (pp) is the number of phones in the baseform
B,,. Each term of the product is estimated by the deci-
sion tree associated with the speech variety V; and baseform
phone py.

1At this point no special control on the number of phones inserted is
necessary, because the SV-specific forms used to train the decision trees
are generated by rules (see section 3.2), in practice, that limited the number
of phone insertions to one.
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4.3.2. SV-specific form probabilities using rules

Let us focus on the rules responsible for the transformation
of a baseform B,, to an output form sequence S, to see
how they influence the probability P(S,|Bm,V;). In this
framework, each speech variety V; is associated with a vec-
tor (ordered set) of rules r; = (r},r?,...). Each rule r] of
the set is eligible to transform a sequence of phones only if
the sequence matches the pre-conditions of the rule, that is,
if the sequence contains the focused phone along with any
neighbor context(s) required by the rule. Additionally, all
rules are considered optional, which means that even when
a rule is eligible, it is not necessarily applied. To represent
these possible rule states in a more compact form, we de-
fine a variable ¢; = (g}, ¢?, ...), where each ¢/ represents

the state of a rule 7/, with three possible values:

1. ’0’: the rule is not eligible
2. ’+’: the rule is eligible and applied
3. ’-": therule is eligible, but not applied

We come back now to the process of transformation of a

baseform B,,, to a SV-specific form S,,, but this time bring-
ing the rules and rule states to the fore. To find the probabil-
ity P(Sy|Bm, V;) of equation 8, we are looking for all com-
binations of rules that successively transform the baseform
B,, into the SV-specific form S,,: B,, - X; —» X3 —
.. = S,. Conditioned to a speech variety V; and its set
of rules R;, it consists of finding those sequences of rule
states g; for the rule set r; that leads to S,,. Therefore, the
probability becomes:

P(Sp|Bm,Vi)= Y P(Bm 5 S,)  (10)
GEQ;

where @; is the set of valid sequences of rule states that
transform the baseform B, to the SV-specific form S, for
the given speech variety V;, provided that at least one such
sequence exists (otherwise the probability becomes zero). If
the set (); is not empty, each term of the sum in equation 10
can be expressed as a product of probabilities of rules being
in the required state to yield the output form S,,:

L;
P(Bn % S,) =[] Plg]) iffBn %S, (11)
j=1

where L; is the number of rules defined for the speech va-
riety V;. Furthermore, each rule state probability can be
expressed as a function of the a priori rule probabilities (de-
fined from knowledge-based sources):

' 1 if ¢/ = state ’0’
P(q]) = P(r])  ifg] =state’+ (12)
1—P(r]) ifq =state’-’

Finally, the probability associated to each selected SV-
specific form .S,, for a word W is the value of P(S,|W)
with the appropriate substitutions seen above.



5. EXPERIMENTS

5.1. Database

All experiments were carried out on an internal telephone
speech database called Myosphere. In this corpus, speakers
from 12 speech varieties give a set of commands to a real
speech recognizer (e.g., “call Steve at office”). Most com-
mands are short (3.8 words per sentence on average), but
spontaneous and often uttered with hesitations and in dif-
ferent noisy conditions (background and line noise), so they
represent fairly well a real life situation. Speech files in-
clude several annotations, including the speaker gender and
his/her dominant speech variety.

5.2. Baseline system

A baseline HMM system was trained using HTK [6]. More
than 90000 sentences uttered by more than 440 speakers
were used for training. All 12 speech varieties were in-
cluded, although around 80% of sentences were uttered by
speakers of SAE or Northern Inland English, a dialect which
largely shares SAE’s phone inventory. Models consist of
39 monophones with 5 Gaussian mixtures per state, trained
from 39 MFCC coefficients (12 static + 1 energy, 13 A, 13
AA). Additional models for silences and short pauses were
also trained. As mentioned in section 3.3, no models spe-
cific to non-SAE SVs were used.

Five speech varieties were used for evaluation: Standard
American English (SAE), Northern Inland English (NI), Bri-
tish English (Br), Indian English (In) and Asian-accented
English (As). Eight to ten speakers (4-5 male, and 4-5 fe-
male) with an average of 164 sentences per speaker were
used for each speech variety evaluation. A backoff bigram
language model which was generated from all sentences of
the database helped constrain the search?. Two different
baseline lexica were used: the first lexicon (BLex1) con-
tains only one baseform pronunciation per word, while the
second lexicon (BLex2) is an expanded version of the first
one with pronunciation variants created by phoneticians .
The vocabulary size for both lexica is 3815 words. Table
1 gives the baseline recognition results in WER. It shows
that the WER may substantially increase with speech vari-
ety (e.g., the Br WER is almost double the SAE WER).

5.3. Training of decision trees

As explained in section 3, a separate tree was trained for
each speech variety and phone, with candidate transforma-
tions coming from all (12) SV-specific sets of rules applied

2Test sentences were voluntarily included so that the OOV problem
would not influence the results of our experiments.

3The average number of pronunciations per word in BLex2 is slightly
higher than the CMU and BEEP dictionaries.

| SVs | SAE| NI | Br | In | As |
Base (BLex1) | 18.92 | 21.60 [ 36.95 | 24.37 [ 32.92
Base (BLex2) | 18.31 | 20.92 | 34.93 | 23.45 | 31.31

Table 1. Baseline recognition results (% WER)

to the baseform pronunciations (found in the BLex2 lexi-
con). Please note that due to a lack of data, trees for the As
SV had to be trained from the test set as well, and therefore
all tree-related results for the As SV reported in the next
sections are for indication only. However, the SSA process
itself strictly uses the adaptation set for all speech varieties.

