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Abstract— We present an adaptive location management
model called ALM for large mobile ad hoc networks. It re-
lies on multiple location servers replicated on several geo-
graphical positions. ALM combines two notions: mobility
rate and distance in order to dynamically adapt the key pa-
rameters of location management procedures. Our solution
to determine these parameters utilizes the fuzzy logic con-
cept to deal with imprecise and uncertain information since
mobile ad hoc networks are dynamic in nature. ALM also
provides sufficient redundancy of the location information
throughout the network to avoid single points of failure.

Index Terms— Mobile ad hoc network, location manage-
ment, location directory, routing, fuzzy logic, GPS- global
position system.

I. INTRODUCTION

Routing in mobile ad hoc networks is a challenging
task due to the frequent changes in network topology.
There exists two different classes of routing protocols:
topology-based and position-based [1]. Topology-based
routing protocols use the information about the sequence
of nodes towards destination for packet forwarding. In
the mobile environment, this approach is not appropri-
ate, because the movement of any node in the sequence
renders the path invalid. Hence, topology-based routing
does not scale well as the mobility rate increases. The
scalability becomes worse as the total number of nodes
increases. That is why position-based routing is intro-
duced to eliminate some of the limitations of topology-
based routing by using the physical location information
of nodes in the network space. Thus, there is no need to
establish and maintain paths to the destination as in the
topology-based routing. Therefore, the scalability of the
position-based routing is not affected by the mobility of
intermediate nodes. However, the main prerequisite of
the position-based routing is location management. A lo-

cation management is a process that enables routing pro-
tocols to determine the current position of the destination
through a location directory. It basically consists of loca-
tion updates and location searches operating on the loca-
tion directory. This process is a critical process in any mo-
bile networks because the position information changes
frequently.1Furthermore, the location management pro-
cess should scale well with respect to the total number
of nodes. In this paper, we suggest an approach called
ALM- adaptive location management which scales well as
the mobility rate and the total number of nodes increase.

This paper is organized as follows. We provide an
overview of different location management approaches.
Then, we present in detail our location management
model. Afterwards, we compare the complexity of the al-
gorithm and outline some of the main trade-offs between
different location management strategies. Finally, we pro-
vide concluding remarks.

II. RELATED WORK

Due to the fixed nature of the location directories
used in the conventional location managements including
PLMN, WATM, mobile IP, and satellite network [2], [3],
[4]; such approaches are not appropriate for a mobile ad
hoc network since it relies on a fully mobile infrastruc-
ture. This implies nonexistence of a fixed location direc-
tory as in the conventional location managements. Thus,
the main issue is the place where the location directory
is stored. There exists two extreme situations: proactive
where all nodes maintain the location directory informa-
tion, and reactive where none of the nodes maintain the
location directory information.2

�

We use the terms position and location interchangeably.
�

For the better understanding of the concept, we used the same ter-
minology as in routing for mobile ad hoc networks.



In the proactive location management, each node keeps
up-to-date location directory information about every
other node in the network. Location update is periodically
transmitted throughout the network to maintain consis-
tency. This makes the cost of location update operations
high. Hence, full-update strategy is used to track nodes at
the cost of no-search strategy. The proactive ad hoc rout-
ing protocols apply the proactive location management.
Most of them are topology-based routing including GSR

[5], CGSR [6], FSH-HSR [7], and LANMAR [8]. Among
them, DREAM is a position-based routing [9]. The over-
head of the full-update in GSR, CGSR,LANMAR and FSH-
HSR is reduced because of the hierarchical architecture
used in these protocols. In FSH-HSR and LANMAR, nodes
slow down the update rate as their distances from desti-
nations or landmark nodes increase, respectively. Con-
versely, DREAM builds location tables by flooding posi-
tion updates throughout the network. The frequency at
which DREAM sends position updates is related to both
mobility rate, and distance between nodes. To sum up,
proactive location managements decrease the delay of lo-
cation search, but they waste a significant amount of wire-
less resources in order to maintain up-to-date location di-
rectory information. Such mechanisms are scalable in
relation to the frequency of end-to-end connection. Al-
though proactive location managements are not scalable
in relation to the total number of nodes, they can be made
scalable if a hierarchical architecture is used. Finally,
proactive location managements are not scalable in rela-
tion to the frequency of topology changes. Thus this strat-
egy is more appropriate for a network with low mobility,
where the position of nodes changes infrequently. Fur-
thermore, they are not suitable for a large network because
of the flooding nature of the proactive approaches.

