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I. INTRODUCTION AND BACKGROUND

INcremental-Redundancy (INR) is a form of hybrid ARQ
where the receiver asks the transmitter for additional par-
ity bits when decoding is not successful. This technique is
particularly useful in time-selective fading channels, since it
implements variable-rate adaptive transmission with a very
simple feedback binary channel, where the feedback messages
are positive or negative acknowledgments (ACK and NACK,
respectively).

An information-theoretic analysis of the achievable
throughput and delay of INR over block-fading channels, as-
suming random Gaussian code ensembles, is provided in [5].
In this work, we provide results for random binary codes and
for Low-Density Parity-Check (LDPC) binary linear codes.

In the channel model under consideration, time is divided
into slots of duration T' and (approximate) bandwidth W. Un-
der the assumption that WT > 1, the number of complex
independent dimensions per slot available for transmission is
L =~ WT. The channel in slot s is defined by

Ys = CsXs + Vs (1)

where x5, ys and vs denote the transmitted, received and noise
signal sequences in slot s, given by

xs = (Ts,1, Ts,2y -+, Ts,L)
Ys = (ys,ly Ys,2y - ooy ys,L)
Vs = (Us,1, Vs,2y -+ Vs,L) (2)

and c¢s is the (scalar) channel fading coefficient. The noise
is zero-mean complex Gaussian with i.i.d components with
variance No. The energy per symbol is constant and given
by E = [|zs,])?]. The fading is frequency non-selective and
constant over each slot (block-fading). Moreover, we assume
that the fading is normalized so that E[|cs|?] = 1 and it is
ii.d. over different blocks (this model applies, for example, to
narrowband transmission with slow frequency-hopping). We
denote by v = E/Ny, as = |cs|2 and 35 = as7v the average
SNR, the fading power gain and the instantaneous SNR on
slot s, respectively.

The transmitter encodes information messages of b bits, by
using a channel code with codebook C € CXM of length LM
where M is a given integer. The codewords are divided in M
subblocks of length L. Each subblock is sent over one slot. Let
Cm denote the punctured code of length Lm obtained from C
by deleting the last M — m subblocks. As in [5], the system
works according to the following INR protocol. In order to
transmit a given codeword, the transmitter sends the first L
symbols on slot s;. The receiver decodes the code Ci, by pro-
cessing the corresponding received signal ys,. If decoding is
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successful, an ACK is sent on a delay-free error-free feedback
channel, the transmission of the current codeword is stopped
and the transmission of the next codeword will start in the
next slot (say, s2). If a decoding error is revealed, then a
NACK is sent and the next subblock of the current codeword
is sent on the next slot ss. In this case, the receiver decodes
C» by processing the received signal {ys,, ys,} and the same
ACK/NACK procedure is repeated, until either successful de-
coding occurs, or all M subblocks of the current codeword
are transmitted without succesful decoding. For simplicity,
and without loss of generality as far as the throughput is con-
cerned, we may assume that in the latter case the information
message is lost. Let R = ﬁ denote the rate of code C and let
r= % If succesful decoding occurs after m subblocks, the ef-
fective coding rate for the current codeword is - bit/symbol.
Let J(f3s) denote the mutual information (per input symbol)
on slot s, for a given (fixed) input distribution Q(x). Fol-
lowing [5], we have that there exist codes C such that, for
sufficiently large L, the probability of decoding error after m
slots (conditioned on the fading realization) vanishes if

In &3 J(Bs) > 1 (3)
i=1

On the contrary, for all codes Cy, of length mL the (condi-
tional) probability of decoding error tends to 1 if I, < r. Fi-
nally, the (conditional) probability of an undetected decoding
error, assuming typical set decoding, vanishes for sufficiently
large L. In the following, the probability Pr(I, < r) will be
referred to as the information outage probability at step m.

II. THROUGHPUT ANALYSIS

We analyse the average throughput of the INR protocol
described above in the limit of large L. The throughput, ex-
pressed in bits per second per Hertz is given by

(4)

where ¢ counts the number of slots and b(¢) the number of
information bits successfully decoded up to slot ¢. The event
& = {The user stops transmitting the current codeword} is
recognized to be a recurrent event ([4, 8, 5]). A random reward
R is associated to the occurrence of the recurrent event: R =
r bit/symbol if transmission stops because successful decoding
and R = 0 bit/symbol if it stops because at step M it is
not possible to successfully decode. As an application of the
Renewal Theorem we obtain
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where 7 is the inter-renewal time expressed in number of slots,
i.e., it is the time between two consecutive occurrences of the
recurrent event.

