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Abstract

With the rapid growth of XML-document traffic on the
Internet, scalable content-based dissemination of XML
documents to a large, dynamic group of consumers has
become an important research challenge. To indicate
the type of content that they are interested in, data
consumers typically specify their subscriptions using
some XML pattern specification language (e.g., XPath).
Given the large volume of subscribers, system scalabil-
ity and efficiency mandate the ability smgregate the

set of consumer subscriptions to a smaller set of con-
tent specifications, so as to both reduce their storage-
space requirements as well as speed up the document-
subscription matching process. In this paper, we pro-
vide the first systematic study of subscription aggre-
gation where subscriptions are specified virée pat-
terns (an important subclass of XPath expressions). The
main challenge is to aggregate an input set of tree pat-
terns into a smaller set of generalized tree patterns such
that: (1) a giverspace constraint on the total size of the
subscriptions is met, and (2) thess in precision (due

to aggregation) during document filtering is minimized.
We propose an efficient tree-pattern aggregation algo-
rithm that makes effective use of document-distribution
statistics in order to computepgecise set of aggregate
tree patterns within the allotted space budget. As part
of our solution, we also develop several novel algo-
rithms for tree-pattern containment and minimization,
as well as “least-upper-bound” computation for a set of
tree patterns. These results are of interest in their own
right, and can prove useful in other domains, such as
XML query optimization. Extensive results from a pro-
totype implementation validate our approach.

I ntroduction

on the Internet, including e-Business transactions in both
Business-to-Business (B2B) and Business-to-Consumer
(B2C) applications. Given the rapid growth of XML traf-

fic on the Internet, the effective and efficient delivery of
XML documents has become an important issue. Con-
sequently, there is growing interest in the area of XML
content-based filtering and routing (e.g., [4]), which ad-
dresses the problem of effectively directing high volumes
of XML-document traffic to interested consumers based
on documentontents. Unlike conventional routing, where
packets are routed based on a limited, fixed set of attributes
(e.g., source/destination IP addresses and port numbers),
content-based routing is based on general patterns of the
document contents, which is significantly more flexible and
demanding. Consumers typically specify thsibscrip-
tions, indicating the type of XML content that they are
interested in, using some XML pattern specification lan-
guage (e.g., XPath [15]). For each incoming XML docu-
ment, acontent-based router matches the document con-
tents against the set of subscriptions to identify the (sub)set
of interested consumers, and then routes the document to
them. Thus, in content-based routing, the “destination” of
an XML document is generally unknown to the data pro-
ducer, and is computetynamically based on the document
contents and the active set of subscriptions.

Effective support for scalable, content-based XML rout-
ing is crucial to enabling efficient and timely delivery of
relevant XML documents to a large, dynamic group of con-
sumers. Given the large volume of potential consumers,
system scalability and efficiency madate the ability to ju-
diciously aggregate the set of consumer subscriptions to a
smaller set of content specifications. The goal, of course,
is to both reduce the subscriptions’ storage space require-
ments (e.g., so that the routing table fits in main memory),
as well as speed up the filtering of incoming XML traf-
fic. For instance, a core router in a B2B application may

XML (eXtensible Markup Language) [16] has become choose to aggregate subscriptions based on geographical
the dominant standard for data encoding and exchangg,cation, affiliation, or domain-specific information (e.g.,
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involves aggregating an initial set of subscriptichmto a
smaller setd such that any document that matches some
subscription inS also matches some subscription 4n
However, since there is typically*doss of precision” as-
sociated with such aggregation, the documents matched by
the aggregated set is, in general, a superset of those
matched by the original sef. As a result, a document
may be routed to consumers who have not subscribed to
it, thus resulting in an increase in the amount of unwanted



T does not have a parent element labeled “ CD” . For ef-
ficiency reasons, one might want to aggregate the set of
tree patterns {p,,py} into a single tree pattern. Two ex-
amples of aggregate tree patterns for {p,,p»} are p. and
pq (in Figure 1) since any document that satisfies p, or
pp also satisfies both p. and p,. Although both p. and py
have the same number of nodes, p. isintuitively “ more pre-
cise” thanp, with respect to {p,, py } Sincep,. preservesthe
ancestor-descendant relationship between the “ CD” and
“Bach” elements as required by p, and p,. Indeed, any
XML document that satisfies p. also satisfies py (and thus

. “ H i c). l:‘
Figure 1. Example Tree Patterns and XML Document Tree.We say that p, * contains” p)
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document traffic. In order to avoid such spurious forward- 10 the best of our knowledge, our work is the first to

ing of documents, it is desirable to minimize the number of@ddress this timely subscription aggregation problem for
such “false matches” (i.e., minimize the loss in precision)XML data dissemination. Our main contributions can be
with respect to the given space constraint for the aggregatedUmmarized as follows.

subscriptions. o e We study the properties of tree patterns and develop
_ So far, there has only been limited work on subscrip-  efficient algorithms for deciding tree pattern contain-
tion aggregation, mainly for very simple subscription mod- ment, minimizing a tree pattern, and computing the

els. For example, in [12], each subscription is a set of
attribute-predicate pairs (e.g{jssue = “GE”,price <

120, volume > 1000}), and an aggregated subscription is
allowed to contain wildcard values, indicating the entire set
of domain values for certain attributes.In this paper, we
provide the first systematic study of the subscription aggre-
gation problem where subscriptions are specified using the
much more expressive model tvke patterns. Tree pat-
terns represent an important subclass of XPath expressions
that offers a natural means for specifying tree-structured
constraints in XML and LDAP applications [3]. Compared
to earlier work based on attribute/predicate-based subscrip-
tions, effectively aggregating tree-patterns poses a much
more challenging problem since subscriptions involve both
content information (node labels) as well as structure in-

most precise aggregate (i.e., the “least upper bound”)
for a set of patterns. Our results are not only interest-
ing in their own right, but also provide solutions for

special cases of our tree pattern aggregation problem.

e We propose a novel, efficient method that exploits

coarse statistics on the underlying distribution of
XML documents to compute a “precise” set of aggre-
gate patterns within the allotted space budget. Specif-
ically, our scheme employs the document statistics to
estimate theselectivity of a tree pattern, which is also
used as a measure of the pattern’s preciseness. Thus,
our aggregation problem reduces to that of finding a
compact set of aggregate patterns with minimal loss
in selectivity, for which we present a greedy heuristic.

formation (parent-child and ancestor-descendant relation- ¢ We demonstrate experimentally the effectiveness of

ships). Briefly, ourtree pattern aggregation problem can

be stated as follows: Given an input set of tree pattérns
and a space constraint, aggregéteto a smaller set of
generalized tree patterns that meets the space constrai

minimized.

Example 1.1 Consider the two similar tree-pattern-based
subscriptions p, and p, shown in Figure 1, where p,
matches any document with a root element labeled “ CD”
that has both a sub-element labeled “ SONY” as well as
a sub-element (with an arbitrary label) that in turn has
a sub-element labeled “ Bach” ; and p, matches any doc-
ument that has some element labeled “ CD” with a sub-
element labeled “ Bach” . Here the node labeled ‘" (wild-
card) matches any label, while the node labeled * //* (de-
scendant) matches some (possibly empty) path. The XML
document 7' shown in Figure 1(e) matches (or satisfies)
p, but not p, because the sub-element labeled “ Bach” in

our approach in computing a space-efficient and pre-
cise set of aggregate tree patterns.