On the contrary, in the reactive mechanism a node
broadcasts a location search message to the entire network
when it wants to communicate with its destination. No
prior location directory information is kept, which makes
the cost of location update operation low. Consequently,
full-search strategy is used to locate nodes at the expense
of no-update strategy. The reactive ad hoc routing proto-
cols uses the reactive location management. Some of the
topology-based routing are CBRP [10], QUERY [11], and
RDMAR [12]. Conversely, LAR is a position-based routing
[13]. All of them apply selective flooding in order to re-
duce the overhead generated by the full-search. Among
them, LAR floods location requests instead of route re-
quests. Reactive location management decreases the com-
munication overhead at the expense of an extra delay for
location search; and they are not optimal in terms of band-

width utilization because of the flooding nature of location
search. Reactive mechanisms remain scalable in relation
to the frequency of topology changes. Such location man-
agements are not scalable in relation to the total number
of nodes. Nevertheless, similar to proactive mechanisms
they can be made scalable if a hierarchical architecture is
used. Finally, reactive location managements are not scal-
able in relation to the frequency of end-to-end connection.
Since the reactive approaches explicitly rely on flooding,
they are not suitable for a large network.

Our purpose is to design a moderate strategy that makes
the cost of both location update and search relatively
cheap, which we denote as hybrid approach. In this
approach, the current location directory information of
nodes is maintained in a database known as location
server. Each node registers its location information in
the location server, which will be paged by the location
search. This approach provides a trade-off between lo-
cation update and search. One of the main concerns of
this trade-off consists of server architecture. There ex-
ists three design choices for this architecture including:
centralized, distributed, and decentralized database [14].
With a centralized architecture, a single server performs
the given functionalities. If the architecture is distributed,
each server independently provides portions of location
information but must cooperate to provide the complete
information by exchanging results. In the decentralized
architecture, multiple replicated servers maintain the cur-
rent location of the nodes. This architecture can either be
dynamic or static depending on whether the position of
a location server moves. Another concern is the scheme
used in the location update and search procedures [2], [4].
The first generation of the hybrid location management
inherits from hybrid ad hoc routing protocols. This means
that the proactive location management is used within a
zone (i.e. full-update and no-search), and reactive location
management outside of a zone (i.e. no-update and full-
search). Some of the topology-based routing protocols in
this class are ZRP [15], ZHLS [16] and DDR [17]. All of
them partition the network into a set of zones. In DDR,
the overhead of full-update within a zone is reduced by
embedding the necessary information in a beacon. ZHLS

on the other hand decreases the overhead on full-search
outside of a zone by maintaining the zone connectivity of
the whole networks. Other hybrid location management,
more closely related to our approach are UQS [18], GLS

[19], VHR [20] and HA [21]. Both UQS and GLS are based
on a decentralized architecture, where the positions of lo-
cation servers are dynamic. UQS relies on topology-based
routing. In GLS, the network is partitioned into a set of hi-



erarchical squares. Both VHR and HA use a single location
server with static position. As a result, hybrid approaches
provide a trade-off on scalability issue in relation to the
frequency of end-to-end connection, the total number of
nodes, and the frequency of topology changes. However,
it is subjected to its design choices including database ar-
chitecture, location management scheme, etc. Thus, the
hybrid approach is an appropriate candidate for location
management in a large network.

We propose a hybrid location management based on a
decentralized architecture, called ALM-adaptive location
management. It is adaptive because the rate at which lo-
cation update and search procedures are triggered is de-
termined as a function of mobility rate and distance. This
function describes node behaviors and it is computed af-
ter each movement. ALM is hybrid because it is based on
the notion of location server. Indeed, it relies on multiple
location servers replicated on several geographical posi-
tions. Each of them performs the given location manage-
ment. Hence, the distribution of location servers is decen-
tralized.