We define the event A,,, = {I,, > r} and the probability

q(m) of successful decoding with m transmitted slots. We
have
Q(m) = Pr(zh j% SR jm—l, Am)
= p(m —1) —p(m) (6)

where we define
p(m) L Pr(zl, e

Hence, from (5) it is immediate to obtain
1 — p(M)
M—1
1+ =1 p(m)
Random Binary Codes. We apply the above throughput
analysis to random binary codes, i.e., when the input distri-

bution Q(z) puts uniform probability on the binary antipodal
alphabet {—vE,VE}. We have to compute the probability

n=RM

p(m) = Pr(li <r, ..., In <7) (9)

Since I, = Y_.7*, J(B:) is a non-decreasing sequence with
probability 1, then

p(m) = Pr (Z J(Bi) < r)

On slot i, the conditional mutual information function J(3;)
is given by

J(Bi) =1— /j:o log, (1 + 64\/6_1(2_\/5_1')) ;dz

(10)

(11)
™

Since the 3;’s are i.i.d. random variables, the cumulative dis-
tribution function (cdf) (10) is obtained from the m-fold con-
volution of the probability density function (pdf) of J(5;),
given by

1 1 d:]71 ($)

_ 1. A ) 12
f@) =20, (7 @) (Y (12)
where fo(z) is the fading gain pdf. In order to reduce the
computation complexity for large m, we can use the Gaussian
Approximation (GA) or the Chernoff bound. Using the GA,

we have
1 r—mpy

where ;1 and o2 are the mean and the variance of J(3;). Using
the Chernoff bound, we have

(13)

p(m) < m)\ine“[@()\)]m (14)

where ®(A\) = E [67”(51')] is the moment-generating func-
tion of J(3;).

In all our numerical examples we assumed Rayleigh fading,
ie., fa(x) = e ". Figs. 1 and 2 show the probabilities p(m)
for different values of m as a function of the coding rate R,
for v = 0dB and 10dB, respectively. For large SNR (v =
10dB), p(m) shows a “step” behavior while for small SNR

(v = 0dB) it is a smooth function of R. Figs. 3 and 4 show the
throughput vs. R evaluated via convolution, GA and Chernoff
bound for v = 10 and 0dB, respectively. The Chernoff bound
yields a loose lower bound for small SNR, while the accuracy
of the GA improves for small SNR. The (almost) piecewise
linear behavior of the throughput as a function of R for large
SNR is explained by the step behavior of the probabilities
p(m). For example, for R € [0.1,0.2] bit/symbol we have
N %. In particular, since p(1) = 1 and p(2) = 0 for
R =0.1and p(1) = p(2) = 1 for R = 0.2, the throughput takes
on the values 1/2 and 2/3, respectively. For R € (0.1,0.2),
p(2) increases slowly with R, so that 7 = RM/(2+¢(R)) with
€(R) < 1. Therefore, 1 is an almost linear function of R in
this interval. This effect is less obvious for larger values of R.

LDPC codes. Low Density Parity Check [6] are a class
of very powerful random like binary codes suited to iterative
decoding via the belief propagation (BP) algorithm. Their bit-
error rate (BER) performance under BP, in the limit of large
block length, can be obtained via the Density Evolution (DE)
method [7]. These codes exhibit a threshold phenomenon: as
the block length tends to infinity, an arbitrarily small BER
can be achieved if the noise level is smaller than a certain
threshold [7]. Otherwise, the BER is bounded away from zero
for any number of decoder iterations.
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Fig. 1: p(m) for v = 10dB.
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Fig. 2: p(m) for v = 0dB.
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In our analysis, we assume that decoding is successful with
high probability if, after m received slots, the BER under BP
decoding tends to zero with the number of decoder iterations,
while we have decoding failure if the BER is bounded away
from zero. We assume that this behavior can be detected
by the decoder, so that decoding failure is always revealed.
Hence, we can use the same throughput formula with the new
definition of p(m) as

p(m) =Pr (llirgo BER(l)(m) > 0) (15)
where BER(” (1) is the BER at BP decoder iteration [ with
m received slots.