The usefulness of our results on tree patterns and their ag-

and for which the loss in precision due to aggregation iSraﬁ‘egation is not limited to content-based routing, but also

extends to other application domains such as the optimiza-
tion of XML queries involving tree patterns and the pro-
cessing/dissemination of subscription queries in a multicast
environment [9] (where aggregation can be used to reduce
server load and network traffic). Further, our work and
results are complementary to recent work on efficient in-
dexing structures for XPath expressions [2, 6]. The focus
of this earlier research is to speed up document filtering
with a given set of XPath subscriptions using appropriate
indexing schemes. In contrast, our work focuse ftec-
tively reducing the volume of subscriptionsthat need to be
matched in order to ensure scalability given bounded stor-
age resources for routing. Clearly, our techniques can be
used as a pre-processing step for the indexes of [2, 6] when
hard constraints on the size of the index must be met. Due

1Dye to space constraints, a more detailed overview of related work® SPace limitations, the proofs of all theoretical results can

can be found in the appendix.

be found in the full version of this paper [5].



2 Problem For mulation
2.1 Definitions

have ¢ -descendant elements. |
A tree patterrp is said to beconsistent if and only if

A tree pattern is an unordered node-labeled tree that specithere exists an XML document that satisfjes We only
fies content and structure conditions on an XML documentconsider consistent tree patterns in our work. Further, the

More specifically, a tree pattegnhas a set of nodes, de- {ree patterns defined above can be naturally generalized

noted byNodes(p), where each nodein Nodes(p) has a

to accommodate simple conditions and predicates (e.g.,

label, denoted bjubel(v), which can either be atag name, ;ssye = “GE” and price < 1000). To simplify the dis-

a “x” (wildcard that matches any tag), or /" (the de-

cussion, we do not consider such extensions in this paper.

scendant operator). In particular, the root node has a spe- |t js worth mentioning that a tree pattern can be easily

cial label “/.”. We useSubtree(v, p) to denote the subtree

of p rooted atv, referred to as aub-pattern of p. Some
examples of tree patterns are depicted in Figure 2.

To define the semantics of a tree pattgrmve first give
the semantics of a sub-pattestubiree(v, p), wherev is

not the root node op. Recall that XML documents are

converted to an equivalent XPath expression [15] in which
each sub-pattern is expressed as a condition/qualifier [5].
Thus, our tree patterns are graph representations of a class
of XPath expressions, which are similar to the tree patterns
that have been studied for XML queries (e.qg., [3, 17]). It

is tempting to consider using a larger fragment of XPath

typically represented as node-labeled trees, referred to ag express subscription patterns. However, it turns out that

XML trees. LetT be an XML tree and be a node irfl".
We say thafl" satisfies Subtree(v, p) at nodet, denoted by
(T,t) | Subtree(v,p), if the following conditions hold:
(1) if label(v) is a tag, thert has a child node’ labeled
label(v) such that for each child nod€ of v, (T,t')

even a mild generalization of our tree patterns (e.g., with
the addition of union/disjunction operators) leads to a much
higher complexity (coNP-hard or beyond) for basic opera-
tions such as containment computation (e.g., see [10]).

A tree patterny is said to becontained in another tree

Subtree(v', p); (2) if label(v) = x, thent has a child node  patterrp, denoted by, C p, if and only if for any XML tree
t' labeled with an arbitrary tag such that for each child noder i 7 satisfies; thenT also satisfie. If ¢ = p, we refer

v ofw, (T,t") |= Subtree(v', p); and (3) iflabel(v) = //,
thent has a descendant node(possiblyt’ = t) such that
for each childv’ of v, (T',t') = Subtree(v', p).

We next define the semantics of tree patterns.ILée

an XML tree with roott,.,.¢, andp be a tree pattern with

root v,..ot. We say thafl’ satisfies p, denoted byI" = p,
iff for each child nodev of v,.,.t, (1) if label(v) is a tag
a, thent,,,; is labeled witha and for each child node’
of v, (T, troot) |E Subtree(v’, p) (herelabel(v) specifies
the tag Oft,0t); (2) if label(v) = *, thent,.,,+ may have
any label and for each child nod€ of v, (T,t.00t) E
Subtree(v', p); (3) if label(v) = //, thent,,o: has a de-
scendant nod€ (possiblyt’ = t,,,) such thatl” = p/,
whereT" is the subtree rooted at, andp’ is identical to

Subtree(v,p) except that “/.” is the label for the root node

v (instead of abel (v)). Observe that,.,.: is treated differ-
ently from the rest of the nodes pf The motivation behind

this is illustrated by; in Figure 2, which specifies the fol-

lowing: for any XML treeT satisfyingp;, its root must

be labeled withu and moreover, it must contain two con-
secutivea elements somewhere. This cannot be express
without our special root label “/." (as tree patterns do no

allow a union operator).

Example 2.1 Consider thetree pattern p, in Figure 2. An
XML document T" satisfies p,, if itsroot el ement satisfies all
the following conditions: (1) itslabel isa; (2) it must have
a child element with an arbitrary tag, which in turn has a
child element with a label b; and (3) it must have a de-
scendant element which has both a ¢-child element and an
a-child element. Thus, p, essentially specifies (existential)
conjunctive conditions on XML documents. It should be
noted that documents satisfying p, may have tags/subtrees
not mentioned in p,. For instance, the root element of T
may have a d-child element, and the b-elements of 7" may

to p as thecontainer pattern andq as thecontained pattern.
We say thap andq areequivalent, denoted by = ¢, if
p C gandq C p. This definition can be generalized to
sets of tree patterns: a set of tree pattefiss contained
in another set of tree patters8, denoted byS C S, if
for eachp € S, there existgy’ € S’ such thatp C p'.
Containment for sub-patterns is defined similarly.

The size of a tree pattermp, denoted byip|, is simply
the cardinality of its node set. For example, referring to
Figure 2,|p,| = 7 and|p,| = 8.

2.2 Problem Statement

The tree pattern aggregation problem that we investigate

in this paper can now be stated as follows. Given a set of
tree pattern subscription$ and a space bounkl on the
total size of the aggregated subscriptions, compute a set
of tree patternsS’ that satisfies all of the following three
conditions:

(C1) SC S’ (i.e.,S'is at least as general 43,
égZ) Zp’ES’ |p'| <k (i.e.,S"is“concise”), and
{C3) S’ is as “precise” as possible, in the sense that there

does not exist another set of tree pattestisthat sat-
isfies the first two conditions angt’ T S'.
Clearly, the tree pattern aggregation problem may not nec-
essarily have a unique solution since it is possible to have
two setsS’ and.S” that satisfy the first two conditions but
S'"Z S" andS" Z S'. Therefore, we need to devise some
measure to quantify the goodness of candidate solutions in
terms of both their conciseness as well as preciseness.
With respect to conciseness, we are interesteahim
imal tree patterns that do not contain any “redundant”
nodes. More precisely, we say that a tree patteisimin-
imized if for any tree patterp’ such thaty’ = p, it is the
case thafp| < |p’|. With respect to preciseness, it can be
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Figure 2: Examples of Tree Patterns.

shown that the containment relationshipn the universe

of tree patterns actually definedattice. In particular, the
notions ofupper bound andleast upper bound are of rele-

We also define a partial ordering on node labels such
that if z and 2’ are tag names, then (&) < *x < //
and (2)x < 2z’ iff z = z'. Given two nodes andw,

vance to the aggregation problem and, therefore, we definé/ axLabel (v, w) is defined to be the *least upper bound”

them formally here.