Similar to UQS and GLS and VHR/HA, ALM is a hy-
brid approach based on the notion of location server. Un-
like UQS, ALM relies on the position-based routing; it
therefore avoids an extra overhead due to the intermediate
nodes movement. Like UQS and GLS, ALM is based on the
decentralized location servers. But different from them,
the position of the location servers in ALM is static. This
avoids the overhead of the location server search. Fur-
thermore in ALM, the complexity of the location update
and search is optimized for the static nature of the loca-
tion servers. Similar to ALM, HVR/HA uses static location
servers. However, HVR/HA is based on a single location
server per node; which makes the overhead of location up-
date and search a function of distance to the server, which
is known as distance-effect. Although this approach sim-
plify the location management, they suffer from a single
point of failure. Similar to GLS, ALM avoids the prob-
lem of distance-effect by using multiple location servers
per node. In GLS the distribution of location servers is
strictly related to the node distribution; while in ALM it
is independent of the node distribution. Indeed in ALM,
the distribution is symmetric where the density is a func-
tion of distance. Different from DREAM, ALM benefits
from the classical concepts like mobility rate and distance
through a hybrid location management. This makes ALM

more scalable than DREAM, and thus more appropriate for
a large network.

III. ADAPTIVE LOCATION MANAGEMENT MODEL

In this section, we present node addressing model.
Then, we show how location servers are distributed and
managed throughout the network. Afterwards, we give
location update and search procedures used in our loca-
tion management model ALM. Next, we present different
strategies used by a node to adapt the rate at which loca-
tion update and search procedures are triggered. Finally,
a complete example is provided to demonstrate different
steps of the algorithm.

A. Node Addressing

In our model, an address reflects both a node’s spatial
position and its id; that is: � position, id � [22]. The id is a
location independent identifier of a node which is unique
and well-known throughout the network. The position is
a location dependent address and reflects a node’s current
spatial location in the network. This position provides the
distance and the direction from source to destination. Any
coordinate system by which the distance and direction can
be calculated between two positions is sufficient. We con-
sider the physical location information in terms of latitude
and longitude. Such physical location information may be
obtained using the GPS- global positioning system [23],
[24]. Thus, an address can be shown as a ��� latitude,
longitude � , id � , or simply ��������� � � id � .

B. Distribution of Location Servers

A location server is defined as a set of nodes located
close to a geographical position. This position is repre-
sented by a disk 	 ��
��� � , where 
 is the center and is the radius. The location server is in charge of main-
taining the address of nodes (refer III-C). Each node is
registered with multiple location servers in the network.
As an example to show how the location server replica-
tion can be done on several geographical positions, we
consider that the distribution of location servers follows
the graph generated by the Archimedean Spiral. However,
there exists other graphs such as Concentric circles or Epi
spiral to distribute the location servers. We believe that
the Archimedean spiral is more appropriate because it is
more flexible to produce different distributions.

The primary goal of a node is to virtually create its own
spiral. For this purpose, the node ��������� � � id � ap-
plies the basic polar equation of the Archimedean spiral
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Fig. 1. Distribution of location servers corresponding to the node ������������ id � based on archimedean spiral: R 	�
� ; where o=H(id), and

�	������ , ��������
���	������ , and �������! � .

R "$#�% ; where  represents the radius, # is a constant
parameter, and % represents the angle. The origin & of the
spiral changes from node to node; while its orientation XY

remains the same in accordance with a predefined global
coordination system. The relation between a node and its
origin is defined by a well-known hash function H. The
hash function operates on the nodes’ id and returns the
origin of their spiral, that is: H(id) = o(u, v), where o(u,
v) represents the position of origin. Therefore, the origins
of nodes in the network become well-known. We assume
that nodes are uniformly distributed in the network, and
the hash function uniformly maps nodes’ id into network
space. The centers of location servers are then defined ev-
ery % degree on the curve. For instance if %�"'%)(+*-,�. ,
where /102%10234* and 36587 ; then as the curve winds
itself around its origin, it creates a set of location servers
every *-,�. degree. These points are shown by circles in
Fig. 1.

The parameters # and % are very important since they
determine the distance between two consecutive location
servers, and the total number of the location servers, re-
spectively. Although they can be adjusted on per-node
basis; for simplicity reasons, we consider them as the pro-
tocol set-up parameters which has to be worked out at
the design stage. Nevertheless, some constraints do ex-
ist. Firstly, the parameter # should be proportional to the
average radio transmission range of nodes; and it has to
be set in such a way to avoid both too close and too far
inter-server distance. Secondly, the % should be chosen

in relation to the network density and geographical infor-
mation in order to ensure network connectivity. In our
example, we assume #9":.�;�/ and %)":<�* (see Fig. 1).

