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Abstract
With the rapid growth of XML-document traffic on the
Internet, scalable content-based dissemination of XML
documents to a large, dynamic group of consumers has
become an important research challenge. To indicate
the type of content that they are interested in, data
consumers typically specify their subscriptions using
some XML pattern specification language (e.g., XPath).
Given the large volume of subscribers, system scalabil-
ity and efficiency mandate the ability toaggregate the
set of consumer subscriptions to a smaller set of con-
tent specifications, so as to both reduce their storage-
space requirements as well as speed up the document-
subscription matching process. In this paper, we pro-
vide the first systematic study of subscription aggre-
gation where subscriptions are specified withtree pat-
terns (an important subclass of XPath expressions). The
main challenge is to aggregate an input set of tree pat-
terns into a smaller set of generalized tree patterns such
that: (1) a givenspace constraint on the total size of the
subscriptions is met, and (2) theloss in precision (due
to aggregation) during document filtering is minimized.
We propose an efficient tree-pattern aggregation algo-
rithm that makes effective use of document-distribution
statistics in order to compute aprecise set of aggregate
tree patterns within the allotted space budget. As part
of our solution, we also develop several novel algo-
rithms for tree-pattern containment and minimization,
as well as “least-upper-bound” computation for a set of
tree patterns. These results are of interest in their own
right, and can prove useful in other domains, such as
XML query optimization. Extensive results from a pro-
totype implementation validate our approach.

1 Introduction
XML (eXtensible Markup Language) [16] has become
the dominant standard for data encoding and exchange

�Currently on leave from Temple University and supported in part by
NSF Career Award IIS-0093168.

�Current affiliation: Institut EURECOM, Sophia Antipolis, France

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

on the Internet, including e-Business transactions in both
Business-to-Business (B2B) and Business-to-Consumer
(B2C) applications. Given the rapid growth of XML traf-
fic on the Internet, the effective and efficient delivery of
XML documents has become an important issue. Con-
sequently, there is growing interest in the area of XML
content-based filtering and routing (e.g., [4]), which ad-
dresses the problem of effectively directing high volumes
of XML-document traffic to interested consumers based
on documentcontents. Unlike conventional routing, where
packets are routed based on a limited, fixed set of attributes
(e.g., source/destination IP addresses and port numbers),
content-based routing is based on general patterns of the
document contents, which is significantly more flexible and
demanding. Consumers typically specify theirsubscrip-
tions, indicating the type of XML content that they are
interested in, using some XML pattern specification lan-
guage (e.g., XPath [15]). For each incoming XML docu-
ment, acontent-based router matches the document con-
tents against the set of subscriptions to identify the (sub)set
of interested consumers, and then routes the document to
them. Thus, in content-based routing, the “destination” of
an XML document is generally unknown to the data pro-
ducer, and is computeddynamically based on the document
contents and the active set of subscriptions.

Effective support for scalable, content-based XML rout-
ing is crucial to enabling efficient and timely delivery of
relevant XML documents to a large, dynamic group of con-
sumers. Given the large volume of potential consumers,
system scalability and efficiency madate the ability to ju-
diciouslyaggregate the set of consumer subscriptions to a
smaller set of content specifications. The goal, of course,
is to both reduce the subscriptions’ storage space require-
ments (e.g., so that the routing table fits in main memory),
as well as speed up the filtering of incoming XML traf-
fic. For instance, a core router in a B2B application may
choose to aggregate subscriptions based on geographical
location, affiliation, or domain-specific information (e.g.,
telecommunications). Subscription aggregation essentially
involves aggregating an initial set of subscriptions� into a
smaller set� such that any document that matches some
subscription in� also matches some subscription in�.
However, since there is typically a“loss of precision” as-
sociated with such aggregation, the documents matched by
the aggregated set� is, in general, a superset of those
matched by the original set�. As a result, a document
may be routed to consumers who have not subscribed to
it, thus resulting in an increase in the amount of unwanted
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Figure 1: Example Tree Patterns and XML Document Tree.

document traffic. In order to avoid such spurious forward-
ing of documents, it is desirable to minimize the number of
such “false matches” (i.e., minimize the loss in precision)
with respect to the given space constraint for the aggregated
subscriptions.

So far, there has only been limited work on subscrip-
tion aggregation, mainly for very simple subscription mod-
els. For example, in [12], each subscription is a set of
attribute-predicate pairs (e.g.,������ � “GE” � �	�
� �
���� ����� � �����), and an aggregated subscription is
allowed to contain wildcard values, indicating the entire set
of domain values for certain attributes.1 In this paper, we
provide the first systematic study of the subscription aggre-
gation problem where subscriptions are specified using the
much more expressive model oftree patterns. Tree pat-
terns represent an important subclass of XPath expressions
that offers a natural means for specifying tree-structured
constraints in XML and LDAP applications [3]. Compared
to earlier work based on attribute/predicate-based subscrip-
tions, effectively aggregating tree-patterns poses a much
more challenging problem since subscriptions involve both
content information (node labels) as well as structure in-
formation (parent-child and ancestor-descendant relation-
ships). Briefly, ourtree pattern aggregation problem can
be stated as follows: Given an input set of tree patterns�
and a space constraint, aggregate� into a smaller set of
generalized tree patterns that meets the space constraint,
and for which the loss in precision due to aggregation is
minimized.

Example 1.1 Consider the two similar tree-pattern-based
subscriptions �� and �� shown in Figure 1, where ��
matches any document with a root element labeled “CD”
that has both a sub-element labeled “SONY” as well as
a sub-element (with an arbitrary label) that in turn has
a sub-element labeled “Bach”; and �� matches any doc-
ument that has some element labeled “CD” with a sub-
element labeled “Bach”. Here the node labeled ‘�’ (wild-
card) matches any label, while the node labeled ‘��’ (de-
scendant) matches some (possibly empty) path. The XML
document � shown in Figure 1(e) matches (or satisfies)
�� but not �� because the sub-element labeled “Bach” in

1Due to space constraints, a more detailed overview of related work
can be found in the appendix.

� does not have a parent element labeled “CD”. For ef-
ficiency reasons, one might want to aggregate the set of
tree patterns ���� ��� into a single tree pattern. Two ex-
amples of aggregate tree patterns for ���� ��� are �� and
�� (in Figure 1) since any document that satisfies �� or
�� also satisfies both �� and ��. Although both �� and ��
have the same number of nodes, �� is intuitively “more pre-
cise” than �� with respect to ���� ��� since �� preserves the
ancestor-descendant relationship between the “CD” and
“Bach” elements as required by �� and ��. Indeed, any
XML document that satisfies �� also satisfies �� (and thus
we say that �� “contains” ��). �

To the best of our knowledge, our work is the first to
address this timely subscription aggregation problem for
XML data dissemination. Our main contributions can be
summarized as follows.

� We study the properties of tree patterns and develop
efficient algorithms for deciding tree pattern contain-
ment, minimizing a tree pattern, and computing the
most precise aggregate (i.e., the “least upper bound”)
for a set of patterns. Our results are not only interest-
ing in their own right, but also provide solutions for
special cases of our tree pattern aggregation problem.

� We propose a novel, efficient method that exploits
coarse statistics on the underlying distribution of
XML documents to compute a “precise” set of aggre-
gate patterns within the allotted space budget. Specif-
ically, our scheme employs the document statistics to
estimate theselectivity of a tree pattern, which is also
used as a measure of the pattern’s preciseness. Thus,
our aggregation problem reduces to that of finding a
compact set of aggregate patterns with minimal loss
in selectivity, for which we present a greedy heuristic.

