Network Security in the Multicast Framework

Refik Molva, Alain Pannetrat

Institut EURECOM
2229 Route des Crétes
F-06904 Sophia Antipolis Cedex, FRANCE
{Refik.Molva, Alain.Pannetrat}@eurecom.fr
http:www.eurecom.fr/ “nsteam

Abstract. This chapter is an overview of security requirements raised by multicast
communications along with a survey of principal solutions. A detailed requirement
analysis points out the characteristics of multicast in terms of security and scala-
bility. The differences between unicast and multicast communications with respect
to the design of authentication and confidentiality mechanisms are discussed. Main
confidentiality proposals are analyzed in a detailed comparison survey based on the
security and scalability criteria.

1 Introduction

This chapter addresses network security in the framework of multicast communications. Both
security and multicast encompass a broad number of problems. We have chosen to deal with
two most fundamental aspects of security in the context of multicast: confidentiality and
authentication services for multicast applications. We start with an overview of IP-Multicast
and we highlight the main security requirements of large scale applications which are build
upon multicast mechanisms.

IP-Multicast was introduced by STEVE DEERING [Dee89,Dee91] and describes a set of
mechanisms which allow the delivery of a packet to a set of recipients rather than just one
recipient as opposed to unicast communications. The set of recipients that receive the same
multicast packets are considered members of a multicast group. In the multicast setting,
the sender transmits a single copy of a packet and the network takes care of duplicating
the packet at proper branching points in order for each recipient to receive a copy of the
original packet. With this approach, only one copy of the original packet will be transmitted
on most of the underlying network links, which saves resources compared to an equivalent
set of unicast communications, as illustrated in the example of figure 1.

2 The Security of Multicast Applications

The integrity and accuracy of multicast routing information is important for the proper
functioning of TP-Multicast. Adversaries may inject bogus routing messages in the network
to modify or even disrupt the routing mechanisms. This type of exposure on routing mech-
anisms however is not particularly different in multicast. There exist efforts to secure the
multicast routing protocols themselves [Moy94,Fen97] and we will not further address this
issue in this chapter. The focus of this chapter is geared towards the security of applications
which are built on top of IP-Multicast, regardless of lower layer security requirements.
Many large scale commercial applications such as video/audio broadcasting or stock
quote distribution could benefit from IP-Multicast mechanisms to reach many receivers
in a scalable way. In fact most prominent multicast applications have been confined to the
enterprise level or for non-commercial uses such as IETF or NASA broadcastings[MS97]. One
of the factors behind the reluctance to the large scale deployment of commercial applications

8 UNICAST Connections

1MULTICAST Group

Fig. 1. Unicast or Multicast

using multicast may well be security. Indeed, securing multicast applications turns out to
be a challenge in many situations, mainly because existing unicast security solutions cannot
be extended to the multicast setting.

2.1 An application scenario

One of the best ways to illustrate the difficulty of securing multicast applications is to use
a simple application scenario as an illustration.

Scenario Description. Consider for example a large financial news broadcaster who wants to
create a business by providing financial data and market analysis to a large set of customers
on the Internet through multicast. These customers are expected to pay for accessing the
broadcast content for variable lengths of time, ranging from less than an hour to several
days, depending on their needs.

Security Issues. This financial news broadcaster is faced with two main security issues related
to the distribution of its commercial content over the Internet:

Confidentiality: the content should only be accessible to the clients who payed for the service,
and only for the duration corresponding to the payment.

Authentication: the content provider needs to prevent its impersonation by another entity
who could try to generate content on its behalf, possibly harming its image and
credibility.

Adapting Unicast Solutions In unicast communications, two efficient techniques are
frequently used to address these issues: symmetric encryption[BDJR97] and MACs (Message
Authentications Codes)[BCK96]. To refer to these mechanisms informally, we will denote
the symmetric encryption of a plaintext message M with a key K as C <+ Ex (M) and the
corresponding decryption as M <+ Dg(C). We will write ¢ < Tgmae(M) the algorithm
which takes a message M and a MAC key K™% to produce a MAC tag o and we denote
{1,0} < Vgmae(M,o) the corresponding verification algorithm which returns 1 if ¢ =
Timae(M) and 0 otherwise. Informally speaking, it should be computationally infeasible
for an adversary who sees m pairs {M;,0;} to generate a new pair {M', o'} which verifies
Vigmae(M',0') such that {M', o'} # {M;,0;} for i = 1,...,m without the knowledge of
Kmac_

2 The Security of Multicast Applications 3

Confidentiality. If the multicast data is encrypted with a single key K common to all
recipients who paid for the service then it should prevent others from accessing the data.
However, when the subscription time of one of the clients R;expires then K must be updated
with a new value K' in order to prevent the client R; from further accessing the data.
Without loss of generality, we can assume in our scenario that each client R; shares a private
encryption key K; with the source. If K is the only secret shared between the source and the
recipients, in our setting there is no simple way to exclude a client from the recipient group
other than sending: £k, (K') for all ¢ # j. This approach is clearly unscalable in anything
but relatively small groups.

Restricting access to the multicast data through the use of encryption poses another
more subtle problem: containing security exposures. Indeed, in a large group there is a non
negligible chance that one recipient will be compromised and that its keys will be exposed.
Let us suppose for example that the key K we used above to encrypt data is exposed on
a web page or in a public newsgroup; this allows anyone within the scope of the multicast
group to access the data. Unlike in unicast communications, the adversary does not need
to be connected to the link or to corrupt the routing protocol between the communication
endpoints, since multicast data is forwarded automatically to him if he requests to join the
group. Consequently, we need to provide mechanisms that limit the impact of such exposures.