An upper bound of two tree patterng andq is a tree
patternu such thap C u andq C u, i.e., for any XML tree
T,if T EporT = gthenT = u. Theleast upper bound
(LUB) of p andq, denoted by LI ¢, is an upper bound
of p and ¢ such that, for any upper bound of p andgq,

of their labeldabel (v) andlabel (w) as follows:

label(v) if label(v) = label(w),
if (label(v) =
MaxLabel (v, w) = // Ior((label((u)J) :/2),
* otherwise.

u C u'. Once again, we generalize the notion of LUBs to a g exampleM az Label (a, b) = x andM az Label(x, /)

setS of tree patterns. Aopper bound of S is a tree pattern

U, denoted bys C U, such thaip C U for everyp € S.
The LUB of S, denoted by 1S, is an upper boun&’ of S
such that for any upper boud of S,U C U".

Clearly, if p is an aggregate tree pattern for a set of tree
patternsS (i.e., S C p), thenp is an upper bound aof.
Observe that, i is the LUB of.S, thenp is themost precise

aggregate tree pattern f6t. In fact, it can be shown that

LIS exists and is unique up to equivalence for anysef
tree patterns [5]; thus, it is meaningful to talk abouft as
the most precise aggregate tree pattern.

Example 2.2 Consider again the tree patternsin Figure 2.
Observe that p, = p.; and since |py| > |pc|, py IS NOt @
minimized pattern. In fact, except for p,, all the tree pat-
ternsin Figure 2 are minimized patterns. Notethat p, Z p.
because the root node of p, does not have a tag-a child
node; and p. Z p, because there exists no node in p,. that
isa parent node of both a tag-a-node and a tag-c-node. Ob-
servethat p, C pg; and p. C py; i.€., pg IS an upper bound
of p, and p.. However, p; # p, U p. Since we have another
tree pattern, p., which isan upper bound of p, and p. such
that p. C pq. Indeed, pe = pa U p. With |pe| < [pa| + |pe|-
Note, however, that the size of an LUB is not necessarily
always smaller than the size of its constituent patterns. For
example, pp, = p. U py but |ps| > |pe| + |py|. Notethat pg
isan upper bound of {pa, Py, Pc, Pe, Pf> Py, Ph}- O

We conclude this section by presenting some additional

notation used in this paper. For a nadm a tree patterp,
we denote the set of child nodeswofn p by Child(v, p).

= //. For notational convenience, we refer to a nodie a
tree pattern as aftnode if label(v) = ¢, and refer taw as
atag-nodeif label(v) & {/.,*,//}.

3 Computing the Most Precise Aggregate

In this section, we consider a special case of our tree pat-
tern aggregation problem, namely, when the aggregate set
S’ consists of a single tree pattern and there is no space con-
straint. For this case, we provide an algorithm to compute
themost precise aggregate tree pattern (i.e., LUB) for a set
of tree patterns. Some of the algorithms given in this sec-
tion are also key components of our solution for the general
problem, which is presented in the next section.

Given two input tree patternsandg, Algorithm LUB in
Figure 3 computes the most precise aggregate tree pattern
for {p, ¢} (i.e., the LUB ofp andg). It traversegp andgq
top-down and computes thightest container sub-patterns
for each pair of sub-patterngd = Subtree(v, p) andq’ =
Subtree(w, q) encountered, whereandw are nodes ip
andgq, respectively. The tightest container sub-patterns of
p' andq’ are a sef? of sub-patterns such that:

(1) R consists of container sub-pattefref p’ andq/, i.e.,
for any XML documentl’ and any elementin T, if
(T,t) E p' or (T,t) E ¢ then(T,t) |= r for each
r € R; and,

2Note that a sub-pattern of tree pattegnandgq is an upper-bound of
p andg, and we use these two terms interchangeably.



Algorithm LUB (p, q)
Input: p andq are tree patterns.
Output: A tree pattern representing the LUBpfndg.
1)if (¢ C p) then returnp;
2)if (p C ¢) then returng;
3) Initialize TC SubPat[v, w] = 0,
Vv € Nodes(p), Vw € Nodes(q);

4) Letwvroot andw,o0+ denote the root nodes pfandq, resp.;
5)for eachv € Child(vroot, p) dO
6) for eachw € Child(wroot,q) do
7) TCSubPat[v,w] = LUB_SUB (v, w, TCSubPat);
8) Create a tree patternwith root node labef. and

the set of child sub-patterns

TCSubPat[v, w);

vEChild(vroot ,p),wEChild(Wroot ,q)
9)return MINIMIZE (z);

Algorithm LUB_SUB (v, w, TC SubPat)

Input: v, w are nodes in tree patterpsq (respectively),
TCSubPat is a 2-dimensional array such that
TCSubPat[v,w] is the set of tightest container
sub-patterns ofubtree(v, p) and Subtree(w, q).

Output: TCSubPat[v, w].

1)if (TCSubPat[v,w] # 0) then

2) return TCSubPatlv, w);

3)elseif (Subtree(w, q) C Subtree(v,p)) then

4) return {Subtree(v,p)};

5)elseif (Subtree(v,p) C Subtree(w,q)) then

6) return {Subtree(w,q)};

7)else

8) InitializeR=0; R' =0; R" =0,

9) for eachw’ € Child(v,p) do

10) for eachw’ € Child(w, q) do

11) R = RULUB_SUB (v, w', TCSubPat);

12) for eachw’ € Child(v, p) do

13) R' = R'ULUB.SUB (v', w, TCSubPat);

14) for eachw’ € Child(w, q) do

15) R'" = R"ULUB_SUB (v,w',TCSubPat);

16) Letz be the pattern with root node lab&lax Label (v, w)

and set of child subtree patterRs

17) Letz’ be the pattern with root node labgl

and set of child subtree patterRs;

18) Letz” be the pattern with root node labgl

and set of child subtree patterR¥;

19) return TCSubPat[v, w] = {z,z',z"};

Figure 3: Least-Upper-Bound Computation Algorithm.

also satisfy the patterm consisting of a root node (with
label /) whose children are the tightest container sub-
patterns for each paifubtree(v,p) and Subtree(w, q),
wherev € Child(vyoot, p) andw € Child(wyoot, ). This
patternz is thus an LUB ofp andg.