� We demonstrate experimentally the effectiveness of
our approach in computing a space-efficient and pre-
cise set of aggregate tree patterns.

The usefulness of our results on tree patterns and their ag-
gregation is not limited to content-based routing, but also
extends to other application domains such as the optimiza-
tion of XML queries involving tree patterns and the pro-
cessing/dissemination of subscription queries in a multicast
environment [9] (where aggregation can be used to reduce
server load and network traffic). Further, our work and
results are complementary to recent work on efficient in-
dexing structures for XPath expressions [2, 6]. The focus
of this earlier research is to speed up document filtering
with a given set of XPath subscriptions using appropriate
indexing schemes. In contrast, our work focuses oneffec-
tively reducing the volume of subscriptions that need to be
matched in order to ensure scalability given bounded stor-
age resources for routing. Clearly, our techniques can be
used as a pre-processing step for the indexes of [2, 6] when
hard constraints on the size of the index must be met. Due
to space limitations, the proofs of all theoretical results can
be found in the full version of this paper [5].



2 Problem Formulation
2.1 Definitions
A tree pattern is an unordered node-labeled tree that speci-
fies content and structure conditions on an XML document.
More specifically, a tree pattern� has a set of nodes, de-
noted by�������, where each node� in������� has a
label, denoted by��������, which can either be a tag name,
a “�” (wildcard that matches any tag), or a “��” (the de-
scendant operator). In particular, the root node has a spe-
cial label “��”. We use����	����� �� to denote the subtree
of � rooted at�, referred to as asub-pattern of �. Some
examples of tree patterns are depicted in Figure 2.

To define the semantics of a tree pattern�, we first give
the semantics of a sub-pattern����	����� ��, where� is
not the root node of�. Recall that XML documents are
typically represented as node-labeled trees, referred to as
XML trees. Let � be an XML tree and� be a node in� .
We say that� satisfies ����	����� �� at node�, denoted by
��� �� �� ����	����� ��, if the following conditions hold:
(1) if �������� is a tag, then� has a child node� � labeled
�������� such that for each child node� � of �, ��� ��� ��
����	������ ��; (2) if �������� � �, then� has a child node
�� labeled with an arbitrary tag such that for each child node
�� of �, ��� ��� �� ����	������ ��; and (3) if�������� � ��,
then� has a descendant node�� (possibly�� � �) such that
for each child� � of �, ��� ��� �� ����	������ ��.

We next define the semantics of tree patterns. Let� be
an XML tree with root�����, and� be a tree pattern with
root �����. We say that� satisfies �, denoted by� �� �,
iff for each child node� of �����, (1) if �������� is a tag
�, then����� is labeled with� and for each child node� �

of �, ��� ������ �� ����	������ �� (here�������� specifies
the tag of�����); (2) if �������� � �, then����� may have
any label and for each child node� � of �, ��� ������ ��
����	������ ��; (3) if �������� � ��, then����� has a de-
scendant node�� (possibly�� � �����) such that� � �� ��,
where� � is the subtree rooted at��, and�� is identical to
����	����� �� except that “/.” is the label for the root node
� (instead of��������). Observe that����� is treated differ-
ently from the rest of the nodes of�. The motivation behind
this is illustrated by�� in Figure 2, which specifies the fol-
lowing: for any XML tree� satisfying��, its root must
be labeled with� and moreover, it must contain two con-
secutive� elements somewhere. This cannot be expressed
without our special root label “/.” (as tree patterns do not
allow a union operator).

Example 2.1 Consider the tree pattern �� in Figure 2. An
XML document � satisfies �� if its root element satisfies all
the following conditions: (1) its label is a; (2) it must have
a child element with an arbitrary tag, which in turn has a
child element with a label b; and (3) it must have a de-
scendant element which has both a c-child element and an
a-child element. Thus, �� essentially specifies (existential)
conjunctive conditions on XML documents. It should be
noted that documents satisfying �� may have tags/subtrees
not mentioned in ��. For instance, the root element of �
may have a d-child element, and the b-elements of � may

have c-descendant elements. �

A tree pattern� is said to beconsistent if and only if
there exists an XML document that satisfies�. We only
consider consistent tree patterns in our work. Further, the
tree patterns defined above can be naturally generalized
to accommodate simple conditions and predicates (e.g.,
����� � “GE” and �	�
� � ����). To simplify the dis-
cussion, we do not consider such extensions in this paper.

It is worth mentioning that a tree pattern can be easily
converted to an equivalent XPath expression [15] in which
each sub-pattern is expressed as a condition/qualifier [5].
Thus, our tree patterns are graph representations of a class
of XPath expressions, which are similar to the tree patterns
that have been studied for XML queries (e.g., [3, 17]). It
is tempting to consider using a larger fragment of XPath
to express subscription patterns. However, it turns out that
even a mild generalization of our tree patterns (e.g., with
the addition of union/disjunction operators) leads to a much
higher complexity (coNP-hard or beyond) for basic opera-
tions such as containment computation (e.g., see [10]).

A tree pattern� is said to becontained in another tree
pattern�, denoted by� � �, if and only if for any XML tree
� , if � satisfies� then� also satisfies�. If � � �, we refer
to� as thecontainer pattern and� as thecontained pattern.
We say that� and� areequivalent, denoted by� � �, if
� � � and� � �. This definition can be generalized to
sets of tree patterns: a set of tree patterns� is contained
in another set of tree patterns� �, denoted by� � � �, if
for each� � �, there exists�� � �� such that� � ��.
Containment for sub-patterns is defined similarly.

The size of a tree pattern�, denoted by���, is simply
the cardinality of its node set. For example, referring to
Figure 2,���� � � and���� � �.

2.2 Problem Statement
The tree pattern aggregation problem that we investigate
in this paper can now be stated as follows. Given a set of
tree pattern subscriptions� and a space bound� on the
total size of the aggregated subscriptions, compute a set
of tree patterns� � that satisfies all of the following three
conditions:

(C1) � � � � (i.e.,� � is at least as general as�),
(C2)

�
	��
� ���� 	 � (i.e.,� � is “concise”), and

(C3) � � is as “precise” as possible, in the sense that there
does not exist another set of tree patterns� �� that sat-
isfies the first two conditions and� �� � ��.

Clearly, the tree pattern aggregation problem may not nec-
essarily have a unique solution since it is possible to have
two sets�� and� �� that satisfy the first two conditions but
�� 
� ��� and� �� 
� ��. Therefore, we need to devise some
measure to quantify the goodness of candidate solutions in
terms of both their conciseness as well as preciseness.

With respect to conciseness, we are interested inmin-
imal tree patterns that do not contain any “redundant”
nodes. More precisely, we say that a tree pattern� is min-
imized if for any tree pattern�� such that�� � �, it is the
case that��� 	 ����. With respect to preciseness, it can be
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Figure 2: Examples of Tree Patterns.

shown that the containment relationship� on the universe
of tree patterns actually defines alattice. In particular, the
notions ofupper bound andleast upper bound are of rele-
vance to the aggregation problem and, therefore, we define
them formally here.