Authentication. In the multicast setting, if we construct a Message Authentication Code or
MAC[BCK96] for each packet with a common MAC key K™*¢ shared between the recipient
clients and the source, it will disallow non-clients who do not possess K™?¢ to forge packets
that will appear to originate from the source. Since a MAC is computed efficiently using
symmetric cryptographic techniques, each packet can be verified independently, thus, lost
packets will not affect the ability to authenticate others. But this approach has one big
drawback: any client can impersonate as the source, by generating a message M and a valid
tag 0 = Tgmac(M) from the key K™% Since the MAC key K™% is common to all clients
and the source, there is no way to distinguish a packet generated by the source from a packet
generated by a client.

An alternative is to have a different key K" for each recipient R; and append a list of
the corresponding MACs to each packet as:

M, o1 = Tipee (M), 02 = Tgec (M), ..., on = Trpae (M)

This approach is clearly impractical in a large group since the overhead per packet will
increase linearly with the group size.

A third alternative is to replace the MAC with a digital signature (Digital signatures also
provide non-repudiation of origin which was not a requirement in our scenario). However,
this solution also has its drawbacks because digital signatures are based on asymmetric
techniques that introduce a significantly higher computational cost and a non negligible
communication overhead, making this alternative impractical in most scenarios.

A Clash Between Security and Scalability

Though the previous example is somewhat simplified, it highlights some of the main diffi-
culties associated with the design of security protocols for multicast in large groups. There
seems to be an inherent clash between multicast and security. In the case of confidentiality,
there is a conflict between multicast scalability mechanisms and security. Indeed, multicast
relies on a single group address to identify the set of recipient rather than explicitly listing
them. This anonymous identification is the primary mechanism which allows multicast to
scale to virtually any group size. On the other hand, confidentiality requires us to identify
explicitly the entities which send or receive data in order to provide them with the right
keys to access the encrypted multicast data. In the case of authentication, the problem is

not related to the group size explicitly but rather to the requirement of an efficient asym-
metric mechanism to disallow receivers from impersonating the sender. Additionally, since
most multicast protocols are implemented over a best effort channel, these authentication
mechanisms need to tolerate losses.

3 Multicast Confidentiality

The sequel of the chapter focuses on multicast confidentiality. We first present a detailed
analysis of the problem that helps us draw the main requirements for multicast confidentiality
in large groups in terms of security and scalability. Based on these requirements we then
present an overview of existing multicast confidentiality proposals.

To clarify our discussion of encryption in the context of multicast we will use the following
naming conventions:

Source: We call source an entity that wishes to transmit a certain content to a selected set
of chosen recipients using multicast.

Content: We always use the words multicast content to refer to the actual cleartext data
that the source wishes to transmit securely over a multicast channel.

Recipient: We call recipient any entity capable of receiving multicast packets from a certain
group, regardless of its capacity to actually decrypt the multicast packets to access the
content. The only limit to the set of recipients is dictated by multicast routing protocol
restrictions, mainly the scope of the multicast group which is limited by the TTL selected
by the source.

Member: We call member, a selected recipient which has been given cryptographic keys
that enable it to access the content of the received multicast packets.

Membership Manager: A membership manager describes the entity (or entities) which
grants or refuses membership to recipients.

The main focus of this section is to analyze and propose methods that allow a dynamic set
of members to access the multicast content transmitted by a source while disallowing other
recipients to do so.

Typical large scale multicast application scenarios which require confidentiality services
are:

— Pay-per-view TV,

— High quality streaming audio,

— The distribution of software updates,
News feeds and stock quote distribution,

All these scenarios involve one of very few sources and potentially a very large amount
of members or clients. In this paper we have chosen to put an emphasis on solutions
geared towards these scenarios. In particular we do not deal with dynamic peer groups
[BD95,STW96,STW98] which involves secure n-to-n communications in much smaller groups
through the cooperation of the entities in the group. Though this work deals with a selective
broadcasting medium, we do not either aim to provide a solution to the problem of broadcast
encryption [FN93] where each message is encrypted for an arbitrary and potentially disjoint
subset of a larger known group. In particular, in our setting, the set of potential members
is not necessarily known a priori. Consequently, we assume at least a minimal unicast back
channel between the recipients and a membership manager. This channel is used at least
once when a recipient sends a request to a membership manager to become a member of the

group.

4 The Security of Dynamic Groups 5

4 The Security of Dynamic Groups

We qualify the set of members as dynamic because we consider the general case where the
set of members evolves through time as members are added or removed from the group
during a session. We define add and remove operations as follows:

Add: When a recipient becomes a member of the secure multicast group by receiving proper
cryptographic access parameters, we say that he is added to the group. To be added to a
group, recipients needs to contact a membership manager through a secure authenticated
unicast channel. If the recipient is allowed to become a member then it receives keys
and other related parameters necessary to start accessing the multicast content. The
membership policy is application dependent and may be subordinated to other issues
such as payment and billing, which are all beyond the scope of this chapter.

Remove: We say that a member is removed from the group, when its ability to access the
encrypted multicast content is suppressed by the membership manager. A membership
manager can decide to remove a member from the group at any time during the session
or at least on a certain interval boundary that is application dependent (a packet, a
frame, a quantity of bytes or time...).

In many publications, add and remove operations are referred as join and leave operations,
respectively. We prefer the former terminology because it highlights more clearly the fact
that providing access to the multicast content is ultimately the decision of a membership
manager rather than the recipient itself. We will restrict the terms join and leave for multi-
cast routing, to describe the fact that an entity requests or relinquishes receiving multicast
packets, independently of any security concerns.

All the application scenarios we described in the previous section involve dynamic groups
where members are added or removed from the member group. A dynamic set of members
implies two security requirements that are not found in traditional secure unicast commu-
nications:

backward secrecy and forward secrecy.

Backward secrecy defines the requirement that an added member should be able to access
multicast content transmitted before it became a member. This means that if a recipient
records encrypted multicast data send prior to the time it is added to the group, it should
not be able to decrypt it once it becomes a member. Similarly, forward secrecy' defines the
requirement that a member leaving the group should not be able to further access multicast
content.