The distribution of location servers is therefore decen-
tralized on several geographical positions. Multiple lo-
cation servers perform the given location management.
Hence, the location information is replicated. Each server
independently provides the location information without
exchanging results with other servers. This increases the
fault tolerance of the location management. It also re-
duces the response delay by spreading the load among
multiple servers. Furthermore, the density of the location
servers increases as the distance to the origin decreases.

C. Location Server Management

Each location server requires management procedures
in order to firstly ensure the appropriate distribution of the
location information inside and outside the disk; and sec-
ondly to ensure the sufficient redundancy of the location
information within the disk. This involves nodes within
the disk of location servers in proactive maintenance of
their location tables. Moreover, the communication over-
head has to be minimized. Hence, the procedures should
be managed within a location server. To address the first
issue, a location server must behave as a unique entity; al-
though it is composed of multiple nodes. To tackle the
second problem, each location server should contain a
minimum number of nodes – basically between 2 and 10
– to guarantee the required redundancy. In other word, the
radius of the location server disk 	 � 
��� � should be dy-
namically increased and decreased to reach the appropri-
ate redundancy. The expected radius of a location server
is one hop away from the center of the disk; i.e.  ">= ,
where = is the average radio transmission range. To deal
with both issues, a leader election algorithm is required
which is addressed in section IV. For further information
on other leader election algorithms refer to [25], [26].

D. Location Management Procedures

Location management is a process that enables the net-
work to track and locate the current position of a node. A
location management procedure is a combination of a lo-
cation update and a location search, where the former is in
charge of tracking and the latter is in charge of locating.
A location update occurs when a node changes location.
A location search occurs when a host wants to commu-
nicate with a mobile node whose location is unknown to



the requesting node. In the mobile environments, these
procedures should be dynamic on per-node basis. In our
location management, the parameters of the location up-
date and search procedures are determined as a function
of the mobility rate, and the distance from the origin. The
function is computed after each movement. These param-
eters consists of location update/search time and location
update/search zone. A location update/search time defines
both the rate at which location update and search proce-
dures are triggered and the validity interval of the loca-
tion information. A location update/search zone defines
an area or more concretely the number of location servers
to be updated or searched. Consequently, a location up-
date/search occurs only to certain location servers within
the defined zone at every location update/search time in-
terval. This indicates that ALM dynamically determines
the frequency at which location update and search proce-
dures are triggered over the location update/search zone.
Hence, it employs an adaptive time-based scheme [2], [4];
which will be described in section III-E.

Our location management consists of four procedures
including selection of location servers, location update,
location search, and location reply. The first proce-
dure determines what is the next location server to up-
date/search. It terminates when the next location server is
out of the location update/search zone. Each node sends
location updates only to those servers located in the lo-
cation update zone at every location update time inter-
val. Upon receiving the location update message, each
server updates the current position of the node as well as
its validity interval. Note that, the node does not inform
other nodes about its location update parameters. Destina-
tion search is then performed by sending a location search
towards its location servers. Similar to the location up-
date procedure, a location search message is only sent to
those location servers within location search zone. The
first server containing the valid information about the cur-
rent position of the destination node will reply and then
destroy the location search message. Otherwise, the lo-
cation servers within the search zone becomes active for
the search time interval; which enable them to provide
destination’s current position if in the meantime they get
updated. Each of the mechanisms involves geographic
forwarding towards the address of the target. As a geo-
graphic forwarding in our location management mecha-
nism, we consider the GPSR: greedy perimeter stateless
routing algorithm [27]. GPSR makes greedy forwarding
decision to the neighbor that is closest to destination; and
applies a planar subgraph of the network topology to route
around the perimeter of holes.

