
User-driven Error Detection for Time Series with
Events

Kim-Hung Le Paolo Papotti
EURECOM, France – {Kim-Hung.Le,Paolo.Papotti}@eurecom.fr

Abstract—Anomalies are pervasive in time series data, such as
sensor readings. Existing methods for anomaly detection cannot
distinguish between anomalies that represent data errors, such as
incorrect sensor readings, and notable events, such as the watering
action in soil monitoring. In addition, the quality performance
of such detection methods highly depends on the configuration
parameters, which are dataset specific. In this work, we exploit
active learning to detect both errors and events in a single solution
that aims at minimizing user interaction. For this joint detection,
we introduce an algorithm that accurately detects and labels
anomalies with a non-parametric concept of neighborhood and
probabilistic classification. Given a desired quality, the confidence
of the classification is then used as termination condition for
the active learning algorithm. Experiments on real and synthetic
datasets demonstrate that our approach achieves F-score above
80% in detecting errors by labeling 2 to 5 points in one data
series. We also show the superiority of our solution compared to
the state-of-the-art approaches for anomaly detection. Finally, we
demonstrate the positive impact of our error detection methods
in downstream data repairing algorithms.

I. INTRODUCTION

Anomaly detection is an important task in several domains,
such as intrusion detection systems, financial fraud detection,
and Internet of Thing (IoT). It has been estimated that such
data has from 2.3% to 26.9% error rate [14]. Applications
built upon imprecise time series can potentially result in
losses in the millions of dollars to businesses. As an example,
in forest fire detection sensors are deployed to monitor the
concentration of carbon-monoxide and organic compounds.
Potential hazards are detected by combining sensor data with
weather information. Imprecise sensor data could significantly
decrease the system reliability and impact remedial actions.
The efficacy of such response systems highly depends on the
performance of the anomaly detection algorithms [29].

Anomaly detection over time series is applied to filter out
noise in the data. Unfortunately, such data may contain notable
events, also known as change points. These changes occur
by accident (e.g., a fire in a forest) or because of human
intervention (e.g., watering a field). Preserving these events
is essential for any scenario. For example, a company may
deploy the sensors to monitor the impact of watering on soil
humidity. However, a significant increase of soil humidity due
to watering can be detected as anomaly and removed from the
data. This highlights the need to explicitly distinguish between
anomalies and events.

The first plot from the top in Figure 1 visually presents this
problem in real ultrasonic sensor data obtained from an IoT
company. The sensor is plugged on the top of a tank to monitor
its liquid level (y axis) over time (x axis). As shown in the
figure, sudden changes appear in isolation (e.g., 08-November)

Fig. 1: An example of IoT data (top plot) and anomaly
detection results for three algorithms. Points labeled as 1-4
are anomalies, while point 5 represents a water filling event.

and as small groups (24 to 26-November). These abnormal
values are sensor errors, and should be fixed or removed from
the data set. On the other hand, the data change reflecting the
filling of the tank (30-November) should be preserved.

Challenges. The first challenge is that distinguishing
anomalies and events is difficult. Anomaly detection methods
on time series, either neighbor-based [6], [35], [20], ensembles
[31], or statistical models [7], [37], [32], [33], [40], classify a
data point as abnormal if it significantly differs from historical
observations. Unfortunately, change points also show this
behaviour and existing detection methods can recognize such
points as anomalies. For state-of-the-art anomaly detection
methods, the presence of change points in time series signifi-
cantly decreases the quality of the detection. Since the change
points are not flagged in the training data, their presence
directly affects the prediction result. As shown in Figure 1,
for this dataset Numenta does not detect half of the anomalies,
while KNN-CAD fails in all its detection (F-score below 20%).
This is a common problem and change points radically affect
the performance of both supervised and unsupervised state-of-
the-art anomaly detection methods.

The second challenge is that the performance of several
methods depends on parameters that are dataset specific. For
example, KNN-CAD requires a “window length” parameter
defining the size of the sliding window, SPOT, DSPOT, and
DONUT require a parameter defining the percentage of abnor-
mal data in the dataset. These parameters vary with different
datasets.