The main subroutine in our LUB computation (Al-
gorithm LUB_SUB) computes the tightest container sub-
patterns ofp’ and ¢’ as follows. If ¢ T p’' (resp.

p' C ¢'), thenp' (resp. ¢') is the tightest container sub-
pattern; otherwise, the tightest container sub-patterns are
a set{z,z', 2"} of sub-patterns, which are defined in the
following manner. The root node aof is labeled with
MazLabel(v,w) and the child subtrees afare the tight-
est container sub-patterns of each child subtreg’aind
each child subtree of'. Intuitively, the root ofz corre-
sponds to the roots gf andq’ (with a label equal to the
least upper bound of that @f andgq’). In other words,

z preserves the positions of the corresponding nodes in
andq’. However, this “position-preserving” generalization
is not sufficient sincey’ and ¢’ may have common sub-
patterns at different positions relative to their roots. For
examplep. andp; in Figure 2 have a common sub-pattern
rooted at am-node that has bothtachild and ac-child, but
this pattern is located at different positions relative to the
roots ofp. andp;. To capture these “off-position” common
sub-patterns, we need to computeandz’’. The child sub-
trees oft’ are the tightest container sub-patterng’atself
and each child subtree pf; and the label of the root node
of 2’ is // to accommodate common sub-patterns at differ-
ent positions relative to the roots@fandq’. Similarly, the
root node ofz" has label//, and the child subtrees af’

are the tightest container sub-patterngbitself and each
child subtree of;’.

By computing the tightest container sub-patterns recur-
sively, the algorithm computes the LUB of the input tree
patterng andq. By induction on the structures pfandg,
we can show the following result [5].

Proposition 3.1: Given two tree patterns p and ¢, Algo-
rithm LUB (p, ¢) computesp LI q. |

Example3.1 Given p. and py in Figure 2, Algorithm
LUB returns py, which is indeed p. U py. To help ex-
plain the computation of p,, we use the notation z,
to refer the nt” node (in some tree pattern) that is la-

(2) Ristightestin the sense that for any other set of con-beled “ z”, where each collection of nodes sharing the

tainer sub-patternB’ of p’ andq’ that satisfies condi-
tion (1), any XML documenf’ and any elementin
T, if (T,t) | r for eachr € R then(T,t) = r' for
all+' € R'.

same label are ordered based on their pre-order se-
quence; for example, in p,, we use //, and //, to
refer to the leftmost and rightmost //-nodes, respec-
tively. Algorithm LUB_SUB (invoked by Algorithm LUB)

Intuitively, R is a collection of conditions imposed by both
p' andq’ such that ifl" satisfieg' or ¢’ att, thenT also sat-
isfies the conjunction of these conditions.atVe now show
how the LUB forp andq can be computed from the tightest
container sub-patterns. Let,,; andw,.,,; be the roots of
patterng andq, respectively. Note that a documdnthat
satisfiegp also satisfies, for each € Child(v,o0t, ), the
restriction ofp to the root node and onlgubtree(v, p).
Consequently, a documefit that satisfiesp or ¢ must

first extracts the “ position preserving” tightest container
sub-patterns for Subtree(ai,p.) and Subtree(a,py),
which yields the sub-pattern Subtree(aq, pr,) (in Seps 9—
11). Note that the root node of Subtree(ay,py) is la-
beled a because both the root nodes of Subtree(ay,p.)
and Subtree(a,py) are labeled a. The sub-patterns
Subtree(as, p.) and Subtree(b,py), however, have quite
different structures and thus a “ position-preserving” at-
tempt to extract their common sub-patterns only yields



Subtree(x1,pp). In particular, the common sub-pattern
consisting of an a-node with both a b-child-node and
c-child-node is not captured by the above process be-
cause they occur at different positions relative to the root
nodes of Subtree(as,p.) and Subtree(b,ps). To ex-
tract such “ off-position” common sub-patterns, Algorithm
LUB_SUB compares Subtree(ai, p.) With Subtree(b, py)
and Subtree(c,py), as well as compares Subtree(a, py)
with Subtree(as, p.) (in Seps 12-15). Indeed, this yields
Subtree(//5,prn) which has a //-root since this com-
mon sub-pattern occurs at different positions relative to
the root nodes of Subtree(aq,p.) and Subtree(a,py).
It should be mentioned that both Subtree(//,,ps) and
Subtree(//,,pn) are also produced by the “ off-position”
processing, as Algorithm LUB_SUB recursively processes
the sub-pattern Subtree(as, p.) with Subtree(b, py) and
Subtree(c,py), respectively. Finally, the algorithm re-
moves the redundant nodes in the result tree pattern by
using a minimization algorithm (which will be explained
shortly) to generate the LUB py,. O

It is straightforward to show that our LUB operatar™;
considered as a binary operatorcsmmutative andasso-
ciative, i.e., p1 Ups = po Up; andp; U (p2 U p3) =
(p1 Up=) Ups. As aresult, Algorithm UB can be naturally
extended to compute the LUB of any set of tree patterns
We next explain the details of the two auxiliary algorithms
used in AlgorithmLUB.

Algorithm LUB needs to check the containment of tree
patterns, which is implemented by Algorith@ONTAI NS
in Figure 4. Given two input tree patterpandg, the algo-
rithm determines ify C p. It maintains a two-dimensional
array Status, which is initialized with Status[v, w]
null to indicate thatv € Nodes(p) andw € Nodes(q)
have not been compared; otherwis8tatus[v,w] €
{true, false} such thatStatusv,w] = true if and only
if Subtree(w,q) C Subtree(v,p). Clearly,q C p if and
only if Status[vyoot, Wroot] = true, Wherev,qor andw,qo
denote the root nodes pfandq, respectively.

The main subroutine in our containment algorithm is
Algorithm CONTAI NS_SUB. Abstractly, CONTAI NS_SUB
traversegp andq top-down and updateStatus|v, w] for
each pair of nodes € Nodes(p) andw € Nodes(q)
visited as follows. Letp’ and ¢’ denoteSubtree(v, p)
and Subtree(w, q), respectively. IfStatus[v,w] has al-
ready been computed (i.65tatus[v, w] # null), then its

Algorithm CONTAI NS (p, q)
Input: p andgq are two tree patterns.
Output: Returnstrue if ¢ E p; false otherwise.
1) Initialize Status[v, w] = null,
Vv € Nodes(p), Vw € Nodes(q);
2) Letw,0ot andwioo¢ denote the root nodes pfandg, resp.;
3)if (Child(vroot, p) = 0) then
4) return true;
5)else
6) return CONTAI NS_SUB (Vroot, Wroot, Status);

Algorithm CONTAI NS_SUB (v, w, Status)

Input: v, w are nodes in tree patterpsq (respectively),
Status is a 2-dimensional array such that each
Status[v, w] € {null, false,true}.

Output: Status[v, w].

1)if (Status[v, w] # null) then

2) return Status[v,w];

3)if (v is a leaf node ip) then

4)  Status[v, w] = (label(w) =< label(v));

5)elseif (label(w) A label(v)) then

6) Status[v,w] = false;
T)else
8) Status[v,w] =
A \/ CONTAINS_SUB (v',w’, Status) |;
v/ €Child(v,p) \w'€Child(w,q)
9) if (Status[v, w] = false) and (label(v) = //) then
10) Status[v,w] =

A conitao,p) CONTAINS_SUB (v, w, Status),
11) if (Status[v, w] = false) and (label(v) = //) then
12)  Status[v,w] = \/ CONTAINS_SUB (v, w', Status);

w’'€Child(w,q)
13)return Status[v, w];

Figure 4: Tree-Pattern Containment Algorithm.

in py is deleted. On the other hand, for the tree patterns
pa andp, in Figure 2,p, C py and the//-node inp, is
mapped to both the- andb-nodes inp, in the sense that
Subtree(x,py) T Subtree(//,pq) andSubtree(b, p,) C
Subtree(//,pa). These two additional scenarios are han-
dled by Steps 10 and 12 in Algorith@ONTAI NS_SUB:
Step 10 accounts for the case wherg¢/anode ¢ itself)

is mapped to an empty chain of nodes, and Step 12 for
the case where @/-node ¢ itself) is mapped to a non-
empty chain. Note that in Steps 8 and 12, the expres-
SION \/ s inchitd(w,q) CONTAINS SUB (z,w’, Status) re-

turns false if Child(w,q) = 0.

value is returned. Otherwise, our algorithm determines By induction on the structures pfandg, we can show

whetherq’ C p/, as follows. |Iflabel(v) # //, then
Status[v,w] = true iff label(w) < label(v) and each
child subtree ol contains some child subtree @f Oth-
erwise, iflabel(v) = //, two additional conditions need
to be taken into account. This is because unlikersode
or a tag-name-node, &/-node in a container tree pattern

the following result.