An upper bound of two tree patterns� and� is a tree
pattern� such that� � � and� � �, i.e., for any XML tree
� , if � �� � or � �� � then� �� �. Theleast upper bound
(LUB) of � and�, denoted by� � �, is an upper bound�
of � and� such that, for any upper bound� � of � and�,
� � ��. Once again, we generalize the notion of LUBs to a
set� of tree patterns. Anupper bound of � is a tree pattern
� , denoted by� � � , such that� � � for every� � �.
The LUB of�, denoted by��, is an upper bound� of �
such that for any upper bound� � of �, � � � �.

Clearly, if � is an aggregate tree pattern for a set of tree
patterns� (i.e., � � �), then� is an upper bound of�.
Observe that, if� is the LUB of�, then� is themost precise
aggregate tree pattern for�. In fact, it can be shown that
�� exists and is unique up to equivalence for any set� of
tree patterns [5]; thus, it is meaningful to talk about�� as
the most precise aggregate tree pattern.

Example 2.2 Consider again the tree patterns in Figure 2.
Observe that �� � ��; and since ���� � ����, �� is not a
minimized pattern. In fact, except for ��, all the tree pat-
terns in Figure 2 are minimized patterns. Note that �� 
� ��
because the root node of �� does not have a tag-a child
node; and �� 
� �� because there exists no node in �� that
is a parent node of both a tag-a-node and a tag-c-node. Ob-
serve that �� � �� and �� � ��; i.e., �� is an upper bound
of �� and ��. However, �� 
� ����� since we have another
tree pattern, ��, which is an upper bound of �� and �� such
that �� � ��. Indeed, �� � �� � �� with ���� � ����	 ����.
Note, however, that the size of an LUB is not necessarily
always smaller than the size of its constituent patterns. For
example, �� � �� � � but ���� � ����	 �� �. Note that ��
is an upper bound of ���� ��� ��� ��� � � ��� ���. �

We conclude this section by presenting some additional
notation used in this paper. For a node� in a tree pattern�,
we denote the set of child nodes of� in � by �������� ��.

We also define a partial ordering� on node labels such
that if � and �� are tag names, then (1)� � � � ��
and (2)� � �� iff � � ��. Given two nodes� and�,
 ��!������� �� is defined to be the “least upper bound”
of their labels�������� and�������� as follows:

����������	
� �

���
��

�������� if �������� � ������
�	
�� if ��������� � ���

or �������
� � ���	
* otherwise.

For example, ��!������� �� � � and ��!������� ���
� ��. For notational convenience, we refer to a node� in a
tree pattern as an"-#�� if �������� � ", and refer to� as
a tag-node if �������� 
� ���� �� ���.

3 Computing the Most Precise Aggregate
In this section, we consider a special case of our tree pat-
tern aggregation problem, namely, when the aggregate set
�� consists of a single tree pattern and there is no space con-
straint. For this case, we provide an algorithm to compute
themost precise aggregate tree pattern (i.e., LUB) for a set
of tree patterns. Some of the algorithms given in this sec-
tion are also key components of our solution for the general
problem, which is presented in the next section.

Given two input tree patterns� and�, AlgorithmLUB in
Figure 3 computes the most precise aggregate tree pattern
for ��� �� (i.e., the LUB of� and�). It traverses� and�
top-down and computes thetightest container sub-patterns
for each pair of sub-patterns� � � ����	����� �� and�� �
����	����� �� encountered, where� and� are nodes in�
and�, respectively. The tightest container sub-patterns of
�� and�� are a set$ of sub-patterns such that:

(1) $ consists of container sub-patterns2 of �� and��, i.e.,
for any XML document� and any element� in � , if
��� �� �� �� or ��� �� �� �� then��� �� �� 	 for each
	 � $; and,

2Note that a sub-pattern of tree patterns� and� is an upper-bound of
� and�, and we use these two terms interchangeably.



Algorithm LUB ��	 �
Input: � and are tree patterns.
Output: A tree pattern representing the LUB of� and.
1) if ( � �) then return�;
2) if (� � ) then return;
3) Initialize����������	
� � �,
� � � ��������	 � 
 � �������;

4) Let����� and
���� denote the root nodes of� and, resp.;
5) for each� � �����������	 �� do
6) for each
 � ������
����	 � do
7) ����������	
� � ��� ��� ��	 
	 ���������;
8) Create a tree pattern� with root node label�� and

the set of child sub-patterns�
������	������ 
��
������	������ 
�

����������	 
�;

9)return �������	 ���;

Algorithm LUB SUB ��	 
	 ���������
Input: �, 
 are nodes in tree patterns�,  (respectively),

�������� is a 2-dimensional array such that
����������	 
� is the set of tightest container
sub-patterns of���������	 �� and��������
	 �.

Output: ����������	
�.
1) if �����������	
� �� �� then
2) return ����������	 
�;
3)else if ���������
	 � � ���������	 ��� then
4) return ����������	 ���;
5)else if ����������	 �� � ��������
	 �� then
6) return ���������
	 ��;
7)else
8) Initialize� � �; �� � �; ��� � �;
9) for each�� � �������	 �� do
10) for each
� � ������
	 � do
11) � � � � ��� ��� ���	 
�	 ���������;
12) for each�� � �������	 �� do
13) �� � �� � ��� ��� ���	 
	 ���������;
14) for each
� � ������
	 � do
15) ��� � ��� � ��� ��� ��	 
�	 ���������;
16) Let� be the pattern with root node label����������	
�

and set of child subtree patterns�;
17) Let�� be the pattern with root node label��

and set of child subtree patterns��;
18) Let��� be the pattern with root node label��

and set of child subtree patterns���;
19) return ����������	 
� � ��	 ��	 ����;

Figure 3: Least-Upper-Bound Computation Algorithm.

(2) $ is tightest in the sense that for any other set of con-
tainer sub-patterns$� of �� and�� that satisfies condi-
tion (1), any XML document� and any element� in
� , if ��� �� �� 	 for each	 � $ then��� �� �� 	� for
all 	� � $�.

Intuitively,$ is a collection of conditions imposed by both
�� and�� such that if� satisfies�� or �� at�, then� also sat-
isfies the conjunction of these conditions at�. We now show
how the LUB for� and� can be computed from the tightest
container sub-patterns. Let����� and����� be the roots of
patterns� and�, respectively. Note that a document� that
satisfies� also satisfies, for each� � ������������ ��, the
restriction of� to the root node and only����	����� ��.
Consequently, a document� that satisfies� or � must

also satisfy the pattern� consisting of a root node (with
label /.) whose children are the tightest container sub-
patterns for each pair����	����� �� and����	����� ��,
where� � ������������ �� and� � ������������ ��. This
pattern� is thus an LUB of� and�.

The main subroutine in our LUB computation (Al-
gorithm LUB SUB) computes the tightest container sub-
patterns of�� and �� as follows. If �� � �� (resp.
�� � ��), then�� (resp. ��) is the tightest container sub-
pattern; otherwise, the tightest container sub-patterns are
a set��� ��� ���� of sub-patterns, which are defined in the
following manner. The root node of� is labeled with
 ��!������� �� and the child subtrees of� are the tight-
est container sub-patterns of each child subtree of� � and
each child subtree of� �. Intuitively, the root of� corre-
sponds to the roots of�� and�� (with a label equal to the
least upper bound of that of� � and ��). In other words,
� preserves the positions of the corresponding nodes in� �

and��. However, this “position-preserving” generalization
is not sufficient since�� and �� may have common sub-
patterns at different positions relative to their roots. For
example,�� and� in Figure 2 have a common sub-pattern
rooted at an�-node that has both a�-child and a
-child, but
this pattern is located at different positions relative to the
roots of�� and� . To capture these “off-position” common
sub-patterns, we need to compute� � and���. The child sub-
trees of�� are the tightest container sub-patterns of� � itself
and each child subtree of��; and the label of the root node
of �� is �� to accommodate common sub-patterns at differ-
ent positions relative to the roots of�� and��. Similarly, the
root node of��� has label��, and the child subtrees of���

are the tightest container sub-patterns of� � itself and each
child subtree of� �.

