
Hybrid Scheduling for Event-driven Simulation over
Heterogeneous Computers

Bilel Ben Romdhanne
Mobile Communication

Eurecom
benromdh@eurecom.fr

Mohamed Said Mosli
Bouksiaa

Mobile Communication
Eurecom

mosli@eurecom.fr

Navid Nikaein
Mobile Communication

Eurecom
nikaeinn@eurecom.fr

Christian Bonnet
Mobile Comminication

Eurecom
bonnet@eurecom.fr

ABSTRACT
In this work we propose a new scheduling approach designed
from scratch to maximize heterogeneous computers usage
and the event processing flow at the same time. The sched-
uler is built based on three fundamental concepts which in-
troduces a new vision of discrete event simulation: 1) events
are clustered according to their potential time parallelism on
one hand and to their potential process and data similarity
on the other hand. 2) events meta-data is enhanced with
additional descriptor which simplifies and accelerates the
scheduling decision. 3) the simulation is hybrid time-event
driven rather than time- or event-driven. The concretiza-
tion of our approach is denoted the H-scheduler which uses
several processes to manage the event flow. Furthermore we
propose a dynamic scheduling optimization which aims to
further maximize the event flow. The combination of those
features allows the H-scheduler to provide the highest ef-
ficiency rate compared to the majority of GPU and CPU
schedulers. In particular it goes beyond the default Cunet-
sim Scheduler by 90% in average while it keeps a significant
lead on existing simulators.

Categories and Subject Descriptors
I.6.0 [Computing Methodologies]: SIMULATION AND
MODELING—General ; C.4 [Computer Systems Orga-
nization]: PERFORMANCE OF SYSTEMS

Keywords
PADS, PDES, Large scale simulation, scheduling methodol-
ogy, GPGPU, Heterogeneous computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSIM-PADS’13, May 19–22, 2013, MontrÃl’al, QuÃl’bec, Canada.
Copyright 2013 ACM 978-1-4503-1920-1/13/05 ...$15.00.

1. INTRODUCTION
Discrete event simulation (DES) is a tool used to model,

analyze, and evaluate large and complex systems requiring
continuous internal and external interactions, where formal
analysis is difficult or non-deterministic. However, the ef-
ficiency and scalability of DES remains a challenge due to
emerging heterogeneous computing node architecture. In
particular, scheduling the execution of future events while
maintaining a continuous load under large-scale conditions
increases the scheduling cost, until becoming the bottleneck
[12]. Most popular scheduling approaches rely on a central-
ized event scheduling model optimized mainly for the ho-
mogeneous computing node architecture. Such a model re-
mains limited and does not exploit the full modern hardware
potential. Hence, the parallel and distributed scheduling ap-
proaches used for parallel discrete event simulation (PDES)
re-emerge as a candidate to increase the event generation
rate over heterogeneous computing node architectures [25].
The objective is to exploit a multitude of parallel and in-
teractive processors unified at the level of event scheduler
to cooperate with each other. Examples include multi-core
CPUs, multi-GPUs, multi processor system-on-chip, and ac-
celerated processing unit introduced by INTEL.

Most of those architectures seem promising, but their ecosys-
tems in some cases are either not fully developed or conflict-
ing [5]. Benefits of GPU-enabled supercomputer have been
highlighted in [21], where authors suggest revisiting and ex-
panding the vision on DES. Nevertheless, most of the recent
attempts assume the backward compatibility with the se-
quential scheduling concept [16, 27]. Such a methodology
presents a conceptual weakness since it considers a multi-
core computing node as a simple extension of a mono-core
one. Furthermore, to remain backward compatible, the ex-
pected gain will be significantly reduced when compared to a
dedicated software design which considers the parallel speci-
ficity of the current hardware as well as the communication
latency [1].

In this work, we introduce a new parallel event scheduler
for a heterogeneous computing node architecture, denoted
as Hybrid scheduler (H-scheduler). The H-scheduler is de-
signed to dynamically allocate events to the available com-
puting resources while keeping the event rate and load sta-
ble. This is achieved as the scheduler is aware of the heap of
processors and their capabilities and has a constant access to

their instantaneous loads and execution time. The scheduler
operates on all the available computing resources within the
same addressable memory space. To increase the efficiency
of the scheduler, the events are associated with metadata
and organized in a 3-dimensional data structure. Further-
more, events are considered as different flows from the sched-
uler to each computing resources. The H-scheduler applies
the conservative scheduling policy to avoid the overhead gen-
erated by the recovery mechanism and the state vector when
considering optimistic policy in parallel and heterogeneous
settings.
The H-scheduler is composed of four main processes: event

dispatcher, event injector, GPU-scheduler, and CPU-scheduler,
where event are flowing. The dispatcher fetches the newly
generated events from different queues and adds them to a
corresponding position within a 3-dimensional data struc-
ture optimized for the parallel execution while the injector
directs a group of parallel events to the most adequate sub-
scheduler based on the received feedback information. Each
sub-scheduler is tailored and optimized for a specific hard-
ware in order to maximize the activity rate of the corre-
sponding computing resources.
Several optimizations are proposed to accelerate the schedul-

ing decision as the bottleneck may change over time. To
demonstrate, we adopt rapid and advanced scheduling poli-
cies for both the dispatcher and the injector processes, and
enable switching dynamically between them based on feed-
back information. Comparative assessments have been demon-
strated that the performance gain can be increased by a fac-
tor of 2 compared to centralized and conservative schedulers.
The reminder of this paper is organized as follows. Section

2 provides a related work on the scheduling in the event-
driven simulation. Section 3 presents the H-scheduler in
detail. The performance assessments and analysis are de-
scribed in Section 4 followed by a discussion in Section 5.
Finally, the conclusion is presented in Section 6.