Proposition 3.2: Given two tree patterns p and ¢, Algo-
rithm CONTAINS(p, q) determinesif ¢ C p in O(|p| - |ql)
time O

The quadratic time complexity of our tree-pattern con-

can also be “mapped” to a (possibly empty) chain of nodegainment algorithm is due to, among other things, the fact
in a contained tree pattern. For example, consider the trethat each pair of sub-patternsprandq is checked at most

patternspg andpy in Figure 2. Note thapy T pg, and
the //-node inp4 is not mapped to any node py in the
sense thap, would still be contained i, if the //-node

once, because of the use of th&utus array. To simplify
the discussion, we have omitted from AlgorithGON-
TAI NS certain subtle details that involve tree patterns with



chains of//- andx-nodes. Such cases require some ad-(i.e., as documents are streaming by), and using that synop-
ditional pre-processing to convert the tree pattern to someis to estimate (approximate) tree-pattern selectivities. At a
canonical form, but this does not increase our algorithm’shigh level, our aggregation algorithm iteratively computes
time complexity. a setS’ that is both selective and satisfies the space con-

To ensure that our tree patterns are concise, we need ttraint, starting withS” = S (i.e., the original sef of pat-
identify and eliminate “redundant” nodes in them. Given terns), and performing the following sequence of steps in
a tree patterrp, a minimized tree patterp’ equivalent each iteration:

to p can be computed using a recursive algorithir\- 1. Generate a candidate set of aggregate tree patferns
I M ZE. Starting with the root op, our minimization al- consisting of patterns i§’ and LUBs of similar pat-
gorithm performs the following two steps to minimize the tern pairs inS’.

sub-pattertbubtree(v, p) rooted at node in p: (1) Forany 2. Prune each pattegnin C' by deleting/merging nodes
v’ 0" € Child(v,p), if Subtree(v',p) C Subtree(v”, p), in p in order to reduce its size.

then deleteSubtree(v’, p) from Subtree(v,p); and, (2)
For eachy’ € Child(v, p) (that was not deleted in the first
step), recursively minimiz&8ubtree(v’, p). The complete
details can be found in [5].

3. Choose a candidaje € C' to replace all patterns in
S’ that are contained ip. Our candidate-selection
strategy is based anarginal gains[14]: The selected
candidate is the one that results in the minimum loss

Proposition 3.3: Algorithm M NI M ZE minimizes any in selectivity per unit reduction in the size 8f (due

tree pattern p in O(|p|?) time. O to the replacement of patternssti by p).

Proposition 3.4: For any minimized tree patterns p and p’, Note that our pruning step (Step 2) above makes can-
p=p iffp =1y (i.e,theyare syntactically equal). a didate aggregate patterns less selective (in addition to de-

creasing their size). Thus, by replacing pattern$ inby
patterns inC, we are effectively trying to reduce the size of
S’ by giving up some of its selectivity.

In the following subsections, we describe in more detail
our algorithm for computing’. We begin by presenting
our approach for estimating the selectivity of tree patterns
over the underlying document distribution, which is critical
to choosing a good replacement candidate in Step 3 above.

Given the low computational complexities @ON-
TAI NS andM NI M ZE, one might expect that this would
also be the case for AlgorithinUB. Unfortunately, in the
worst case, the size of the (minimized) LUB of two tree pat-
terns can be exponentially large (see [5] for a detailed ana
ysis). Our implementation results, however, demonstrat
that ourLUB algorithm exhibits reasonably low average-
case complexity in practice.

o ) ) 4.1 Selectivity Estimation for Tree Patterns

4  Selectivity-based Aggregation Algorithm The Document Tree Synopsis. As mentioned above, it is
While the LUB algorithm presented in the previous sec-simply impossible to maintain the accurate document dis-
tion can be used to compute a single, most precise aggrearibution D (i.e., the full set of streaming documents) in
gate tree pattern for a given sgtof patterns, the size of order to obtain accurate selectivity estimates for our tree
the LUB may be too large and, therefore, may violate thepatterns. Instead, our approach is to approxiniatey a
specified space constraikiton the total size of the aggre- concise synopsis structure, which we refer to asdbe
gated subscriptions (Section 2.2). Thus, in order to fit ourument tree. Our document tree synopsis far, denoted
aggregates within the allotted space budget, we relax they DT, captures path statistics for documentsin and
requirement of a single precise aggregate by permitting ouis built on-line as XML documents stream by. The doc-
solution to be aset S" = {p1,p2,...,pm} (instead of a ument tree essentially has the same structure as an XML
single pattern), such that each patterg S is contained tree, except for two differences. First, the root nod®at
in some patterp; € S'. Of course, we also require théit ~ has the special label “/.”. Second, each non-root noide
provide the “tightest” containment for patternsSrforthe DT has a frequency associated with it, which we denote
given space constraint (Section 2.2); that is, the number oby freq(t). Intuitively, if I1/Iz/ - -- /1, is the sequence of
XML documents that satisfy some tree patter$irbut not  tag names on nodes along the path from the roet(&x-
S, is small. cluding the label for the root), thefieq(t) represents the

A simple measure of the precisenes$6fs its selectiv- number of documents in D that contain a path with tag
ity, which is essentially the fraction of filtered XML docu- sequencé,/l»/---/l, originating at the root of. The
ments that satisfy some patterndh Thus, our objectiveis  frequency for the root node dbT is set toN, the number
to compute a sef’ of aggregate patterns whose selectivity of documents inD.
is very close to that of . Clearly, the selectivity of our tree As XML documents stream byDT is incrementally
patterns is highly dependent on the distribution of the un-maintained as follows. For each arriving docum@&ntve
derlying collection of XML documents (denoted ). It first construct theskeleton tree T's for documentl'. In the
is, however, infeasible to maintain the detailed distributionskeleton tre€l’y, each node has at most one child with a
D of streaming XML documents for our aggregation—the given tag.7’ is built from7" by simply coalescing two chil-
space requirements would be enormous! Instead, our apdren of a node ifT" if they share a common tag. Clearly, by
proach is based on buildingcancise synopsisof D on-line  traversing nodes i’ in a top-down fashion, and coalescing



X X X X

tivity of a tree pattermp is the fraction of documentg in
/N /\ /N /\ D that satisfyp. By construction, outDT" synopsis gives

/a\ a‘ T /a\ /b\ a‘ /a T /a\ T accurate selectivity estimates for tree patterns comprising
S A e P VO i a single chain of tag-nodes (i.e., with no * or //). How-
‘C i \ ever, obtaining accurate selectivity estimates for arbitrary
@T1 )72 ©T3 d (d) Skeleton tree fot T tr_ee pa_tterns with bran_ches, * e_md /l'is, in general, not pos-
sible with DT summaries. This is because, whild" cap-
/ / tures the number of documents containing a single path, it
" ‘ does not store document identities. As a result, for a pair
X3 X3 /. I I of arbitrary paths in a tree pattern, it is impossible to de-
/\ A X‘ /l /‘/ termine the exact number of documents that contain both
%a b3 3] b3 | | | paths or documents that contain one path, but not the other.
JIN /Ny | L. s a Our estimation procedure solves this problem, by mak-
b ¢ dz/a\ Py ‘ ' d d /\d ing the following simplifying assumptiorithe distribution
230 e lis of each path in a tree pattern isindependent of other paths.