The third challenge is that labeled data is not available
in general. Unsupervised detection methods can perform very
poorly in these settings. One approach is then to use supervised
learning methods to model the distinction between anomalies
and change points. However, labeling data requires expensive
manual labour.

Our approach. The three challenges above motivate a new
approach to tackle the problems.

For the first challenge, we propose an algorithm that
accurately detects both anomalies and change points based
on the combination of a novel concept of neighborhood,
namely Inverse Nearest Neighbor (INN), and unsupervised
probabilistic classification. Given a data series containing an
object A, an object B is in the INN of A, if, for any k, object
A is a top-k neighbor of B and B is a top-k neighbor of A.
Once INNs have been computed for all candidate points, it is
possible to classify (as anomaly or change) such points based
on INN properties, modeled as features. The bottom plot in
Figure 1 shows the output for our algorithm exploiting INNs
to predict anomalies (namely CABD-AP) and change points
(namely CABD-CP) separately and precisely.

Nov-23 Nov-24 Nov-25 Nov-26 Nov-27
Time

200

400

600

800

1000

Va
lu

e

INN
KNN
Examining
point

Fig. 2: Inverse Nearest Neighbor vs K-Nearest Neighbor.

The INN concept exploits the asymmetry in the distance
relation based on top-k ranking. While simple, this neigh-
borhood definition enables better predictions than existing
neighborhood concepts such as k-nearest neighbor (KNN).
Most importantly, the number of inverse nearest neighbors
for every point is not defined with a parameter. This address
the second challenge above, as we do not need to find the
configuration (such as the correct k-distance value) for every
input. Figure 2 illustrates the difference between INN and
KNN. When evaluating if a data point (red star) belongs to
a group of anomalies, its INN identifies precisely the group
while its KNN with an inappropriate k parameter contains
both anomalous and normal points. These differences make
our solution more robust and directly affect the prediction.

For the third challenge, we introduce an interactive ap-
proach that minimizes the user involvement in annotating
data points while guaranteeing quality over the results of the
process. We let the user express a desired minimum confidence
for the data and the application at hand. The confidence of a
classification model is then used as a termination condition for
an active learning process, according to the user input. Higher

accuracy requirements demand more points labeled to enrich
the model until the desired confidence is achieved. Experi-
ments demonstrate that labeling few data points dramatically
increases the detection quality.

Contributions. We summarize our contributions as:

1) The concept of inverse nearest neighbor (INN) to char-
acterize anomalous data points. INNs are non-parametric
and enable the computation of a set of scores that distin-
guish errors and change points. We introduce algorithms to
compute INNs efficiently with methods inspired by binary
search and with an aggressive pruning condition.

2) The Comprehensive Anomaly and Change point Detection
algorithm (CABD), a robust method for detecting anoma-
lies for time series containing also events (i.e., change
points). INN scores effectively models the difference be-
tween anomalies and events and are used both in an
unsupervised version of CABD (without user input) and in
an active learning version based on an uncertainty sampling
scheme to guide users in annotating points.

3) We have implemented CABD and extensively tested it in
a production environment. The prototype produces high-
quality error detection in practical IoT use-cases with very
few labeled examples from the users, e.g., four annotations
for a time series of 2k points. We also demonstrate that
CABD can be plugged with existing data repairing algo-
rithms for time series improving their quality 4 times with
only 2% of data annotated in the active learning step.

The remainder of the paper is organized as follows. In
Section II, we formalize the problem of anomaly detection with
user interaction and related definitions. The INN concept and
CABD algorithms are presented in Section III and Section IV,
respectively. Section V reports the evaluation of our method
through real and synthetic datasets. Section VI discusses
related work, and conclusions are reported in Section VII.

II. PRELIMINARIES

We first give the basic definitions for our setting and we
then introduce our problem formulation.