2. RELATED WORK
Improving the efficiency and scalability of DES remains a

challenging issue for the modern modeling approaches that
require complex and sophisticated system representation. In
such a context, PDES is commonly used as a scalable and ef-
ficient solution when compared to sequential approaches [7].
PDES relies on the partitioning of the model over several
logical processes (LP)s collaborating with each other to per-
form the whole simulation [22, 13]. However respecting the
simulation correctness while dealing with parallel execution
makes event management extremely expensive. This is also
acknowledged as one of the critical limitations of large paral-
lel simulations, especially when dealing with heterogeneous
resources, and raises two issues: data representation and
event scheduling [20].
To store future events, most of the PDES use a sorted

data structure. In the literature, the efficiency of central
data structures was largely studied for both sequential and
parallel execution, e.g. central event list (CEL) [23]. Never-
theless, under large parallelism conditions, such a data struc-
ture may present a bottleneck. Authors in [7] address the ef-
ficiency of three CEL implementations, namely the heap, the
splay tree and the calendar, and they conclude that the per-
formance of the CEL concept remains mitigated when thou-
sands of concurrent processes access that structure. There-
fore, the CEL implementation needs to be parallelized to

cope with the parallel architecture of heterogeneous com-
puting resources. The concurrent priority queue [24, 9] is a
relevant solution to access and manage the CEL in paral-
lel. An event list or message queue is usually distributed to
each logical process in a PDES with its own local clock. The
concurrent insertion and deletion of the priority queue, by
involving mutual exclusion or atomic functions, leads to the
improvement of the overall performance using a global event
list [23]. In the same sense, Chen et al. propose a distributed
queue which considers multi-core CPUs [6]. However, the
above mentioned mechanisms, mutual exclusion and concur-
rent priority queue, are target-dependent and thus could not
be directly applied to the GPU target. A different point of
view was proposed by Park et al. [17], which relies on a hy-
brid time-event driven simulation based on a GPU-oriented
CEL concept that uses a linked list implementation. De-
spite the fact that this approach has been developed with
the goal of improving the GPU-based simulation, the over-
head of managing a large number of parallel event remains
an open issue due to a limited number of concurrent access
to the same physical memory.

In the DES and PDES, a large portion of the overall simu-
lation time is used for the event scheduling [18]. Specifically
to PDES, the efficiency of the scheduler depends also on the
synchronization method [14]. The conservative approaches
prohibit out-of-order event execution, which in most cases
is based on the lookahead concept to preserve the causality
rule [11]. Parallel event scheduling is separately studied for
a multi-core CPU target [27, 8] and GPUs [17]. Both ap-
proaches use a central event queue and several independent
threads to fetch the next event from the queue. The multi-
threading approach is also applied to reduce the scheduling
cost and increase the simulation efficiency but only for a
limited number of cores (4 and 8 respectively). Authors
in [16] propose a dedicated GPU scheduling based on the
SIMD programming model where the event queue is split-
ted into several sub-queues to avoid central bottlenecks. All
the above mentioned approaches regard a GPU core as a
CPU core, which in turn reduces the achievable gain.

The optimistic approach allows an out-of-order execution
while ensuring the simulation correctness. Several optimiza-
tions were introduced recently to increase the efficiency of
optimistic parallel simulations over multi-core CPUs while
keeping a reasonable backward compatibility with standard
software architecture [26, 15, 6]. Although such an approach
increases the general efficiency by relaxing a substantial lim-
itation of the conservative approach, it introduces mem-
ory overhead related to the state-vector saving mechanism,
which becomes critical when targeting very large logical pro-
cess.

In contrast with previous works, the H-scheduler design
consider extremely large LPs while maximizing the sim-
ulation efficiency over heterogeneous computing architec-
ture. In particular it outperforms prior works by considering
events as flow and detecting the system bottleneck on the
fly to adjust the behavior of the scheduler dynamically.

3. THE HYBRID SCHEDULER
To operate on a heterogeneous computing node, the hy-

brid scheduler relies on four fundamental concepts: (A) event
descriptor, which associates metadata to an event when it is
generated, (B) event structure, which organizes the events in
an arraylist (AL) - namely cloned independent events (CIE)

if the events differ only in data, independent foreign events
(IFE) if events differ in both algorithm and data, and time
interval - and (C) event flow, which considers the simulation
process as a set of interconnected sub-processes producing
and consuming events where the event rate stability across
multiple computing resources has to be maintained. In the
following paragraphs, we further explain each concept.
The event descriptor extends the traditional event meta-

data, namely timestamps, id, in/out data, to support addi-
tional information used to reduce the parallel event schedul-
ing cost. In particular, it includes (i) event dependency in-
formation, (ii) event execution timestamp, (iii) I/O data
access, (iv) event structure information, and (v) execution
targets. Event dependency defines if an event has one or
multiple dependencies (needs current output as input) that
fall within the same time interval [3]. The event execu-
tion timestamp identifies which events can be scheduled in
parallel for a given timestamp and is calculated based on
the current timestamp and the safety lookahead. The I/O
data access defines the permissions given to an event to read
and/or write a shared memory area. The event structure in-
formation identifies an event as a CIE or a IFE for the given
timestamp. Finally, the execution target defines where an
event could be executed, CPU, GPU or both. It has to
be mentioned that the scheduler can not infer the target
without using system callback which is a costly procedure.
Therefore including that information on the event descriptor
accelerate the scheduling decision.
The event structure expands how the events are repre-

sented so as to increase the parallelism in a heterogeneous
computing node architecture. For this purpose, events are
dispatched over a 3-dimensional arraylist, where each ele-
ment of the array represents the timestamp and the associ-
ated list represents the parallel event sets for a given times-
tamp interval. The parallel event set is composed of the CIE
(SIMD-like) and IFE the (MIMD-like). It has to be men-
tioned that, the CIE are considered by the scheduler as an
event set (ES) and processed by the scheduler as a unique
entry while the IFE are considered as a heap of events and
processed by the scheduler as multiple entries. If an IFE
event has one or multiple dependencies that fall within the
same time interval, they will be executed sequentially to
preserve the correctness.
The event flow considers the simulation as a dynamic sys-

tem where events are flowing between the producers and
consumers. Depending on the simulation characteristics and
the available resources, system bottleneck may change over
time. Therefore, the event rate stability has to be dynami-
cally maintained so as to maximize the simulation efficiency.
Consequently, feedback information from each computing
resource is needed to control the event rate through the
scheduling. In the following sections, we detail the the sched-
uler design and algorithms.