() Document Tree  (f) Compressed Document Tree (@) pl  (N)p2 () p3 Thus, we estimate the selectivity of a tree pattern contain-

ing no // or x labels, simply as theroduct of the selec-

Figure 5: Example Documents, Skeleton Tree, Documentivities of each root to leaf path in the pattern. For patterns
Tree, and Patterns. containing// or %, we consider all possible instantiations

;h.”d no_deT with common tags, webcan C({:())(nl\thﬂ];ﬁrom e selectivity the maximum selectivity value over all in-
in & single pass (using an event-base parser). Asantiations. (This is similar to the definition of a fuzzy

an example, Figure 5(d) depicts the skeleton tree for theyhe ator in fuzzy logic [13].) We illustrate our selectivity

XML-documenttree in Figure 5(a). .. estimation methodology in the following example.
Next, we use€l’; to update the statistics maintained in

our document tree synopsT as follows. For each path Example4.1 Consider the problem of estimating the se-
in T, with tag sequence sdy/l/ - - - /1,,, lett be the last  lectivities of the tree patterns shown in Figures 5(g) to (i)
node on the corresponding (unique) pathlifi’. We in-  using the document tree shown in Figure 5(e). The total
crementfreq(t) by 1.  Figure 5(e) shows the document number of documents, IV, is 3. Clearly, the number of doc-
tree (with node frequencies) for the XML tre®s, T, and  umentssatisfying patternp; which consistsof asingle path,
T in Figure 5(a) to (c). Note that it is possible to further can be estimated accurately by following the path in DT
compressDT by using techniques similar in spirit to the and returning the frequency for the d-node (at the end of
methods employed by Aboulnaga et al. [1] for summariz-the path) in DT'. Thus, the selectivity of p; is 2/3 which
ing path trees. The key idea is to merge nodes with theis accurate since only documents 7’ and 7’ satisfy p. Es-
lowest frequencies and store, with each merged node, thmating the number of documents containing pattern p.,
average of the original frequencies for nodegiff' that ~ however, is somewhat more tricky. This is because there
were merged. This is illustrated in Figure 5(f) for the doc- are two paths with tag sequences z/a/d and z/b/a/d in
ument tree in Figure 5(e), and with the label “~” used to DT that match p, (corresponding to instantiating // with
indicate merged nodes. Due to space constraints, in th& and z/a). Summing the frequencies for the two d-nodes
remainder of this subsection, we only present solutions tcat the end of these paths gives us an answer of 4 which
the selectivity estimation problem using the uncompresse@Ver-estimates the number of documents satisfying p (only
tree DT. However, our proposed methods can be easilydocumentsTs> and T3 satisfy p»). To avoid double-counting
extended to work even wheRT is compressed [5]. frequencies, we estimate the number of documents satisfy-
We should note here that our selectivity estimation prob-nd p2 to be the maximum (and not the sum) of frequencies
lem for tree patterns differs from the work of Aboulnaga et Over all pathsin DT’ that match p,. Thus, the selectivity of
al. [1] in two important respects. First, in [1], the authors P2 iSestimated as2/3. . .
consider the problem of estimating selectivity for only sim-  Finally, the selectivity of ps is computed by consider-
ple paths that consist of a /-node followed by tag nodes. 1i"g all possible instantiations for // and *, and choosing
contrast, we estimate selectivities of general tree patternd1e one with the maximum selectivity. The two possible in-
with branches, and *- or //-nodes arbitrarily distributed in Stantiations for // that result in non-zero selectivities are «
the tree. Second, we are interested in selectivity at the grar@"d /b, and x can be instantiated with either b, c or d for
ularity of documents, so our goal is to estimate the number // = =, and cor d for // = x/b. Choosing // = = and
of XML documents that match a tree pattern; instead, [1]* = ¢ results in the maximum selectivity since the product
addresses the selectivity problem at the granularity of indi-Of the selectivities of paths z/a/c and z/a/d is maximum,

vidual document elements that are discovered by a path. It andisequal to (3/3) - (2/3) = 2/3. O
is easy to see that these are two very different estimation a|gorithm SEL (depicted in Figure 6), invoked with in-
problems. put parameters = v,.,,; (root of patternp) andt = ¢,.0¢

Selectivity Estimation Procedure. Recall that the selec- (root of DT'), computes the selectivity for an arbitrary tree

for // andx with element tags, and then choose as our pat-



Algorithm SEL (v, t)

Input: v is a node in tree pattep t is a node inDT'.
Output: SelSubPat[v,t].

1)if (SelSubPat[v,t] is already computedhen
2) return SelSubPat(v, t];

3)elseif (label(t) £ label(v)) then

4) return SelSubPat[v,t] = 0;

5)elseif (v is a leaf)then

6) return freq(t)/N;

7)for each childv. € Child(v,p) do

8) Sel,, = maxy_cchiidt,pr){SEL (Ve, tc)};
9)Sel = [, ccnitac,p) Selve:

10)if (label(v) = //) then

11)  Sel, = chechild(v,p) SEL(ve, t);

12)  Sel = max{Sel, Sel,};

13)  Sel, = maxy.ccnitae,pr){SEL(v,tc)};
14)  Sel = max{Sel, Sel,};

15)return SelSubPat[v,t] = Sel

dren, themmax;_ccpiiar,pr){- - -} evaluates t@.

4.2 TreePattern Aggregation Algorithm

We are now ready to present our greedy heuristic algo-
rithm for the tree pattern aggregation problem defined in
Section 2.2 (which is, in general, aWP-hard clustering
problem [5]). As described earlier, to aggregate an input set
of tree patterns into a space-efficient and precise set, our
algorithm (AlgorithmAGGREGATE in Figure 7) iteratively
prunes the tree patterns.ghby replacing a small subset of
tree patterns with a more concise upper-boaggregate
pattern, until S satisfies the given space constraint. During
each iteration, our algorithm first generates a small set of
potential candidate aggregate pattefhsand selects from
these the (locally) “best” candidate pattern, i.e., the candi-
date that maximizes the gain in space while minimizing the
expected loss in selectivity.