1) Selection of Location Servers: The selection pro-
cess occurs upon a location update/search. It determines
what is the next location server to update/search. For this
purpose, the process always selects the closest location
server in terms of physical distance. Therefore, a node ini-
tiates the location update/search from its closest location
server. Then, the closest location server forwards the same
message to the next closest location server towards the
node’s origin. At the origin, the message spreads evenly
among the remaining directions based on the location up-
date/search zone. Note that the next location server is al-
ways known because the node’s origin, parameter # and % ,
and the global coordination are well known. This process
ends up when the next location server does not belong to
the defined location update/search zone. It may also hap-
pen that the process ends up in the expiration time since
nodes may have unanticipated behaviors that may delay
the location update or search procedures. To sum up, this
process avoids the distance-effect by always selecting the
closest location server. Furthermore, its overhead is opti-
mized on the distribution of the location servers.

2) Location Update Procedure: Location update pro-
cedure occurs based on its parameters including location
update time interval and location update zone. They are
determined after each movement as a function of mobility
rate and distance from node’s origin. The primary goal of
a node in the location update procedure is to form its own
archimedean spirals (refer to III-B). Then, a node devel-
ops its own location management strategy (refer to III-E);
so as to determine the location update time interval and the
location update zone. Afterwards, it applies the selection
process to update a subset of the set of location servers
(refer to III-D.1). Basically, a location update message
includes the current address of the node, location update
time interval, and the location update zone. The location
update message is then transmitted at every update time
interval towards the update zone. This message declares
that the node’s location information remains valid until
the end of the update time. Upon receiving the location
update message, each node within the disk of the location
server updates the location information corresponding to
the node and save the validity interval. In this way, those
location servers within the defined update zone becomes
aware of the current location of the node. In summary,
the location update procedure uses an adaptive-time based
scheme so as to fit the rate of network resource utilization
per-node.

3) Location Search Procedure: The location search
procedure occurs when a node wants to communicate with



another node whose position is unknown. Destination
search is initiated by forming its archimedean spiral in
order to locate the set of its location servers (refer to III-
B). Then, the requesting node elaborates a location search
strategy based on its own mobility rate, and the distance
from the destination’s origin (refer to III-E). Indeed, it
determines the frequency at which its location search pro-
cedure has to be triggered over the location search zone.
Once the location management strategy is made, the se-
lection process routes location search message to the lo-
cation search zone requesting destination’s current posi-
tion using its id. Therefore, a subset of the set of destina-
tion’s location servers is searched. Location search mes-
sage can be only retransmitted after the location search
time interval. To sum up, location search procedure ad-
justs the rate of network resource utilization per-node by
using an adaptive-time based scheme. This scheme is de-
scribed in section III-E.

4) Location Reply Procedure: Location reply happens
after a successful location search. It is sent by the first
location server containing the destination’s current posi-
tion. This implies that the intersection between the loca-
tion update zone and location search zone is non-empty.
Otherwise, no location reply will be sent. However, the
searched location servers remain active for the search time
interval. This enables them to provide destination’s cur-
rent position if in the meanwhile they get updated. The
first updated active location server sends a location reply
and labels the location update message. This label is used
to avoid the next location server sending another location
reply. It has to be mentioned that lack of location infor-
mation within the location server at the origin implies that
this information only exists in at most one of the remain-
ing directions. This is because of the way the selection
process routes location update messages (refer III-D.1).
Since the first location server containing the destination’s
current position sends the location reply and destroys the
location search message, the possibility of multiple loca-
tion replies does not exist.

E. Location Management Strategy

This section describes the adaptive time-based scheme
used in the location update and search procedures. This
scheme defines the location management strategy used in
ALM. Indeed in our strategy, the key parameters of the
location update/search procedures are dynamically deter-
mined as a function of the mobility rate and the distance
from the origin. These key parameters are computed af-

ter each movement to determine their mean values. These
key parameters are the location update/search time and lo-
cation update/search zone. As stated earlier, a location
update/search time defines both the rate at which loca-
tion update and search procedures are triggered and the
validity interval of the location information. A location
update/search zone defines an area or more concretely
the number of location servers to be updated or searched.
Our solution to determine these two parameters utilizes
the fuzzy logic concept to deal with imprecise and uncer-
tain information since the network is dynamic in nature
[28], [29]. This is advantageous in the target system be-
cause a fuzzy logic system is flexible and capable of op-
erating with imprecise data, and can therefore be used to
model nonlinear functions with arbitrary complexity [30].
The fuzzy inference process works in three stages: fuzzi-
fication, rule evaluation, and defuzzification. In the first
stage, the parameters of the system are fed into a fuzzifier,
which transforms the real-time measurements into fuzzy
sets. The second stage applies a set of fuzzy rules onto
the fuzzy input in order to compute the fuzzy outputs. Fi-
nally, the fuzzy outputs are translated into crisp values.
These stages are as follows:

1) fuzzification– in our location management, system
inputs are mobility rate and distance from the ori-
gin; and system outputs are location update/search
time and location update/search zone. These
four system parameters have to be translated into
fuzzy sets. Fuzzy sets contain elements that have
a varying degree of membership in a set [31].
Therefore, it is different from an ordinary set,
where elements will only be considered members
of a class if they have full membership in the
class. For example, if mobility rate is considered
in an ordinary set, then it can only be either low
or high and not both simultaneously, whereas in
a fuzzy set mobility rate can be classed as quite
low, not so high, or medium. This indicates that
an element in a fuzzy set can have membership
in more than one set. The membership values are
obtained by mapping the values obtained for a
particular parameter onto a membership function,
which will be used to determine the system outputs.
This function is a curve or line that defines how
each data or value is mapped onto a membership
value. We define what low L, medium M, and
high H is for each fuzzy set. This is represented
by three lines in Fig. 2. The threshold for low,
medium and high is also represented for each fuzzy
set. For instance in case of mobility, the threshold



for low mobility is 7 m/s, for medium mobility
it is 14 m/s, and for high mobility it is 21 m/s.
Then, by mapping the position of the current speed
onto the graph of the membership function, the
speed will be allocated with a membership value in
each set ranging from 0 to 1. For example, if the
current speed is 9 m/s, it could be fuzzified into low
mobility with the degree of 0.6, medium mobility
with the degree of 0.16, and high mobility with
the degree of 0. This is shown in Fig. 2(a) for the
membership function related to the mobility rate.
Similarly in Fig. 2(b), ��*-# as distance is fuzzified
into low and medium distance with degree of 0.5.
Fig. 2(c) and (d) represents the fuzzification of the
location update/search time interval and location
update/search zone.
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Fig. 2. Fuzzification stage

2) rule evaluation– this stage involves feeding the
fuzzy sets into an inference engine, where a set
of fuzzy rules is applies. Fuzzy rules is usually
defined as a set of possible scenarios in the form
of if-then rules, which determines whether location
management is required. We provide two rules that
explain our location management strategy. They
utilize both mobility rate and distance in order to
describe node’s behavior in the network.

� As the mobility increases: both the location up-
date/search time interval and the location up-
date/search zone decrease (see Fig. 2(a)(c)(d));

� As the distance increases: both the location
update/search time interval and the location up-
date/search zone increase (see Fig. 2(b)(c)(d)).

The rationale behind the first rule is that the faster
a node moves, the sooner the information becomes
invalid. Therefore, the location update/search mes-
sages have to be sent more frequently within a small
zone. Thus, the location management parameters
have to be decreased. Note that, we decrease the
time interval which in turn increases the frequency
of the location update/search messages. The ba-
sis of the second rule relies on the fact that the
farther away a node gets, the slower it appears to
move. Hence, the location update/search messages
have to be sent less frequently within a large zone.
Table I(a) and I(b) provide the summary of the
decision-making logic. These rules are applied onto
the fuzzy inputs and return the fuzzy outputs.

TABLE I
RULE EVALUATION STAGE

update/search time mobility rate
distance L M H

L M L L
M M M L
H H M M

(a) fuzzy output: location update/search
time interval

update/search zone mobility rate
distance L M H

L L L L
M L L L
H M L L

(b) fuzzy output: location update/search
zone



However, since a measurement usually falls into
more than one set, as shown in Fig. 2(a) and (b),
more than one decision set can be obtained. For
example, there might be a few rules that results in
an expansion of location update/search zone, and a
few with a contraction, etc.

3) defuzzification– at this stage, the resultant fuzzy de-
cision sets have to be converted into precise quan-
tities. There exist several heuristic defuzzification
methods such as the max criterion, the mean of
maximum, and the center of area [29]. We consider
the center of area method which finds the center of
gravity of the solution fuzzy sets. Therefore, each
node obtains two precise solutions for location up-
date/search time and zone.

This defines the location management strategy, since
the representative values of the location update/search
time interval and the location update/search zone are de-
termined. Therefore, a node is ready to initiate its location
management.