5 Algorithmic Requirements

The forward and backward secrecy requirements have a immediate consequence: the param-
eters of the encryption algorithm that protects the multicast content must be changed each
time a member is added or removed from the group. We must simultaneously allow mem-
bers to infer the new parameters used to access the multicast data while disallowing other
recipients to do so. This parameter change must be done in a scalable way, independently of
the group size, which can be a real challenge, as illustrated by the simple financial content
provider scenario in section 2.1. The scalability issues related to multicast key management
in dynamic groups were first highlighted in the IOLUS[Mit97] framework by S. MITTRA,
who identified two generic problems:

! The term “forward secrecy” is used here in the context of multicast security and should not be

confused with perfect forward secrecy in unicast communication, which deals with the security of
past sessions when a session key is compromised.

1. The “one does not equal n” failure which occurs when the group cannot be treated as a
whole but instead as a set of individuals with distinct demands.
2. The “one affects all” failure which occurs when the action of a member affect the whole

group.

Our experience with many multicast proposals has prompted us to refine these definitions
to propose the following two requirements:

Processing scalability: The cost supported by an individual component, be it the source,
an intermediary forwarding component or a member, should scale to any potential group
size and membership duration.

Membership robustness: Members should be able to access the content of received mul-
ticast packets as soon as they are received.

The processing scalability requirement was informally illustrated by our sample scenario
in section 2.1, where we tried to use unicast techniques in a multicast setting to provide
confidentiality. To remove a member from a group of N members it required the source (or
the membership manager) to send out a new global key encrypted with (N — 1) different
private keys to replace the previous global key used to access the content in order to assure
forward secrecy. Clearly, this method does not offer processing scalability.

The best effort nature of the Internet is a potential factor that greatly affects membership
robustness. Consider a scenario in which the membership manager is required to broadcast
a single value R to the whole group each time a member is removed or added, in order for
members to update their decryption parameters to continue accessing the multicast content.
Several multicast applications can tolerate packet losses. However, if some members experi-
ence the loss or the delay of R they will not be able to update the keys needed to access the
multicast content, thus the newly received content packets will be worthless. Consequently,
in such a scenario, add and remove operations may impair membership robustness.

6 Collusion, Containment and Trust.

While the main goal of multicast encryption in a dynamic group is to come up with a protocol
which satisfies both the security requirements and the algorithmic requirements, this is still
not quite sufficient to provide security in a large group. A factor that is often overlooked
in most secure multicast proposals is the potential compromise of a member. Indeed, as
the member group becomes larger, the probability of member key exposure increases. In
a sufficiently large group, there is no doubt that an exposure will occur. These exposures
may be done intentionally by a member: it could send its security parameters to another
recipient, or they may be unintentional: a “hacker” may steal the parameters held by a
member and publish them in a newsgroup or on a web page. Thus, one of the important
concepts we put forward in this chapter is that, since we cannot avoid security exposures,
we need to limit the impact of such exposures, a property that we call containment.

A second issue is collusion: if a few members collude together they should not be able
to elevate their privileges beyond the sum of their own privileges. For example, consider
a scenario where each member holds secret keys that allow them temporary access to the
group. If these members are able to achieve unlimited access by exchanging their secrets and
making some computations, then the scheme is clearly weak and will be subverted quickly
in a large group.

Some multicast schemes use intermediate elements in the network, such as routers, sub-
group servers or proxies as participants in the security protocol. These elements are external
to the member group and most likely not always fully controlled by the content provider,
the members or a membership manager. In fact, it is quite possible that these intermediary
elements will be shared between several secure multicast groups with different member sets.

7 Requirement Summary 7

Moreover, in some situations, these elements are numerous enough such that the compro-
mise of one or a few of these entities is probable. Consequently, while it is quite reasonable
to assume that the source as well as the few other entities such as a membership manager
are secure, this is not realistic for other network resources. Thus we need to limit the trust
placed in these intermediate elements if they are involved used in security protocols.

7 Requirement Summary

Confidentiality brings out significantly more requirements in the multicast setting than in
the unicast setting. We summarize these requirements here as a reference for the analysis of
current multicast proposals in the following sections.

Security Requirements:

Requirement 1 Data Confidentiality: the multicast content should be only accessible to
members.

Requirement 2 Backward and Forward Secrecy: A new (resp. past) member should not
have access to past (resp. future) data exchanged by the group members.

Requirement 3 Collusion Resistance: A set of members which exchange their secrets can-
not gain additional privileges.

Requirement 4 Containment: The compromise of one member should not cause the com-
promise of the entire group.

Requirement 5 Limited Intermediary Trust: Intermediary elements in the network should
not be trusted with the security of the group.

Strictly speaking, the latter requirement (5) is only relevant to protocols which use interme-
diary elements to actively participate in the security of the group.

Algorithmic requirements:

Requirement 6 Processing Scalability: The cost supported by an individual component,
be it the source, an intermediary forwarding component or a member, should scale to any
potential group size and membership duration.

Requirement 7 Membership Robustness: Members should be able to access the content of
received multicast packets as soon as they are received.

8 Overview of Multicast Confidentiality Algorithms

This part of the chapter includes the description of three different multicast confiden-
tiality algorithms: the Logical Key Hierarchy, the re-encryption trees of IOLUS, and the
MARKS[Bri99] approach. In the sequel of this chapter, we denote Ex () as the encryption
of message x with key K with a standard symmetric encryption technique[BDJR97,0ST01].

9 LKH: The Logical Key Hierarchy

The Logical Key Hierarchy was independently proposed by WoNG ET AL. [WGL98] and
WALLNER ET AL.[WHAOS].

9.1 Construction

Counsider a set of n members {Ry, ..., R, }. We build a balanced (or almost balanced) binary
tree with n leafs, with a one to one correspondence between a leaf L; and a member R;. A
random key k; is then attributed to each vertex j in the tree, including the root and the leafs
themselves. This construction that we will call logical key hierarchy (LKH) is is illustrated
on figure 2 with a small set of 7 recipients.