5.4. Results with SSA

The method of section 4 was applied to the whole adapta-
tion set (140 sentences on average per speaker?). Before
computing the SVP probabilities, SV-specific phone real-
izations that occurred less than 5 times were pruned to keep
only reliable transformations. All speech varieties, words
and baseforms used to compute the SVP probabilities were
considered equiprobable (P(V;) = 1/N(V;), P(W;) =
1/N(W;) and P(By,) = 1/N(By,)) so that the final re-
sults are not biased towards any speech variety without any
knowledge about the speaker’s pronunciation characteris-
tics. Some additional pruning thresholds — maximum 3 pro-
nunciations per word, and stop when the sum of the highest
output form probabilities equals or exceeds 0.7 — were also
applied on the generated user lexicon to keep the lexicon
small and to limit lexical confusability. Table 2 shows the
results obtained. Unfortunately, our current implementation
of the SVP concept showed very little improvement relative
to the BLex2 baseline results.

| SVs | SAE| NI | Br | In | As |

[ Base (BLex2) | 18.31 | 20.92 | 34.93 [ 23.45 [31.31 |
SVP (rules) [ 18.85 [ 21.05 [ 35.72 | 23.37 [31.40
SVP (trees) | 17.99 | 20.86 | 34.36 | 23.85 | 29.36

Table 2. Results with SSA (% WER)

5.5. Comparison with acoustic speaker adaptation (ASA)

The same experiments as mentioned in the previous subsec-
tion were carried out on ASA-adapted HMMs. The ASA
method used was Maximum Likelihood Linear Regression
(MLLR) with an 8-base regression class tree to cluster acous-
tically similar mixture components before evaluating the trans-
formations (see [6] for more details). The amount of adap-
tation data was the same as for the SSA technique. Table 3
shows that application of ASA is much more effective than

4This seems a large dataset, but since sentences are short they are equiv-
alent to 30-35 sentences of Wall Street Journal (WSJO0) in terms of number
of words.



SSA. However, we also notice that SSA performs better
when combined with the ASA technique (up to +7.8% rel-
ative improvement with decision trees over the ASA base-
ling, +11.7% for the As SV). It seems that since lexica gen-
erated by SSA are speaker-dependent, they work better when
the acoustic models are also speaker-dependent. SSA and
ASA are applied at distinct levels of the system, and these
results suggest that they are complimentary.

| SVs | SAE| NI | Br [ In [ As ]

| ASA+BLex2 | 11.74 ] 12.96 | 20.59 | 13.91 | 19.04 |
ASA+SVP (rules) | 12.13 | 12.82 [ 2053 | 14.18 [ 19.18
ASA+SVP (trees) | 11.04 | 12.48 | 18.99 | 13.26 | 16.81

Table 3. Results of SSA techniques over ASA (% WER)

5.6. Result analysis and suggestions for future work

In order to understand why the SSA experiments failed to
bring more substantial improvement, results of Viterbi align-
ments were analyzed on the adaptation data. They show
that:

1. Many pronunciations selected by the Viterbi align-
ments were associated with more than one speech va-
riety: 78% with rules and 87% with trees (most of
them were common to all 5 SVs).

2. Most of these selected and shared pronunciations were
baseforms found in the BLex1 lexicon.

Given the first remark, the more speech varieties which ac-
cept a selected pronunciation as a possible SV-specific form,
the more difficult it is to decide which speech variety best
describes a speaker’s pronunciation. The second remark
tells us that since baseforms are most often preferred, the
SVPs should be biased towards those speech varieties that
most resemble SAE, namely SAE and NI. It is indeed the
case with the knowledge-based method (rules) — SVP prob-
abilities for SAE and NI are higher than for the other SVs,
although not by much as noted in the first observation above
(all SVP probabilities range between 0.15 and 0.24). De-
cision trees do not completely follow this assumption since
preference for baseforms by a given SV is data-driven. They
bias the SVPs slightly more towards the targeted SVs, but
again the preference for one SV over another is not great.

Since baseforms are most often preferred, SV-specific
variants added to the lexicon can increase lexical confus-
ability more than they help with modeling pronunciation
variation, which may explain the lack of improvement. Ac-
cording to our analysis, one or more of the following points
may cause this preference for baseforms:

Database : Speakers were knowingly interacting with an
ASR system and voluntarily spoke carefully so that
their requests could be understood.
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Phone inventory : The lack of phones specific to non-SAE
SVs along with related acoustic models and rules (see
section 3.3) biased the Viterbi alignment results to-
wards the baseline SAE speech variety.

Acoustic models : Training of acoustic models was heav-
ily biased towards the SAE and NI speech varieties
due to the lack of data for the other SVs, which would
bias the recognition results as well.

We believe that significant improvement can be achieved if
the above issues are addressed.

6. CONCLUSIONS

In this paper we addressed the issue of modeling pronunci-
ation variation of multiple speech varieties by introducing
a method called Symbolic Speaker Adaptation (SSA). Al-
though relatively little improvement has been obtained so
far, the following points may still be useful for future exper-
iments and should be retained:

o Itis difficult to hone in on a speaker’s speech variety
when a high proportion of pronunciations selected by
the Viterbi alignments during adaptation are common
to all SVs.

e Though ASA performs better than SSA, their effect
on system accuracy seems to be complimentary.

o Greater efficiency of SSA is expected if the database,
phone inventory and acoustic model issues are ad-
dressed.
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