By computing the tightest container sub-patterns recur-
sively, the algorithm computes the LUB of the input tree
patterns� and�. By induction on the structures of� and�,
we can show the following result [5].

Proposition 3.1: Given two tree patterns � and �, Algo-
rithm LUB ��� �� computes � � �. �

Example 3.1 Given �� and � in Figure 2, Algorithm
LUB returns ��, which is indeed �� � � . To help ex-
plain the computation of ��, we use the notation ��
to refer the #�� node (in some tree pattern) that is la-
beled “�”, where each collection of nodes sharing the
same label are ordered based on their pre-order se-
quence; for example, in ��, we use ��� and ��� to
refer to the leftmost and rightmost ��-nodes, respec-
tively. Algorithm LUB SUB (invoked by Algorithm LUB)
first extracts the “position preserving” tightest container
sub-patterns for ����	������ ��� and ����	����� � �,
which yields the sub-pattern ����	������ ��� (in Steps 9–
11). Note that the root node of ����	������ ��� is la-
beled a because both the root nodes of ����	������ ���
and ����	����� � � are labeled a. The sub-patterns
����	������ ��� and ����	����� ��, however, have quite
different structures and thus a “position-preserving” at-
tempt to extract their common sub-patterns only yields



����	������ ���. In particular, the common sub-pattern
consisting of an �-node with both a �-child-node and

-child-node is not captured by the above process be-
cause they occur at different positions relative to the root
nodes of ����	������ ��� and ����	����� ��. To ex-
tract such “off-position” common sub-patterns, Algorithm
LUB SUB compares ����	������ ��� with ����	����� � �
and ����	���
� � �, as well as compares ����	����� � �
with ����	������ ��� (in Steps 12–15). Indeed, this yields
����	������� ��� which has a ��-root since this com-
mon sub-pattern occurs at different positions relative to
the root nodes of ����	������ ��� and ����	����� � �.
It should be mentioned that both ����	������� ��� and
����	������� ��� are also produced by the “off-position”
processing, as Algorithm LUB SUB recursively processes
the sub-pattern ����	������ ��� with ����	����� � � and
����	���
� � �, respectively. Finally, the algorithm re-
moves the redundant nodes in the result tree pattern by
using a minimization algorithm (which will be explained
shortly) to generate the LUB ��. �

It is straightforward to show that our LUB operator “�”,
considered as a binary operator, iscommutative andasso-
ciative, i.e., �� � �� � �� � �� and �� � ��� � ��� �
����������. As a result, AlgorithmLUB can be naturally
extended to compute the LUB of any set of tree patterns.
We next explain the details of the two auxiliary algorithms
used in AlgorithmLUB.

Algorithm LUB needs to check the containment of tree
patterns, which is implemented by AlgorithmCONTAINS
in Figure 4. Given two input tree patterns� and�, the algo-
rithm determines if� � �. It maintains a two-dimensional
array ������, which is initialized with������
�� �� �
#��� to indicate that� � ������� and� � �������
have not been compared; otherwise,������
�� �� �
��	��� %����� such that������
�� �� � �	�� if and only
if ����	����� �� � ����	����� ��. Clearly,� � � if and
only if ������
������ ������ � �	��, where����� and�����
denote the root nodes of� and�, respectively.

The main subroutine in our containment algorithm is
Algorithm CONTAINS SUB. Abstractly,CONTAINS SUB
traverses� and� top-down and updates������
�� �� for
each pair of nodes� � ������� and� � �������
visited as follows. Let�� and �� denote����	����� ��
and����	����� ��, respectively. If������
�� �� has al-
ready been computed (i.e.,������
�� �� 
� #���), then its
value is returned. Otherwise, our algorithm determines
whether�� � ��, as follows. If �������� 
� ��, then
������
�� �� � �	�� iff �������� � �������� and each
child subtree of� contains some child subtree of�. Oth-
erwise, if �������� � ��, two additional conditions need
to be taken into account. This is because unlike a�-node
or a tag-name-node, a��-node in a container tree pattern
can also be “mapped” to a (possibly empty) chain of nodes
in a contained tree pattern. For example, consider the tree
patterns�� and� in Figure 2. Note that� � ��, and
the��-node in�� is not mapped to any node in� in the
sense that� would still be contained in�� if the ��-node

Algorithm CONTAINS ��	 �
Input: � and are two tree patterns.
Output: Returns���� if  � �; ����� otherwise.
1) Initialize��������	 
� � ����,
� � � ��������	 � 
 � �������;

2) Let����� and
���� denote the root nodes of� and, resp.;
3) if ������������	 �� � �� then
4) return ����;
5)else
6) return CONTAINS SUB ������	 
����	 �������;

Algorithm CONTAINS SUB ��	 
	 �������
Input: �, 
 are nodes in tree patterns�,  (respectively),

������ is a 2-dimensional array such that each
��������	 
� � �����	 �����	 �����.

Output: ��������	
�.
1) if ���������	
� �� ����� then
2) return ��������	 
�;
3) if (� is a leaf node in�) then
4) ��������	 
� � �������
� 	 ���������;
5)else if �������
� �	 ��������� then
6) ��������	 
� � �����;
7)else
8) ��������	 
� �

�
�������	��
��

�
� 	

�������	��
�


������ ��� ���	 
�	 �������



�;

9) if ���������	
� � ������ and ��������� � ��� then
10) ��������	 
� ��

�������	��
�� 
������ ��� ���	 
	 �������;
11) if ���������	
� � ������ and ��������� � ��� then
12) ��������	 
� �

	
�������	��
�


������ ��� ��	 
�	 �������;

13)return ��������	
�;

Figure 4: Tree-Pattern Containment Algorithm.

in �� is deleted. On the other hand, for the tree patterns
�� and�� in Figure 2,�� � �� and the��-node in�� is
mapped to both the�- and�-nodes in�� in the sense that
����	����� ��� � ����	������ ��� and����	����� ��� �
����	������ ���. These two additional scenarios are han-
dled by Steps 10 and 12 in AlgorithmCONTAINS SUB:
Step 10 accounts for the case where a��-node (� itself)
is mapped to an empty chain of nodes, and Step 12 for
the case where a��-node (� itself) is mapped to a non-
empty chain. Note that in Steps 8 and 12, the expres-
sion

�
�������������� �������� ��	 ������ ������� re-

turns%���� if �������� �� � .
By induction on the structures of� and�, we can show

the following result.

Proposition 3.2: Given two tree patterns � and �, Algo-
rithm ����������� �� determines if � � � in &���� � ����
time. �

The quadratic time complexity of our tree-pattern con-
tainment algorithm is due to, among other things, the fact
that each pair of sub-patterns in� and� is checked at most
once, because of the use of the������ array. To simplify
the discussion, we have omitted from AlgorithmCON-
TAINS certain subtle details that involve tree patterns with



chains of��- and�-nodes. Such cases require some ad-
ditional pre-processing to convert the tree pattern to some
canonical form, but this does not increase our algorithm’s
time complexity.