Definitions. We define a time series as follows:

Definition 1: A time series is a set of data points indexed
in the time order and collected at successive equally spaced
points in time. We denote with X = {x1, x2, . . . , xn} a time
series with n data points collected at time T = {t1, t2, . . . , tn}
where ti − ti−1 = ti−1 − ti−2 with i = 1, 2, 3, . . . , n .

We use the Euclidean distance to calculate the distance
of two data points. It is the straight-line distance between two
points in an Euclidean space and it is calculated by the squared
root of the differences between the coordinates of two points:

Definition 2: The Euclidean distance between data point p
= (p1, p2) and q = (q1, q2) is given by

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 (1)

Standardization is a necessary step to deal with differing
scales in input values. Standardizing a dataset consists in
rescaling the data distributions so that the overall mean and

standard deviation are 0 and 1, respectively. A value xi in
time series data X is standardized as follows:

xi =
xi −mean(X)

std(X)
(2)

This formula enables the applicability of the Euclidean
distance in the INN computation, where we mix distances
across different dimensions.

Anomaly and Change Point. Anomaly detection is used to
identify unusual patterns that do not conform to expected
behaviors, also called outliers. Anomalies can be broadly
categorized as [8]:

• Single anomalies: A single data point is anomalous if it is
significantly different from the remaining data. For example,
as shown in Figure 1, the changes at 08-November, 14-
November and 28-November are single anomalies.

• Collective anomalies: This anomaly type contains a set
of consecutive point anomalies represented as an abnormal
data pattern. This pattern does not comply with the dataset
distribution. For example, the small data pattern (24 to 26-
November) presented in Figure 1 is a collective anomaly.

A change point, also called a break point, is the point
at which the statistical properties of a sequence of obser-
vations change [8]. Assume we have a time series X =
{x1, x2, . . . , xn} with m change points at positions
C = {c1, c2, . . . , cm} with cm < n. The change points separate
the dataset into m + 1 segments ({x1, . . . , xc1}, {xc1+1,
. . . , x2}, . . .) that may have different sizes and statistical
properties (mean, average, standard deviation).

Problem Statement. We consider a time series
X = {x1, x2, . . . , xn} of n observations, where xi is
the ith data point, that may contain both errors and events.
Its errors could be either single or collective anomalies. Let
aci = {xi, . . . , xi+s | x ∈ X, s ∈ N}, asi and ci denote a
collective anomaly sized s, a single anomaly, and a change
point at data point xi ∈ X , respectively. Our problem
statement is formalized as follow:

Problem: Given a detection confidence q and time series
X = {x1, x2, . . . , xn}, detect any collective anomaly aci,
single anomaly asi, and change point ci with confidence above
q while minimizing the number of label requests to the user.

Example 1: Consider the time series in Figure 1 with
a collective anomaly occurring around Nov-25, three single
anomalies at Nov-08, Nov-14 and Nov-28, and a change
point at Nov-30. For this series, Numenta cannot detect the
sequence of errors and confuses change points with abnormal
points. Single anomalies are incorrectly detected as collective
anomalies by KNN-CAD. Our goal is to identify and distin-
guish anomalies and change points with minimal user effort
in labeling data points.

III. INVERSE NEAREST NEIGHBOR

We call r neighbors of a point p the group of r closest
points to p, in symbol NNr(p). We also call r reverse
neighbors of a point p the group of points that have p as one
of their r nearest neighbors, in symbol RNNr(p).

A point xm is in the Inverse Nearest Neighbor (INN) of
another point xi, if, for a given r, xm belongs to both the r
neighbors and the r reverse neighbors of xi. Given the time
series X = {x1, x2, . . . , xn} and two points xm, xi ∈ X , we
define:

xm ∈ INNr(xi) iff
{
xm ∈ NNr(xi)

xm ∈ RNNr(xi)
(3)

One way to compute the INN for a point xi is to not
constrain it and take the union of all INNr(xi) for any r from
1 to the size of the data series. Another way is to compute
only the minimal INN for xi (INN(xi)) by starting from the
top 1 nearest neighbor for xi and incrementally grow until
there are no more new neighbors in INN. With these notions,
the major difference between INN and other neighborhood
concepts, such as k-nearest neighbor, is that the number of
neighbors for a data point is not pre-defined. We adopt the
minimal INN computation algorithm, which is therefore non-
parametric. Notice that the number of neighbours in the INNs
of points in the same dataset is not necessarily the same.