3.1 Model and components
To perform an efficient parallel event scheduling in large

scale conditions over a heterogeneous computing node, the
scheduler is designed as a composition of several processes.
It includes the future event list (FEL), the dispatcher, ar-
raylists (AL), the injector, the GPU-scheduler, the CPU-
scheduler, and feedback as shown in the Figure 2. The FEL
is a standard FIFO providing reliable status flag used to
collect and manage the produced events. There is one dedi-

E 2.1

E 2.2

E 2.3

E1

E3

E4

E5

E6 E8

E7

E 9.1

E 9.2

E 9.3

E 9.4

Timestamp

Timestamp

 (SISD)

C
IE

 (
S

IM
D

)

E 9.4

E 9.3

E 9.2

E 9.1E5

E7

E6 E8

E4E1

E3

E 2.3

E 2.2

E 2.1

E 10.2

E 10.1

E 10.1

E 10.2

IF
E

 (
M

IM
D

)

Figure 1: Event Structure

cated FEL per computing resources to gather the generated
events and one FEL for all the incoming raw events. The
dispatcher is the front-end of the scheduler, it first reads
the events from the FEL following a given scheduling policy
(e.g. weighted round robin). Then, it adds events into the
global 3-dimensional AL data structure based on the event
descriptor to ensure the simulation correctness. The injec-
tor proceeds on the per-interval basis and dynamically de-
termines the target computing resource, i.e. GPU or CPU,
as well as the subset of events to be allocated based on the
event descriptor, received feedback information and the tar-
get capabilities.

As a result, the subset of allocated events will be pushed
to the local AL of a target. Please note that the injec-
tor starts the next interval only when all the events asso-
ciated to the current interval are executed. Both the GPU
and CPU scheduler receive events on a dedicated local AL
buffer, where events are organized in the CIE and the IFE
sets (see Figure 1). The dedicated GPU scheduler maps
each entry of the AL to an asynchronous and non-blocking
GPGPU calls. On the other hand, the dedicated CPU-
scheduler will make use of multi-processing/threading tech-
nology (e.g. openMP). Upon the execution of an event, a
new event might be generated (similar to producer-consumer
processes) and pushed into the dedicated FEL. To dynam-
ically adjust the event flow, each target sends feedback in-
formation about the instantaneous load and the execution
time per event.

3.2 Scheduling Algorithms
In this part, we detail the different algorithms on which

the H-scheduler is based, namely the advanced algorithm,
the rapid algorithm and the hybrid algorithm.

3.2.1 Advanced algorithm
The advanced algorithm aims to thoroughly select the

most adequate target for each event. The events flow starts
from the FEL where all events are firstly inserted. The dis-
patcher is the first process which handles the event in order
to push it on the correct place of the main AL. Based on
the event timestamps, the dispatcher determines the correct
sub-list where the event must be inserted. Then, it starts
resolving its dependency using the event descriptor. If the

ES

ED

EE

3D-ALInjector

2D-AL 2D-AL 2D-AL ...

CPU

Sched

GPU

Sched

GPU

Sched

Dispatcher

FEL N

FEL 2

FEL 1

FEL 0
Incoming Events

...

feedback

Figure 2: Event scheduler model

dispatcher detects a dependency between two events it has
three choices: splitting the interval into two new ones, each
of which includes independent events while respecting the
timestamps correctness, creating a merged event including
both or transforming the sub-list to a sequential one. Algo
1 presents the pseudo code of the dispatcher. There are
two issues related to that process: detecting dependency
and resolving it. To detect the dependency of two events,
the dispatcher relies on their descriptors as follows: first it
explores their explicit dependency descriptors. Second, it
computes their durations, thus if both events are concurrent
then they will be considered as independent. Third, if both
events do not use the same data, the dispatcher concludes
they are independent (this features must be explicitly en-
abled by the user). To resolve the dependency, the most
adequate choice is to split the interval. However, if such
a procedure induces a conflicting situation, the dispatcher
creates a merged event. Finally, if dealing with the interval
becomes complicated due to the large number of included
events, then the sub-list will be transformed into a sorted
list. The injector processes the AL sequentially, sub-list

for e ∈ FEL do
if e.timestamps /∈ existing interval then

createNewInterval(I, e.timestamps);
insertEvent(I,e);

end
else

for e1 ∈ I do
if dependency(e1,e) then

resolve(e1,e);
end

end

end

end
Algorithm 1: Pseudo code of the dispatcher.

by sub-list. If the sub-list is sequential, then all events will
be forwarded to one target. Otherwise, the injector consid-
ers each event individually based on the following routine:
if the event is mono-compliant (CPU or GPU), then it is
switched to the adequate sub-scheduler. If there are several
instances of the target (several GPU or CPU scheduler then

it will be switched to that having the lowest load currently.
In what concerns grouped entries, the injector analyses the
parallelism information to determine the target. If the num-
ber of parallel instances is reduced then the CPU is the most
adequate target, and if that number is extremely large, the
chosen target is the GPU. The boundaries of this decision
are a function of the number of CPU & GPU cores. In the
beginning of the simulation we use two arbitrary intervals
where the decision is deterministic: [1, 2 ∗ core ∗ 3 + 1] ⇒
CPU and [200,+∞] ⇒ GPU. Nevertheless, if the parallelism
size is intermediate (number of instances greater than CPU’s
interval’s upper boundary and lower than GPU’s interval’s
lower boundary), then the injector inspects the load of each
target and chooses the available one. Finally, it ensures the
synchronization of all secondary ALs using a synchroniza-
tion checkpoint at the end of each interval to maintain the
correctness of the simulation.

for I ∈ MAL do
for e ∈ I do

if e.target=CPU then
schedule(e,CPU);

end
else

if e.target=GPU then
schedule(e,GPU);

end
else

if e.instance ∈ [1, NCPU] then
schedule(e,CPU);

end
else

if e.instance ∈ [NGPU,+∞] then
schedule(e,GPU);

end
else

balancedschedule(e,GPU,CPU);
end

end

end

end
Synchronize(I);

end

end
Algorithm 2: Pseudo code of the injector.