To ensure that our tree patterns are concise, we need to
identify and eliminate “redundant” nodes in them. Given
a tree pattern�, a minimized tree pattern� � equivalent
to � can be computed using a recursive algorithmMIN-
IMIZE. Starting with the root of�, our minimization al-
gorithm performs the following two steps to minimize the
sub-pattern����	����� �� rooted at node� in �: (1) For any
��� ��� � �������� ��, if ����	������ �� � ����	������� ��,
then delete����	������ �� from ����	����� ��; and, (2)
For each�� � �������� �� (that was not deleted in the first
step), recursively minimize����	���� �� ��. The complete
details can be found in [5].

Proposition 3.3: Algorithm MINIMIZE minimizes any
tree pattern � in &������ time. �

Proposition 3.4: For any minimized tree patterns � and � �,
� � �� iff � � �� (i.e., they are syntactically equal). �

Given the low computational complexities ofCON-
TAINS andMINIMIZE, one might expect that this would
also be the case for AlgorithmLUB. Unfortunately, in the
worst case, the size of the (minimized) LUB of two tree pat-
terns can be exponentially large (see [5] for a detailed anal-
ysis). Our implementation results, however, demonstrate
that ourLUB algorithm exhibits reasonably low average-
case complexity in practice.

4 Selectivity-based Aggregation Algorithm
While the LUB algorithm presented in the previous sec-
tion can be used to compute a single, most precise aggre-
gate tree pattern for a given set� of patterns, the size of
the LUB may be too large and, therefore, may violate the
specified space constraint� on the total size of the aggre-
gated subscriptions (Section 2.2). Thus, in order to fit our
aggregates within the allotted space budget, we relax the
requirement of a single precise aggregate by permitting our
solution to be aset � � � ���� ��� � � � � ��� (instead of a
single pattern), such that each pattern� � � is contained
in some pattern�� � ��. Of course, we also require that� �

provide the “tightest” containment for patterns in� for the
given space constraint (Section 2.2); that is, the number of
XML documents that satisfy some tree pattern in� � but not
�, is small.

A simple measure of the preciseness of� � is its selectiv-
ity, which is essentially the fraction of filtered XML docu-
ments that satisfy some pattern in� �. Thus, our objective is
to compute a set� � of aggregate patterns whose selectivity
is very close to that of�. Clearly, the selectivity of our tree
patterns is highly dependent on the distribution of the un-
derlying collection of XML documents (denoted by'). It
is, however, infeasible to maintain the detailed distribution
' of streaming XML documents for our aggregation—the
space requirements would be enormous! Instead, our ap-
proach is based on building aconcise synopsis of' on-line

(i.e., as documents are streaming by), and using that synop-
sis to estimate (approximate) tree-pattern selectivities. At a
high level, our aggregation algorithm iteratively computes
a set�� that is both selective and satisfies the space con-
straint, starting with� � � � (i.e., the original set� of pat-
terns), and performing the following sequence of steps in
each iteration:

1. Generate a candidate set of aggregate tree patterns�
consisting of patterns in� � and LUBs of similar pat-
tern pairs in� �.

2. Prune each pattern� in � by deleting/merging nodes
in � in order to reduce its size.

3. Choose a candidate� � � to replace all patterns in
�� that are contained in�. Our candidate-selection
strategy is based onmarginal gains [14]: The selected
candidate� is the one that results in the minimum loss
in selectivity per unit reduction in the size of� � (due
to the replacement of patterns in� � by �).

Note that our pruning step (Step 2) above makes can-
didate aggregate patterns less selective (in addition to de-
creasing their size). Thus, by replacing patterns in� � by
patterns in�, we are effectively trying to reduce the size of
�� by giving up some of its selectivity.

In the following subsections, we describe in more detail
our algorithm for computing� �. We begin by presenting
our approach for estimating the selectivity of tree patterns
over the underlying document distribution, which is critical
to choosing a good replacement candidate in Step 3 above.

4.1 Selectivity Estimation for Tree Patterns
The Document Tree Synopsis. As mentioned above, it is
simply impossible to maintain the accurate document dis-
tribution' (i.e., the full set of streaming documents) in
order to obtain accurate selectivity estimates for our tree
patterns. Instead, our approach is to approximate' by a
concise synopsis structure, which we refer to as thedoc-
ument tree. Our document tree synopsis for', denoted
by '� , captures path statistics for documents in', and
is built on-line as XML documents stream by. The doc-
ument tree essentially has the same structure as an XML
tree, except for two differences. First, the root node of'�
has the special label “/.”. Second, each non-root node� in
'� has a frequency associated with it, which we denote
by %	�����. Intuitively, if ������ � � � ��� is the sequence of
tag names on nodes along the path from the root to� (ex-
cluding the label for the root), then%	����� represents the
number of documents� in ' that contain a path with tag
sequence������ � � � ��� originating at the root of� . The
frequency for the root node of'� is set to� , the number
of documents in'.

As XML documents stream by,'� is incrementally
maintained as follows. For each arriving document� , we
first construct theskeleton tree �� for document� . In the
skeleton tree��, each node has at most one child with a
given tag.�� is built from� by simply coalescing two chil-
dren of a node in� if they share a common tag. Clearly, by
traversing nodes in� in a top-down fashion, and coalescing



x

a b

b c d da

c d

x

a b

− −

−

3

3 3

12

21

2 3
2

3

2.3

3

3

1.5

1.5

/. /.

(e) Document Tree (f) Compressed Document Tree

/.

x

a

d

/.

a

d

//

/.

a

d*

//

x

a b

c d
a a

c d

x

a ba

c b d
a

d

x

a b

b dc

(g) p1 (i) p3(h) p2

x

a ba

b dcc

(a) T1 (b) T2 (c) T3 (d) Skeleton tree for T1

Figure 5: Example Documents, Skeleton Tree, Document
Tree, and Patterns.

child nodes with common tags, we can construct�� from
� in a single pass (using an event-based XML parser). As
an example, Figure 5(d) depicts the skeleton tree for the
XML-document tree in Figure 5(a).

Next, we use�� to update the statistics maintained in
our document tree synopsis'� as follows. For each path
in ��, with tag sequence say������ � � � ���, let � be the last
node on the corresponding (unique) path in'� . We in-
crement%	����� by �. Figure 5(e) shows the document
tree (with node frequencies) for the XML trees��, ��, and
�� in Figure 5(a) to (c). Note that it is possible to further
compress'� by using techniques similar in spirit to the
methods employed by Aboulnaga et al. [1] for summariz-
ing path trees. The key idea is to merge nodes with the
lowest frequencies and store, with each merged node, the
average of the original frequencies for nodes in'� that
were merged. This is illustrated in Figure 5(f) for the doc-
ument tree in Figure 5(e), and with the label “–” used to
indicate merged nodes. Due to space constraints, in the
remainder of this subsection, we only present solutions to
the selectivity estimation problem using the uncompressed
tree'� . However, our proposed methods can be easily
extended to work even when'� is compressed [5].