Fig. 2. Basic key graph with 7 members

Setup. Each member R; receives the set of keys corresponding to the path from the root of
the tree to its corresponding leaf L;. The root of the tree which is known by all members is
called the Traffic Encryption Key (TEK) and represents the symmetric encryption key used
to protect the content distributed over the multicast channel. The remaining keys in the tree
are often called Key Encryption Keys and are used to update the TEK to guaranty backward
and forward secrecy. Referring to our example in figure 2, member R; would receive the key
set {ko, k1, k3, ks} where ko represents the TEK and {k1, ks, ks} the KEKs.

9.2 Usage

Let us denote L(k;) (respectively R(k;)) the predicate which returns ¢rue if the node rep-
resenting key k; has a left child (respectively a right child). Further more we will denote
LK (k;) the key held in the left child of the node representing k; if it exists, and we similarly
define RK(k;) for the right child.

To remove a member R; from the group: All keys representing the path from the
root to the the leaf L; corresponding to departing member R; are invalidated. The leaf
L; corresponding to the departing member is removed from the tree. All the remaining
invalidated keys {k1, ..., k;} in the path from the root to the former leaf are replaced with new
random values {k1, ..., k;}. For convenience consider {k{,...,k;} to be ordered by decreasing
depth in the tree. To allow the remaining members in the tree to update their keys, the
membership manager proceeds as follows:

Algorithm 11 LKH update
Fori=1,...,(1—1) do
if L(k}) then multicast EUC(kL)(kEiq))
if R(K}) then multicast ERK(kQ)(kEifl))

9 LKH: The Logical Key Hierarchy 9

None of the keys that are used for encryption in the previous algorithm are known by the
removed member. However, all the remaining members will be able to recover enough keys
to update their own key set.

Fig. 3. LKH: A member leaving the group.

As illustrated on figure 3, if member R4 leaves, then the membership manager needs to
broadcast Ei,, (k}), Eks(ky), Ey, (K1), Egr (k) and kg, (k).

To add a member to the group: When a member is added to the group, the tree is
extended with an additional node. If all leafs in the tree are already attributed we can take
a leaf L; and create two children: the left child is assigned to the member associated with
the former leaf L; and the right child is assigned to the newly added member. Alternatively,
we can simply design the tree to be deep enough to accommodate the potential maximum
number of members.

Assuming that the new member corresponds to leaf L;, the sender makes all the keys
in the nodes on the path from L; to the root invalid. A random key is assigned to L; and
transmitted to the added member with a secure unicast channel. All other nodes in the path
are updated with the same algorithm that was used above to remove a member from the

group.

Key Usage Summary. The scheme distinguishes two type of keys: a TEK and KEK. The
TEK is the encryption key that protects the multicast content. It is changed each time a
member is added or removed from the group. The KEKs are used to distribute and update
the TEK for all members. Until a valid KEK set is explicitly invalidated by the membership
manager, it can be maintained in a valid state provided that all update messages are received.
Consequently a valid KEK set represents membership in a group and provides long term
access to the group, while the TEK itself only represents a short term access to the content.

9.3 Algorithmic Properties of the Scheme

Considering a set of at most n members, the basic LKH scheme requires each recipient to
store [log,(n)] + 1 keys. Each addition or removal of a member requires the broadcast of
2. [log,(n)]—1 messages (alternatively a single message with all key update messages grouped
together). Thus, the processing load of the components and the key message sizes increase
logarithmically with the group size, which allows to achieve good processing scalability (req.
6).

10

However, if a member fails to receive just a single key update message because of a
network loss, then it cannot decrypt the new content. Losses have a worsened impact because
subsequent key updates will often depend on previous ones. Consequently a member cannot
always resynchronizes its parameters on a new key update message if it lost one of the
previous key update messages. A member who didn’t receive a KEK update message might
have to re-register with the membership manager through an authenticated secure unicast
channel to receive the proper keys. If many members do this at the same time we may run
into scalability issues. Consequently in this basic version of the scheme, both add and remove
operations do not provide membership robustness (req. 7) in the presence of losses or strong
key update delays.

9.4 Improvements

The basic scheme we described previously has been constantly improved by several authors.
We summarize these contributions here.

No-message Member Addition An interesting improvement was proposed by CARONNI
ET AL. [CWSP98] which eliminates the need to multicast a key update message when a
member is added to the group. In their proposal, the set {ki, ...,k } of invalidated keys
represented on the path from the root of the tree are replaced with a set {ki,..., k;} where
each key k! is the result of a one way function applied to the previous key, that is k] = F(k;)
where F' is a publicly known one-way function. This allows members to compute the new
keys from the previous ones, and the one-way property of F' disallows the new member to
compute the previously used keys. The set {kf,...,k;} is transmitted to the newly added
member through a secure unicast channel. In their work CARONNI ET AL. use a counter
(a sub-version number) for the TEK and KEKs as ancillary information in the multicast
data packets to keep track of the number of times the one-way function was applied (this
naturally adds a few bytes of overhead to each packet). Since adding a member does not
require the transmission of a multicast message anymore, membership robustness (req. 7) is
always assured during this operation, and the problem is now restricted to the removal of a
member.

Halving the Update Overhead MCGREW AND SHERMAN were the first to propose a
method to halve the communication overhead of add and remove operations, with a construc-
tion called OFT (One Way Function Trees, [MS98]). This further increases the processing
scalability of the protocol. We will not describe the OFT construction here, instead we will
focus on the more recent ELK approach presented below, which shares some similarity with
OFT.

