Probabilistic Atomic Broadcast

Pascal Felber

Institut EURECOM
2229 route des Crétes, BP 193
06904 Sophia Antipolis, France

pascal.felber@eurecom.fr

Abstract

Reliable distributed protocols, such as consensus
and atomic broadcast, are known to scale poorly
with large number of processes. Recent research
has shown that algorithms providing probabilistic
guarantees are a promising alternative for such en-
vironments. In this paper, we propose a specifica-
tion of atomic broadcast with probabilistic liveness
and safety guarantees. We present an algorithm
that implements this specification in a truly asyn-
chronous system (i.e., without assumptions about
process speeds and message transmission times).

1. Introduction

Message ordering abstractions, also known as
group communication protocols, are very useful
for the design of reliable distributed systems. Mes-
sage ordering abstractions ensure agreement on
which messages are delivered in the system and
on the order in which such messages are delivered.
Many problems related to reliable and highly-
available computation, such as active replication
[16], have been solved using one-to-many commu-
nication primitives with total-order guarantees.

Until recently, however, scalability has been the
Achilles’ heal of reliable one-to-many protocols. It
has been shown (e.g., in [2]) that group communi-
cation protocols do not scale well past a couple of
hundreds of processes and degrade rapidly when
executed across wide-area networks. A promising
approach for increasing scalability is to weaken the
deterministic guarantees of the protocols to make
them probabilistic. Provided that they are “ade-
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quately” high, probabilistic guarantees are enough
for most applications. Actually, even determinis-
tic protocols make implicit assumptions of proba-
bilistic nature (e.g., failures are independent).

Several probabilistic protocols have been pro-
posed to solve various group communication-
related problems such as reliable broadcast and
group membership. All the protocols we are aware
of are probabilistically live and deterministically
safe. In this paper, we study the problem of proba-
bilistic atomic broadcast and take into account not
only probabilistic liveness but also probabilistic
safety properties. We believe many applications
can take advantage of faster and more scalable al-
gorithms without deterministic safety, if safety vi-
olations are infrequent and can be detected.

This paper makes the following contributions:
First, we propose a probabilistic specification for
atomic broadcast. Unlike other atomic broadcast
specifications, in ours both safety and liveness are
probabilistic. Second, we present a protocol that
implements probabilistic atomic broadcast. This
protocol 1s resilient to message loses and f pro-
cess failures, where f is a parameter of the proto-
col. Processes execute a sequence of rounds, dur-
ing which they can vote for broadcast messages.
Among the protocol features, messages that re-
ceive f + 1 votes in a round are delivered by all
correct processes in the same order. We initially
present a basic version of the protocol and then
discuss how it can be extended. Finally, we ana-
lyze the probabilistic behavior of our protocol un-
der various conditions. Analytical and simulation
results demonstrate that our protocol is highly re-
liable and scalable, and that the number of out-
of-order messages 1s small in most scenarios.



The rest of this paper is organized as follows:
Section 2 describes the system model. Section 3
defines the probabilistic atomic broadcast problem
and presents an algorithm that solves it. Section 4
analyzes the probabilistic behavior of the proto-
col, and Section 5 discusses related work. Finally,
Section 6 concludes the paper.

2. System Model

We consider a system composed of a finite set
of processes II = {p1,...,pn} that communicate
by message passing. The system is truly asyn-
chronous, that is, there are no bounds on the time
it takes for processes to execute operations, nor on
the time it takes for messages to be transmitted.
Processes can only fail by crashing (i.e., we do not
consider Byzantine failures). A process that never
fails 1s correct; processes that are not correct are
faulty. For simplicity, we do not include process
recovery in the model. We discuss this issue later
in the paper (see Section 3.3).

Processes communicate using the primitives
send(m) and receive(m). Communication links
are fair-lossy: (a) if p sends m to a correct process
¢ an infinite number of times, ¢ receives m from p
an infinite number of times, (b) if p sends m to ¢ a
finite number of times, ¢ receives m from p a finite
number of times, and (c) if ¢ receives m from p at
time ¢, p sent m to ¢ before t.

Even though fair-lossy links can lose messages;
correct processes can construct reliable communi-
cation links on top of fair-lossy links by periodi-
cally retransmitting messages. If a correct process
p keeps sending a message m to another correct
process ¢, then ¢ eventually receives m from p.