The CPU-scheduler ensures event execution over available
CPU cores. At the initialization phase, the CPU-scheduler
starts by discovering available resources (asking the hard-
ware and reading the configuration file); then it creates as
many execution threads as available cores. Second, it feeds
execution threads with events as soon as possible, without
dependency control. Therefore, events of one sub-list are
expected to be executed in parallel over available resources.
Since the H-scheduler respects a conservative scheduling ap-
proach, it does not execute events of different sub-lists con-
currently. The CPU-scheduler notifies the injector when
finishing an interval and waits for its permission to con-
sider the next one. The GPU-scheduler is slightly differ-
ent, since it relies on a hybrid software-hardware scheduling
mechanism. At the software level, sub-list includes always
grouped entries that it translates to a CUDA call with pre-

defined generic parameters. The CUDA driver ensures next
steps, including generating threads and sending them to the
GPU. At the hardware level, the embedded GPU GigaTh-
read scheduler first distributes event thread blocks to var-
ious SMs, and second assigns each individual thread to an
SP inside the corresponding SM.

3.2.2 Rapid algorithm
The rapid algorithm is a simplified version of the advanced

one which aims to minimize the decision cost. It concerns
particularly the dispatcher and the injector. It relies on a
major simplification of the bottleneck of each process using
a deterministic model.
As for the dispatcher, the most expensive routine is the

dependency resolution; in particular, splitting an interval in
two independent ones requires an expensive modification of
the main AL structure. The rapid algorithm proposes to
use always combined events if the dispatcher detects any
dependency into one interval. We note however, that the
dependency detection routine can not be simplified since it
affects the correctness of the simulation.
Concerning the injector, the most expensive routine is the

identification of the most suitable target. The rapid algo-
rithm reduces its complexity by extending the borders of
decision intervals for both CPU and GPU: the CPU inter-
val becomes [1, N], and the GPU one becomes [N +1,+∞],
where N is a tuning parameter. The second critical routine
is how to determine the most adequate target if we have
multiple instances (multiple CPUs or GPUs). In that case,
rather than evaluating resources loads, the injector uses a
round robin assignment mechanism which aims to ensures a
minimal load balancing based on the number of events.

3.2.3 Hybrid Algorithm
The hybrid algorithm aims to ensure the maximal stabil-

ity for the system. It relies on two mechanisms: algorithm
switching and the parameter recalibration. The switching
mechanism changes the operating algorithm for both injec-
tor and dispatcher processes based on a bottleneck detection
approach. Each process has one inbuffer which includes one
filling rate attribute. The inbuffer of the injector is the main
AL, and that of the dispatcher is the FEL. For each process,
if the inbuffer is full, the hybrid mechanism supposes that
the consumer process is the bottleneck and acts as follows:
if the filling rate is between empty (E) and almost empty
(AE) then the selected algorithm is the advanced. If that
rate is between AE and almost full (AF) then the selected
algorithm remains the advanced one, but the recalibration
frequency is increased. Finally, if the inbuffer filling rate is
between AF and full (F) then the selected algorithm is the
rapid one. The switching decision occurs between two in-
tervals and cannot be achieved during the execution of an
interval.
The recalibration mechanism computes continuously the

values of three parameters which define the behavior of both
algorithms: the NCPU & NGPU of the advanced algorithm
and the N of the rapid one. It maintains a statistical table
which includes the average execution time of event sets in
different targets. Figure 3 presents an example of a statis-
tical table, where the recalibration process can assert that
NCPU = 24, NGPU = 192 and N = 48. To compute the
average execution time of a specific event set size, the recali-
bration mechanism considers the last M samples (which is a

tuning parameter defined by the user), therefore the statis-
tical table copes with the evolution of the simulation on one
hand and the hardware characteristic on the other hand.

Target\ size

CPU

GPU

1

0.2

1

...

...

1

...

...

1

24

0.8

1

36

1

1

42

1

1

48

1

1

54

1.5

1

...

...

1

192

6.4

1

288

9.6

2

384

...

...

Figure 3: Statistical table used for recalibration

4. PERFORMANCE EVALUATION
To implement the H-scheduler, we rely on the network

simulation framework Cunetsim [3, 4]. Both the H-scheduler
and Cunetsim rely on five parallelization frameworks, namely
CUDA, OpenMP, MPI, the thrust data management API [2],
and the PGI development Kit [28], which are briefly ex-
plained below.

1. The Compute Unified Device Architecture (CUDA) is
a software parallel computing platform and a program-
ming model created by NVIDIA. In what concerns this
work, the last CUDA release provides two main fea-
tures: atomic operations and the GPUDirect technol-
ogy which accelerates the communication between the
GPU and the different components of the computer.

2. The Open Multiprocessing (OpenMP) is an API that
supports multiprocessing in a shared memory context.
We rely on the OpenMP to provide a compliant version
with multi-core CPUs as explained later.

3. The Message Passing Interface (MPI) is a standard-
ized and portable message-passing system designed to
supply programmers with a standard for distributed
programming.We rely on MPI to ensure the communi-
cation and the synchronization between different ELPs
of the system.