More recently CANNETI ET AL. have proposed a method[CGIT99] that achieves the
same reduction and that is compatible with the “no-message-member-addition” we described
above. We will describe the core idea behind their protocol here. Assume that f is a one
way function, and let f*(z) denote k successive applications of f to z, where f°(z) = z. As
usual, when a member is removed from the group, the remaining keys {k1, ..., k; } represented
on the path from the root to the departing leaf need to be changed to a new set {kf,...,k;}.
Here, instead of choosing all these keys at random, the membership manager chooses only
one random value 7 and sets

kll « k'Elfl) « fl(r)v El72) «— fQ(r)a sy ki « f(l_l)(r)

The membership manager then encrypts each k] with the key represented by the child node
of k} that is not in the invalidated path. Thus each individual %} is encrypted only once as
opposed to the original LKH protocol in algorithm 11 which encrypted each key with both

9 LKH: The Logical Key Hierarchy 11

child node keys. Because of the relationship between the keys created by f, the nodes can
still reconstruct the set of keys they need by applying f.

Example: Recall figure 3 in which member Ry is removed from the group, the membership
manager will compute a random value r and send Ey,,(7), Ex, (f(r)), Ex, (f(f(r))).
— Member R3 decrypt ki, = r and computes kj = f(ki,y), k1 = f(f(kly)) as well as
Ky = F(F(F(RL)-
— Members R; and Ry decrypt ki and compute kf = f(k}).
— Members R, Rg, Ry decrypt k.

Assuming that the tree is balanced, the communication overhead is at most [log,(n)] keys
instead of [2.log,(n) — 1] keys as in the original LKH construction.

Increasing Reliability Clearly, if the network was perfectly reliable over the whole multi-
cast group the removal of a member would not introduce any membership robustness issues
in the LKH scheme (req. 7). However, multicast uses an unreliable transport protocol such
as UDP. Consequently, increasing the reliability of the leave operation is crucial if we want
to reduce membership robustness issues (req. 7).

WoNG AND LAM implemented their LKH[WGL98] protocol over IP-Multicast in Keystone[WLO00],
and use FEC (Forward Error Correction) to increase the reliability of the addition and re-
moval operations (since they do not use the no-message-member-addition method). Recall
that when a member is added or removed from the group in the basic scheme, a set of keys
{ki, k5, ...,k } is encrypted with other keys in the tree and transmitted to the group. In the
Keystone scheme, these encrypted keys are represented over s packets to which we add r
parity packets. The receiver may reconstruct the encrypted key set if he recovers any subset
of s packets out of the (s+r) transmitted packets. Since we do not have an absolute guaranty
that s packets out of (s +r) packets will always arrive, they combine this mechanism with a
unicast re-synchronization mechanism that allows a member to contact a “key cache” server
in order to update its keys if losses exceed the correction capacity of the FEC. In their work,
they consider a 10-20% loss rate and they show that adding redundancy can substantially
increase the likelihood that a member will be able to update its keys. However, as noted by
PERRIG ET AL.[PSTO01] in criticism of the Keystone scheme, the authors assume indepen-
dent packet losses to compute the key recovery probabilities, while it has been shown that
Internet losses occur in bursts.

PERRIG ET AL. proposed a protocol called ELK[PST01] which combines previously pro-
posed ideas such as “no message member addition” and halving the update overhead, with
new tricks to increase the reliability of the KEK update operation. The main idea of their
work stands in two points:

— First, send a key update message U with reduced communication overhead.

— Second, send many small hints that allow a member to recover updated keys if U is lost.
The hints are smaller than U but require a much higher computational cost from the
recipient.

We will give a slightly simplified description of their protocol, omitting some cryptographic
key derivation issues that are described in detail in their work[PSTO01] but are not useful to
understand the methods employed here.

Reducing the communication overhead. To reduce the communication overhead of a key
update they construct new keys based on contributions from the two children nodes. Consider
for example a node containing the key k; on the path from the root to a leaf representing
a removed member which needs to be updated to a new value k}. Let kr (resp. kr) define

the key held by the right (resp. left) child of the node associated to k;. Denote F,g’Hm) ()

12

as a pseudo-random function which takes a p bit value z as input and outputs m bits using
a key k. In the ELK construction, the keys in a node are p bits long and are derived from
p1 bits of the left child and p, from the right child. To update k; to &k} we first derive the
right and left contributions C'r and Cp, from the old key k; as follows:

Cr + FP7P (k)

Cr + FP7P) (k)
Now we compute the new key k] by assembling these two contributions to derive k;:

(p—p)
ki 4 &y e (ki)

Consequently, to derive k} from k; the members find themselves in two possible situations:

— They know ki, and thus Cp, and they need to receive C'r to compute &}, or,
— They know kg and thus Cg, and they need to receive Cr, to compute k}.

Consequently, the membership manager will send Ey, (Cr) and Ej, (Cr) to the group where
E denotes a stream cipher rather than a block cipher (using the old root key or TEK as Initial
Vector). Using a stream cipher allows the membership manager to send (Ey, (Cr), Er, (CL))
over exactly p; + p2 bits. A full key update will thus require the broadcast of loga(n) chunks
of p1 + p bits. Considering p; + p» < p this amounts to having at most 50% of the commu-
nication overhead of the original LKH protocol.

Using Hints to increase reliability. Consider the case where p; < ps and where in fact
p1 is small enough such that computing 2P symmetric cryptographic computations remains
feasible in a reasonably short time. In this situation it’s possible to construct an even smaller
key update procedure that the authors of ELK call a hint, which is defined as the pair
{Vk:, Egp, (h)} where Vi, is a ps bit cryptographic checksum computed as follows :

Vi E7P(0)

With LSB®>~71)(z) being the function which returns the (ps — p1) least significant bits
of z, h is defined as:

h < LSBw==P) (F" 772 (k;)) = LSB®2~7)(Cp)

The hint {Vj:, By, (h)} of which the second member & is encrypted with kp, is broad-
casted to the group after the initial key update we described previously. The hint {V};, Ex, (h)}
can be used to recover the value &} in a node. Again, depending on left or right considerations,
there are two ways to use the hint:

— Members who know kj, can decrypt h, thus they can recover the (p»—p;) least significant
bits of C'g. Since they also know C7, they have to make and exhaustive search for the
ny missing bits of Cr to recover a value of the form C,||Cr. For each candidate Cr||Cr

they compute the corresponding Ig; as Ig; «— Fég 7"’ Czr)(kz) and use the checksum V}: to
L R B

verify that the candidate is good, otherwise they continue the exhaustive search.