We should note here that our selectivity estimation prob-
lem for tree patterns differs from the work of Aboulnaga et
al. [1] in two important respects. First, in [1], the authors
consider the problem of estimating selectivity for only sim-
ple paths that consist of a //-node followed by tag nodes. In
contrast, we estimate selectivities of general tree patterns
with branches, and *- or //-nodes arbitrarily distributed in
the tree. Second, we are interested in selectivity at the gran-
ularity of documents, so our goal is to estimate the number
of XML documents that match a tree pattern; instead, [1]
addresses the selectivity problem at the granularity of indi-
vidual document elements that are discovered by a path. It
is easy to see that these are two very different estimation
problems.

Selectivity Estimation Procedure. Recall that the selec-

tivity of a tree pattern� is the fraction of documents� in
' that satisfy�. By construction, our'� synopsis gives
accurate selectivity estimates for tree patterns comprising
a single chain of tag-nodes (i.e., with no * or //). How-
ever, obtaining accurate selectivity estimates for arbitrary
tree patterns with branches, *, and // is, in general, not pos-
sible with'� summaries. This is because, while'� cap-
tures the number of documents containing a single path, it
does not store document identities. As a result, for a pair
of arbitrary paths in a tree pattern, it is impossible to de-
termine the exact number of documents that contain both
paths or documents that contain one path, but not the other.

Our estimation procedure solves this problem, by mak-
ing the following simplifying assumption:The distribution
of each path in a tree pattern is independent of other paths.
Thus, we estimate the selectivity of a tree pattern contain-
ing no �� or � labels, simply as theproduct of the selec-
tivities of each root to leaf path in the pattern. For patterns
containing�� or �, we consider all possible instantiations
for �� and� with element tags, and then choose as our pat-
tern selectivity the maximum selectivity value over all in-
stantiations. (This is similar to the definition of a fuzzy�

operator in fuzzy logic [13].) We illustrate our selectivity
estimation methodology in the following example.

Example 4.1 Consider the problem of estimating the se-
lectivities of the tree patterns shown in Figures 5(g) to (i)
using the document tree shown in Figure 5(e). The total
number of documents,� , is �. Clearly, the number of doc-
uments satisfying pattern �� which consists of a single path,
can be estimated accurately by following the path in '�
and returning the frequency for the �-node (at the end of
the path) in '� . Thus, the selectivity of �� is ��� which
is accurate since only documents �� and �� satisfy ��. Es-
timating the number of documents containing pattern ��,
however, is somewhat more tricky. This is because there
are two paths with tag sequences ����� and ������� in
'� that match �� (corresponding to instantiating // with
� and ���). Summing the frequencies for the two �-nodes
at the end of these paths gives us an answer of 4 which
over-estimates the number of documents satisfying �� (only
documents �� and �� satisfy ��). To avoid double-counting
frequencies, we estimate the number of documents satisfy-
ing �� to be the maximum (and not the sum) of frequencies
over all paths in'� that match ��. Thus, the selectivity of
�� is estimated as ���.

Finally, the selectivity of �� is computed by consider-
ing all possible instantiations for // and *, and choosing
the one with the maximum selectivity. The two possible in-
stantiations for // that result in non-zero selectivities are �
and ���, and � can be instantiated with either �� 
 or � for
�� � �, and 
 or � for �� � ���. Choosing �� � � and
� � 
 results in the maximum selectivity since the product
of the selectivities of paths ����
 and ����� is maximum,
and is equal to ����� � ����� � ���. �

AlgorithmSEL (depicted in Figure 6), invoked with in-
put parameters� � ����� (root of pattern�) and� � �����
(root of'� ), computes the selectivity for an arbitrary tree



Algorithm SEL(�, �)
Input: � is a node in tree pattern�, � is a node in�� .
Output: �����������	 ��.
1) if (�����������	 �� is already computed)then
2) return �����������	 ��;
3)else if (�������� �	 ��������) then
4) return �����������	 �� � �;
5)else if (� is a leaf)then
6) return �������� ;
7) for each child�� � �������	 �� do
8) ����� � ��	�������	��
�� ���	� ���	 ����;
9)��� �


�������	��
��

����� ;
10)if (�������� � ��) then
11) ���� �


�������	��
��

�	����	 ��;
12) ��� � ��	����	 �����;
13) ���� � ��	�������	��
�� ���	���	 ����;
14) ��� � ��	����	 �����;
15)return �����������	 �� � ���

Figure 6: Tree Pattern Selectivity Estimation Algorithm.

pattern� in &��'� � � ���� time. In the algorithm, for nodes
� � � and� � '� , ������(��
�� �� stores the selectivity
of the sub-pattern����	����� �� with respect to the subtree
of'� rooted at node�. This selectivity is estimated similar
to the selectivity for pattern�, except that we now consider
all instantiations of����	����� �� (obtained by instantiat-
ing �� and� with element tags), and the selectivity of each
instantiation is computed with respect to� as the root in-
stead of the root of'� . For instance, suppose that� is the
�-node in�� (in Figure 5(i)), and� is the child�-node of
the�-node in'� (in Figure 5(e)). Then, the selectivity of
����	����� ��� with respect to� is essentially the product
of the selectivity of paths��� and��� with respect to node
�, which is� � �����. Thus,������(��
�� �� � ���.

Our goal is to compute������(��
������ ������. For
a pair of nodes� and �, Algorithm SEL computes
������(��
�� �� from ������(��
 � values for the chil-
dren of� and�. Clearly, if �������� 
� �������� (Steps 3-4
of the algorithm), then every path in����	����� �� begins
with a label different from�������� and thus the selectiv-
ity of each of the paths is�. If �������� � �������� and
� is a leaf (Steps 5-6), then we simply instantiate��������
(if �������� � �� or *) with ��������, giving a selectivity of
%	������� . On the other hand, if� is an internal node of�,
then in addition to instantiating�������� with ��������, we
also need to compute, for every child�� of �, the instanti-
ation for����	������ �� that has the maximum selectivity
with respect to some child�� of �. Since������(��
��� ���
is the selectivity of����	������ �� with respect to��, the
product of ��������������� � ������(��
��� ��� for the
children�� of � gives the selectivity of����	����� �� with
respect to�. Finally, if �������� � ��, then�� can be
simply#���, in which case the selectivity of����	����� ��
with respect to� is computed as described in Step 11, or
�� is instantiated to a sequence consisting of�������� fol-
lowed by���������, where�� is the child of� such that the
selectivity of����	����� ��with respect to�� is maximized
(Step 13). Observe that, in Steps 8 and 13, if� has no chil-

dren, then��������������� ��� � �� evaluates to�.

4.2 Tree Pattern Aggregation Algorithm
We are now ready to present our greedy heuristic algo-
rithm for the tree pattern aggregation problem defined in
Section 2.2 (which is, in general, an��-hard clustering
problem [5]). As described earlier, to aggregate an input set
of tree patterns� into a space-efficient and precise set, our
algorithm (AlgorithmAGGREGATE in Figure 7) iteratively
prunes the tree patterns in� by replacing a small subset of
tree patterns with a more concise upper-boundaggregate
pattern, until � satisfies the given space constraint. During
each iteration, our algorithm first generates a small set of
potential candidate aggregate patterns�, and selects from
these the (locally) “best” candidate pattern, i.e., the candi-
date that maximizes the gain in space while minimizing the
expected loss in selectivity.

Algorithm AGGREGATE ��	  �
Input: � is a set of tree patterns, is a space constraint.
Output: A set of tree patterns�� such that� � ��

and
�

���� 
�
 �  .
1) Initialize�� � �;
2) while �

�
���� 
�
 !  � do

3) �� � �� 
 � � ����	��	 
�
 � 
�	 � � ���;
4) �� � �� 
 � � ����	��  	 
�
� 

 � 
�	 �	  � ���;
5) � � �� � ��;
6) Select� � � such that"��������� is maximum;
7) �� � �� � �� 
 � � �	 � � ��� � ���;
8) return ��;

Figure 7: Tree Pattern Aggregation Algorithm.

Candidate Generation. We now explain the process for
generating the candidate set� in Steps 3–5 of Algo-
rithmAGGREGATE. To reduce the size of individual candi-
date patterns of the form� or���, each candidate ispruned
by invoking AlgorithmPRUNE (details in [5]). Given an
input pattern� and space constraint#, Algorithm PRUNE
prunes� to a smaller tree pattern�� such that� � �� and
���� 	 #. The algorithm treats tag-nodes as more selective
than�- and��-nodes, and therefore tries to prune away�-
and��-nodes before the tag-nodes. Specifically, the algo-
rithm first prunes the�- and��-nodes in� by (1) replac-
ing each adjacent pair of non-tag-nodes�� � with a single
��-node, if� is the only child of�, and (2) eliminating
subtrees that consist of only non-tag-nodes. If the tree pat-
tern is still not small enough after the pruning of the non-
tag-nodes, we start pruning the tag-nodes. There are two
ways to reduce the size of a tree pattern� by one node.
The first is to delete some leaf node in�, and the second
is to collapse two nodes� and� into a single��-node,
where �������� 
� �� and�������� �� � ���. To help
select a “good” leaf node to delete (or, pair of nodes to
collapse), we make use of the selectivity of the tag names.
More specifically, we use our document tree synopsis'�
to estimate the total number of occurrences of a tag name in
the document collection', and then choose the tags with
higher total frequencies (which are less selective) as candi-
dates for pruning.



Candidate Selection. Once the set of candidate aggregate
patterns has been generated, we need some criterion for
selecting the “best” candidate to insert into� �. For this
purpose, we associate a benefit value with each candidate
aggregate pattern� � �, denoted by)�#�%�����, based
on its marginal gain [14]; that is, we define)�#�%�����
as the ratio of the savings in space to the loss in selectivity
of using� over �� � � � �� � � � ��. More formally, if
������ , �����, and�	���� represent the root nodes of�,'� ,
and� � � �, then)�#�%����� is equal to:

��
���
���� 
�


�
� 
�


�	�������� 	 ���������	���
���� �	�������� 	 ������

Note that we compute the selectivity loss by comparing
the selectivity of the candidate aggregate pattern�with that
of the least selective pattern contained in it. This gives a
good approximation of the selectivity loss in cases when
the patterns�� � � � � used to generate� are similar and
overlap in the document tree'� . The candidate aggregate
pattern with the highest benefit value is chosen to replace
the patterns contained in it in� � (Steps 6–7).

5 Experimental Study
To verify the effectiveness of our tree pattern aggregation
algorithms, we have conducted an extensive performance
study using real-life DTDs and large numbers of tree pat-
terns. Our results indicate that our proposed aggregation
techniques achieve significant reductions in the number as
well as total size of tree patterns with minimal loss in se-
lectivity.

5.1 Experimental Testbed and Methodology
Our general methodology for evaluating the effectiveness
of a pattern aggregation algorithm� is as follows. Given
a large input set of tree patterns� and a space constraint
�, we use� to compute a set of aggregate patterns� � for
�, where� � � � and

�
	�
� ��� 	 � (our space constraint

is expressed in terms of number of nodes, since patterns
can be arbitrarily large). We then measure the loss in preci-
sion when using� � instead of� to filter XML documents.
Observe that when� � �, � � contains a single container
pattern (“��”).

To measure the loss in precision of the aggregate set� �,
we use a subset'� of a representative set of XML docu-
ments, such that no document in' � matches any tree pat-
tern in our initial pattern set�. The reason, of course,
is that XML documents that match� are also guaranteed
to match� �, so they are unlikely to affect our “precision-
loss” measurements. As� � becomes less precise, some
documents in'� will be erroneously reported as matches.
Let ��
����'�� ��� be the number of documents in' �

that match� �; the loss in precision of� � over� can be
estimated as���!������ �� �  ��
����'�� �����'��.
An aggregation algorithm is obviously more effective if
���!������ �� remains small as

�
	�
� ��� decreases.

XML Documents. We used two real-life DTDs to gener-
ate our XML document data set. The first one, the Extensi-
ble Hypertext Markup Language (XHTML) DTD [7], is a

reformulation of HTML as an XML application and is ar-
guably the document type most widely used over the Inter-
net. The XHTML DTD (version 1.0) contains�� elements
with ���� attributes. The second DTD, the News Industry
Text Format (NITF) DTD[8], is supported by most of the
world’s major news agencies. The NITF DTD (version 2.5)
contains��� elements with��� attributes.

We generated our data set of XML documents using
IBM’s XML Generator tool [11]. Both the XHTML and
NITF DTDs contain recursive structures, which can be
nested to produce XML documents with arbitrary number
of levels. We added the option of generating documents
skewed according to a Zipf distribution [18], where some
tag names appear more frequently than others, as is gener-
ally the case with real-life data.

For each each DTD and each skew value*� � ��� �� ��,
we generated two disjoint sets of���XML documents with
approximately��� nodes and�� levels on average. The
first set corresponds to the collection of XML documents
used to construct the document tree'� for selectivity es-
timation; the second set is used to measure the loss in pre-
cision of the aggregation algorithms. Both sets were gen-
erated with the same parameters, and thus can be expected
to have similar distributions. In each experiment, we used
the combined XML documents for both the XHTML and
NITF DTDs, i.e., we used a total of���� documents for
the document tree'� , and (a different)���� documents
for measuring the loss in precision.

XPath Expressions. To generate the set of tree patterns�,
we implemented an XPath expression generator that takes
a DTD as input and creates a set of valid XPath expressions
based on a set of parameters that control: (1) the maximum
height� of the tree patterns; (2) the probabilities�

�
and���

of having a wildcard “�” or a descendant “��” operator at
a node of a tree pattern; (3) the probability�� of having
more than one child at a given node; and (4) the skew*
 of
the Zipf distribution used for selecting element tag names.

For each DTD and each skew value*
 � ��� �� ��, we
generated a set of���� tree patterns with� � �� and�

�
�

��� � �� � ���. Each experiment was run with tree pat-
terns from both the XHTML and NITF DTDs, i.e.,�����
tree patterns which amounted to more than������ nodes.