Algorithm 1 Minimal INN computation for data point xi

Input: Time series X and data point xi ∈ X
Output: INN(xi)
1. Initializing: flag = 0, r = 1, INN(xi) = ∅
2. Find the r nearest neighbors Y for xi∥∥∥∥∥∥

Find the r nearest neighbors for each yi ∈ Y
If xi ∈ NN(yi) and yi /∈ INN(xi) then

INN(xi) = INN(xi) ∪ (yi, r)
3. Compute the size INN(xi)

If this size does not changed
Return INN(xi)

Else
r++
go to step 2

The details of the INN computation for a given point are
described in Algorithm 1. The algorithm steps are illustrated
in the following example.

Example 2: Consider time series X , similar in shape to the
one in Figure 2, with X = {26.9, 26.8, 27.4, 26.7, 64.5, 65.1,
62.1, 64.4, 62.2, 62.7, 27.1, 25.2, 25.4}1. X has a collective
anomaly on six points from x4 to x9. Consider the INN of
x4, a point belonging to a group of anomalies. For r = 1, we
have NN1(x4) = {x5} and RNN1(x4) = {x5}. Referring
to Equation 3, x4 and x5 are INN at distance 1. Similarly,
with r values from 2 to 5, we also identify {x6, . . . , x9} as
belonging to the INN of x4. This is because with r = 5,
NN5(x9) = {x8, x7, x6, x5, x4} still contains x4.

To describe r = 6, we report the Euclidean distances be-
tween data points. With d(x4, X) =[37.9, 37.8, 37.1, 37.0, 0.0,
1.2, 3.1, 3.0, 4.6, 5.3, 37.4, 39.8, 39.9], we have NN6(x4) =
{x3, x5, . . . , x9}. Because of {x5, . . . , x9} ∈ INN(x4) (they
are processed at r values from 1 to 5), we examine x3. We
get the distances d(x3, X) = [3.0, 2.0, 1.2, 0.0, 37.0, 38.5,
35.6, 37.9, 35.8, 36.5, 7.0, 8.1, 9.1]. Based on these values,
NN6(x3) = {x0, x1, x2, x10, x11, x12}. Since x3 ∈ NN6(x4)

1This example only aims at illustrating the INN generation process. In the
experimental evaluation, all datasets are standardized by using Equation 2.

but x3 /∈ RNN6(x4), x3 does not belongs to the INN
of x4. The INN search for x4 is stopped at r = 5 and
INN(x4) = {x5, x6, x7, x8, x9}. With KNN, we would need
to provide a constant (5) to detect such group, a data-specific
parameter. This shows how INNs identify abnormal groups
without pre-defining any parameters.

In the worst-case scenario, the value distribution in the
dataset is a flat line and the INN of a point is the whole dataset.
We discuss this issue and an optimized INN computation in
Section IV. In the following sections, with the “INN of a data
point” we refer to the set of points identified by the minimal
INN generation Algorithm (Algorithm 1) for that point.

IV. DETECTION USING INNS AND ACTIVE LEARNING

Unlike detection algorithms that only detect either anoma-
lies or change points, our goal is to effectively detect both
categories in a single algorithm with minimal input from the
user. In this section, we first present the overall algorithm with
active learning. We then discuss each step with more details.

Algorithm 2 Anomaly and Change Point Detection

Input: Time series X, User defined confidence γ
Output: Anomaly list Y , Change point list Z
1. θ ← Candidate(X)
2. Y, Z = []
3. For xi in θ do

β(xi) ← Score(xi, X)
4. CW , Y, Z ← Evaluate Detection(β)
5. If min(CW) ≤ γ then

Labeling and Go to step 4
Return Y,Z

Algorithm Overview. Let X = {x1, x2, . . . , xn} denote a
time series, where Y and Z are set of anomaly points and
change points of X, respectively. Algorithm 2 presents the
major steps of our proposal, which takes X as an input and
produces Y, Z together with their Confidence Weights (CW).
The algorithm allows the user to configure the minimum
desired confidence as input in order to ensure detection quality.
The major steps of the algorithm are described as below:

1) Candidate Estimation, in Line 1, it generates potential
candidate points θ from extreme values in the series based
on their absolute second derivative (Definition 3).