— Members who know kg will perform an exhaustive search through the 2™ values that
k1 can take. For each potential kj value they compute the corresponding candidate for
k;. They use the checksum V} to validate the right candidate.

In practice the authors of ELK suggested in a example to use the values p; = 16, po = 35,
ps = 17 and n = 64 using the RC5 cipher[Riv95] both for encryption and also to construct a
CBC-MAC based pseudo random function. The authors of ELK implemented this example
on a 800Mhz Pentium machine to achieve a high number of computational operations per
second.

10 Re-Encryption Trees 13

Aggregating Member Additions and Removals. It should be clear from the descrip-
tion of the LKH algorithm that frequent membership changes increase the workload of all
the members of the group and require the membership manager to broadcast a proportional
number of key update messages. In situations where the group has a highly dynamic set
of member, the membership manager will have to deal with both membership changes and
re-synchronization messages for recipients who failed to update their keys correctly, which
creates a potential bottleneck. Consequently several authors [CEK1T99,LYGLO01] have pro-
posed methods to reduce this problem by combining several removal operations into one to
achieve a lower communication overhead than the sum of these individual removal opera-
tions. In a related but more theoretical approach, [PB99] proposes to organize members in
the tree according to their removal probability to increase the efficiency of batch removals
and additions.

9.5 LKH: Summary and Conclusion

The LKH construction is an interesting approach, which satisfies the following requirements
of multicast confidentiality:

Data confidentiality (req. 1).

— Backward and forward secrecy (req. 2).
Collusion Resistance® (req. 3).
Processing scalability (req. 6).

Beyond classical multicast forwarding mechanisms, it does not require any additional con-
tribution from the intermediary elements in the network, which clearly also satisfies require-
ment 5. While some authors have tried to increase the processing scalability of the scheme,
the main concern about LKH scheme is membership robustness. Indeed, each time a mem-
ber is added or removed from the group, all the members need to receive a key update
message. If that message is not received by some members, it will disallow them to access
the multicast content and it may also disallow them to access further key update messages.
The Keystone framework [WL00] uses FEC to increase the likelihood that the key update
message will be received by the members, while the ELK framework relies on small “hints”
that can be used by a member to derive missing keys in combination with computational
tradeoffs.

There remains one requirements that none of the LKH protocol addresses: Containment,
(req. 4). Indeed, each set of keys held by a member can be used anywhere in the network
within the scope of the multicast group to access the encrypted content.

10 Re-Encryption Trees

In 1997, MITTRA proposed the Iolus framework, which partitions the group of members into
many subsets and creates a tree hierarchy between them. Each subset of members is managed
by an distinct entity called a Group Security Intermediary (GSI). The central or top-level
subgroup in the hierarchy contains the central group manager called Group Security Center
(GSC), as illustrated on the example on figure 4.

10.1 Basic scheme

The GSC produces data encrypted with a key K; and multicasts it to a chosen group address
G 41- The GSI entities that are direct children of the GSC in the hierarchy then decrypt

2 An exception is the flat key management scheme presented in [CWSP98], which can be defeated
by a coalition of only 2 members.

14

Fig. 4. IOLUS

the data and re-encrypt it with another key Kj;, and broadcast it to their own multicast
group G 4;. This mechanism is applied recursively all the way down the tree hierarchy.
Consequently, this construction can be viewed as a tree network where each node decrypts
data received from its parent and re-encrypts it for its children. In this chapter we refer to
this type of approach as “re-encryption trees”.

Each node or GSI only needs to know the key from its parent in the hierarchy and its
own subgroup key. Members in a subgroup are managed by a single GSI and only know the
GSI'’s key K;.

Removing a member. When a member is removed from a subgroup, the GSI chooses a
new subgroup key K and uses several authenticated secure unicast channels to send the new
key to the remaining members in the subgroup (alternatively one long multicast message
corresponding to the concatenation of these unicast messages).

Adding a member to the group. When a member is added to a subgroup we can
proceed in a similar way as we did to remove a member, except that we also send the new
subgroup key K to the added member. An improvement in terms of overhead is to encrypt
the new subgroup key K| with the old one K; and multicast the message Ek, (K]) to the
subgroup while transmitting K to the added member on a separate authenticated secure
unicast channel. However, this improvement is less secure because it creates a potential
chain between subsequent keys, thus the exposure of a single key has a potentially stronger
impact.

10.2 Key Distribution

The transformations in an hierarchical tree we describe above operate directly on the en-
cryption of the multicast content. As an alternative, S. MITTRA also suggests to use the
IOLUS framework to distribute a global short term key. This key is used to encrypt content
to be transmitted on a separate autonomous multicast channel, which can be based on a
different multicast routing scheme.

11 MARKS 15

HARDJONO ET AL. proposed a re-encryption tree for key distribution in IGKMP[HCDO00],
the Intra-Domain Group Key Management Protocol. This protocol essentially describes a 2
level re-encryption tree that is used to distribute a common group key K to the group.

10.3 Analysis

This scheme provides Data Confidentiality (req. 1) as well as backward and forward secrecy
(req. 2). Since keys in each subgroup are chosen independently, colluding members do not
seem to gain additional privileges beyond the sum of their own access, thus this scheme is
collusion resistant, (req. 3).

In his work on IOLUS, S. MITTRA did not specify a limit to the size of a subgroup. In
practice, however, we need to assume that a subgroup contains no more than M members,
otherwise processing scalability issues will arise in subgroups. The benefit of IOLUS is pre-
cisely to divide a large multicast group into subgroups that are small enough so that they do
not exhibit the scalability issues of a large multicast group. If subgroups are small enough
then this scheme will provide processing scalability, since computations and communication
overhead will depend on M and not on the full group size.