Figure 6: Tree Pattern Selectivity Estimation Algorithm.

patternp in O(|DT'| - |p|) time. In the algorithm, for nodes
v € pandt € DT, SelSubPat[v, ] stores the selectivity
of the sub-patter§ubtree(v, p) with respect to the subtree
of DT rooted at nodeé. This selectivity is estimated similar
to the selectivity for patterp, except that we now consider
all instantiations ofSubtree(v, p) (obtained by instantiat-
ing // andx with element tags), and the selectivity of each
instantiation is computed with respect#as the root in-
stead of the root oDT'. For instance, suppose thats the
a-node inps3 (in Figure 5(i)), andt is the childa-node of
thez-node inDT (in Figure 5(e)). Then, the selectivity of
Subtree(v, ps) with respect ta is essentially the product
of the selectivity of patha/x anda/d with respect to node
t, whichis1 - (2/3). Thus,SelSubPat[v,t] = 2/3.

Our goal is to comput&el SubPat[v,oot, troot]. FOr
a pair of nodesv and ¢, Algorithm SEL computes
SelSubPat[v,t] from SelSubPat| | values for the chil-
dren ofv andt. Clearly, iflabel(t) A label(v) (Steps 3-4
of the algorithm), then every path Bubtree(v, p) begins
with a label different fromlabel(t) and thus the selectiv-
ity of each of the paths i8. If label(t) < label(v) and
v is a leaf (Steps 5-6), then we simply instantiat&el (v)
(if label(v) = // or *) with label(t), giving a selectivity of
freq(t)/N. Onthe other hand, if is an internal node af,
then in addition to instantiatint:bel (v) with label(t), we
also need to compute, for every child of v, the instanti-
ation for Subtree(v,, p) that has the maximum selectivity
with respect to some child of ¢. SinceSelSubPat[v., t.]
is the selectivity ofSubtree(v,, p) with respect ta., the
product of max; cchiiact,pr) SelSubPat[v., t.] for the
childrenv,. of v gives the selectivity obubtree(v, p) with
respect tot. Finally, if label(v) = //, then// can be
simply null, in which case the selectivity Fubtree(v, p)

Algorithm AGGREGATE (S, k)

Input: S is a set of tree pattern,is a space constraint.

Output: A set of tree pattern§’ such thatS C S’
andy_ . |p| < k.

1) Initialize 8" = S;

2) while (3>, s Ip| > k) do

3) Ci={z|z=PRUNE(p,|p| 1), p€ S}

4)  Cy={x|x=PRUNE(pUgq,|p|+lql — 1), p,qg € S'}
5) C =CyUCy;

6) Selectr € C such thatBene fit(zr) is maximum;

7 §=8~—-{p|lpCax,peS} U {z}

8) return S’;

Figure 7: Tree Pattern Aggregation Algorithm.

Candidate Generation. We now explain the process for
generating the candidate sét in Steps 3-5 of Algo-
rithm AGGREGATE. To reduce the size of individual candi-
date patterns of the formor pLig, each candidate @uned

by invoking Algorithm PRUNE (details in [5]). Given an
input patterrp and space constraint Algorithm PRUNE
prunesp to a smaller tree pattepl such thaip C p’ and

|p'| < n. The algorithm treats tag-nodes as more selective
thans- and//-nodes, and therefore tries to prune away
and//-nodes before the tag-nodes. Specifically, the algo-
rithm first prunes thex- and//-nodes inp by (1) replac-

ing each adjacent pair of non-tag-nodes with a single
//-node, ifw is the only child ofv, and (2) eliminating
subtrees that consist of only non-tag-nodes. If the tree pat-
tern is still not small enough after the pruning of the non-
tag-nodes, we start pruning the tag-nodes. There are two
ways to reduce the size of a tree patterby one node.
The first is to delete some leaf nodezinand the second

is to collapse two nodes and w into a single//-node,
wherelabel(v) # /. andChild(v,p) = {w}. To help
select a “good” leaf node to delete (or, pair of nodes to
collapse), we make use of the selectivity of the tag names.

with respect tat is computed as described in Step 11, or More specifically, we use our document tree synopsis

// is instantiated to a sequence consistindgadkl(t) fol-

lowed bylabel(t.), wheret, is the child oft such that the
selectivity ofSubtree(v, p) with respect td.. is maximized
(Step 13). Observe that, in Steps 8 and 13 hi&s no chil-

to estimate the total number of occurrences of a tag name in
the document collectio®, and then choose the tags with
higher total frequencies (which are less selective) as candi-
dates for pruning.



Candidate Selection. Once the set of candidate aggregatereformulation of HTML as an XML application and is ar-
patterns has been generated, we need some criterion fgjuably the document type most widely used over the Inter-
selecting the “best” candidate to insert in§d. For this  net. The XHTML DTD (version 1.0) contairi& elements
purpose, we associate a benefit value with each candida{gjth 1377 attributes. The second DTD, the News Industry
aggregate pattern € ', denoted byBene fit(x), based eyt Format (NITF) DTD[8], is supported by most of the

on its marginal gain [14]; that is, we defindBenefit(x)  \org's major news agencies. The NITF DTD (version 2.5)
as the ratio of the savings in space to the loss in selectlwtycontair15123 elements withs 13 attributes

of usingz over{p | p C z,p € S’}. More formally, if

Vzpoor troot, @Nduy, . represent the root nodesof DT, We generated our data set of XML documents using
andp € S’, thenBenefit(z) is equal to: IBM's XML Generator tool [11]. Both the XHTML and

NITF DTDs contain recursive structures, which can be

(Zpgwesr Ipl) — || nested to produce XML documents with arbitrary number

of levels. We added the option of generating documents
skewed according to a Zipf distribution [18], where some

Note that we compute the selectivity loss by comparing f v th h : :
the selectivity of the candidate aggregate patienith that f,jg ?ﬁ? :asszwifﬁ rrerg(l)jiefzerggttéent ythan others, as is gener

of the least selective pattern contained in it. This gives a For each each DTD and each skew valye= {0, 1, 2},

ood approximation of the selectivity loss in cases when Lo ;
tghe patfeprng),q c S used to genergtﬂ are similar and V€ generated two disjoint sets&if0 XML documents with

; : approximatelyl00 nodes andl0 levels on average. The
overlap in the document tré@7. The candidate aggregate éirst set corresponds to the collection of XML documents
used to construct the document tlB& for selectivity es-
timation; the second set is used to measure the loss in pre-
cision of the aggregation algorithms. Both sets were gen-

. . ._erated with the same parameters, and thus can be expected
To verify the effectiveness of our tree pattern aggregation, e similar distributions. In each experiment, we used

algorithms, we have conducted an extensive performanc91e combined XML documents for both the XHTML and
study using real-life DTDs and large numbers of tree pat'NITF DTDs. i.e.. we used a total d000 documents for

tems. Our resglts ‘”P”C"?‘t.e that our propqsed aggregatioghe document tre®T', and (a different) 000 documents
techniques achieve significant reductions in the number ag ), measuring the Iosé in precision

well as total size of tree patterns with minimal loss in se-

SEL(UEroot ) tTOOt) - maXpEz,pES’ SEL(Upv‘oot ) tTOOﬁ)

the patterns contained in it i’ (Steps 6-7).