3. Probabilistic Atomic Broadcast
3.1. Problem Definition

In this section we introduce probabilistic
atomic broadcast (PABCast). PABCast is defined
by the primitives broadcast(m) and deliver(m),
which guarantee Agreement, Order, Validity, and
Integrity. The former three properties are prob-
abilistic and the latter is deterministic. In the
following, p and ¢ are two processes in II.

Probabilistic Agreement. Let p and ¢ be cor-
rect. If p delivers m, then with probability
Ya, q also delivers m.

Probabilistic Order. If p and ¢ both deliver m
and m’, then with probability v, they do so
in the same order.

Probabilistic Validity. If p is correct and
broadcasts message m, then with probability
Yo, p delivers m.

Integrity. Every message is delivered at most
once at each process, and only if it was pre-
viously broadcast.

PABCast generalizes the traditional atomic
broadcast properties [8] to allow messages to be
delivered by any subset of the processes (from
probabilistic agreement), out of order (from prob-
abilistic order), and not at all (probabilistic valid-
ity).! Probabilistic agreement and order are inde-
pendent of each other; as illustrated in Figures 1
and 2.

deliver(m) deliver(m/)
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Figure 1. Agreement but no order
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Figure 2. Order but no agreement

In the run depicted in Figure 1, all processes
deliver messages m and m/, but p; and ps deliver
m before m’ and ps delivers m’ before m, thus,
agreement 1s satisfied but order is not. In the run
depicted in Figure 2, ps does not deliver m’, but
all three processes deliver m before m’', and p;
and ps deliver m, m’/, and m’' in the same order,
thus order is satisfied but agreement is not.

lEach one of our probabilistic properties is associated
with a probability v. When v = 1, we actually have a
deterministic property. Therefore, when we refer to deter-
ministic agreement, for example, we have v, = 1.



3.2. Solving Probabilistic Atomic Broadcast

We present our PABCast algorithm incremen-
tally. In this section we introduce a simple, but
not very efficient, version of the algorithm. In Sec-
tion 3.3, we discuss various improvements to the
basic algorithm.

Basic Idea. Processes executing our PABCast
algorithm proceed in a sequence of rounds ry, 7o, ...
Each process starts in round 0 and can broadcast
at most one message per round. If p has broad-
cast a message in round r and wants to broad-
cast another message, p has to wait until round »
has terminated. Figure 3 depicts an execution of
the algorithm (message reception is not shown).
Moreover, p can only deliver a message broadcast
in round r 4 1 after it has terminated round r.
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Figure 3. Algorithm execution

During the execution of a round, processes vote
for broadcast messages. FEach process can cast
only one vote per round, either for the message it
broadcast in the round or for the message some
other process broadcast in the round. Process
p keeps a list of message votes per round (here-
after list,). Each item in list, is a pair (m, vSet),
where m is a message broadcast during the current
round and wvSet is the set of processes that have
voted for m. To simplify the algorithm, we assume
that messages in list, can be ordered according to
a unique identifier associated with each message.
The message unique identifier is generated by the
process broadcasting the message, which uses its
unique identifier and a local sequential number,
associated to each broadcast message.

When p starts round r and wants to broadcast
m, it initializes list, with {(m, {p})}. Process p
periodically chooses a random subset of processes
to which it will send list,. When process ¢ receives
list, from p, it updates its own list as follows:

o If ¢ has not cast a vote in round r (i.e., list, is
empty), ¢ initializes list, with list,, chooses
the message in list, with the smallest number
of votes, and casts a vote for it.

o If ¢ has already voted in round r (i.e., list, is
not empty), ¢ updates its list with the items
in lesty: all votes in list, that are not in [list,
are copied into list,.

Process p starts the termination of round 7 af-
ter 1t receives directly or indirectly n — f votes
cast in round r (remember that f is the number
of processes that may fail in the system): ¢’s vote
is received directly by p if ¢ sends a message to p
with its vote; ¢’s vote is received indirectly by pif p
learns ¢’s vote from some other process. To termi-
nate round 7, p delivers all messages received dur-
ing r in a deterministic order, based on the unique
identifier associated with each message. Then, p;
starts round r 4+ 1 with an empty list, set.