A second benefit of subgrouping is that it provides stronger membership robustness (req.
7). When a member is added or removed from the group it only affects the other members
which depend from the same GSI. Members in other subgroup are not even aware that a
member was added or removed from the group. Consequently, the impact of a membership
change is restricted to a subgroup of at most M members.

The third benefit of subgrouping is containment (req. 4). Since only at most M members
of the same multicast group use the same key K4 to access the multicast data then the
exposure of K4 will only have a local impact, limited to the subgroup G4 that uses the
same key K 4. If the attacker is in another subgroup Gp, out of scope of G4 than the
exposed key K 4 will be useless unless he also manages to forward traffic from G 4 to Gp.

The main drawback of this scheme is that it fully trusts all the intermediary elements to
access the multicast content, which is contrary to requirement 5. Good processing scalability,
membership robustness and containment all depend on a reasonably small value of M, the
size of the subgroup. But if M is small than it increases the number of Groups Security
Intermediaries needed. For large multicast groups, this means that each content provider
will need to construct a large network of trusted intermediaries. This adds a significant cost
for the content provider.

11 MARKS

The MARKS scheme was proposed by BRISCOE in [Bri99], and features a subscription based
approach to multicast confidentiality. Consider a content divided in n segments {S, ..., S}
each encrypted with a different key {kq, ..., k, }: the source simply broadcasts E, (S;) for each
1 <i < n . To provide access to a member R for segments S; through S(;;;) the membership
manager needs to provide R with the keys {k;, k(j11), .-, k(j41) }- Simply sending the list of
keys creates an overhead which linearly increases with [, which does not provide processing
scalability (req. 6). In his work, BRISCOE provides a method to get around this limitation
by constructing a one-way hash tree as follows.

11.1 The Hash Tree

Let n define the number of keys or segments used in the broadcast where n = 2. Let £
and R define two one-way functions. For example, we can choose £ (resp. R) to be the left
(resp. right) half of of a pseudo-random generator which doubles its input, or we can use
two independently keyed hash functions [BCK96]. We initially choose a random value ug
and we construct a balanced binary tree as follows:

16

— assign ug to the root.
— if a node is assigned a value u; we assign to the left child of u; the value £(u;) and to
the right child the value R(u;).

The leafs of the tree ordered from left to right represent the keys {k, ..., k,} used to encrypt
the segments {5, ..., S, }.

Fig. 5. MARKS with an eight segment stream.

The advantage of this construction is that any sequence {kj, k(jt1)---, k(j41)} of I con-
secutive keys in {ki,...,k,} can be represented with at most 2.loga(n) — 1 values. Indeed,
instead of describing a sequence of [keys by listing them in a sequential order, we can
simply provide the points in the tree that can be used to derive the needed keys (and only
those keys) by applying R and £. This problem is quite similar to finding IP network aggre-
gations in CIDR[FLYV92]. Consider the example on Figure 5 where a member subscribes
for segments 4 to 8. He receives us and w19, next he can efficiently compute k4 = uo,
k5 = Uil = E([,(UQ)), k‘e = R([,(UQ)), k7 = E(R(UQ)), ks = R(R(Ug))

11.2 Analysis and Conclusion

In the MARKS approach, once the membership manager provides a member with access to [
consecutive segments S = [Sjt1, ..., Sj+i], it cannot revoke this access unless it redistributes
new keys to all other members whose segments intersect with S. In practice it would require
the construction of a new key tree over the segments of the stream. Revocation is not
possible here without running into strong processing scalability issues. However, there are
some multicast applications that will be satisfied with a non revocable subscription based
approach. Consider, for example, some Pay-per-view TV applications where the content
length is know in advance and the clients pay before the show is broadcasted. For such
applications MARKS offers benefits such as:

— Data confidentiality, backward and forward secrecy, collusion resistance and no interme-
diary trust.

12 Multicast Confidentiality Summary 17

— Processing Scalability.
— Perfect membership robustness.

The last characteristic is the strongest point of MARKS: it does not require any message
to be broadcasted to anybody when a recipient’s membership expires in the group. When
a member is added to the group, he only needs to receives the keys corresponding to his
subscription, which can be transmitted to him in advance.

Similarly to LKH, this scheme does not provide any containment. In terms of key expo-
sure, the LKH has a little advantage over MARKS, because the membership can invalidate
an exposed key easily, while MARKS by definition does not provide any practical way to do
this.

12 Multicast Confidentiality Summary

The three types of multicast confidentiality schemes reviewed in this chapter all suffer from
some limitations. The LKH scheme does not offer containment and has some membership ro-
bustness issues though some progress has recently been made in that area. The re-encryption
tree approach relies on a potentially large infrastructure of fully trusted intermediary ele-
ments. Finally the MARKS scheme does not allow member revocation prior to the end of
their subscription, neither does it offer any form of containment.

13 Conclusion

Security in multicast raises genuinely new authentication and confidentiality requirements
that are not met by classical network security mechanisms. At the core of multicast confiden-
tiality, membership management is a complex issue involving membership managers which
communicate on a bidirectional channel with members in different situations. Specific mem-
bership management issues are rarely mentioned in multicast confidentiality frameworks,
however we believe that these issues would deserve to be explored in future research. For ex-
ample, in large commercial applications, distributed membership management will become
a key requirement. One reason is scalability. Indeed, in a very large multicast group, a single
membership manager serving all requests, would quickly become a bottleneck. The sec-
ond reason is related to laws and regulations. Different countries have different commercial
laws and sometimes different cryptography regulations. It makes sense to distribute several
membership managers according to these constrains. Re-encryption trees are well suited
for distributed membership management, and the MARKS subscription approach is even
better. However, it seems that a construction such as LKH is inherently hard to distribute.
Besides, multicast confidentiality as described in this chapter is faced with a dilemma. Ap-
proaches based on a shared key a common key among members do not offer any form of
containment, and piracy will greatly hinder the use of such schemes in large groups. On the
other hand, the schemes that provide containment require the existence of active interme-
diate elements in the network with a significant a deployment cost. It is thus not clear yet
what type of solution will emerge for confidentiality in large scale multicast applications.
Some solutions will possibly rely on a combination of re-encryption trees for inter-domain
communications in with an LKH approach for intra-domain communications. Moreover,
content providers recently have shown a strong concern in protecting the content they dis-
tribute beyond the notion confidentiality we described in this chapter. As in the example of
the highly publicized lawsuit[USDC99] that opposed the RIAA to Napster, the mp3 audio
download service, issues such as copy protection and copyright have become paramount for
content distributors. Architectures that provide these additional services typically rely on
several cooperating tamper-proof hardware components achieving end to end protection of
the content between the source and the ultimate video or audio playback hardware (see for