Algorithms. We compared two different aggregation algo-
rithms in our experiments. The first (“naive”) algorithm,
PRUNE, is based on simple node pruning and works as fol-
lows. At each iteration, it selects a tree pattern���� from
� with the largest number of tag-nodes, collapses multiple
�- and��-nodes, and deletes a prunable node (i.e., a leaf
node or a node located next to��-nodes) with the highest
frequency (i.e., least selective) in the document tree'� . If
there is already a tree pattern identical to the pruned pat-
tern, then the duplicate is removed from�. The algorithm
iterates until the space constraint is satisfied. The second
algorithm, AGGR, is our greedy tree pattern aggregation
algorithm (from Figure 7) with both candidate generation
and selection (based on maximizing the benefit). Our ex-
periments were conducted on a 866 MHz Intel Pentium III



0

20

40

60

80

100

0 20 40 60 80 100 120 140

S
el

ec
tiv

ity
 L

os
s 

(%
)

Number of Nodes (x1,000)

Prune (θD=0)
Prune (θD=1)
Prune (θD=2)
Aggr (θD=0)
Aggr (θD=1)
Aggr (θD=2)

(a) Varying�� (�� � �)

0

20

40

60

80

100

0 20 40 60 80 100 120 140

S
el

ec
tiv

ity
 L

os
s 

(%
)

Number of nodes (x1,000)

Prune (θS=0)
Prune (θS=1)
Prune (θS=2)
Aggr (θS=0)
Aggr (θS=1)
Aggr (θS=2)

(b) Varying�� (�� � �)

0

20

40

60

80

100

0 20 40 60 80 100 120 140

S
el

ec
tiv

ity
 L

os
s 

(%
)

Number of nodes (x1,000)

Prune (θD=θS=0)
Prune (θD=θS=1)
Prune (θD=θS=2)
Aggr (θD=θS=0)
Aggr (θD=θS=1)
Aggr (θD=θS=2)

(c) Varying�� and��

Figure 8: Evaluation of the Aggregation Algorithms.

machine with��� MB of main memory running Linux.
Both algorithms completed the aggregation of����� tree
patterns in approximately�� minutes.

5.2 Experimental Results
We first compare the performance of the two aggregation
algorithms by varying the skew for element tags in the
XML documents and in the XPath expressions. We ran the
experiments with no skew, with skewed XML documents,
with skewed XPath expressions, and with skew in both the
XML documents and XPath expressions. In the last case,
we skew the distribution for element names in the oppo-
site “direction” (applying the same skew to both the XML
documents and XPath expressions would yield similar re-
sults as with no skew). The experimental results are shown
in Figures 8(b), 8(a), and 8(c), where the space constraint,
expressed in terms of the number of nodes, is varied along
the�-axis, and the+-axis indicates the observed loss in se-
lectivity for a given space constraint, i.e., the percentage of
XML documents that are erroneously reported as matches.

We also measure the benefits of aggregation in terms of
filtering performance, using the XTrie matching algorithm
described in [6]. Since the cost of filtering in XTrie grows
linearly with the number of XPath expressions, we expect
to observe a significant improvement in filtering speed as
the cardinality of� decreases.

Non-skewed workload. When neither the XML data nor
the tree patterns contain skew (i.e.,*� � *
 � �), the
AGGR algorithm can aggregate tree patterns up to��� of
their original size with only a��� loss in precision (the
results for non-skewed data are reported in all graphs of
Figure 8). In contrast, the precision of PRUNE algorithm
starts to degrade much sooner, and the loss in precision
reaches almost���� at ��� of the initial space. The bet-
ter performance of AGGR can be attributed to three main
factors: (1) the upper bound computation generates good
candidates with few nodes and little loss in precision, (2)
the selectivity-based heuristics help to detect and discard
candidates that correspond to patterns with low selectivity
(i.e., frequently occurring for a given DTD), and (3) the
covering computation enables redundant tree patterns to be

eliminated early.

Skewed XML documents. Real-world XML documents
are generally not uniformly distributed among the valid
XML data for a given DTD. When XML documents are
skewed (Figure 8(a)), we observe that the effectiveness of
the AGGR algorithm increases. The reason for this is that,
as data becomes more skewed, the XML documents tend to
form clusters with documents within a cluster being more
similar than those in different clusters; this, in turn, im-
proves the accuracy of selectivity estimation. The PRUNE

algorithm also benefits from the skew (although to a lesser
extent) because of its frequency-based pruning heuristic.

Skewed tree patterns. We also observe a significant im-
provement in our aggregation algorithm when the element
names of tree patterns are skewed (Figure 8(b)). Indeed,
the skew induces a clustering of patterns such that simi-
lar tree patterns are grouped into the same cluster, which
consequently increases the proportion of patterns that de-
velop containment relationships. This permits the aggrega-
tion algorithm to reduce the size of� with minimal loss of
selectivity, by computing tighter upper bound patterns and
discarding covered patterns.

Skewed workload. The two aggregation algorithms per-
form best when both the XML data and the tree patterns
are skewed in different “directions” (Figure 8(c)). With
high skew values, there is little overlap between the ele-
ment names of the XML documents and the tree patterns,
and AGGR remains highly selective with only a few hun-
dreds nodes. The PRUNE algorithm also exhibits signifi-
cant improvements and maintains��� selectivity even af-
ter the original number of nodes are reduced to less than a
third.

Filtering speed. As mentioned previously, the cost of
matching tree patterns against incoming XML documents
is proportional to the number of tree patterns. Since AGGR

generates candidates by computing upper bounds, the can-
didates cover more patterns, and as result, the number of
patterns in� shrinks faster with AGGR. Figure 9 shows that
the average filtering time per document decreases faster (as
space is increased) for AGGR than for the PRUNE algo-
rithm. Our aggregation algorithm is therefore more effec-
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tive both in terms of selectivity as well as filtering speed.

6 Related Work

To the best of our knowledge, our tree pattern aggregation
problem is a novel problem that has not been studied in ear-
lier work. In contrast to the “flat patterns” previously stud-
ied in the context of aggregating attribute-predicate-based
subscriptions [12], our paper focuses on hierarchical pat-
terns, which are more complex (as tree patterns consist of
both data contents and structure) and require more sophis-
ticated aggregation techniques.

A related area is the work on query merging to reduce
data dissemination costs of query subscriptions in a multi-
cast environment [9]. The motivation for query merging is
to merge multiple similar queries into a single, more gen-
eral query so as to reduce the workload of the server and
possibly the amount of traffic between the server and its
clients. However, the problem domain considered in [9] fo-
cuses on geographical queries (represented as rectangles);
furthermore, the issue of space constraint is not relevant
there.

Some forms of tree patterns have been studied as queries
for XML data [3, 17]. In particular, minimization algo-
rithms for these patterns have been developed in order to
optimize pattern queries. The tree patterns in [3] differ
from ours in two aspects. On the one hand, the tree pat-
terns of [3] do not allow�-nodes (wildcards) which, as
mentioned in Section 3, give rise to subtle problems in the
presence of��-nodes (descendants) when containment of
tree patterns is considered. On the other hand, they sup-
port selection of a set of document nodes as the result of a
pattern query, which we do not consider since what matters
for our subscription aggregation context is whether or not
a document matches a subscription; the actual set of doc-
ument nodes that matches a subscription is not relevant.
Because of these differences, the minimization algorithm
of [3] has an&�#�� complexity in contrast to our&�#��
complexity. Similarly, the work in [17] studies a different
class of tree patterns and their minimization algorithm is
only known to be in polynomial time.

7 Conclusions
We have provided the first systematic study oftree pat-
tern aggregation, an important problem in building next-
generation, scalable XML dissemination systems. The
main challenge is to aggregate an input set of tree patterns
into a smaller set such that: (1) a given space constraint
on the total size of the patterns is met, and (2) the loss
in precision (due to aggregation) is minimized. We have
proposed an efficient aggregation algorithm that makes ef-
fective use of document-distribution statistics in order to
compute a precise set of aggregate tree patterns within the
allotted space budget. Further, some of our algorithmic re-
sults are of interest in their own right, and can prove useful
in other domains, such as XML query optimization. Exten-
sive results from a prototype implementation have verified
the effectiveness of our approach.
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