5 Experimental Study

lectivity. XPath Expressions. To generate the set of tree patteffis
we implemented an XPath expression generator that takes
5.1 Experimental Testbed and Methodology a DTD as input and creates a set of valid XPath expressions

Our general methodology for evaluating the effectivenesg’@sed on a set of parameters that control: (1) the maximum
of a pattern aggregation algorithris as follows. Given  heighth of the tree patterns; (2) the probabilitiesandp,,
a large input set of tree patterssand a space constraint Of having a wildcard %" or a descendant//” operator at
k, we useA to compute a set of aggregate pattesiisor @ node of a tree pattern; (3) the probability of having
S, whereS C S’ andy", s [p| < k (our space constraint more than one child at a given node; and (4) the skewof
is expressed in terms of number of nodes, since patterné€ Zipf distribution used for selecting element tag names.
can be arbitrarily large). We then measure the loss in preci- For each DTD and each skew valéig = {0, 1,2}, we
sion when using’ instead ofS to filter XML documents.  generated a set 6000 tree patterns witth = 10 andp, =
Observe that whek = 1, S’ contains a single container p,, = p» = 0.1. Each experiment was run with tree pat-
pattern (*//"). terns from both the XHTML and NITF DTDs, i.€10000

To measure the loss in precision of the aggregat§ §et tree patterns which amounted to more th80000 nodes.

we use a subsdd’ of a representative set of XML docu- Algorithms. We compared two different aggregation algo-
ments, such that no documentin matches any tree pat- rithms in our experiments. The first (“naive”) algorithm,
tern in our initial pattern sef. The reason, of course, PruNE, is based on simple node pruning and works as fol-
is that XML documents that matchi are also guaranteed |ows. At each iteration, it selects a tree patter,. from

to matchS’, so they are unlikely to affect our “precision- g with the largest number of tag-nodes, collapses multiple
loss” measurements. AS' becomes less precise, some «- and //-nodes, and deletes a prunable node (i.e., a leaf
documents inD’ will be erroneously reported as matches. node or a node located next fg-nodes) with the highest
Let Matches(D',S') be the number of documents " frequency (i.e., least selective) in the document e If

that matchS’; the loss in precision of’ over S can be  there is already a tree pattern identical to the pruned pat-
estimated asSelLoss(S',S) = Matches(D',S")/|D'|.  tern, then the duplicate is removed frafn The algorithm

An aggregation algorithm is obviously more effective if jterates until the space constraint is satisfied. The second
SelLoss(S',S) remains smallaj_ o, [p| decreases. algorithm, AGGR, is our greedy tree pattern aggregation
XML Documents. We used two real-life DTDs to gener- algorithm (from Figure 7) with both candidate generation
ate our XML document data set. The first one, the Extensi-and selection (based on maximizing the benefit). Our ex-
ble Hypertext Markup Language (XHTML) DTD [7], is a periments were conducted on a 866 MHz Intel Pentium Ill
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Figure 8: Evaluation of the Aggregation Algorithms.

machine with512 MB of main memory running Linux. eliminated early.

Both algorithms completed the aggregationl0f00 tree  grawed XML documents. Real-world XML documents
patterns in approximately) minutes. are generally not uniformly distributed among the valid
XML data for a given DTD. When XML documents are
5.2 Experimental Results skewed (Figure 8(a)), we observe that the effectiveness of
We first compare the performance of the two aggregationthe AGGR algorithm increases. The reason for this is that,
algorithms by varying the skew for element tags in the &5 data becomes more skewed, the XML documents tend to

XML documents and in the XPath expressions. We ran the1‘orm clusters with documents within a cluster being more

- . . Similar than those in different clusters; this, in turn, im-
experiments with no skew, with skewed XML documents, roves the accuracy of selectivity estimation. THURE
with skewed XPath expressions, and with skew in both the? y y ’

XML documents and XPath expressions. In the last Casealgonthm also benefits from the skew (although to a lesser

S . extent) because of its frequency-based pruning heuristic.
we skew the distribution for element names in the oppo- oY .
site “direction” (applying the same skew to both the XML Skewed tree patterns. We also observe a significant im-
documents and XPath expressions would yield similar reProvement in our aggregation algorithm when the element
sults as with no skew). The experimental results are showfiames of tree patterns are skewed (Figure 8(b)). Indeed,
in Figures 8(b), 8(a), and 8(c), where the space constrainthe skew induces a cIusterlng of patterns such that simi-
expressed in terms of the number of nodes, is varied alonégr tree patterns are grouped into the same cluster, which
thez-axis, and the-axis indicates the observed loss in se- consequently increases the proportion of patterns that de-
lectivity for a given space constraint, i.e., the percentage oi€lop containment relationships. This permits the aggrega-
XML documents that are erroneously reported as matchedion algorithm to reduce the size Sfwith minimal loss of

We also measure the benefits of aggregation in terms of€lectivity, by computing tighter upper bound patterns and
filtering performance, using the XTrie matching algorithm discarding covered patterns.
described in [6]. Since the cost of filtering in XTrie grows Skewed workload. The two aggregation algorithms per-
linearly with the number of XPath expressions, we expectform best when both the XML data and the tree patterns
to observe a significant improvement in filtering speed asare skewed in different “directions” (Figure 8(c)). With
the cardinality ofS decreases. high skew values, there is little overlap between the ele-
Non-skewed workload. When neither the XML data nor Ment names of the XML documents and the tree patterns,
the tree patterns contain skew (i.8p = fs = 0), the and AGGR remains highly sele_ctive with only a fe\_/v h.u_n—
AGGR algorithm can aggregate tree patterns upigh of dreds nodes. TheRRNE algorlt_hm also ex_h!b|ts signifi-
their original size with only 25% loss in precision (the ~Ccantimprovements and maintaibis’ selectivity even af-
results for non-skewed data are reported in all graphs o;e_r the original number of nodes are reduced to less than a
Figure 8). In contrast, the precision oRBNE algorithm  third.
starts to degrade much sooner, and the loss in precisioRiltering speed. As mentioned previously, the cost of
reaches almosit00% at25% of the initial space. The bet- matching tree patterns against incoming XML documents
ter performance of AGR can be attributed to three main is proportional to the number of tree patterns. SinGsf
factors: (1) the upper bound computation generates goodenerates candidates by computing upper bounds, the can-
candidates with few nodes and little loss in precision, (2)didates cover more patterns, and as result, the number of
the selectivity-based heuristics help to detect and discargatterns inS shrinks faster with &GR. Figure 9 shows that
candidates that correspond to patterns with low selectivitythe average filtering time per document decreases faster (as
(i.e., frequently occurring for a given DTD), and (3) the space is increased) forG%R than for the RUNE algo-
covering computation enables redundant tree patterns to béthm. Our aggregation algorithm is therefore more effec-



7 Conclusions

We have provided the first systematic studytiege pat-

tern aggregation, an important problem in building next-
generation, scalable XML dissemination systems. The
main challenge is to aggregate an input set of tree patterns
into a smaller set such that: (1) a given space constraint
on the total size of the patterns is met, and (2) the loss
in precision (due to aggregation) is minimized. We have
proposed an efficient aggregation algorithm that makes ef-
fective use of document-distribution statistics in order to
compute a precise set of aggregate tree patterns within the
allotted space budget. Further, some of our algorithmic re-
sults are of interest in their own right, and can prove useful
in other domains, such as XML query optimization. Exten-
sive results from a prototype implementation have verified
the effectiveness of our approach.
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Figure 9: Filtering speed.

tive both in terms of selectivity as well as filtering speed.
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