2) Score Computation, in Line 3, it computes a score metric
from INN for each candidate xi in θ. This metric includes
magnitude score, correlation score, and variance score,
denoted as β(xi).

3) Score Evaluation, in Line 4, it uses a probabilistic classifi-
cation to classify the candidates into three classes (change,
anomaly, and normal points) based on their score values.
Active learning using the uncertainty model is applied to
minimize user interaction. The most uncertain points are
queried and labeled by the users. Each point xi also get
assigned a confidence weight C(xi).

4) Classification Evaluation, in Line 5, it triggers the active
learning process if the confidence weight of a candidate
point is lower than the user defined minimum quality.

Candidate Estimation. Our goal is to recognize both errors
and events. Therefore, we first introduce an unsupervised

method to find the points that are candidate to be label as
errors or events.

We rely on standard measures such as mean, variance,
and correlation to identify the candidates, as done in the
literature [4], [29], [8]. More specifically, we identify candidate
points based on its absolute second derivative, which represents
the rate of changes of a data point; this is widely used to
identify the critical points (e.g., the local minimum or local
maximum) [5].

Definition 3: The absolute value of second difference of
xi(p), denoted as 4′′xi, which is defined that:

4′′xi(p) = |4xi −4xi−1|, i = 1, 2, 3, ..., n (4)

While 4xi is the absolute value of first difference of xi ∈ X ,
is defined that:

4xi(p) = |xi(p)− xi−1(p)|, i = 1, 2, 3, ..., n (5)

Formally, given a time series X = x1, x2, . . . , xn. The
anomaly score of X is denoted by ∂:

∂(X) = {4”x1,4”x2, . . . ,4”xi} | i ∈ {1, 2, . . . , n−1} (6)

To identify the candidates, we use the Median Absolute
Deviation (MAD), which is a robust measure of the variability
in data [29]. In addition, MAD is more resilient to outliers
than the standard deviation. If MAD of the anomaly score of
a data point is higher than MAD of the anomaly score of the
whole data set, it is considered to be a candidate. We validate
these candidates in the latter detection steps.

Definition 4: Given time series X and the anomaly score
∂, MAD is defined as the median from sample median.

MAD(X) = median(|∂(Xi)−median(∂(X))) |Xi ∈ X
(7)

Notice that the candidate estimation is independent of the
INNs and it is a global analysis of the data series.

Score Computation. In this step, we compute the scores based
on INNs for each candidate point. These scores are used in next
step as the features of a probabilistic classifier, which outputs
the probability of a candidate to be an anomaly, change, or
normal points. The metric has three scores: Magnitude, Cor-
relation, and Variance. Each score represents a characteristic of
the candidate’s INN. The union of such characteristics enable
the distinction between anomalies and change points.

The magnitude score of a point describes the ratio of its
INN size over the global dataset size. Based on standard
anomaly definition [8], the size of an anomaly pattern (a
collective anomaly) should be less than five percent of dataset.
Therefore, if the magnitude score is higher than five percent,
the candidate may be a normal point. The correlation score
represents the regularity of its INN pattern over the entire
dataset. If this pattern rarely occurs, e.g., it is not periodic,
the candidate may be an abnormal point. The variance score
represents the local impact in terms of standard deviation of
the removal of candidate INN. If this score is low (close to
0), the candidate is more likely to be normal. Let SS(xi) be a
function that returns the INN size of data point xi and SPa(xi)
be the INN of xi including SS(xi) number of adjacent points

in both sides. The definitions of the three scores are formalized
next, starting from the magnitude score.