F. Example

Consider the scenario where node A is updating its
location servers at the position ��� ����� � , A � ; and
node B wants to communicate with node A at the position����� ��� � , B � , ������� ����� � , B � , and ������� � ����� � � , B � ;
respectively. Then in the meantime, node ��� ����� � , A �
moves to the position ������� ���	� � , A � . Assume that node
A has already created its own set of location servers. Let
the speed of node A be 9 m/s, and its distance from origin
& be ��*-# , as they are already depicted in Fig. 2. Node A

first determines its location update strategy by means of
fuzzy inference process which is done in three stages:

1) fuzzification– as it is illustrated in Fig. 2, the 9 m/s
as the speed is fuzzified into low mobility with the
degree of 0.6, and medium mobility with the degree
of 0.16. Similarly, the ��*-# as the distance belongs
to the set of low distance with degree of 0.5, and
medium distance with the degree of 0.5.

2) rule evaluation– node A then applies a series of
if-then rules provided in Table I (a) and (b) in order
to determine the fuzzy outputs. An example of the
if-then rules to determine location update zone is
as follows:

� if mobility rate is low and distance is low then
update zone is low;

� if mobility rate is low and distance is medium
then update zone is low;

� if mobility rate is medium and distance is low
then update zone is low;

� if mobility rate is medium and distance is
medium then update zone is low.

Since the two parts of the conditions of our rules
are connected by an and operation, we calculate the
min function – i.e. min(0.6, 0.5)=0.5 – and cut the
fuzzy set “low” of the output parameter “location
update zone” at the minimum level. Similar steps
are done to determine location update time interval.
The four results of each output parameters overlap,
and yield the overall result shown in Fig. 3.

3) defuzzification– the results are still a fuzzy set.
Therefore, we have to choose two representative
values as the final outputs. For this purpose, we take
the center of gravity of the results as they are shown
in the Fig. 3.
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Fig. 3. Example of the location management strategy

Once node ��� ����� � , A � determines its location up-
date time and zone – 26 and 5 respectively, it is ready
to initiate the location update procedure. Therefore node
A sends the location update message LU( � , � , A, 26, 5),
which contains the current address of node A, the validity
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Fig. 4. Example of the location management procedures

interval, and number of consecutive servers to be passed.
In Fig. 4, a location update message is shown by a solid
arrow. Then, node A initiates the location update mes-
sage from the closest location server in terms of physical
distance. The message is then forwarded to the next clos-
est location server. Consequently, five location servers are
informed about the current address of A. In Fig. 4 the up-
dated location servers are depicted by striped circles.

Node B virtually creates A’s Archimedean spiral to be
able to locate A’ set of location servers. Similar to the lo-
cation update, node B should determine its location search
strategy. Assume 15 as the location search time interval
and 3 as the location search zone of the node B. It then
generates a location search message LS(A, � , � , B, 15,
3) including A’s location independent id, its own address,
and the location search parameters. If one of the loca-
tion server within the location search zone contains the
valid information about the current position of node A, it
will reply node B and destroy the message. Otherwise,
the location search zone becomes active for the location
search time interval. This enables them to send a loca-

tion reply if in the meantime they become aware of A’s
current position. Three cases are considered in Fig. 4. In
the first case ��� � ��� � , B � , node B is located close to
the current position of node A. In this case, the first lo-
cation server which is the mutual closest location server
replies. In the second case, node ��� � � ����� � , B � is lo-
cated quite far from current position of A. In this case,
node B receives a location reply because the intersection
between location search zone and location update zone is
non-empty. If this intersection is empty, which is the third
case ������� � ����� � � , B � , node B will not receive a location
reply. However, the location search zone becomes active.
If node A moves to the position ��� ��� ���	� � , A � as it is
shown in the Fig. 4, it then can update one of the active lo-
cation servers. Therefore, this server eventually can send
a location reply to node B. Note that node B re-initiates
its location search strategy after 15 seconds if it does not
receive any location reply.