Due to the asynchrony of the system and the
possibility of message losses, it may happen that
some process p executes in round r, while other
processes execute in round 7/ > 7. This may
prevent p from making progress because to ter-
minate round r and proceed to round r+ 1, p may
need messages from processes that are no longer
in round r. To ensure progress, processes also in-
clude in the messages they exchange a sequence
with the messages they have delivered in previous
rounds. Whenever p in round r receives a message
from ¢ in round 7’ > r, p delivers the messages de-
livered by ¢ that it has not yet delivered and jumps
to round /. We discuss ways to avoid sending all
previously delivered messages in Section 3.3.

Detailed Algorithm. Figure 4 depicts the
PABCast algorithm. Tasks 1, 2, and 3 execute
concurrently, but there is only one instance of each
task executing at a time. We assume that the
task scheduler is fair, that is; all tasks get equal
chances to execute. Moreover, each line 1s exe-
cuted atomically. For example, the operations in
line 12 cannot be interrupted.

Processes start a new round by setting the
round number and creating an empty list of mes-
sage votes for the round (lines 2, 12, and 30).
To broadcast a message m, p includes m in its
broadcast, sequence (line 6). Messages are ap-
pended to sequences with the concatenation op-
erator ¢. Messages in broadcast, are eventually
gossiped to the other processes in the system.



1: Initialization:

2: rp 0 list;p «— 0
3: broadcasty ¢ ¢
4: deliveredy + ¢

5: To execute broadcast(m):
6:  broadcasty + broadcast, & (m )

7: deliver(m) occurs as follows:

{processes start in round 0}

{sequence of locally broadcast messages}
{sequence of all delivered messages}
{Task 1}

{include m in broadcast, sequence}

{Task 2}

8: when receive (rq,listgq,deliveredq) from g and rg > rp {when receive a message from q}
9: for each m in deliveredy \ deliveredy, in sequence order do {for each m delivered only by q:}
10: deliver(m) {deliver m and...}
11: deliveredy, + delivered, @ (m) {...keep track of it}
12: if rq > rp then rp < ry; list;p — 0 {if q is ahead of p, start new round}
13: if list,? = 0 then {if hasn’t cast a vote in rp:}
14: if broadcasty \ delivered, # € then {if has a message to broadcast:}
15: let m be the first message in broadcasty \ deliveredy {select this message}
16: else {else:}
17: let (m,vSet) be the item in listy? with the smallest vSet {select a message in list,"}
18: listy? « {(m,{p})} {vote for message m}
19: for each (mgq,vSety) in listy? do {update list with votes}
20: if (mgq,vSety) € list;p then {if has seen message mq:}
21: listy? « list,? \ {(mgq,vSety)} {join votes for mg}
22: listy? « listy? U {(mg,vSety UnvSetp)} {done}
23: else {if hasn’t seen mq:}
24: listy? « listy? U {(mg,vSety)} {make new entry in list of votes}
25: if allwvotes(p,rp) > n — f then {if collected enough votes to terminate:}
26: for each m in listy?, in ID order do {for each m in list...}
27: if m ¢ delivered, then {...that hasn’t been delivered:}
28: deliver(m) {deliver it and...}
29: deliveredy, « delivered, @ (m) {...keep track of it}
30: rp = rp 4 1; listy? 0 {start next round}

31: Random propagation of messages:

32: periodically do
33: fwdSet + some random subset of II of size k

34: for each g in fwdSet do send (rp, list;p,deliveredp) to g

{Task 3}

{choose set of receivers}
{forward list with votes}

Figure 4. Probabilistic atomic broadcast algorithm (for process p)

When p receives a message from ¢ (line 8), it
delivers all messages delivered by ¢ that it has not
yet delivered (lines 9-11). If the message p receives
from ¢ 1s related to some round ahead of the round
in which p executes, p jumps to this round (line
12). If p has just started the current round (i.e.,
list,” is empty) (line 13), it can vote for a message:
If p has broadcast some message m that has not
been yet delivered, p will vote for m (lines 14-15

and 18); otherwise, p chooses the message in ¢’s
list of message votes that has received the smallest
number of votes and votes for it (lines 17-18).
Then, p merges its message votes list with ¢’s
list (lines 19-24). Process p detects the end of
round rp, by evaluating predicate all_votes(p,rp)

(line 25), defined as:

all_votes(p,r) = Z

(—,vSet) € list;

|vSet |.



When p reaches the end of round rp, it iterates
through all the messages of l4st, and delivers each
of them, if it has not yet done so (lines 26-29);
p then starts a new round (line 30). Processes
periodically choose a random subset of II of size k
(a parameter of the algorithm) and send to these
processes their list of message votes for the current

round (lines 32-34).

PABCast Algorithm Properties. We char-
acterize next the PABCast algorithm by present-
ing some of its properties. Propositions 3.1 and
3.2 show that acquiring f 4 1 votes for two mes-
sages m and m’ is a sufficient condition for hav-
ing them delivered in the same order by all pro-
cesses. Proposition 3.3 shows that eventually, a
single vote cast for a message 1s enough to guar-
antee its delivery. Proposition 3.4 proves that the
PABCast algorithm eventually becomes determin-
istic. These last two results hold after all faulty
processes have crashed. In the following, we pro-
vide only the proposition statements; the proofs
can be found in [5].

Proposition 3.1. If message m has received [ +
1 wvotes in round r, then m 1is delivered by every
process that terminates r.

Proposition 3.2. If m and m’' are two messages
that have received f + 1 votes in rounds r and 7',
respectively, then all processes that deliver m and
m’ do so in the same order.

Proposition 3.3. After f processes fail, every
message that receives a vote in round r is deliv-
ered by all correct processes.

Proposition 3.4. After f processes fail, every
broadcast message is delivered by all correct pro-
cesses and in the same order.

3.3. Improving the PABCast Algorithm
We discuss next improvements to PABCast.

#1: Reducing Propagation Delays. FEach
process p votes for a message by updating its list
of message votes. This list is periodically sent by p
to a random subset of processes upon execution of
Task 3. Assuming that Task 3 is executed every ¢
milliseconds, it takes on average §/2 milliseconds
between the time p casts a vote for a message m
and the time this vote is propagated to other pro-
cesses.

There are two problems with this. First, the
delivery latency of m is increased by d/2 on av-
erage, because processes will only have a chance
to vote for m after they receive it. Second, the
more a process waits to propagate the vote for m,
the lower the chances that m will receive f + 1
votes—the condition for deterministic agreement
and ordering, as stated by Properties 3.1 and 3.2—
since in the mean time processes may receive and
vote for other messages.

The delay in the propagation of the votes can
be suppressed by having processes execute Task
3 right after they vote for a message (line 18), in
addition to the task’s periodic execution.

#2: Increasing Throughput. PABCast only
allows processes to broadcast one message per
round, reducing the throughput of the system.
This limitation can be addressed in several ways.
First, processes can bundle several broadcast mes-
sages and vote for all of them as if they were a
single message.

The second approach to increase throughput is
to let processes insert more than one message per
round in their list of message votes: if p broadcasts
a message m in round r and wants to broadcast
another message, say m’, before r is finished, p
can add m' to list, with an empty vote set. If this
happens early enough in the round, there are good
chances that m’ collects enough votes to be deliv-
ered by all processes at the end of round r. If m/
has no vote at the end of round r, p will broadcast
it again during round r + 1. Note that, while this
approach increases the throughput of the PAB-
Cast algorithm, it also increases the chances of
having out of order messages (see Section 4).

A third alternative is for processes to overlap
round executions. Instead of executing rounds se-
quentially, processes can participate in multiple
rounds at the same time. This requires each pro-
cess to maintain a distinct list of message votes per
round and to keep track of the last round (last)
that has been terminated. Processes should also
embed last in every message sent to other pro-
cesses. When receiving a message from process q,
process p checks if last, is greater than last,; if
so, p delivers the messages in delivered, and ter-
minates round last,. When p receives a message
for a round it has not yet voted, it votes for some
message in the round. As before, to deliver mes-
sages in a round, p has to wait until each previous
round has terminated.



#3: Coping with Process Recovery. Pro-
cess recovery requires processes to have access to
stable storage (e.g., disk). Once a process votes
for a message in a round, it should not forget for
which message it voted and vote for a different one
in the same round after recovery. So, in order to
accommodate process recovery, before voting for
a message, processes have to store their vote on
stable storage. Moreover, to guarantee that mes-
sages are delivered at most once (Integrity prop-
erty of PABCast), processes also have to “remem-
ber” which messages they have previously deliv-
ered after recovering from a crash.

#4: Reducing the Message Size. To pre-
vent processes from systematically sending the se-
quence of all the messages they have previously de-
livered, a mechanism similar to the one described
in [2] can be used: If process p executing in round r
receives a message from process ¢ related to round
7’ > r, p requests to ¢ the messages in delivered,,
or a subset of them. Therefore, processes do not
always need to propagate the messages they have
previously delivered.

#5: Deterministic Guarantees. Proposi-
tions 3.1 and 3.2 show that all what it takes for
messages to be delivered in the same order is to
gather f+1 votes. Thus, before propagating mes-
sages to the whole system, processes could make
sure that they will get so many votes. One way of
doing this is to divide the system in groups of size
greater than f and equip processes in each group
with a deterministic atomic broadcast protocol.
The atomic broadcast, defined by the primitives
a-broadcast and a-deliver, is only executed by the
members of the group it belongs to.

To broadcast a message to the whole system,
processes in group g a-broadcast m in g. Thus, all
processes in g a-deliver messages in the same or-
der, and can cast their vote for the same messages.
After a-delivering and casting a vote for a message,
the protocol continues as the basic PABCast pro-
tocol: processes propagate their votes and as soon
as n — f votes are received for a round, the round
terminates. Since every message has at least f+1
votes, 1t will be delivered by all processes in the
same order. This scheme can co-exist with the one
described in the basic algorithm, allowing for de-
terministic and probabilistic guarantees (e.g., only
some subsets of processes can broadcast messages
with deterministic guarantees).

This solution increases the delivery latency of
messages—even though only for those messages
with deterministic guarantees—but it is a power-
ful one since it does not depend directly on the
size of the system (although one might argue that
as n grows, f should grow as well). For a large-
scale system, it also shows how local interactions
can have an effect on the overall system.

4. Analysis

The diffusion of a message using gossiping fol-
lows complex mathematical models well studied in
Epidemiology (see for instance [1]). In the follow-
ing, we focus only on the probabilistic analysis of
the asymptotic behavior of our protocol.

4.1. Probabilistic M odél

For the probabilistic analysis of our algorithm,
we assume that failures are independent. The
probability of a message loss is smaller than the
constant Pj,ss > 0 and not more than f < n pro-
cesses can fail. The probability of some process
crashing is thus not higher than Ps,;; = f/n. The
processes in fwdSet, the subset of Il to which a
process gossips a message, are chosen randomly
according to a uniform distribution. Since k, the
size of fwdSet, is a parameter of the algorithm,
each process has a probability k/n of being includ-
ing in fwdSet.

4.2. Agreement

Probabilistic agreement states that, with a
given probability 7,, two correct processes de-
liver the same set of messages. To compute 7,
we are interested in finding the scenarios where
agreement is violated. We simplify the analysis
by assuming that periodic gossiping (lines 32-34
in Figure 4) is performed synchronously, i.e., all
processes gossip at the same time. We call the syn-
chronous sending of gossip messages by all process
a gossip step.

A message m sent by a process p during round r
can be received by another process ¢ in two ways:
(1) as part of list} during round r, or (2) as part
of delivered, during round »' > r. Both cases are
triggered by the reception of a gossip message (line
8). We are therefore interested in computing 7,
as a function of the number of gossip steps after
m has been sent.



Note that since all gossip messages contain
the list of all messages delivered by a process
(delivered), the probability of agreement will
eventually converge to 1. In practice, however,
delivered will be bounded and older messages will
be deleted after a number of gossip steps. The
probabilistic analysis of 7, can help determine
when to perform such a garbage collection.

Informally, a gossip message sent by some cor-
rect process p is received by another process ¢ if
(1) ¢ is part of fwdSet,, (2) the message is not
dropped by the network, and (3) ¢ does not fail.
Thus, the probability P that ¢ receives a message
m during any step can be calculated as:

P %(1 — Ploss)(1 = Pyait) (1)

Let @ = 1— P be the probability that ¢ does not
receive m during any step. We denote by P(s) the
probability that some process has received a mes-
sage m after s gossip steps, (s) the probability
that it did not receive m, and N (s) the expected
number of processes that have received m after s
gossip steps.

We conservatively assume that initially N (0) =
0 (in fact the sender of m has a copy of min s = 0).
After the first step, P(1) = P, Q(1) = 1 — P,
and N (1) = nP. To compute the probabilities for
subsequent steps, we note that for a process not
to receive a message m after s steps, it must not
receive m in s nor in any previous step. We derive
the following recursive relation for step s:

Qs) = QNETHQ(s—1)
Pls) = 1-Q(s) )
N(s) = nP(s)

Figures 5 and 6 show the expected behavior of
message diffusion with n = 100, Fj,ss = 0.05, and
Ptait = 0.05. The expected number of processes
reached by a message m after s gossip steps con-
verges to 100 at different speeds depending on the
fanout value k. Similarly, the probability that all
processes have received a message converges to 1
as the number of gossip steps grows.

As expected, the agreement probability ~,
eventually converges to 1, because processes keep
on gossiping each message forever. In practice, a
process p can stop sending some message m (i.e.,
garbage collect the messages in delivered,) after
m has been gossiped a certain number of times. In

100

Lxpected nb. of processos reached

Gowsip step

Figure 5. Number of processes that re-
ceived a message after s gossip steps

Probability of reaching all processes (v,)

Gowsip step

Figure 6. Probability that all processes
received a message after s gossip steps

our example, 5 gossip steps are sufficient for any

k> 5.
4.3, Validity

In PABCast, the only scenario where p may not
deliver a message m is if the round r during which
m is broadcast never terminates.

A process p terminates round r when it receives
n— f votes during that round, or any message from
round 7’ > r. To simplify, we pessimistically con-
centrate only on the first case and assume that a
single message m is being broadcast during round
r. For p to receive n — f votes, n — f processes
must first receive m, and p must then receive the
vote of all these processes. Similarly to the anal-
ysis of probabilistic agreement, we can compute a
lower bound for v, as a function of the number of
gossip steps after m has been sent.

Let P(s) be the probability that some process
p receives a gossip message from another process



q after s steps. We have calculated this value in
Section 4.2. The probability P, (s) that p receives
a vote for m s steps after m has been broadcast
i1s the complement of the probability that p does
not receive such a vote in s steps:

5

P,(s)=1— H(1 — P(i)P(s — 1)) (3)

i=0

)

08

04

Probability of receiving (n-f) votes (7,

Gossip step

Figure 7. Probability that a processes re-
ceives n — f votes after s gossip steps

The probability P(s) that p receives n— f votes
(i.e., that p terminates the current round) s steps
after a single message m has been broadcast is
thus P,(s)"~/. Figure 7 shows the values of P;(s)
as a function of the number of gossip steps s, with
n = 100, Pyss = 0.05, and f = 2. The probability
of receiving n — f votes converges to 1 at different
speeds depending on the fanout value k. Note that
P.(s) is a lower bound for v,: In practice v, will
converge to 1 significantly faster, because several
messages can be send concurrently and a process
can terminate a round without waiting for n — f
messages,.

4.4, Order

Messages can be delivered at lines 10 and 28 in
PABCast. It is easy to see that if all the processes
that execute line 28 during round 7 deliver the
same messages in the same order, then no process
can deliver these messages at lines 10 in a different
order. Therefore, we are interested in computing
the probability that order is violated at line 28.

Processes use a deterministic function to order
messages (line 26), independent of the number of
votes associated with the messages. So, for mes-
sages to be delivered in a different order by p and

q, list, and list; must contain a different set of
messages when they execute line 26. Since each
process can only cast one vote, messages are guar-
anteed to be ordered if both p and ¢ receive n
votes. With n— f votes however, up to f messages
can be in list, but not in list, (and vice-versa).?
Hence, the probability v, directly depends on the
maximum number of failures f and on the num-
ber of messages B broadcast concurrently during
a given round. In addition, the fanout & also in-
fluences ~,, as the number of gossip steps required
to obtain n — f votes decreases when k grows, and
fewer gossip steps increase the probability of hav-
ing unordered messages.

We have built a simulation model of our pro-
tocol and conducted experiments to evaluate the
probability of having out of order messages with
different values for f, B, and k. Our simulator
models a distributed system with fair-lossy com-
munication links. Processes are implemented as
concurrent tasks, and gossip messages are sent
at random intervals according to a uniform dis-
tribution. In the experiments, we set n = 100,
Poss = 0.05, and f = 0. We did not consider fail-
ures when measuring 7, because the probability of
having out-of-order messages decreases when pro-
cesses fail.

Figure 8 shows the simulation results obtained
for different values of f and k, with B = 2.
As expected, the number of unordered messages
increases with the maximal number of failures.
We also observed more unordered messages with
larger fanout values (i.e., fewer gossip steps per
round). In Figure 9, we have varied B and k,
with f = 5. We observed a significant increase in
the number of unordered messages with high val-
ues of B and k, reaching approximately 3% when
broadcasting 10 messages simultaneously with a
fanout of 15.

4.5, Scalability

In order to analyze how our protocol scales, we
computed the expected number of gossip steps
required to reliably broadcast a message when
increasing the number of processes in the sys-
tem. For that purpose, we used the same diffusion
model as in Section 4.2.

Figure 10 shows the number of gossip steps re-
quired to reach all processes with a probability of

2Note that in this case, there are still chances that mes-
sages get “spontaneously” delivered in the same order.
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0.99 for various fanout value k as a function of the
number of processes (represented on a logarithmic
scale), with Pjoss = 0.05 and Ppq; = 0.05. The
number of steps increases linearly with the loga-
rithm of the number of processes, which demon-
strates that our probabilistic broadcast algorithm
scales well to very large numbers of processes.

5. Background and Related Work

Epidemic protocols, also known as gossip proto-
cols, were introduced in [3] in the context of repli-
cated database consistency management. More re-
cently, the idea has been used to build failure de-
tection mechanisms [7, 15], garbage collection [6],
leader election algorithms [10], and group commu-
nication protocols, as we review next.

In [2], a gossip-based mechanism is proposed
to implement reliable broadcast in large networks.
The protocol proceeds in two phases: in the first
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Figure 10. Number of gossip steps to
reach all processes (with probability 0.99)

phase, processes use an unreliable gossip-based
dissemination of information to transmit mes-
sages; 1n the second phase, messages losses are
detected and repaired with re-transmissions. Sev-
eral other papers have considered probabilistic ap-
proaches to solve reliable broadcast [13, 17].

The work in [14] discusses ways to reduce the
number of gossip messages exchanged between
processes. Processes communicate according to
a pre-determined graph with minimal connectiv-
ity to attain a desired level of reliability. More
recently, [12] has presented heuristics to garbage
collect messages in gossip-based broadcast algo-
rithms. The approach aims to identify ”aging”
buffered messages.

Group membership issues in a gossip-based re-
liable broadcast protocol are discusses in [4] and
[11]. The idea is to provide processes with a par-
tial view of the membership of the system, which
will be used to propagate the broadcast messages
in the gossip phase of the algorithm. The problem
solved in [4] and [11] is orthogonal to the problem
addressed in this paper; an interesting open ques-
tion is how one could adapt the PABCast algo-
rithm to run on top of such a membership service.

The only probabilistic atomic broadcast algo-
rithm we are aware of is the one presented in [9].
As in [2], the execution proceeds in rounds—the
notion of round in [9] is that of a gossip-like prop-
agation of messages, and so, it differs from the
PABCast rounds. The protocol assumes that pro-
cesses can determine the number of rounds needed
for messages to reach all correct processes and
the time it takes to execute such a round. To
achieve total order, processes delay delivering a
message until any earlier messages have been de-



livered. Processes assign timestamps to the mes-
sages they broadcast. Once a process determines
that a round has terminated, it delivers all mes-
sages broadcast in the round in timestamp order.
Our work is different from the one in [9] in sev-
eral aspects. First, we solve probabilistic atomic
broadcast in a truly asynchronous model and dis-
cuss how to integrate recovering processes in the
algorithm. Second, our algorithm allows for prob-
abilistic and deterministic message delivery in the
same execution. Finally, our protocol exhibits
the unique property that eventually it becomes
deterministic—even though such a property is
more of theoretical than practical interest, since it
only holds after all faulty processes have crashed.

6. Conclusion

This paper addresses the scalability of message-
ordering group communication protocols. We pro-
pose a specification of probabilistic atomic broad-
cast with probabilistic safety and liveness proper-
ties, present a basic probabilistic atomic broadcast
protocol, and extend it to overcome some short-
comings. The probabilistic behavior of our proto-
col is analyzed under various conditions. Analyt-
ical and simulation results demonstrate that high
reliability and scalability can be achieved. More
specifically, results show that the number of out-
of-order messages 1s small in most scenarios.
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