4. Thrust is a parallel algorithm library which imitates
the C++ Standard Template Library (STL). Thrust’s
interface enables performance portability between GPUs
and multicore CPUs. Interoperability with established
technologies (such as CUDA, TBB and OpenMP) facil-
itates integration with existing software. Due to these
features we use thrust API to implement different data
structures.

5. The PGI suite is a commercial C/C++ compiler which
provides several automatic and semi-automatic paral-
lelization features. Further it incorporates a full CUDA
CC++ compiler for targeting X64 CPUs. Even more
important, it introduces the unified binary technology
(PUB), which consists on the creation of a multi-target
binary (GPU, INTEL CPU and AMD CPU) from an
initial native CUDA code.

Cunetsim is a distributed GPU-based framework designed
for wireless mobile network simulation. It aims to achieve
two main goals: enabling extra large-scale network simula-
tion and providing a significant speedup compared to tradi-
tional CPU-based frameworks. It considers that the GPU

architecture is adequate to hold the totality of a network
simulation based on a CPU-GPU co-simulation [3]. It ded-
icates independent execution environments for each simu-
lated node and uses the message passing approach through
buffer exchange. The distributed design of Cunetsim is a
fundamental cornerstone in support of heterogeneous com-
puting architecture. In particular, the master-worker model
was extended to a hierarchical architecture denoted as the
coordinator-master-worker (CMW) model [4]. The default
event scheduling policy handles the two types of event group-
ing described in section 3 but uses a centralized process and
one data structure. Finally, synchronization and communi-
cation processes handle domain-specific operations between
CM (Coordinator-Master) and MW (Master-Worker). As
for the scheduling challenge, Cunetsim designers observe
that its central event scheduler becomes the simulator bot-
tleneck when the input event rate increases significantly.
Moreover, they observe that a central event scheduler cannot
handle several powerful GPUs. Therefore, a new scheduling
approach becomes crucial to deal with those emerging archi-
tectures. Moreover, Cunetsim targets either CPU or GPU
but not both at the same time; thus the H-scheduler concept
presents a real asset to new frameworks generation.
In the remainder, we study the efficiency of the H-scheduler

under extreme load and scalability conditions; therefore we
use a very large scale network scenario which generates bil-
lions of events. First, we describe the evaluation scenario
and setup and second we compare the efficiency of different
scheduling policies under fair conditions. Finally, we an-
alyze the performance of the H-scheduler where we detail
the impact of each algorithm. In particular, we analyze the
variation of the output event rate during the simulation, the
decision path length and the variation of lookahead interval
length during the simulation.

4.1 Scenario & Setup
We propose a large scale network experimentation sce-

nario where we customize the benchmark methodology pro-
posed in [3] by defining a static network topology composed
of three independent activity areas (AA) each of which fol-
lows a grid configuration where the edge of an AA contains
750 nodes as illustrated in Figure 4; thus each AA includes
562.5K nodes1. The scenario includes one traffic source
which generates 600 uniform 128-byte packets with 1 second
of inter-departure time. All nodes forward unseen packets
after a one-second delay to model the network latency whilst
medium’s reliability is reflected using dropping probability.
Depending on the later, each node decides whether or not
to relay a received packet. The drop probability (DP) is
the parameter which allows us to introduce a random fac-
tor on the network behavior. To provide a valuable event
rate while keeping a significant variation on the number of
exchanged messages we use a DP of 0.1. The simulation du-
ration is 5602 which ensures that the last generated message
can reach the destination. In addition, we introduce a second
scenario where we define for each node a randomly variable
inter-departure-time in [0.1, 2] and a DP in [0, 0.28]. This
scenario is used to study the robustness of the H-scheduler
when the timestamp of different events present a significant
entropy.
Even if these scenarios are outlying real networks and in-

1That value represents the hardware limitation of the used
GPU in term of memory space since each node needs 3.8 Ko

clude major simplifications, we claim that they provide an
important event number with a large rate variation as shown
in Figure8. Moreover, they rely on a pool of simple events
which did not require powerful computing resources indi-
vidually, and use a simple implementation of both nodes
and channels which provides a fair comparison later. There-
fore, the main difference between considered approaches re-
mains the scheduler efficiency. On the other hand, we use
the Cunetsim framework, except for the NS3 case; thus all
events are dual compliant with both CPU and GPU targets
when we aim to use GPU. In what concerns the experimental
context, the used frameworks are CUDA 5.0 and Open-MPI
1.4.1. The OS is Ubuntu Linux 11.10, the PGI compiler
version is the 12.9 and the Nvidia driver version is 295.41.
The hardware platform is one PC including an INTEL i7
3930k CPU (6 cores with hyper threading), 32 GB of DDR3
and three GeForce GTX860 2GB (1536 cores for GPGPU
computing.

4.2 Comparative Evaluation
This section aims to highlight the efficiency of several

scheduling approaches which differ by their execution tar-
gets and parallelism considerations. We distinguish three
groups according to their execution targets respectively the
CPU, the GPU and both, summarized in table 1. We use
Cunetsim framework where we change solely the scheduler
except for the NS3 simulator where we use the default sched-
uler. Moreover, we use the same implementation of nodes
and channels; thus we guarantee a fair comparison. Based on
the default scenario, we consider three metrics: the speedup
with respect to a reference sequential execution, the hard-
ware usage rate and the scheduling cost.

Table 1:
id Target Parallelism Example
1 CPU non sequential
2 CPU Op NS3 scheduler [19]
3 CPU Msv + Op Cunetsim-CPU
4 GPU Op [17]
5 GPU Msv Cunetsim
6 GPU Msv + distributed D-Cunetsim
7 GPU+CPU Msv + Op H-scheduler

Table 2: List of different scheduling approaches,
clustered their execution targets. Op =opportunis-
tic and/or optimistic, Msv= Massive

Figure 5 shows the normalized speedup of each approach
with respect to the sequential running time, computed us-
ing the average value of both sequential NS3 and Cunet-
sim. We observe that GPU-based approaches are extremely
faster than all CPU-based ones. However we notify that
the opportunistic approach on GPU (case 4) which presents
an intermediate speedup (40x), did not consider the SIMD
architecture of GPUs. In fact, its results are due to the ef-
ficiency of the hierarchical GPU memory and the existence
of 24 independent SMX2 in the used platform. On the other
side, the GPU-based approach which relies on massive paral-
lelism concepts(cases 5-6), presents an outstanding speedup
which varies between 400x and 900x. Nevertheless, we ob-
serve that D-Cunetsim cannot reach the maximal expected

2The Kepler notation of the Streaming multi-processor

speedup (3*400x) while it uses 3 GPUs. Therefore we sus-
pect that the scheduler is the main bottleneck since it cannot
supply all GPUs with the correct rate. On the other hand,
we observe that the H-scheduler is twice faster than the de-
fault scheduler while both use the same hardware. This
considerable gain demonstrates that the hybrid scheduling
approach reduces significantly the bottleneck impact.
Figure 6 presents the average hardware usage rate of each

approach. It reflects the used resources to ensure the simu-
lation. As expected, CPU-based schedulers ignore the GPU,
however their CPU usage differs from one to the other. The
sequential scheduler uses in average 20% of the CPU which
represents the use of one CPU core. NS3 uses in average
84% of the CPU which means that the scheduler is not able
to supply all available cores correctly while the third case
(Cunetsim-CPU) ensures a full usage of the CPU. There-
fore, we can assert that the event grouping policy presents a
significant added value. The fourth case presents a mitigated
score, it uses a small fraction of CPU and GPU resources
but outperforms all CPU-based schedulers. This behavior
confirms the previous observation.
In what concerns the dedicated GPU schedulers (5-7), we

observe that the non distributed version of Cunetsim (case
5) uses efficiently one GPU and one core of the CPU; thus
it does what it promises. We observe that the H-scheduler
reaches the maximal CPU and GPU usage rate. In particu-
lar, it overcomes the default distributed scheduler which did
not exceed 84% of the GPU usage rate while the H-scheduler
approximates the 100%. These observations prove that the
H-scheduler is able to maximize the usage of powerful solu-
tions.
Figure 7 presents the average CPU usage rate of the

scheduling process regardless of the simulation. Unsurpris-
ingly, the H-scheduler needs in average between 6x and 8x
more resources than CPU-based approaches and up to 3x
more than GPU ones. This is due to the fact that it uses at
least 4 different threads to achieve the scheduling process,
in our case we use 6 threads distributed as follows: dis-
patcher, injector, one CPUscheduler and three GPUsched-
ulers. Moreover, these threads work in parallel since the dif-
ferent data structures ensure the role of intermediate buffers.
Therefore, the H-scheduler uses in average 30% of the CPU
resources to ensure the maximal event flow.
We conclude that the H-scheduler is able to maximize

the simulation efficiency, compared to a classical one; more-
over it is able to deal natively with heterogeneous platforms
if events are compliant. However, that efficiency requires
additional dedicated resources compared to centralized ap-
proaches.

4.3 Performance Analysis
The H-scheduler is composed of several processes, and

each process has two algorithms with the ability to switch
between them autonomously, in addition, each algorithm re-
configures itself periodically based on a learning mechanism.
In this section we propose to analyze the impact of each al-
gorithm on the global behavior of the H-scheduler.
To analyze the impact of each algorithm we conduct the

following experimentation series: First we measure the av-
erage event rate per simulated second, generated during the
simulation across 100 runs. We realize so many runs because
the shape of the curve of Figure 8 appears so perfect for a
simulation including a random factor. Nevertheless we ver-

ify that the message propagation on the proposed network
respects that shape. In particular, each peak of that curve
reflects a maximal network activity in one AA. The second
scenario which includes randomly variable connections be-
tween nodes, has a less regular curve3. Using the default
scenario we process as follows: first we activate uniquely
the advanced algorithm, second we activate the rapid one,
third we activate the hybrid algorithm without any recon-
figuration process or setting a timer and finally we consider
the H-scheduler as described in section 3. The simulated
time is 5602 seconds while the execution time varies be-
tween 413 and 670 seconds which complicates the compari-
son. To present an understandable representation, we nor-
malize the output event rate with respect to the following
formula Outputrate = Nevents/Executionduration. Cor-
responding results are shown in Figure 9. First of all, we ob-
serve that the advanced algorithm (red curve) is in general
more efficient than the rapid one (green curve). However,
the latter achieves punctually higher output rate, especially
in the end of the simulation, characterized by a reduced
number of messages. On the other hand, we observe that
the hybrid algorithm provides better results while it intro-
duces a large variability during the time as shown by the
width of the curve (blue). We can assert that, when allow-
ing each component to use the most adequate algorithm as
a function of the situation, we reach a higher event rate with
a risk of inefficient oscillation. Finally, the full H-scheduler
which involves both hybrid algorithm and the continuous re-
calibration presents unquestionably the highest output rate
but also the most variable behavior. In fact, we can dis-
tinguish four distinct and quasi-parallel sub-curves, each of
which presents the maximal achievable rate of one of the
available computing processors(1 CPU and 3 GPUs). We
observe that the recalibration procedure allows the sched-
uler to match rapidly the typical hardware parameters which
gives a significant gain of almost 30% compared to the hy-
brid algorithm only and about 90% compared to the default
scheduler.

To illustrate the impact of the continuous re-calibration
we propose to analyze the evolution of two parameters dur-
ing the simulation: first we consider the average decision
path length, computed as the average number of steps re-
quired to make the decision on where the event will be di-
rected. Second, we consider the average scheduling interval
length during one simulated second. As for the path length
illustrated in Figure 10, we identify a first phase, where the
length seems extremely variable, oscillating between 1 step
(18%) and 5 steps (13 %). This presents a learning phase,
which was arbitrary fixed to 500 simulated seconds. After-
wards, we observe a transition phase where the average de-
cision path length decreases rapidly until reaching a steady
state where the scheduling decision needs in average between
one and two steps. We conclude that the continuous recal-
ibration allows a significant gain in term of scheduling cost
without compromising the decision quality. Regarding the
scheduling interval length illustrated in Figure 11, we ob-
serve that the interval length is sensitive to the experimenta-
tion conditions; therefore its value decreases to 1-5 ms when
messages number is high and increases to 10-15 ms when
events are mixed. Considering that message events are na-

3We note that we vary the DP for that scenario between 0
and 0.28 because we loose the network activity beyond that
threshold.

tively dependent, that behavior reflects in a faithful manner,
the events relationship. Moreover, we observe that there is
no learning phase since the unique rule during the whole sim-
ulation is to maximize event parallelism. Thus, an interval
maximization phenomenon is observed in the beginning and
the end of the simulation. This further confirms the bijective
relation between the interval length and event dependency.
Accordingly, we can conclude that the H-scheduler presents
an interesting ability to deal with variable simulation rates
under large scale conditions while maximizing the hardware
usage rate even in heterogeneous context. Moreover, the
re-calibration procedure and the dynamic behavior allow a
significant support of the hardware characteristics without
prerequisite knowledge.

Figure 4: Topology of the benchmarking scenario

Figure 5: Normalized speedup with respect to the
sequential runtime

Figure 6: The hardware usage rate.

5. DISCUSSION
This paper presents a proof of concept where we aim to

emphasis the potential of the H-scheduler. Thereby, we use

Figure 7: The scheduling cost.

Figure 8: Variation of the input rate vs Time

Figure 9: Output event rate of different algorithms.

Figure 10: Average decision path length during the
simulation.

an adequate machine including identical GPUs and well-
designed scenario, suitable for high event rate. Neverthe-
less, we had identified five issues which need to be discussed:
First, we did not consider the data structure filling issue. In
fact, all events have the same importance whatever the sta-
tus of the concerned buffer. An adaptive policy may use a
RED [10] approach to manage different buffers. Second, the

Figure 11: Average interval length during the sim-
ulation. It reflects closely the events dependency.

management of the algorithms switching relies on a loop-
back mechanism which measures the load of each auxiliary
resource. While this approach seems efficient to cope with
very large scale simulations, analytical evaluation demon-
strates that it may generate an instable system when the
simulation pattern is unpredictable (such as the second sce-
nario). Therefore, a weighted flow management appears as
a reasonable stability compromise.
Third, we used in this work a limited range of comput-

ing hardware, including one GPU family and one Hexa-
core CPU. We expect to evaluate the robustness of the H-
scheduler under large heterogeneous conditions where we
combine powerful CPUs (Xeon E5 2650) with professional
GPUs and accelerators (Xeon Phi).
Fourth, we had observed that the brutal swing between

both scheduling algorithm may be a source of instability;
thus we had introduced a swing timer to stabilize the system.
We expect that a smoothed transition between them may in-
creases further the efficiency while providing enhanced sta-
bility. To conclude this discussion, we highlight that we rely
on a data-abstraction mechanism which allows any event to
access any data whatever its location. Therefore, the H-
scheduler omits the data-access cost when computing the
most suitable execution target. Nevertheless, we observe
that the data locality is an emerging issue which may be
considered on the event scheduling level, especially when
targeting heterogeneous computer.

6. CONCLUSION
Discrete event simulation is widely recognized as an es-

sential tool to analyze complex systems. Often, modern
structures require sophisticated models while simulating a
large number of entities in continuous interaction. How-
ever, the scalability of that simulation remains challenging,
whatsoever in term of running time as well as in term of sim-
ulated entities. In that context, parallel (and distributed)
discrete event simulation is actually the most relevant solu-
tion which allows a respectable scalability degree. However,
event scheduling during the simulation over PDES requires
optimized design to deal with emerging hardware innova-
tion while respecting the simulation correctness. In partic-
ular, new computers are transformed into a heap of hetero-
geneous processors, each of which is more adequate for a
specific task. Nonetheless, most of existing schedulers are
derived from sequential concept which reduces their ability
to cope with parallel hardware specifications. accordingly,

the events flow is generally under expectation and the idle
time is consequent.

We present in this work a new scheduling approach which
aims to maximize the event throughput over heterogeneous
computer while taking advantage of each processor speci-
ficity. Thereby, we rethought the event-driven simulation
architecture to consider event flows rather than individual
events. Therefore events are clustered as a function of their
process and timestamps for the scheduling step while event
flows are further directed to the adequate execution tar-
get. The implementation of our concept is denoted the H-
scheduler referencing the heterogeneous computing; it con-
siders particularly both GPU & multi-core CPU. In the cur-
rent version, the H-scheduler is composed of four compo-
nents: the dispatcher which computes the possible paral-
lelization issues for events, the injector which determines
the execution target of each parallel event group, the CPU-
scheduler which ensures the execution of events on the cor-
responding CPU and the GPU-scheduler which ensures the
execution of events on the corresponding GPU. Both injector
and dispatcher present an abstraction layer which simplifies
the user job. On the other side, both CPU-scheduler and
GPU-scheduler are achieved according to a hardware/software
co-design method; therefore we combine the simplicity of us-
age and efficiency of specific target-oriented solutions. Ac-
cordingly, experimental results demonstrate that the H-scheduler
overcomes the majority of existing schedulers. In particular,
it is able to achieve a reference simulation 1200x faster than
the sequential one and 2x faster than the original Cunetsim
scheduler while using the same workstation.

7. REFERENCES
[1] B. G. Aaby, K. S. Perumalla, and S. K. Seal. Efficient

simulation of agent-based models on multi-gpu and
multi-core clusters. In Proceedings of the 3rd
International ICST Conference on Simulation Tools
and Techniques, page 29. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2010.

[2] N. Bell and J. Hoberock. Thrust: A
productivity-oriented library for cuda. GPU
Computing Gems, pages 359–371, 2011.

[3] B. Bilel, N. Navid, and M. Bouksiaa. Hybrid cpu-gpu
distributed framework for large scale mobile networks
simulation. In Distributed Simulation and Real Time
Applications (DS-RT), 2012 IEEE/ACM 16th
International Symposium on, pages 44–53. IEEE, 2012.

[4] B. Bilel, N. Navid, and B. C.
Coordinator-master-worker model for efficient large
scale network simulation. In 6th International ICST
Conference on Simulation Tools and Techniques, 2013.

[5] T. Braun, H. Siegel, N. Beck, L. Bölöni,
M. Maheswaran, A. Reuther, J. Robertson, M. Theys,
B. Yao, D. Hensgen, et al. A comparison of eleven
static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing
systems. Journal of Parallel and Distributed
computing, 61(6):810–837, 2001.

[6] L.-l. Chen, Y.-s. Lu, Y.-p. Yao, S.-l. Peng, et al. A
well-balanced time warp system on multi-core
environments. In Principles of Advanced and
Distributed Simulation (PADS), 2011 IEEE Workshop
on, pages 1–9. IEEE, 2011.

[7] R. Curry, C. Kiddle, R. Simmonds, and B. Unger.
Sequential performance of asynchronous conservative
pdes algorithms. In Proceedings of the 19th Workshop
on Principles of Advanced and Distributed Simulation,
pages 217–226. IEEE Computer Society, 2005.

[8] G. D’Angelo and M. Bracuto. Distributed simulation
of large-scale and detailed models. International
Journal of Simulation and Process Modelling,
5(2):120–131, 2009.

[9] K. Dragicevic and D. Bauer. A survey of concurrent
priority queue algorithms. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1–6. IEEE, 2008.

[10] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. Networking,
IEEE/ACM Transactions on, 1(4):397–413, 1993.

[11] R. Fujimoto. Lookahead in parallel discrete event
simulation. Technical report, DTIC Document, 1988.

[12] R. Fujimoto, K. Perumalla, A. Park, H. Wu,
M. Ammar, and G. Riley. Large-scale network
simulation: how big? how fast? In Modeling, Analysis
and Simulation of Computer Telecommunications
Systems, 2003. MASCOTS 2003. 11th IEEE/ACM
International Symposium on, pages 116–123. IEEE,
2003.

[13] M. Hybinette and R. Fujimoto. Cloning parallel
simulations. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 11(4):378–407,
2001.

[14] J. Liu and R. Rong. Hierarchical composite
synchronization. In Principles of Advanced and
Distributed Simulation (PADS), 2012
ACM/IEEE/SCS 26th Workshop on, pages 3–12.
IEEE, 2012.

[15] H. Lv, Y. Cheng, L. Bai, M. Chen, D. Fan, and
N. Sun. P-gas: Parallelizing a cycle-accurate
event-driven many-core processor simulator using
parallel discrete event simulation. In Principles of
Advanced and Distributed Simulation (PADS), 2010
IEEE Workshop on, pages 1–8. IEEE, 2010.

[16] H. Park and P. Fishwick. A gpu-based application
framework supporting fast discrete-event simulation.
Simulation, 86(10):613–628, 2010.

[17] H. Park and P. Fishwick. An analysis of queuing
network simulation using gpu-based hardware
acceleration. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 21(3):18, 2011.

[18] J. Parker and J. Epstein. A distributed platform for
global-scale agent-based models of disease
transmission. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 22(1):2, 2011.

[19] J. Pelkey and G. Riley. Distributed simulation with
mpi in ns-3. In Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques,
pages 410–414. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering), 2011.

[20] K. Perumalla. Parallel and distributed simulation:
traditional techniques and recent advances. In
Proceedings of the 38th conference on Winter
simulation, pages 84–95. Winter Simulation
Conference, 2006.

[21] K. S. Perumalla. Switching to high gear:
Opportunities for grand-scale real-time parallel
simulations. In Proceedings of the 2009 13th
IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications, pages 3–10.
IEEE Computer Society, 2009.

[22] P. Peschlow, M. Geuer, and P. Martini. Logical
process based sequential simulation cloning. In
Simulation Symposium, 2008. ANSS 2008. 41st
Annual, pages 237–244. IEEE, 2008.

[23] R. Rönngren and R. Ayani. A comparative study of
parallel and sequential priority queue algorithms.
ACM Transactions on Modeling and Computer
Simulation (TOMACS), 7(2):157–209, 1997.

[24] W. Tang, R. Goh, and I. Thng. Ladder queue: An o
(1) priority queue structure for large-scale discrete
event simulation. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 15(3):175–204,
2005.

[25] H. Topcuoglu, S. Hariri, and M. Wu.
Performance-effective and low-complexity task
scheduling for heterogeneous computing. Parallel and
Distributed Systems, IEEE Transactions on,
13(3):260–274, 2002.

[26] R. Vitali, A. Pellegrini, and F. Quaglia. Towards
symmetric multi-threaded optimistic simulation
kernels. In Principles of Advanced and Distributed
Simulation (PADS), 2012 ACM/IEEE/SCS 26th
Workshop on, pages 211–220. IEEE, 2012.

[27] S. Wang, C. Lin, Y. Tzeng, W. Huang, and T. Ho.
Exploiting event-level parallelism for parallel network
simulation on multicore systems. Parallel and
Distributed Systems, IEEE Transactions on,
23(4):659–667, 2012.

[28] M. Wolfe. Implementing the pgi accelerator model. In
Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pages
43–50. ACM, 2010.