We assume that the reader is familiar with BP decoding and
the DE method (see for the details [7]). Consider the LDPC
ensemble defined by the left and right degree sequences A(z)
and p(z). Denote by v the messages sent from bitnodes to
checknodes, and by u the messages sent from checknodes to
bitnodes. Let up denote the channel observation message, in
the form of the log-likelihood ratio for the symbol associated
to the given bitnode, given the channel output. Assuming,
without, loss of generality that the all-zero codeword is trans-
mitted, uo is real Gaussian with mean 483,, and variance 83,
if the symbol corresponding to the bitnode is transmitted on
the m-th slot. In order to simplify the DE, we use the follow-
ing Gaussian Approximation: we assume that all messages
are Gaussian distributed, and we enforce the symmetry con-
dition [7, 3] that must be satisfied by the true distribution

of the messages propagated by the BP. The symmetry condi-
tion applied to a Gaussian distribution implies that, at each
iteration, the variance of the messages is equal to twice the
conditional mean. Therefore, tracking the evolution of the
message distribution along the BP iterations is equivalent to
tracking the evolution of the message mean. However, follow-
ing [1], we choose to express the one-parameter evolution by
using mutual information.

We define a random variable P that governs the distribu-
tion of the variable node belonging to the m-th block, so that
P is uniformly distributed over m = 1,..., M. Let X de-
note the bitnode variable and Y denote all the information
available at the bitnode at a given iteration. Then, the mu-
tual information between the output of the bitnode and the
symbol X is given by

I(X,Y|P) =Y %I(X,Y|P:m)

m=1

(16)

From the Gaussian Approximation, it follows that
I(X;Y|P=m)=J((d—Dp+yam)

for a bitnode of degree d transmitted on slot m, where p de-
notes the mean divided by 4 of the messages u coming from
the checknodes. Hence, the mutual information of a message
passed along a random edge from a bitnode to a checknode at
iteration [ is given by

1 M
=— > B (Lo yan)

m=1

(17)

1
Iout,v

where we define

Fy(z,a)

Z)\,J ((i —1)J " (z) +a)

and where I(l,;tl,c is the mutual information of messages passed
along a random edge from a checknode to a bitnode at itera-
tion [ — 1.

In order to find the mutual information transfer function
relationship for the checknodes, we use the reciprocal chan-
nel approximation [2]. With this approximation, a checknode
can be replaced by a bitnode provided that its input mutual
information I;, is transformed into 1 — I;,, and its output
mutual information I,y is transformed into 1 — I,,:. Hence,
the mutual information transfer of a checknode of degree d is
approximated by

Iéut,c =1- J((d - 1) ‘]71 (1 - Iéut,v)) (18)
Therefore, the mutual information of a message passed along

a random edge from a checknode to a bitnode at iteration [ is
given by

Luie =1=F, (1= Tuta,0)

By putting together equations (17) and (19), we obtain the
one-dimensional recursion

(19)

M
1 —
Tt = 22 B (1= Fo (1= 152L0,0) syam) - (20)
m=1

with initial condition I3, , = 0.



The trajectories (and hence the fixed points) of the above
recursion are functions of the fading coefficients a,. The con-
dition of vanishing BER is approximated by the condition that
(20) has a unique fixed point in Iout,» = 1. This holds if and
only if
Vze[0,1) (21)

U(z,a1,...,am) > 2,

where we define the iteration mapping function

M
1
‘I/(Z,Ozl,...,OZM) é M Z FA(l —Fp(l—Z,O),’YOZm)

m=1

Finally, we evaluate by Monte Carlo simulation the probabil-
ities p(m) as

p(m)=Pr | ¥ | z,a1,...,am,0,...,0 | >z, Vz€]0,1)
——
M—-—m
where a1, . .., an, are i.i.d., distributed according to the fading
pdf fo(x).

Figs. 5 and 6 show the comparison between the through-
put obtained using random binary codes and the LDPC codes.
The results for LDPC codes have been obtained by considering
irregular codes where for each value of R we use the degree
distribution optimized for that R and for the binary-input
AWGN channel, [7]. We observe that the LDPC codes yield
throughput very close to binary random codes, and therefore
are good candidate component codes for INR schemes. Fig. 7
shows the details for the interval R = (0.1,0.3)b/s/Hz. We
notice that by choosing carefully the basic coding rate, it is
possible to increase the throughput considerably. For exam-
ple, by using R = 0.12 instead of R = 0.1 the throughput
increases from 0.5 to 0.59.
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Fig. 5: Throughput of LDPC codes and binary random codes for
v = 10dB.
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Fig. 7: Throughput of LDPC codes for v = 10dB in the range

R = (0.1,0.3) bit/symbol.
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