
Probabilistic Atomic Broadcast

Pascal Felber

Institut EURECOM

���� route des Cr�etes� BP ���

����	 Sophia Antipolis� France

pascal
felber�eurecom
fr

Fernando Pedone

Hewlett�Packard Laboratories

Palo Alto� CA �	��	� USA

Swiss Federal Institute of Technology

CH����	� Lausanne� Switzerland

fernando
pedone�ep

ch

Abstract

Reliable distributed protocols� such as consensus
and atomic broadcast� are known to scale poorly
with large number of processes� Recent research
has shown that algorithms providing probabilistic
guarantees are a promising alternative for such en�
vironments� In this paper� we propose a speci�ca�
tion of atomic broadcast with probabilistic liveness
and safety guarantees� We present an algorithm
that implements this speci�cation in a truly asyn�
chronous system �i�e�� without assumptions about
process speeds and message transmission times��

�� Introduction

Message ordering abstractions� also known as
group communication protocols� are very useful
for the design of reliable distributed systems� Mes�
sage ordering abstractions ensure agreement on
which messages are delivered in the system and
on the order in which such messages are delivered�
Many problems related to reliable and highly�
available computation� such as active replication
����� have been solved using one�to�many commu�
nication primitives with total�order guarantees�
Until recently� however� scalability has been the

Achilles� heal of reliable one�to�many protocols� It
has been shown 	e�g�� in �
�� that group communi�
cation protocols do not scale well past a couple of
hundreds of processes and degrade rapidly when
executed across wide�area networks� A promising
approach for increasing scalability is to weaken the
deterministic guarantees of the protocols to make
them probabilistic� Provided that they are �ade�

quately
 high� probabilistic guarantees are enough
for most applications� Actually� even determinis�
tic protocols make implicit assumptions of proba�
bilistic nature 	e�g�� failures are independent��

Several probabilistic protocols have been pro�
posed to solve various group communication�
related problems such as reliable broadcast and
group membership� All the protocols we are aware
of are probabilistically live and deterministically
safe� In this paper� we study the problem of proba�
bilistic atomic broadcast and take into account not
only probabilistic liveness but also probabilistic
safety properties� We believe many applications
can take advantage of faster and more scalable al�
gorithms without deterministic safety� if safety vi�
olations are infrequent and can be detected�

This paper makes the following contributions�
First� we propose a probabilistic speci�cation for
atomic broadcast� Unlike other atomic broadcast
speci�cations� in ours both safety and liveness are
probabilistic� Second� we present a protocol that
implements probabilistic atomic broadcast� This
protocol is resilient to message loses and f pro�
cess failures� where f is a parameter of the proto�
col� Processes execute a sequence of rounds� dur�
ing which they can vote for broadcast messages�
Among the protocol features� messages that re�
ceive f � � votes in a round are delivered by all
correct processes in the same order� We initially
present a basic version of the protocol and then
discuss how it can be extended� Finally� we ana�
lyze the probabilistic behavior of our protocol un�
der various conditions� Analytical and simulation
results demonstrate that our protocol is highly re�
liable and scalable� and that the number of out�
of�order messages is small in most scenarios�



The rest of this paper is organized as follows�
Section 
 describes the system model� Section �
de�nes the probabilistic atomic broadcast problem
and presents an algorithm that solves it� Section �
analyzes the probabilistic behavior of the proto�
col� and Section � discusses related work� Finally�
Section � concludes the paper�

�� System Model

We consider a system composed of a �nite set
of processes � � fp�� � � � � png that communicate
by message passing� The system is truly asyn�
chronous� that is� there are no bounds on the time
it takes for processes to execute operations� nor on
the time it takes for messages to be transmitted�
Processes can only fail by crashing 	i�e�� we do not
consider Byzantine failures�� A process that never
fails is correct � processes that are not correct are
faulty� For simplicity� we do not include process
recovery in the model� We discuss this issue later
in the paper 	see Section �����
Processes communicate using the primitives

send	m� and receive	m�� Communication links
are fair�lossy � 	a� if p sends m to a correct process
q an in�nite number of times� q receives m from p
an in�nite number of times� 	b� if p sends m to q a
�nite number of times� q receives m from p a �nite
number of times� and 	c� if q receives m from p at
time t� p sent m to q before t�
Even though fair�lossy links can lose messages�

correct processes can construct reliable communi�
cation links on top of fair�lossy links by periodi�
cally retransmitting messages� If a correct process
p keeps sending a message m to another correct
process q� then q eventually receives m from p�

�� Probabilistic Atomic Broadcast

3.1. Problem Definition

In this section we introduce probabilistic
atomic broadcast 	PABCast�� PABCast is de�ned
by the primitives broadcast	m� and deliver	m��
which guarantee Agreement� Order� Validity� and
Integrity� The former three properties are prob�
abilistic and the latter is deterministic� In the
following� p and q are two processes in ��

Probabilistic Agreement� Let p and q be cor�
rect� If p delivers m� then with probability
�a� q also delivers m�

Probabilistic Order� If p and q both deliver m
and m�� then with probability �o they do so
in the same order�

Probabilistic Validity� If p is correct and
broadcasts message m� then with probability
�v� p delivers m�

Integrity� Every message is delivered at most
once at each process� and only if it was pre�
viously broadcast�

PABCast generalizes the traditional atomic
broadcast properties ��� to allow messages to be
delivered by any subset of the processes 	from
probabilistic agreement�� out of order 	from prob�
abilistic order�� and not at all 	probabilistic valid�
ity��� Probabilistic agreement and order are inde�
pendent of each other� as illustrated in Figures �
and 
�

deliver�m�
p�

deliver�m��

deliver�m�deliver�m��

deliver�m��deliver�m�

p�

p�

Figure 1. Agreement but no order

deliver�m�
p�

deliver�m�

deliver�m��

deliver�m���

deliver�m���

deliver�m���

deliver�m��deliver�m�

p�

p�

Figure 2. Order but no agreement

In the run depicted in Figure �� all processes
deliver messages m and m�� but p� and p� deliver
m before m� and p� delivers m� before m� thus�
agreement is satis�ed but order is not� In the run
depicted in Figure 
� p� does not deliver m

�� but
all three processes deliver m before m��� and p�
and p� deliver m� m

�� and m�� in the same order�
thus order is satis�ed but agreement is not�

�Each one of our probabilistic properties is associated
with a probability �� When � � �� we actually have a
deterministic property� Therefore� when we refer to deter�
ministic agreement� for example� we have �a � ��



3.2. Solving Probabilistic Atomic Broadcast

We present our PABCast algorithm incremen�
tally� In this section we introduce a simple� but
not very e�cient� version of the algorithm� In Sec�
tion ���� we discuss various improvements to the
basic algorithm�

Basic Idea� Processes executing our PABCast
algorithmproceed in a sequence of rounds r�� r�� ���
Each process starts in round � and can broadcast
at most one message per round� If p has broad�
cast a message in round r and wants to broad�
cast another message� p has to wait until round r
has terminated� Figure � depicts an execution of
the algorithm 	message reception is not shown��
Moreover� p can only deliver a message broadcast
in round r � � after it has terminated round r�

deliver�m�

deliver�m�

deliver�m��

deliver�m��

deliver�m� deliver�m��

broadcast�m�

deliver�m��

deliver�m�

broadcast�m���

start round r � �start round r

p�

p�

p�

p�

broadcast�m��

detect round termination

random propagation

Figure 3. Algorithm execution

During the execution of a round� processes vote
for broadcast messages� Each process can cast
only one vote per round� either for the message it
broadcast in the round or for the message some
other process broadcast in the round� Process
p keeps a list of message votes per round 	here�
after listp�� Each item in listp is a pair 	m� vSet��
where m is a message broadcast during the current
round and vSet is the set of processes that have
voted form� To simplify the algorithm� we assume
that messages in listp can be ordered according to
a unique identi�er associated with each message�
The message unique identi�er is generated by the
process broadcasting the message� which uses its
unique identi�er and a local sequential number�
associated to each broadcast message�
When p starts round r and wants to broadcast

m� it initializes listp with f	m� fpg�g� Process p
periodically chooses a random subset of processes
to which it will send listp� When process q receives
listp from p� it updates its own list as follows�

� If q has not cast a vote in round r 	i�e�� listq is
empty�� q initializes listq with listp� chooses
the message in listp with the smallest number
of votes� and casts a vote for it�

� If q has already voted in round r 	i�e�� listq is
not empty�� q updates its list with the items
in listp� all votes in listp that are not in listq
are copied into listq �

Process p starts the termination of round r af�
ter it receives directly or indirectly n � f votes
cast in round r 	remember that f is the number
of processes that may fail in the system�� q�s vote
is received directly by p if q sends a message to p
with its vote� q�s vote is received indirectly by p if p
learns q�s vote from some other process� To termi�
nate round r� p delivers all messages received dur�
ing r in a deterministic order� based on the unique
identi�er associated with each message� Then� pi
starts round r � � with an empty listp set�
Due to the asynchrony of the system and the

possibility of message losses� it may happen that
some process p executes in round r� while other
processes execute in round r� � r� This may
prevent p from making progress because to ter�
minate round r and proceed to round r��� p may
need messages from processes that are no longer
in round r� To ensure progress� processes also in�
clude in the messages they exchange a sequence
with the messages they have delivered in previous
rounds� Whenever p in round r receives a message
from q in round r� � r� p delivers the messages de�
livered by q that it has not yet delivered and jumps
to round r�� We discuss ways to avoid sending all
previously delivered messages in Section ����

Detailed Algorithm� Figure � depicts the
PABCast algorithm� Tasks �� 
� and � execute
concurrently� but there is only one instance of each
task executing at a time� We assume that the
task scheduler is fair� that is� all tasks get equal
chances to execute� Moreover� each line is exe�
cuted atomically� For example� the operations in
line �
 cannot be interrupted�
Processes start a new round by setting the

round number and creating an empty list of mes�
sage votes for the round 	lines 
� �
� and ����
To broadcast a message m� p includes m in its
broadcastp sequence 	line ��� Messages are ap�
pended to sequences with the concatenation op�
erator �� Messages in broadcastp are eventually
gossiped to the other processes in the system�



�� Initialization�

�� rp � �	 list
rp

p � � fprocesses start in round �g

� broadcastp � � fsequence of locally broadcast messagesg
�� deliveredp � � fsequence of all delivered messagesg

�� To execute broadcast
m�� fTask �g

�� broadcastp � broadcastp � hm i finclude m in broadcastp sequenceg

�� deliver
m� occurs as follows� fTask �g

�� when receive 
rq� list
rq

q � deliveredq � from q and rq � rp fwhen receive a message from qg
�� for each m in deliveredq n deliveredp � in sequence order do ffor each m delivered only by q�g
��� deliver
m� fdeliver m and���g
��� deliveredp � deliveredp � hmi f���keep track of itg

��� if rq � rp then rp � rq	 list
rp

p � � fif q is ahead of p� start new roundg

�
� if list
rp

p � � then fif hasn�t cast a vote in rp�g
��� if broadcastp n deliveredp �� � then fif has a message to broadcast�g
��� let m be the �rst message in broadcastp n deliveredp fselect this messageg
��� else felse�g
��� let 
m�vSet� be the item in list

rq

q with the smallest vSet fselect a message in list
rq

q g

��� list
rp

p � f
m� fpg�g fvote for message mg

��� for each 
mq� vSetq� in list
rq

q do fupdate list with votesg

��� if 
mq� vSetp� � list
rp

p then fif has seen message mq�g

��� list
rp

p � list
rp

p n f
mq� vSetp�g fjoin votes for mqg

��� list
rp

p � list
rp

p � f
mq� vSetq � vSetp�g fdoneg
�
� else fif hasn�t seen mq�g
��� list

rp

p � list
rp

p � f
mq� vSetq�g fmake new entry in list of votesg

��� if all votes
p� rp� � n� f then fif collected enough votes to terminate�g
��� for each m in list

rp

p � in ID order do ffor each m in list���g
��� if m �� deliveredp then f���that hasn�t been delivered�g
��� deliver
m� fdeliver it and���g
��� deliveredp � deliveredp � hmi f���keep track of itg

�� rp � rp � �	 list

rp

p � � fstart next roundg


�� Random propagation of messages� fTask �g


�� periodically do



� fwdSet � some random subset of � of size k fchoose set of receiversg

�� for each q in fwdSet do send 
rp� list

rp

p � deliveredp� to q fforward list with votesg

Figure 4. Probabilistic atomic broadcast algorithm (for process p)

When p receives a message from q 	line ��� it
delivers all messages delivered by q that it has not
yet delivered 	lines ������ If the message p receives
from q is related to some round ahead of the round
in which p executes� p jumps to this round 	line
�
�� If p has just started the current round 	i�e��
list

rp
p is empty� 	line ���� it can vote for a message�

If p has broadcast some message m that has not
been yet delivered� p will vote for m 	lines �����

and ���� otherwise� p chooses the message in q�s
list of message votes that has received the smallest
number of votes and votes for it 	lines �������
Then� p merges its message votes list with q�s

list 	lines ���
��� Process p detects the end of
round rp by evaluating predicate all votes	p� rp�
	line 
��� de�ned as�

all votes	p� r�
def
�

X

���vSet� � listr
p

j vSet j�



When p reaches the end of round rp� it iterates
through all the messages of listp and delivers each
of them� if it has not yet done so 	lines 
��
���
p then starts a new round 	line ���� Processes
periodically choose a random subset of � of size k
	a parameter of the algorithm� and send to these
processes their list of message votes for the current
round 	lines �
�����

PABCast Algorithm Properties� We char�
acterize next the PABCast algorithm by present�
ing some of its properties� Propositions ��� and
��
 show that acquiring f � � votes for two mes�
sages m and m� is a su�cient condition for hav�
ing them delivered in the same order by all pro�
cesses� Proposition ��� shows that eventually� a
single vote cast for a message is enough to guar�
antee its delivery� Proposition ��� proves that the
PABCast algorithm eventually becomes determin�
istic� These last two results hold after all faulty
processes have crashed� In the following� we pro�
vide only the proposition statements� the proofs
can be found in ����

Proposition ���� If message m has received f �
� votes in round r� then m is delivered by every
process that terminates r�

Proposition ���� If m and m� are two messages
that have received f � � votes in rounds r and r��
respectively� then all processes that deliver m and
m� do so in the same order�

Proposition ���� After f processes fail� every
message that receives a vote in round r is deliv�
ered by all correct processes�

Proposition ���� After f processes fail� every
broadcast message is delivered by all correct pro�
cesses and in the same order�

3.3. Improving the PABCast Algorithm

We discuss next improvements to PABCast�

��� Reducing Propagation Delays� Each
process p votes for a message by updating its list
of message votes� This list is periodically sent by p
to a random subset of processes upon execution of
Task �� Assuming that Task � is executed every �
milliseconds� it takes on average ��
 milliseconds
between the time p casts a vote for a message m
and the time this vote is propagated to other pro�
cesses�

There are two problems with this� First� the
delivery latency of m is increased by ��
 on av�
erage� because processes will only have a chance
to vote for m after they receive it� Second� the
more a process waits to propagate the vote for m�
the lower the chances that m will receive f � �
votes�the condition for deterministic agreement
and ordering� as stated by Properties ��� and ��
�
since in the mean time processes may receive and
vote for other messages�
The delay in the propagation of the votes can

be suppressed by having processes execute Task
� right after they vote for a message 	line ���� in
addition to the task�s periodic execution�

��� Increasing Throughput� PABCast only
allows processes to broadcast one message per
round� reducing the throughput of the system�
This limitation can be addressed in several ways�
First� processes can bundle several broadcast mes�
sages and vote for all of them as if they were a
single message�
The second approach to increase throughput is

to let processes insert more than one message per
round in their list of message votes� if p broadcasts
a message m in round r and wants to broadcast
another message� say m�� before r is �nished� p
can add m� to listp with an empty vote set� If this
happens early enough in the round� there are good
chances that m� collects enough votes to be deliv�
ered by all processes at the end of round r� If m�

has no vote at the end of round r� p will broadcast
it again during round r� �� Note that� while this
approach increases the throughput of the PAB�
Cast algorithm� it also increases the chances of
having out of order messages 	see Section ���
A third alternative is for processes to overlap

round executions� Instead of executing rounds se�
quentially� processes can participate in multiple
rounds at the same time� This requires each pro�
cess to maintain a distinct list of message votes per
round and to keep track of the last round 	last�
that has been terminated� Processes should also
embed last in every message sent to other pro�
cesses� When receiving a message from process q�
process p checks if lastq is greater than lastp� if
so� p delivers the messages in deliveredq and ter�
minates round lastq � When p receives a message
for a round it has not yet voted� it votes for some
message in the round� As before� to deliver mes�
sages in a round� p has to wait until each previous
round has terminated�



��� Coping with Process Recovery� Pro�
cess recovery requires processes to have access to
stable storage 	e�g�� disk�� Once a process votes
for a message in a round� it should not forget for
which message it voted and vote for a di�erent one
in the same round after recovery� So� in order to
accommodate process recovery� before voting for
a message� processes have to store their vote on
stable storage� Moreover� to guarantee that mes�
sages are delivered at most once 	Integrity prop�
erty of PABCast�� processes also have to �remem�
ber
 which messages they have previously deliv�
ered after recovering from a crash�

��� Reducing the Message Size� To pre�
vent processes from systematically sending the se�
quence of all the messages they have previously de�
livered� a mechanism similar to the one described
in �
� can be used� If process p executing in round r
receives a message from process q related to round
r� � r� p requests to q the messages in deliveredq �
or a subset of them� Therefore� processes do not
always need to propagate the messages they have
previously delivered�

��� Deterministic Guarantees� Proposi�
tions ��� and ��
 show that all what it takes for
messages to be delivered in the same order is to
gather f �� votes� Thus� before propagating mes�
sages to the whole system� processes could make
sure that they will get so many votes� One way of
doing this is to divide the system in groups of size
greater than f and equip processes in each group
with a deterministic atomic broadcast protocol�
The atomic broadcast� de�ned by the primitives
a�broadcast and a�deliver� is only executed by the
members of the group it belongs to�
To broadcast a message to the whole system�

processes in group g a�broadcast m in g� Thus� all
processes in g a�deliver messages in the same or�
der� and can cast their vote for the same messages�
After a�delivering and casting a vote for a message�
the protocol continues as the basic PABCast pro�
tocol� processes propagate their votes and as soon
as n� f votes are received for a round� the round
terminates� Since every message has at least f ��
votes� it will be delivered by all processes in the
same order� This scheme can co�exist with the one
described in the basic algorithm� allowing for de�
terministic and probabilistic guarantees 	e�g�� only
some subsets of processes can broadcast messages
with deterministic guarantees��

This solution increases the delivery latency of
messages�even though only for those messages
with deterministic guarantees�but it is a power�
ful one since it does not depend directly on the
size of the system 	although one might argue that
as n grows� f should grow as well�� For a large�
scale system� it also shows how local interactions
can have an e�ect on the overall system�

�� Analysis

The di�usion of a message using gossiping fol�
lows complex mathematicalmodels well studied in
Epidemiology 	see for instance ����� In the follow�
ing� we focus only on the probabilistic analysis of
the asymptotic behavior of our protocol�

4.1. Probabilistic Model

For the probabilistic analysis of our algorithm�
we assume that failures are independent� The
probability of a message loss is smaller than the
constant Ploss � � and not more than f � n pro�
cesses can fail� The probability of some process
crashing is thus not higher than Pfail � f�n� The
processes in fwdSet� the subset of � to which a
process gossips a message� are chosen randomly
according to a uniform distribution� Since k� the
size of fwdSet� is a parameter of the algorithm�
each process has a probability k�n of being includ�
ing in fwdSet�

4.2. Agreement

Probabilistic agreement states that� with a
given probability �a� two correct processes de�
liver the same set of messages� To compute �a�
we are interested in �nding the scenarios where
agreement is violated� We simplify the analysis
by assuming that periodic gossiping 	lines �
���
in Figure �� is performed synchronously� i�e�� all
processes gossip at the same time� We call the syn�
chronous sending of gossip messages by all process
a gossip step�
A messagem sent by a process p during round r

can be received by another process q in two ways�
	�� as part of listrp during round r� or 	
� as part
of deliveredp during round r� � r� Both cases are
triggered by the reception of a gossip message 	line
��� We are therefore interested in computing �a
as a function of the number of gossip steps after
m has been sent�



Note that since all gossip messages contain
the list of all messages delivered by a process
	delivered�� the probability of agreement will
eventually converge to �� In practice� however�
delivered will be bounded and older messages will
be deleted after a number of gossip steps� The
probabilistic analysis of �a can help determine
when to perform such a garbage collection�
Informally� a gossip message sent by some cor�

rect process p is received by another process q if
	�� q is part of fwdSetp� 	
� the message is not
dropped by the network� and 	�� q does not fail�
Thus� the probability P that q receives a message
m during any step can be calculated as�

P �
k

n
	�� Ploss�	� � Pfail� 	��

Let Q � ��P be the probability that q does not
receive m during any step� We denote by P 	s� the
probability that some process has received a mes�
sage m after s gossip steps� Q	s� the probability
that it did not receive m� and N 	s� the expected
number of processes that have received m after s
gossip steps�
We conservatively assume that initiallyN 	�� �

� 	in fact the sender ofm has a copy ofm in s � ���
After the �rst step� P 	�� � P � Q	�� � � � P �
and N 	�� � nP � To compute the probabilities for
subsequent steps� we note that for a process not
to receive a message m after s steps� it must not
receive m in s nor in any previous step� We derive
the following recursive relation for step s�

Q	s� � QN�s���Q	s� ��
P 	s� � �� Q	s�
N 	s� � nP 	s�

	
�

Figures � and � show the expected behavior of
message di�usion with n � ���� Ploss � ����� and
Pfail � ����� The expected number of processes
reached by a message m after s gossip steps con�
verges to ��� at di�erent speeds depending on the
fanout value k� Similarly� the probability that all
processes have received a message converges to �
as the number of gossip steps grows�
As expected� the agreement probability �a

eventually converges to �� because processes keep
on gossiping each message forever� In practice� a
process p can stop sending some message m 	i�e��
garbage collect the messages in deliveredp� after
m has been gossiped a certain number of times� In

k�
�
k���
k���
k��

Gossip step

E
x
p
ec
te
d
n
b
�
of
p
ro
ce
ss
es
re
ac
h
ed

���
��

���

��

��

��


�

�

Figure 5. Number of processes that re-
ceived a message after s gossip steps

k�
�
k���
k���
k��

Gossip step

P
ro
b
ab
il
it
y
of
re
ac
h
in
g
al
l
p
ro
ce
ss
es
	�
a
�

���
��

�

���

���

���

��


�

Figure 6. Probability that all processes
received a message after s gossip steps

our example� � gossip steps are su�cient for any
k � ��

4.3. Validity

In PABCast� the only scenario where p may not
deliver a message m is if the round r during which
m is broadcast never terminates�
A process p terminates round r when it receives

n�f votes during that round� or any message from
round r� � r� To simplify� we pessimistically con�
centrate only on the �rst case and assume that a
single message m is being broadcast during round
r� For p to receive n � f votes� n � f processes
must �rst receive m� and p must then receive the
vote of all these processes� Similarly to the anal�
ysis of probabilistic agreement� we can compute a
lower bound for �v as a function of the number of
gossip steps after m has been sent�
Let P 	s� be the probability that some process

p receives a gossip message from another process



q after s steps� We have calculated this value in
Section ��
� The probability Pv	s� that p receives
a vote for m s steps after m has been broadcast
is the complement of the probability that p does
not receive such a vote in s steps�

Pv	s� � ��
sY

i��

	� � P 	i�P 	s� i�� 	��

k�
�
k���
k���
k��

Gossip step

P
ro
b
ab
il
it
y
of
re
ce
iv
in
g
	n
�f
�
v
ot
es
	�
v
�

���������
��

�

���

���

���

��


�

Figure 7. Probability that a processes re-
ceives n� f votes after s gossip steps

The probability Pt	s� that p receives n�f votes
	i�e�� that p terminates the current round� s steps
after a single message m has been broadcast is
thus Pv	s�n�f � Figure � shows the values of Pt	s�
as a function of the number of gossip steps s� with
n � ���� Ploss � ����� and f � 
� The probability
of receiving n� f votes converges to � at di�erent
speeds depending on the fanout value k� Note that
Pt	s� is a lower bound for �v � In practice �v will
converge to � signi�cantly faster� because several
messages can be send concurrently and a process
can terminate a round without waiting for n � f
messages��

4.4. Order

Messages can be delivered at lines �� and 
� in
PABCast� It is easy to see that if all the processes
that execute line 
� during round r deliver the
same messages in the same order� then no process
can deliver these messages at lines �� in a di�erent
order� Therefore� we are interested in computing
the probability that order is violated at line 
��
Processes use a deterministic function to order

messages 	line 
��� independent of the number of
votes associated with the messages� So� for mes�
sages to be delivered in a di�erent order by p and

q� listp and listq must contain a di�erent set of
messages when they execute line 
�� Since each
process can only cast one vote� messages are guar�
anteed to be ordered if both p and q receive n
votes� With n�f votes however� up to f messages
can be in listp but not in listq 	and vice�versa��

�

Hence� the probability �o directly depends on the
maximum number of failures f and on the num�
ber of messages B broadcast concurrently during
a given round� In addition� the fanout k also in�
�uences �o� as the number of gossip steps required
to obtain n�f votes decreases when k grows� and
fewer gossip steps increase the probability of hav�
ing unordered messages�
We have built a simulation model of our pro�

tocol and conducted experiments to evaluate the
probability of having out of order messages with
di�erent values for f � B� and k� Our simulator
models a distributed system with fair�lossy com�
munication links� Processes are implemented as
concurrent tasks� and gossip messages are sent
at random intervals according to a uniform dis�
tribution� In the experiments� we set n � ����
Ploss � ����� and f � �� We did not consider fail�
ures when measuring �o because the probability of
having out�of�order messages decreases when pro�
cesses fail�
Figure � shows the simulation results obtained

for di�erent values of f and k� with B � 
�
As expected� the number of unordered messages
increases with the maximal number of failures�
We also observed more unordered messages with
larger fanout values 	i�e�� fewer gossip steps per
round�� In Figure �� we have varied B and k�
with f � �� We observed a signi�cant increase in
the number of unordered messages with high val�
ues of B and k� reaching approximately � when
broadcasting �� messages simultaneously with a
fanout of ���

4.5. Scalability

In order to analyze how our protocol scales� we
computed the expected number of gossip steps
required to reliably broadcast a message when
increasing the number of processes in the sys�
tem� For that purpose� we used the same di�usion
model as in Section ��
�
Figure �� shows the number of gossip steps re�

quired to reach all processes with a probability of

�Note that in this case� there are still chances that mes�
sages get �spontaneously� delivered in the same order�



k���
k���
k��
k��

f

 
of
u
n
or
d
er
ed
m
es
sa
ge
s
	�
o
�

���
�

���

��


�

���

���

���

��


�

Figure 8. Unordered messages as a func-
tion of the number of failures f

k���
k���
k��
k��

B

 
of
u
n
or
d
er
ed
m
es
sa
ge
s
	�
o
�

����
�

���

�


��




���

�

���

�

Figure 9. Unordered messages as a func-
tion of concurrent messages B

���� for various fanout value k as a function of the
number of processes 	represented on a logarithmic
scale�� with Ploss � ���� and Pfail � ����� The
number of steps increases linearly with the loga�
rithm of the number of processes� which demon�
strates that our probabilistic broadcast algorithm
scales well to very large numbers of processes�

�� Background and Related Work

Epidemic protocols� also known as gossip proto�
cols� were introduced in ��� in the context of repli�
cated database consistency management� More re�
cently� the idea has been used to build failure de�
tection mechanisms ��� ���� garbage collection ����
leader election algorithms ����� and group commu�
nication protocols� as we review next�
In �
�� a gossip�based mechanism is proposed

to implement reliable broadcast in large networks�
The protocol proceeds in two phases� in the �rst

k�
�
k���
k��

Number of processes

w
it
h
p
ro
b
ab
il
it
y
P
�
��
��

G
os
si
p
st
ep
fo
r
re
ac
h
in
g
al
l
p
ro
ce
ss
es

�e���������������������

��

�


��

�

�

�




�

Figure 10. Number of gossip steps to
reach all processes (with probability ����)

phase� processes use an unreliable gossip�based
dissemination of information to transmit mes�
sages� in the second phase� messages losses are
detected and repaired with re�transmissions� Sev�
eral other papers have considered probabilistic ap�
proaches to solve reliable broadcast ���� ����
The work in ���� discusses ways to reduce the

number of gossip messages exchanged between
processes� Processes communicate according to
a pre�determined graph with minimal connectiv�
ity to attain a desired level of reliability� More
recently� ��
� has presented heuristics to garbage
collect messages in gossip�based broadcast algo�
rithms� The approach aims to identify 
aging

bu�ered messages�

Group membership issues in a gossip�based re�
liable broadcast protocol are discusses in ��� and
����� The idea is to provide processes with a par�
tial view of the membership of the system� which
will be used to propagate the broadcast messages
in the gossip phase of the algorithm� The problem
solved in ��� and ���� is orthogonal to the problem
addressed in this paper� an interesting open ques�
tion is how one could adapt the PABCast algo�
rithm to run on top of such a membership service�
The only probabilistic atomic broadcast algo�

rithm we are aware of is the one presented in ����
As in �
�� the execution proceeds in rounds�the
notion of round in ��� is that of a gossip�like prop�
agation of messages� and so� it di�ers from the
PABCast rounds� The protocol assumes that pro�
cesses can determine the number of rounds needed
for messages to reach all correct processes and
the time it takes to execute such a round� To
achieve total order� processes delay delivering a
message until any earlier messages have been de�



livered� Processes assign timestamps to the mes�
sages they broadcast� Once a process determines
that a round has terminated� it delivers all mes�
sages broadcast in the round in timestamp order�
Our work is di�erent from the one in ��� in sev�

eral aspects� First� we solve probabilistic atomic
broadcast in a truly asynchronous model and dis�
cuss how to integrate recovering processes in the
algorithm� Second� our algorithm allows for prob�
abilistic and deterministic message delivery in the
same execution� Finally� our protocol exhibits
the unique property that eventually it becomes
deterministic�even though such a property is
more of theoretical than practical interest� since it
only holds after all faulty processes have crashed�

�� Conclusion

This paper addresses the scalability of message�
ordering group communication protocols� We pro�
pose a speci�cation of probabilistic atomic broad�
cast with probabilistic safety and liveness proper�
ties� present a basic probabilistic atomic broadcast
protocol� and extend it to overcome some short�
comings� The probabilistic behavior of our proto�
col is analyzed under various conditions� Analyt�
ical and simulation results demonstrate that high
reliability and scalability can be achieved� More
speci�cally� results show that the number of out�
of�order messages is small in most scenarios�

References

��� N� Bailey� The Mathematical Theory of Epi�
demics� Charles Gri�n � Company Limited�
��	
�

��� K� P� Birman� M� Hayden� O� Ozkasap� Z� Xiao�
M� Budiu� and Y� Minsky� Bimodal multi�
cast� ACM Transactions on Computer Systems�
�

��������� May �����

��� A� Demers� D� Greene� C� Hauser� W� Irish�
J� Larson� S� Shenker� H� Sturgis� D� Swinehart�
and D� Terry� Epidemic algorithms for replicated
database maintenance� In Proceedings of the �th
Annual ACM Symposium on Principles of Dis�
tributed Computing� pages ����� Vancouver� BC�
Canada� Aug� ���
�

��� P� Eugster� S� Handurukande� R� Guerraoui� A��
M� Kermarrec� and P� Kouznetsov� Lightweight
probabilistic broadcast� In Proceedings of the
��th Annual ACM Symposium on Principles of
Distributed Computing� Newport� Rhode Island�
USA� Aug� �����

�	� P� Felber and F� Pedone� Probabilistic atomic
broadcast� Technical report� Bell Labs� Lucent�
Dec� ����� Also appears as Hewlett�Packard
Technical Report HPL��������� �����

��� K� Guo� M� Hayden� R� van Renesse� W� Vogels�
and K� P� Birman� GSGC� An e�cient gossip�
style garbage collection scheme for scalable re�
liable multicast� Technical Report TR�
���	��
Cornell University� Computer Science� Dec� ���
�

�
� I� Gupta� T� D� Chandra� and G� S� Goldszmidt�
On scalable and e�cient distributed failure de�
tectors� In Proceedings of the ��th Annual ACM
Symposium on Principles of Distributed Comput�
ing� Newport� Rhode Island� USA� Aug� �����

��� V� Hadzilacos and S� Toueg� Fault�tolerant
broadcasts and related problems� In Distributed
Systems� Addison�Wesley� �nd edition� �����

��� M� Hayden and K� Birman� Probabilistic broad�
cast� Technical Report TR�������� Cornell Uni�
versity� Computer Science� Sept� �����

���� K� P� B� I� Gupta� R� van Renesse� A probabilis�
tically correct leader election protocol for large
groups� In Proceedings of the ��th International
Symposium on Distributed Computing� pages ���
���� Toledo� Spain� Oct� �����

���� A��M� Kermarrec� L� Massoulie� and A� Ganesh�
Probabilistic reliable dissemination in large�scale
systems� Technical report� Microsoft Research�
June �����

���� P� Kouznetsov� R� Guerraoui� S� Handurukande�
and A��M� Kermarrec� Reducing noise in gossip�
based reliable broadcast� In Proceedings of the
��th International Symposium on Reliable Dis�
tributed Systems� pages �������� New Orleans�
LA� USA� Oct� �����

���� M��J� Lin and K� Marzullo� Directional gossip�
Gossip in a wide area network� Technical Re�
port CS���������� University of California� San
Diego� June �����

���� M��J� Lin� K� Marzullo� and S� Masini� Gos�
sip versus deterministic �ooding� Low message
overhead and high reliability for broadcasting on
small networks� Technical Report CS��������
�
University of California� San Diego� Nov� �����

��	� R� V� Renesse� Y� Minsky� and M� Hayden� A
gossip�style failure detection service� Techni�
cal Report TR������
� Cornell University� May
�����

���� F� B� Schneider� Implementing fault�tolerant ser�
vices using the state machine approach� A tuto�
rial� ACM Computing Surveys� ��
�����������
Dec� �����

��
� Q� Sun and D� Sturman� A gossip�based re�
liable multicast for large�scale high�throughput
applications� In Proceedings of the International
Conference on Dependable Systems and Networks
�DSN ������ New York 
USA�� June �����


