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ABSTRACT
The automatic supervision of IT systems is a current challenge at

Orange. Given the size and complexity reached by its IT opera-

tions, the number of sensors needed to obtain measurements over

time, used to infer normal and abnormal behaviors, has increased

dramatically making traditional expert-based supervision methods

slow or prone to errors. In this paper, we propose a fast and stable

method called UnSupervised Anomaly Detection for multivariate

time series (USAD) based on adversely trained autoencoders. Its

autoencoder architecture makes it capable of learning in an unsu-

pervised way. The use of adversarial training and its architecture

allows it to isolate anomalies while providing fast training. We

study the properties of our methods through experiments on five

public datasets, thus demonstrating its robustness, training speed

and high anomaly detection performance. Through a feasibility

study using Orange’s proprietary data we have been able to val-

idate Orange’s requirements on scalability, stability, robustness,

training speed and high performance.
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1 INTRODUCTION
IT systemmonitoring is a supervision process onmeasurable events

and outputs of a system, which is used as a reference specifying

the system’s proper functioning. Deviations from the reference

are analyzed to determine if there exists a fault. Historically, this

analysis has been done by system monitoring experts who establish

normal behavior thresholds for every measured event/output. If a

measurement exceeds its associated expert-defined threshold, it is

considered that the system is not behaving as expected. Because

of the size and complexity of today’s IT operations at Orange, the

number of sensors needed to obtain measurements over time has

increased dramatically making traditional expert-defined threshold-

based methods no longer usable as they are not scalable. Under

this scenario, the automation of our IT system monitoring has

become a necessity. Automated IT system monitoring required the

development of methods that observe the different measurements

acquired by the sensors and, from these, infer normal and abnormal

behaviors.

Detecting unexpected behavior on a set of measurements corre-

lated with each other over time is an active research discipline called

anomaly detection in multivariate time series [2]. In the past years,

many approaches have been developed to address this issue. The

most commonly used techniques include distance-based techniques

such as k-nearest neighbors [3],clustering such as K-means[9], clas-

sification with One-Class SVM [11]. However, today’s IT systems

have reached a complexity that no longer allows the use of these

methods. Indeed, as the number of dimensions increases, these tech-

niques generally suffer from sub-optimal performance due to the

curse of dimensionality. Most recently, the ability of unsupervised

anomaly detection methods based on deep learning to infer cor-

relations between time series which allow identifying anomalous

behaviors has received a lot of attention [12][20][17][18].

Among deep learning methods for detecting anomalies on tem-

poral data, methods based on recurrent neural networks [7] (RNNs)

are very popular. However, RNNs results are well-known for be-

ing computationally hungry and requiring a significant amount of

time to be train. Thus, RNNs incur in high costs associated to time,

https://doi.org/10.1145/3394486.3403392
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energy consumption and CO2 emissions. For Orange, the use of

highly scalable, but also low energy consuming methods is a key

issue. Indeed, Orange is constantly pursuing its efforts to improve

energy efficiency through its“Green IT&Networks” program. These

constraints of high scalability and movement towards GreenAI [16],

oblige us to rethink the important characteristics of the deep learn-

ing methods to be put in place. Therefore, it is desirable to develop

implement methods with high algorithmic efficiency.

Other deep learning-based methods that have been of great inter-

est recently are those based on generating adversary networks [5].

However, GAN training is not always easy, due to problems such

as mode collapse and non-convergence [1]. The lack of stability is

a major obstacle when considering to implement and deploy these

methods into production at Orange. A production environment

requires the development of robust methods that can be re-trained

routinely.

In this paper, we propose a new method called UnSupervised

Anomaly Detection for multivariate time series (USAD) based on an

autoencoder architecture [15] whose learning is inspired by GANs.

The intuition behind USAD is that the adversarial training of its

encoder-decoder architecture allows it to learn how to amplify the

reconstruction error of inputs containing anomalies, while gain-

ing stability compared to methods based on GANs architectures.

Its architecture makes it fast to trained meeting Orange’s expec-

tations in terms of scalability and algorithm efficiency. The main

contributions of this paper are:

• We propose an encoder-decoder architecture within an ad-

versarial training framework that allows to combine the

advantages of autoencoders and adversarial training, while

compensating for the limitations of each technique.

• We perform an empirical study on publicly available datasets

to analyze robustness, training speed and performance of

the proposed method.

• We perform a feasibility study with Orange’s proprietary

data to analyze if the proposed method meets the company’s

requirements on scalability, stability, robustness, training

speed and high performance.

The rest of this document is organized as follows. Section 2

discusses methods for detecting unsupervised anomalies in multi-

variate time series. Section 3 discusses the details of our method.

Sections 4 and 5 describe the experiments and demonstrate the

state-of-the-art performance of our method.

2 RELATEDWORK
Anomaly detection for time series is a complex task that has been

largely studied [6]. Among the different taxonomies which have

been proposed, methods can be identified as clustering [9], density-

based [11], distance-based [3] and isolation-based methods [10].

In addition to traditional methods, the ability of unsupervised

anomaly detection methods based on deep learning to infer cor-

relations between time series has recently received much atten-

tion [12, 18, 20]. The Deep Autoencoding Gaussian Mixture Model

(DAGMM) [21] jointly considers a Deep Autoencoder and a Gauss-

ian Mixture Model to model the density distribution of multidi-

mensional data. The Multi-Scale Convolutional Recursive Encoder-

Decoder (MSCRED) [20] jointly considers time dependence, noise

robustness and interpretation of anomaly severity. The LSTM-

VAE [14] combines the LSTM with a variational autoencoder (VAE)

by replacing the feed-forward network in a VAE with a LSTM. The

Adversarially Learned Anomaly Detection (ALAD) [19] is based

on bi-directional GANs, that derives adversarially learned features

for the anomaly detection task. The LSTM-VAE models the time

dependence of time series through LSTM networks and obtains

a better generalization capability than traditional methods. Most

recently, Su et al proposed a stochastic recurrent neural network
for multivariate time series anomaly detection, the OmniAnomaly,

that learns robust multivariate time series’ representations with a

stochastic variable connection and a planar normalizing flow, and

use the reconstruction probabilities to determine anomalies [17].

However, these methods obtain good results at the expense of their

training speed. Indeed, none of these methods take into account

the training time (i.e. energy consumption) in their performance

criteria. This is why it is necessary today for Orange to develop

methods with performances equivalent to the state of the art in

terms of anomaly detection, while favoring architectures that allow

fast and energy-efficient training.

3 METHOD
We first formalize the problem we are addressing in section 3.1.

In 3.2 we present the formulation of our method. Finally, in sec-

tion 3.3 we describe the method’s implementation.

3.1 Problem formulation
A univariate time series is a sequence of data points

T = {x1, . . . , xT },

each one being an observation of a process measured at a specific

time t . Univariate time series contain a single variable at each time

instant, whilemultivariate time series recordmore than one variable

at a time; we denote multivariate time series as T = {x1, . . . , xT },
x ∈ Rm . In this work we focus on the more general setting of

multivariate time series, as the univariate setting is a particular

case of the multivariate one withm = 1.

Now consider an unsupervised learning problem where T is

given as training input. Anomaly detection refers to the task of

identifying an unseen observation x̂t , t > T , based on the fact that

it differs significantly from T , thus assuming that T contains only

normal points. The amount by which the unseen sample x̂t and
the normal set T differ is measured by an anomaly score, which is

then compared to a threshold to obtain an anomaly label.

To model the dependence between a current time point and

previous ones, let us now defineWt , a time window of length K at

given time t :

Wt = {xt−K+1, . . . , xt−1, xt }. (1)

It is possible to transform the original time series T into a sequence

of windowsW = {W1, . . . ,WT } to be used as training input. Given

a binary variable y ∈ {0, 1}, the goal of our anomaly detection

problem is to assign to an unseen window Ŵt , t > T , a label yt to
indicate a detected anomaly at time t , i.e. yt = 1, or not (yt = 0)

based on the window’s anomaly score. For the sake of simplicity

and without loss of generality we will useW to denote a training

input window and Ŵ to denote an unseen input one.



3.2 Unsupervised Anomaly Detection
An autoencoder (AE) [15] is an unsupervised artificial neural net-

work combining an encoder E and a decoder D. The encoder part
takes the inputX andmaps it into a set of latent variablesZ , whereas
the decoder maps the latent variables Z back into the input space

as a reconstruction R. The difference between the original input

vector X and the reconstruction R is called the reconstruction error.

Thus, the training objective aims to minimize this error. It is defined

as:

LAE = ∥X −AE(X )∥2 , (2)

where

AE(X ) = D(Z ), Z = E(X )

and ∥ · ∥2 denotes the L2-norm.

Autoencoder-based anomaly detection uses the reconstruction

error as the anomaly score. Points with a high score are consid-

ered to be anomalies. Only samples from normal data are used at

training. At inference, the AE will reconstruct normal data very

well, while failing to do so with anomaly data which the AE has not

encountered. However, if the anomaly is too small, i.e. it is relatively
close to normal data, the reconstruction error will be small and thus

the anomaly will not be detected. This occurs because the AE aims

to reconstruct input data as well (as close to normality) as possible.

To overcome this problem, the AE should be able to identify if the

input data contains no anomaly before doing a good reconstruction.

The possibility for a method to know whether an input sam-

ple is normal or not is what characterizes Generative Adversarial

Networks (GANs) [5]. A GAN is an unsupervised artificial neural

network based on a two-player minimax adversarial game between

two networks, which are trained simultaneously. One network, the

generator (G), aims to generate realistic data, whereas the second

one acts as a discriminator (D) trying to discriminate real data from

that one generated by G. The training objective of G is to maxi-

mize the probability of D making a mistake, whereas the training

objective D is to minimize its classification error.

Similarly to AE-based, GAN-based anomaly detection uses nor-

mal data for training. After training the discriminator is used as

an anomaly detector. If the input data is different from the learned

data distribution, the discriminator considers it as coming from

the generator and classifies it as fake, i.e. as an anomaly. However,

GAN training is not always easy, due to problems such as mode

collapse and non-convergence [1], often attributed to the imbalance

between the generator and the discriminator.

The UnSupervised Anomaly Detection (USAD) method we pro-

pose, is formulated as an AE architecture within a two-phase adver-

sarial training framework. On one hand, this allows to overcome

the intrinsic limitations of AEs by training a model capable of iden-

tifying when the input data does not contain an anomaly and thus

perform a good reconstruction. On the other hand, the AE architec-

ture allows to gain stability during adversarial training, therefore

addressing the problem of collapse and non-convergence mode

encountered in GANs.

USAD is composed of three elements: an encoder network E
and two decoder networks D1 and D2. As depicted in Figure 1, the

three elements are connected into an architecture composed of two

autoencoders AE1 and AE2 sharing the same encoder network:

AE1(W ) = D1(E(W )), AE2(W ) = D2(E(W )) (3)

The architecture from Eq. 3 is trained in two phases. First, the

two AEs are trained to learn to reconstruct the normal input win-

dowsW . Secondly, the two AEs are trained in an adversarial way,

where AE1 will seek to fool AE2 and AE2 aims to learn when the

data is real (coming directly fromW ) or reconstructed (coming

from AE1) . Further details are provided in the following.

Phase 1: Autoencoder training. At a first stage, the objective is
to train each AE to reproduce the input. Input dataW is compressed

by encoder E to the latent space Z and then reconstructed by each

decoder. According to Eq. 2, the training objectives are :

LAE1
= ∥W −AE1(W )∥2

LAE2
= ∥W −AE2(W )∥2

(4)

Phase 2: Adversarial training. In the second phase, the objective

is to train AE2 to distinguish the real data from the data coming

from AE1, and to train AE1 to fool AE2. Data coming from AE1

is compressed again by E to Z and then reconstructed by AE2.

Using an adversarial training configuration, the objective of AE1

is to minimize the difference betweenW and the output of AE2.

The objective of AE2 is to maximize this difference. AE1 trains on

whether or not it succeeds in foolingAE2, andAE2 distinguishes the

candidates reconstructed by AE1 from the real data. The training

objective is :

min

AE1

max

AE2

∥W −AE2(AE1(W ))∥2 (5)

which account to the following losses

LAE1
= + ∥W −AE2(AE1(W ))∥2

LAE2
= − ∥W −AE2(AE1(W ))∥2

(6)

Two-phase training. In our architecture, autoencoders have a

dual purpose. AE1 minimizes the reconstruction error ofW (phase

1) and minimizes the difference betweenW an the reconstructed

output of AE2 (phase 2). As AE1, AE2 minimizes the reconstruction

error ofW (phase 1) but, it then maximizes the reconstruction error

of the input data reconstructed by AE1 (phase 2). The dual purpose

training objective of each AE is expressed as the combination of

Equations 4, 6 in an evolutionary scheme, where the proportion of

each part evolves with time:

LAE1
=

1

n
∥W −AE1(W )∥2 +

(
1 −

1

n

)
∥W −AE2(AE1(W ))∥2 (7)

LAE2
=

1

n
∥W −AE2(W )∥2 −

(
1 −

1

n

)
∥W −AE2(AE1(W ))∥2 (8)

and n denotes a training epoch. The two-phase training process is

summarized in Algorithm 1.

It is important to remark thatAE2 does not act as a discriminator

in the strict sense of GANs, because if its input is the original

data, it is the loss from Eq 4 that intervenes. When its input is a

reconstruction, the objective from Eq. 5-6 intervenes instead.

Inference. During the detection phase (Algorithm 2), the anomaly

score is defined as:

A (Ŵ ) = α ∥Ŵ −AE1(Ŵ )∥2 + β ∥Ŵ −AE2(AE1(Ŵ ))∥2 (9)

where α + β = 1 and are used to parameterize the trade-off be-

tween false positives and true positives. If we α is greater than β ,
we reduce the number of true positives and reduce the number



Figure 1: Proposed architecture illustrating the information flow at training (left) and detection stage (right).

Algorithm 1 USAD training algorithm

Input: Normal windows DatasetW = {W1, ...,WT } , Number

epochs N
Output: Trained AE1, AE2

E,D1,D2 ← initialize weights

n ← 1

repeat
for t = 1 to T do
Zt ← E(Wt )

W 1
′

t ← D1(Zt )

W 2
′

t ← D2(Zt )

W 2
′′

t ← D2(E(W
1
′

t ))

LAE1
←

1

n




Wt −W
1
′

t





2

+

(
1 −

1

n

) 


Wt −W
2
′′

t





2

LAE2
←

1

n




Wt −W
2
′

t





2

−

(
1 − 1

n

) 


Wt −W
2
′′

t





2

E,D1,D2 ← update weights using LAE1
and LAE2

end for
n ← n + 1

until n = N

of false positives. Conversely, if we take an α less than β , we in-
crease the number of true positives at the cost of also increasing

the number of false positives. We denote α < β a high detection

sensitivity scenario and α > β a low detection sensitivity one. This

parametrization scheme is of great industrial interest. It allows,

using a single trained model, to obtain during the inference a set of

different sensitivity anomaly scores. This is further illustrated in

Section 5.2.

3.3 Implementation
Our method of anomaly detection is divided into three stages. There

is a first data pre-processing stage common to training and detection

where data is normalized and split into time windows of length

K . The second stage is used for training the method. The training

is offline and aims to capture the normal behaviors of predefined

portions (a few weeks/months) of multivariate time series and

to produce an anomaly score for each time window. This offline

training procedure can be performed automatically at regular time

intervals, taking care to select a training period that does not include

too many periods considered abnormal. The last stage is anomaly

detection. It is performed online using the model trained at the

Algorithm 2 USAD Detection algorithm

Input: Test windows Dataset Ŵ : (Ŵ1, ...,ŴT ∗ ) , threshold λ ,

parameters α and β
Output: Labels y : {y1, ...,yT ∗ }

for t = 1 to T ∗ do
Ŵ 1

′

t ← D1(E(Ŵt ))

Ŵ 2
′′

t ← D2(E(Ŵ
1
′

t ))

A ← α



Ŵt − Ŵ

1
′

t





2

+ β



Ŵt − Ŵ

2
′′

t





2

if A ≥ λ then
yt ← 1

else
yt ← 0

end if
end for

Table 1: Benchmarked Datasets. (%) is the percentage of
anomalous data points in the dataset.

Dataset Train Test Dimensions Anomalies (%)

SWaT 496800 449919 51 11.98

WADI 1048571 172801 123 5.99

SMD 708405 708420 28*38 4.16

SMAP 135183 427617 55*25 13.13

MSL 58317 73729 27*55 10.72

Orange 2781000 5081000 33 33.72

second stage. As a new time window arrives, the model is used

to obtain an anomaly score. If the anomaly score of a window is

higher than a defined anomaly threshold, the new time window is

declared as abnormal.

4 EXPERIMENTAL SETUP
This section describes the datasets and the performance metrics

used in the experiments and the feasibility study.

4.1 Public Datasets
Five publicly available datasets were used in our experiments. Ta-

ble 1 summarizes the datasets characteristics and they are briefly

described in the following.



Secure Water Treatment (SWaT) Dataset. The SWaT dataset
1
is a

scaled down version of a real-world industrial water treatment plant

producing filtered water [4]. The collected dataset [13] consists of

11 days of continuous operation: 7 days collected under normal

operations and 4 days collected with attack scenarios.

Water Distribution (WADI) Dataset. This dataset 2 is collected
from the WADI testbed, an extension of the SWaT tesbed [13]. It

consists of 16 days of continuous operation, of which 14 days were

collected under normal operation and 2 days with attack scenarios.

Server Machine Dataset. SMD is a new 5-week-long dataset from

a large Internet company collected and made publicly available
3

[17]. It contains data from 28 server machines each one monitored

bym = 33 metrics. SMD is divided into two subsets of equal size:

the first half is the training set and the second half is the testing

set.

Soil Moisture Active Passive (SMAP) satellite and Mars Science
Laboratory (MSL) rover Datasets. SMAP and MSL are two real-

world public datasets, expert-labeled datasets from NASA [8]. They

contain respectively the data of 55/27 entities each monitored by

m = 25/55 metrics.

4.2 Feasibility study: Orange’s dataset
Our feasibility study was performed on an internal dataset, col-

lected specifically for this purpose. The collected data come from

technical and business indicators from Orange’s advertising net-

work in its website. The data represent a total ofm = 33 continuous

variables including 27 technical and 6 business measurements. The

dataset is divided into two subsets: a train set corresponding to

about 32 days and a test set corresponding to about 60 days of

activity. We have selected 60 days of testing corresponding to a

critical period for Orange. To obtain our training set, we selected

the previous consecutive days without any major incidents for the

company. We were able to obtain a training set of 32 mainly normal

days. Anomalies in the test set were labeled by domain experts

based on incident reports. Its main characteristics are reported in

Table 1.

4.3 Evaluation Metrics
Precision (P), Recall (R), and F1 score (F1) were used to evaluate

anomaly detection performance:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2 ·

P · R

P + R

with TP the True Positives, FP the False Positives, and FN the False

negatives. We consider a window is labeled as an anomaly as soon

as one of the points it contains is detected as anomalous.

In [17], the authors compute the F1 score using the average

precision and average recall. For the sake of completeness, we report

this measure when comparing our method to their benchmark. We

denote this measure the F1* score:

F1
∗ = 2 ·

P̄ · R̄

P̄ + R̄

1
https://github.com/JulienAu/Anomaly_Detection_Tuto

2
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#wadi

3
https://github.com/smallcowbaby/OmniAnomaly

where P̄ , R̄ denote the average precision and recall, respectively.

Performance is assessed by comparing the results of each eval-

uated method with the annotated ground truth. To allow a direct

comparison with the benchmark proposed by [17] we use their

approach. Anomalous observations usually occur in the form of

contiguous anomaly segments. In this approach, if at least one

observation of an anomalous segment is correctly detected, all

the other observation of the segment are also considered as cor-

rectly detected, even if they were not. The observations outside

the ground truth anomaly segment are treated as usual. We denote

this approach point-adjust. We also assess performance without

point-adjust on the two datasets (SWaT and WADI) not belonging

to the benchmark [17].

5 EXPERIMENTS AND RESULTS
We study the key properties of USAD by assessing its performance

and comparing it to other state of the art methods (5.1), analyzing

how different parameters affect the performance of the method

(5.2), estimating its computational performance (5.3 and through an

ablation study where, at each time, we suppress one of the training

phases (5.4). Finally, in Section 5.5 we report a feasibility study

using Orange’s internal data to demonstrate that USAD meets the

requirements needed to be deployed in production.

5.1 Overall performance
To demonstrate the overall performance of USAD we compare it

with five unsupervised methods for the detection of multivariate

time series anomalies. These are: Isolation Forests (IF) [10], autoen-

coders (AE), LSTM-VAE [14], DAGMM [21], OmniAnomaly [17].

As not all of the anomaly detection methods used for comparison

provide a mechanism to select anomaly thresholds, we tested pos-

sible anomaly thresholds for every model and report the results

linked to the highest F1 score. Table 2 details the obtained per-

formance results for all methods on the public datasets. On top,

the results obtained with SWaT and WADI datasets are presented,

whereas the bottom part of the table reports obtained results from

the benchmark proposed by [17], using three remaining datasets.

USAD outperforms all methods on SWaT, MSL, SMAP and WADI

without point-adjust datasets, and its F1 is the second best on the

SMD dataset. On average over all datasets (Table 3) is the best

performing method exceeding by 0.096 the current state-of-the-

art [17].

Overall, IF and DAGMM present the lowest performance. These

are two unsupervised anomaly detection methods that do not ex-

ploit temporal information between observations. For time series,

temporal information is important and necessary because observa-

tions are dependent and historical data are useful for reconstructing

current observations. In USAD, for both training and detection, the

input is a sequence of observations that contains the temporal

relationship to retain this information.

Despite the relative poor results in most datasets, IF achieves

the highest F1 score with point-adjust on WADI. This is explained

by the natures of the point-adjust method and the WADI dataset.

IF considers each observation/time-point independently and as-

signs a label to a single time-point and not to a window. WADI’s

anomalies lasting in time, the point-adjust validates the entirety

https://github.com/JulienAu/Anomaly_Detection_Tuto
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/#wadi
https://github.com/smallcowbaby/OmniAnomaly


Table 2: Performance comparison. Top: precision (P), recall (R) and F1 score with and without point-adjust (Without) in SWaT
and WADI datasets. Bottom: Using the benchmark proposed by [17] with point ajust. P, R F1, and F1* are reported.

Methods SWaT WADI

Without With Without With

P R F1 P R F1 P R F1 P R F1

AE 0.9903 0.6295 0.7697 0.9913 0.7040 0.8233 0.9947 0.1310 0.2315 0.3970 0.3220 0.3556

IF 0.9512 0.5884 0.7271 0.9620 0.7315 0.8311 0.2992 0.1583 0.2071 0.6241 0.6155 0.6198
LSTM-VAE 0.9897 0.6377 0.7756 0.7123 0.9258 0.8051 0.9947 0.1282 0.2271 0.4632 0.3220 0.3799

DAGMM 0.4695 0.6659 0.5507 0.8292 0.7674 0.7971 0.0651 0.9131 0.1216 0.2228 0.1976 0.2094

OmniAnomaly 0.9825 0.6497 0.7822 0.7223 0.9832 0.8328 0.9947 0.1298 0.2296 0.2652 0.9799 0.4174

USAD 0.9851 0.6618 0.7917 0.9870 0.7402 0.8460 0.9947 0.1318 0.2328 0.6451 0.3220 0.4296

Methods SMD SMAP MSL

P R F1 F1* P R F1 F1* P R F1 F1*

AE 0.8825 0.8037 0.8280 0.8413 0.7216 0.9795 0.7776 0.8310 0.8535 0.9748 0.8792 0.9101

IF 0.5938 0.8532 0.5866 0.7003 0.4423 0.5105 0.4671 0.4739 0.5681 0.6740 0.5984 0.6166

LSTM-VAE 0.8698 0.7879 0.8083 0.8268 0.7164 0.9875 0.7555 0.8304 0.8599 0.9756 0.8537 0.9141

DAGMM 0.6730 0.8450 0.7231 0.7493 0.6334 0.9984 0.7124 0.7751 0.7562 0.9803 0.8112 0.8537

OmniAnomaly 0.9809 0.9438 0.9441 0.9620 0.7585 0.9756 0.8054 0.8535 0.9140 0.8891 0.8952 0.9014

USAD 0.9314 0.9617 0.9382 0.9463 0.7697 0.9831 0.8186 0.8634 0.8810 0.9786 0.9109 0.9272

Table 3: Average performance (± standard deviation) over all
datasets using point-adjust.

P R F1 F1*

AE 0.77(0.21) 0.76(0.24) 0.73(0.19) 0.86 (0.04)

IF 0.64(0.17) 0.68(0.11) 0.62(0.12) 0.60 (0.09)

LSTM-VAE 0.72(0.15) 0.80(0.25) 0.75 (0.18) 0.86 (0.04)

DAGMM 0.62(0.21) 0.76(0.29) 0.65(0.22) 0.79 (0.04)

OA 0.73(0.25) 0.95(0.04) 0.78(0.19) 0.91( 0.04)

USAD 0.84(0.12) 0.80(0.25) 0.79(0.18) 0.91(0.04)

of an anomaly as being well detected. Thus IF is little impacted

by its bad predictions (FPs) affecting only one observation at a

time, compared to the advantage obtained with the point-adjust
which validates whole segments of good prediction despite having

potentially missed several abnormalities.

Differently, AE, LSTM-VAE, use sequential observations as input

allowing the two methods to retain temporal information. These

methods perform the best possible reconstruction regardless of

the existence of an anomaly in the input window. This does not

allow them to detect anomalies close to the normal data. USAD

compensates for this drawback of AE-based methods through its

adversarial training. A similar situation occurs with OmniAnomaly,

as it does not have a mechanism that allows to amplify “mild”

anomalies.

5.2 Effect of parameters
In this section, we study the effects that different parameters and

factors that can have impact on the performance of USAD. All

experiments were done using the SWaT dataset.

The first factor we study is how USAD responds to different

down-sampling rates of the training data. Down-sampling speeds

up learning by reducing the size of the data and also has a denoising

effect. However, it can have a negative effect if too much informa-

tion is lost. Figure 2(A) summarizes the obtained results using 5

different rates [1, 5, 10, 20, 50]. Results show that USAD’s perfor-

mance is relatively insensitive to down-sampling, with a relatively

constant performance across sampling rates. This indicates that the

choice of the down-sampling rate is not critical to the method. For

our experiments, we selected a rate of 5. This is the best trade-off

between denoising the training data and limiting the loss of infor-

mation. Moreover, it allows to reduce by 5 the training time needed

for USAD.

The second factor we investigate is how USAD responds to dif-

ferent window sizes in the data. The window size has an impact on

the type of abnormal behaviors that can be detected a direct impact

on the speed of anomaly detection since the speed of detection is

defined by the duration of a window. Figure 2(B) presents the ob-

tained results for five different window sizes K ∈ [5, 10, 20, 50, 100].

The best result was achieved for window size K = 10. USAD can

detect behavior changes faster when the window is smaller since

each observation has a greater impact on the anomaly score. A

window that is too large will have to wait for more observations

to detect an anomaly. However, a larger window will detect longer

anomalies. If an anomaly is however too short, it may be hidden

in the number of points that a too-large window has. For Orange,

a small window is better since it allows both faster training and

faster detection.

The latent variables Z sit in am−dimensional space, which is

assumed to be smaller than one of the original data. We study the

role of m in the performance of USAD. Figure 2(C) presents the

results form ∈ [5, 10, 20, 40, 100]. Results show that a very small

dimension for Z causes a large loss of information at the encoding



stage that the decoder is not then able to recover, thus leading to a

poor performance. On the other extreme, using a large value form
results in memorization of the training data causing and a drop in

performance. Instead, mid-range values ofm do not seem to have a

strong effect in the performance, showing both relatively high and

stable F1 scores.

USAD is trained under the assumption that the training set is

formed using only normal samples. But in practice the training

set do not only consist of normal data. Therefore, we investigate

to which level the performance of the method is affected when

this assumption is broken by injecting noise in the training dataset.

We inject Gaussian noise (µ = 0, σ = 0.3) in a random selection

of time-points representing a percentage of the training dataset

size. We vary this percentage from 1% to 30%. The noise is injected

after down-sampling (rate= 5) to avoid noise attenuation by the

down-sampling.

Figure 2(D) shows the performance of our method, in terms of

P, R and F1, as the level of noise increases. USAD demonstrates

its robustness with a relatively constant, high performance for

noise levels of up to 5%. When the training set noise is of 10%

a slight drop in the performance starts to be observed. However,

the overall performance, measured by the F1 score, remains good.

Interestingly, this performance drop is caused by a lower precision.

As the recall remains relatively constant, this implies that with

higher noise in the training set the method begins to be more

prone to detect false positives. This behavior suggests that as the

noise starts to increase, USAD is no longer able to properly learn

the most complex behaviors existing within the training set. As a

result, the number of false positives increases in the test set, since

USAD detects complex normal behaviors as anomalies. Finally, a

significant drop in performance can be observed for high noise

levels (30%). However, such a high anomaly rate during training

in a production environment is not realistic. This means that for a

given period of time, 30% of the samples are unnoticed anomalies.

As there are so many anomalies in production, it is not realistic that

such a large number of incidents are missed by Orange’s incident

supervision. Thus, it is unlikely that USAD will be confronted with

such a high rate of anomalies during its training in a production

environment at Orange.

Finally, we study the role of the sensitivity threshold (equation 9).

A large α corresponds to giving more importance to the reconstruc-

tion of the AE1 autoencoder in the anomaly score, while a large

β corresponds to giving more importance to the reconstruction

of the AE2 autoencoder (see Figure 1). The possibility to tune the

detection sensitivity without having to re-train the model is of great

importance for Orange. Table 4 reports the effect of varying α , β in

the number of detected FPs, TPs and the F1 score.

We observe that by increasing α and reducing β it is possible to

reduce the number of FPs (by a maximum of 50%when passing from

0.0 to 0.9) while limiting the drop in the number of TPs (3% from

0.0 to 0.9). Thus, the regulation of α and β allows parameterizing

the sensitivity of USAD to meet the requirements of a production

environment. With a model, it is possible to achieve different levels

of sensitivity so that detectionmeets the needs of the different levels

of hierarchy within Orange’s supervision teams. Managers prefer a

lower sensitivity levels, limiting the number of false positives but

warning them in case of important incidents, while technicians will

Table 4: Anomaly detection results with various sensitivity
thresholds for SWaT dataset

α β FP TP F1

0.0 1.0 604 35,616 0.7875

0.1 0.9 580 35,529 0.7853

0.2 0.8 571 35,285 0.7833

0.5 0.5 548 34,590 0.7741

0.7 0.3 506 34,548 0.7738

0.9 0.1 299 34,028 0.7684

Table 5: Training Time (min) per epoch on each dataset

Methods SWAT WADI SMD SMAP MSL

OmniAnomaly 13 31 87 48 11

USAD 0.06 0.12 0.06 0.08 0.03

Acceleration factor 216 258 1331 581 349

prefer a high level of sensitivity, allowing them to miss a minimum

of incidents.

5.3 Training time
In this section we study the computational performance of USAD

andwe compare it to OmniAnomaly, themethod offering the closest

performance in anomaly detection (see Table 3). To do this, we

measured the average time taken per epoch on the 5 public data

sets. The reference time for SMD, SMAP and MSL is the average

time for one epoch over all entities (i.e. 28 machines of the SMD, 55

of the SMAP and 27 of the MSL). Both methods were trained using

a NVIDIA GeForce GTX 1080 Ti.

Table 5 presents the obtained results. USAD provides good per-

formance in unsupervised anomaly detection over multivariate

time series while reducing training time by an average of 547 times.

5.4 Ablation Study
Using SMD, SMAP and MSL datasets, we investigate the effects of

the two-phase training of USAD. Figure 3 presents a performance

comparison in terms of the F1-score using USAD (Combined), USAD

with only phase one training (Autoencoders) and with only phase 2

training (Adversarial). Training USAD without adversarial learning

accounts to using the objective presented in equation 4, whereas

suppressing the autoencoder accounts to use the objective from

Equations 5-6.

GAN-inspired adversarial training represents an increase in per-

formance of 5.88% (F1 score) with respect to the second best option

which is USADwithout adversarial training and 24.09%with respect

to using only adversarial training. This can be explained by the am-

plified reconstruction error effect introduced by USAD regardless

of the presence or not of an anomaly in the input window. Thus,

USAD without its adversarial training cannot detect the anomalies

closest to the normal data. USAD’s poor performance with only

adversarial training is explained by the fact that the method does

not have the autoencoder training to orientate the weights in a

favorable place before starting phase 2 of adversarial training. In



Figure 2: Effect of parameters. Precision, Recall and F1-score as a function of A) the training set’s down-sampling rate, B) the
window size K, C) the dimension of the latent space Z and D) the percentage of anomalies in the training set

Figure 3: Impact with and without adversarial training on
USAD

Table 6: Anomaly detection results on Orange internal
Dataset (without point-adjust)

Method Precision Recall F1-score

USAD 0.7448 0.6428 0.6901

conclusion, ablation of any of the training phases leads to poorer

performance. For instance, both ablated versions of USAD have a

lower F1 score than that of several of the bench-marked methods

(Table 2, bottom).

5.5 Feasibility study
The automation of the supervision of complex IT systems is a

challenge for Orange. After studying the properties of USAD and

assessing its performance in using public datasets, the company

must ensure that the method is as effective on its data.

Table 6 reports the results obtained in the internal dataset. USAD

was able to detect all significant incidents in less than 30 minutes

over the two months length of test data. For example, USAD was

able to detect in less than 30 minutes an incident that took 24 hours

to be detected by the operators in charge of supervision at Orange

(Figure 4). This incident was caused by an error introduced in the

configuration files allowing to assign advertising displays to unex-

pected partners. This caused the number of advertising displays

(total impressions) to increase, while reducing the average dis-

play prices (total average ecpm). As a result, important business

indicators such as the revenue (total cpm cpc revenue) remained

stable and so, the operators were unable to detect the incident

quickly. Faced with the large amount of indicators to survey, people

in charge of supervision concentrated their efforts on supervising

indicators with high business impact, therefore, explaining, the 24

hours needed to detect this configuration incident.

6 CONCLUSIONS
In this paper, we propose USAD, an UnSupervised Anomaly Detec-

tion for multivariate time series method based on autoencoders and

trained within an adversarial training inspired by the Generative

Adversarial Networks. Its autoencoder architecture makes it an un-

supervised method and allows it to show great stability during the

adversarial training. We used a set of five public reference datasets

to study the desired properties of USAD. The method demonstrated

superior performance over state-of-the-art techniques on public

reference datasets in terms of standard F1-score. In addition, its

demonstrated fast training, robustness to the choice of parameters

and stability allows for high scalability of the model within an in-

dustrial setting. USAD also provides the possibility to parameterize

its sensitivity and to produce, from a single model, a set of detection

levels. This possibility offers Orange’s supervision teams essential

functionalities enabling the use of the method in production on

large-scale infrastructure. Since the teams need to be able to lower

the sensitivity of the detection to prevent only major incidents

when their workload becomes too high, the ability to multiply de-

tection sensitivities during inference makes the model extremely

scalable within the company and brings major advantages. First of

all, it allows us to limit the time needed to train the supervision

models by limiting their number to just one. Secondly, a deep learn-

ing model put into production must be monitored and supervised

by teams. Limiting the number of models allows us to reduce the

time spent supervising models in production and therefore free up

time from supervisors to be devoted to different tasks.

The feasibility study performed using Orange’s internal data

provided conclusive results which confirm that USAD suggests a

promising direction for the automation of IT systems supervision

at Orange. It also signaled some of the difficulties that might be

encountered on the way to deployment and execution. For example,

during the data collection process (Section 4.2) we were faced with

the unexpected difficulty of gathering a continuous training period

not containing too many anomalies. This is an interesting aspect

that makes us think on the infrastructure that will need to be put

in place to have USAD succesfully deployed.



Figure 4: Example of a time series from the feasibility study where a configuration incident was detected by USAD. Twenty-
four out of the 33 time variables are shown. The orange boxes highlight the variables referred to. In orange, the series referred
to in section 5.5.
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A SUPPLEMENTARY MATERIAL FOR
REPRODUCIBILITY

A.1 Experimental Setting
All experiments are performed on a machine equipped with an

Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz and 270 GB RAM, in

a docker container running CentOS 7 version 3.10.0 with access to

an NVIDIA GeForce GTX 1080 Ti 11GBGDDR5X GPU. The Isola-

tion Forest (IF) comes from the scikit-learn
4
implementation. The

DAGMM comes from a Tensorflow implementation on Github
5
.

The LSTM-VAE comes from a Github implementation
6
. The Om-

niAnomaly comes from the authors’ Tensorflow implementation

of Github
7
. Finally, the USAD and AE were developed by us in

Pytorch.

A.2 Packages Used in Our Implementation
The relevant packages and their versions used in our algorithm

implementation are listed as follows:

• python==3.6.8

• pytorch==1.3.1

• cuda==10.0

• scikit-learn==0.20.2

• numpy==1.15.4

A.3 USAD Hyper-parameters for each dataset
For each dataset we have 4 parameters. The size of the windows,

corresponding to the size of the sequence of time series we have

in input. The number of epochs, the dimension of Z which is the

USAD latent space and finally the down-sampling rate during pre-

processing. The down-sampling is done by taking the median value

of each feature.

4
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.

html

5
https://github.com/tnakae/DAGMM

6
https://github.com/Danyleb/Variational-Lstm-Autoencoder

7
https://github.com/NetManAIOps/OmniAnomaly

Table 7: USADHyper-parameters for each dataset. K denotes
the window size andm the dimension of the latent space.

Datasets K Epochs m Down-sampling

SWat 12 70 40 5

WADI 10 70 100 5

SMD 5 250 38 5

SMAP 5 250 55 5

MSL 5 250 33 5

A.4 USAD Implementation
The input size corresponds to the size of the window multiplied by

the number of dimensions of the multivariate time series.

A.4.1 Encoder.

• Linear : input size -> input size / 2

• Relu

• Linear : input size /2 -> input size / 4

• Relu

• Linear : input size /4 -> latent space size

• Relu

A.4.2 Decoder. Both decoders have the same architecture.

• Linear : latent space size -> input size / 4

• Relu

• Linear : input size /4 -> input size / 2

• Relu

• Linear : input size /4 -> input size

• Sigmoid

As optimizer we use Adam’s pytorch implementation with his

default learning rate.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://github.com/tnakae/DAGMM
https://github.com/Danyleb/Variational-Lstm-Autoencoder
https://github.com/NetManAIOps/OmniAnomaly
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