18

example, CPRM, http://wuw.4Centity.com/tech/cprm/). Future commercial multicast
confidentiality frameworks will potentially rely on such tamper-proof hardware platforms.

References

[BCK96]

[BDY5]

[BDJRO7]

[Bri99]

[CEK99]

[CGIt99]

M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authenti-
cation. Lecture Notes in CS, 1109:1-15, 1996.

M. V. D. Burmester and Y. Desmedt. A secure and efficient conference key distribution
system. In Alfredo De Santis, editor, Advances in Cryptology - EuroCrypt ’94, pages
275-286, Berlin, 1995. Springer-Verlag. Lecture Notes in Computer Science Volume 950.
Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security treat-
ment of symmetric encryption. In IEEE Symposium on Foundations of Computer Sci-
ence, pages 394-403, 1997.

Bob Briscoe. MARKS: Zero side-effect multicast key management using arbitrarily re-
vealed key sequences. In First International Workshop on Networked Group Communi-
cation, November 1999.

Isabella Chang, Robert Engel, Dilip Kandlur, Dimitrios Pendarakis, and Debanjan Saha.
Key management for secure internet multicast using boolean function minimization tech-
niques. In Proceedings IEEE Infocomm’99, volume 2, pages 689-698, March 1999.

R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security:
A taxonomy and some efficient constructions. In Proceedings of IEEE Infocom’99, 1999.

[CWSP98] Germano Caronni, Marcel Waldvogel, Dan Sun, and Berhardt Plattner. Efficient se-

[Dee89]
[Dee91]

[Fen97]
[FLYV92]

[FN93]

[HCDO0]

[LYGLO1]

[Mit97]

[Moy94]
[MS97]

[MS98]
[0STO01]
[PB99]
[PSTO1]

[Riv95]

curity for large and dynamic multicast groups. In IEEE 7th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE ’98), 1998.

Steve E. Deering. RFC 1112: Host extensions for IP multicasting, Aug 1989.

Steve E. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford
University, 1991.

W. Fenner. Internet group management protocol, version 2. Request For Comments
2236, November 1997. see also draft-ietf-idmr-igmpv3-and-routing-01.txt for IGMP v3.
V. Fuller, T. Li, J. Yu, and K. Varadhan. Supernetting: an address assignment and
aggregation strategy, 1992.

A. Fiat and M. Naor. Broadcast encryption. In Douglas R. Stinson, editor, Advances in
Cryptology - Crypto 93, pages 480-491, Berlin, 1993. Springer-Verlag. Lecture Notes in
Computer Science Volume 773.

Thomas Hardjono, Brad Cain, and Naganand Doraswamy. A framework for group key
management for multicast security. Internet-Draft, work in progress, February 2000.
Xiaozhou Steve Li, Yang Richard Yang, Mohamed G. Gouda, and Simon S. Lam. Batch
rekeying for secure group communications. In Tenth International World Wide Web
conference, pages 525-534, 2001.

Suivo Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings of the
ACM SIGCOMM’97 (September 14-18, 1997, Cannes, France), 1997.

John Moy. Multicast extensions to OSPF. Request For Comment 1584, March 1994.
T. Maufer and C. Semeria. Introduction to IP multicast routing. Internet-Draft, July
1997. draft-ietf-mboned-intro-multicast-03.txt.

David A. McGrew and Alan T. Sherman. Key establishment in large dynamic groups
using one-way function trees. Technical report, TIS Labs at Network Associates, Inc.,
Glenwood, MD, 1998.

National Institute of Standards and Technology. Advanced Encryption Standard, 2001.
R. Poovendran and John S. Baras. An information theoretic analysis of rooted-tree based
secure multicast key distribution schemes. In CRYPTO, pages 624638, 1999.

Adrian Perrig, Dawn Song, and Doug Tygar. ELK, a new protocol for efficient large-
group key distribution. In IEEE Symposium on Security and Privacy, May 2001.

R.L. Rivest. The RC5 encryption algorithm. In In B. Preneel, editor, Fast Software
Encryption, volume 1008 of Lecture Notes in Computer Science, pages 86—96. Springer
Verlag, 1995.

[STW96]

[STWOg]

[USDC99]
[WGLS]
[WHA9S]

[WL00]

13 Conclusion 19

Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman key distribution
extended to group communication. In Proceedings of the 3rd ACM Conference on Com-
munications Security (March 14-16, 1996, New Delhi, India), 1996.

Michael Steiner, Gene Tsudik, and Michael Waidner. CLIQUES: A new approach to
group key agreement. In Proceedings of the 18th International Conference on Distributed
Computing Systems (ICDCS’98), pages 380-387, Amsterdam, May 1998. IEEECSP.
Northern District of California United States District Court. RTAA v. Napster, court’s
512(a) ruling, 1999.

C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key graphs.
In ACM SIGCOMM 1998, pages 68-79, 1998.

Debby M. Wallner, Eric J. Harder, and Ryan C. Agee. Key management for multicast:
Issues and architectures. Internet draft, Network working group, september 1998, 1998.
C. Wong and S. Lam. Keystone: a group key management system. In Proceedings of
International Conference in Telecommunications, 2000.