IV. LEADER ELECTION ALGORITHM

Let A and B be any node in the network. We assume that
each node knows the address of its neighboring nodes.
Both the center 
 and the radius  of a location server disk
is also provided in a location update/search message. The
algorithm is performed when a location message arrives
at the disk of its location server. That means the physical
distance between the center 
 and the current position of
the message is inferior than a threshold; e.g. the radius  .
Based on these information, a node can determine whether
it is a leader. For this purpose, node A looks for a set
of nodes whose distances to the center are equal to the
minimum neighborhood distance. This set can be shown
by:

LEADER �1" � B ! 	#" B ��
%$ "'&)(+*," 	#" NA
$-$/.

where 	 represents the distance, and NA represents the
neighborhood of node A. We distinguish three cases:

1) if the set is empty, then node A becomes the leader
since it has no neighbors.

2) if the set has only one member, then this member is
the leader.

3) if the set has more than one member, then the node
with the greatest id becomes the leader.

The algorithm follows a monotonic increasing function
depending on the distance and on the id. This function can
be shown by:

0 #21%3 0 " A $ " &)(+*
B 4 LEADER 5 A 6 ��	#" B

��
%$ ! id .



where ! represents the concatenation. It can be proved that
the function always ensures the uniqueness of the leader.
This is out of the scope of this paper, however the inter-
ested reader can refer to [17] for a similar proof.

Once the leader is elected, it updates the information
regarding the node, and then it forwards the location mes-
sage towards the next closest location server. Afterwards,
it is in charge of managing the location server as explained
in III-C. If a new leader is discovered -e.g. during the
managing process, then the new leader continue the loca-
tion server management.

V. COMPLEXITY COMPARISONS

We compare the complexity of our location manage-
ment ALM with the closely related approach including
GLS, and VHR/HA using the criterion described in [1].
However, the position state of ALM regarding other ap-
proaches such as DREAM, QUS can be derived from the
comparisons the paper [1] made between DREAM, QUS

and GLS, VHR/HA. The criteria of the comparisons con-
sists of type, communication complexity, time complex-
ity, state volume, localized information, robustness, and
implementation complexity. The type indicates how many
nodes host the location information and for how many
nodes they maintain location information. The communi-
cation complexity describes the average number of hops
required to update or search a node’s location. The time
complexity measures the average time it takes to perform
a location update or search. The amount of state required
in each node to maintain the location information repre-
sents state volume. The localized information means that
a higher density or a better quality of the location infor-
mation is maintained near the position of the node. The
robustness indicates the failure of how many nodes can
render the location of a given node inaccessible. The im-
plementation complexity describes how well the location
service is understood and how complex it is to implement
and test it.

Similar to GLS and VHR/HA, ALM select a subset of
nodes as location servers. Although the communication
and time complexities of ALM & " � � ,�. $ are similar to
GLS and VHR/HA, unlike previous solutions it achieves
several goals at the same time. Firstly, it adapts the com-
munication and time complexities to the node behaviors
so as to optimize the network resource utilization. Sec-
ondly, it provides sufficient redundancy of the location in-
formation through the network which avoids single point

of failure. Finally, the communication and time complex-
ities of the algorithm are optimized on the distribution
of location servers. In GLS the communication and time
complexity are proportional to the size of square, which
are not the case in ALM and VHR/HA. Unlike ALM and
VHR/HA, the performance of GLS depends on the distribu-
tion of the communication partners. If they are uniformly
distributed, the number of location servers per square in-
creases logarithmically. In this case, the state information
of GLS is & " 0 &�� " � $-$ . In case of VHR/HA this amount is
& " 
%$ , where 
 is a constant. The amount of state infor-
mation in ALM is increased by & " � � $ at the expense of
the localized strategy of location update and search pro-
cedures, as well as the redundancy of the location infor-
mation at each location server. However, the robustness is
improved since it takes the failure of & " � � $ nodes to ren-
der the location information of a given node inaccessible.
Unlike GLS but similar to VHR/HA, the implementation
complexity is low since the behavior of ALM is predictive
even in a dynamic environment.

VI. CONCLUSION

In this paper, we have introduced an adaptive location
management model called ALM for large mobile ad hoc
networks. It is adaptive because the rate at which location
update and search procedures are triggered is determined
as a function of node mobility and distance. The distribu-
tion of the location servers is decentralized since multiple
location servers replicated on several geographical posi-
tions. The complexity of the location management proce-
dures is then optimized on this distribution. In the future
work, we will address the performance analysis of ALM to
make a comparison with the related works.
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