Definition 5: Magnitude score (MS) of data point is the
ratio of its INN size over the size of dataset, denoted by MS.
Given time series X = {x1, x2, ..., xn} length n and xi ∈ X ,
the MS of xi is defined as:

MS(xi) =
SS(xi)

n
(8)

For the correlation score, we need to introduce some
definitions first.

The Symbolic Aggregate Approximation (SAX) algorithm
transforms a time series into a string [26]. This algorithm is
based on the piecewise aggregate approximation (PAA) and
it is used to detect unusual patterns in time series, duplicated
shapes in large databases, and time series motifs. We define
PAA and SAX next:

Definition 6: Piecewise Aggregate Approximation (PAA)
transforms a time-series X of length n into vector X̄ =
(x̄1,, x̄M) with M ≤ n where:

x̄i =
M

n

(n/M)i∑
j=n/M(i−1)+1

xj (9)

Definition 7: Symbolic Aggregate Approximation (SAX)
transforms a time-series X of length n into an arbitrary string
by using PAA. A time series X length n can be represented
by a word X̂ = {x̂1, x̂2, . . . , x̂n} with x̂i is a character of
alphabet. Let denoted αj is the jth element of the alphabet.
θj−1, θj are given thresholds.

x̂i = αj s.t θj−1 ≤ PAA(xi) ≤ θj (10)

We are now ready to define the correlation score.

Definition 8: Correlation Score (CS) of a data point is the
frequency of occurrence of its INN pattern, represented as a
string by using SAX, in the dataset (definition 7).

Given time series X = {x1, x2,, xn} and xi ∈ X

CS(xi) = frequency

(
SAX(INN(xi))

SAX(X)

)
(11)

Finally, we define the variance score.

Definition 9: Variance Score (VS) of a data point measures
how removing the INN for a point changes the standard
deviation of its SPa.

V S(xi) =
std(SPa(xi)− INN(xi))

std(SPa(xi))
(12)

Algorithm 3 illustrates the score metric calculation process.
At the first step (Line 1), we obtain the INN for each
candidate point xi using Algorithm 1. Then, the three scores
are calculated in parallel to optimize performance (Line 3, 4,
5). At the final step (Line 6), all scores are collected to form a
feature (three dimensional) matrix for the classification model.

Score Evaluation. This step relies on the metric scores to-
gether with a probabilistic classification algorithm to estimate

Algorithm 3 Score Computation

Input: Data point xi, time series X
Output: Score Metric β(xi)

1. γ ← INN searching(xi, X)
2. η ← SS(xi, γ)

3. κ← MS(xi, η)
4. ξ ← CS(xi, γ)
5. ϕ← VS(xi, η, γ)

6. β(xi) ← [[κ], [ξ], [ϕ]]
Return β(xi)

the probability of data point xi to be an anomaly, change, or
normal point. The classification receives the metric scores of
xi as input and identifies the probability of xi falling into three
classes (anomaly, change, or normal point) as output. CABD
is designed for high modularity and flexibility. It allows to
plug-and-play different classification algorithms. By default,
CABD uses the random forest classification [25]. Initially,
without user intervention, the classification works on a set of
hypotheses. The probability produced by the classification al-
gorithm is considered as the confidence weight of the examined
data point. With the presence of a user, active learning with
an uncertainty sampling scheme [9], namely CAL, is applied
to increase classification performance by labeling the most
uncertain instances.

Without user interaction2, the initial training set of the
classifier is built on a set of hypotheses H, which includes
three main decision rules based on the score metric:

1) The magnitude score of an abnormal point must be lower
than k%. This means, the spreading pattern size of this
point is lower than k% of data size. Particularly, the
spreading pattern size of single anomaly equals 0.

2) The correlation score of an abnormal point must be lower
than c%. This means, the spreading pattern of this point
must occur lower that c% frequently in dataset

3) The variance score of an abnormal point must be higher
than v%. This means, the standard deviation of spreading
pattern with k-neighbors must reduce at least v% after
removing the spreading pattern.

We derive the set of mentioned thresholds by using an
unsupervised clustering algorithm that classifies candidates
into four groups. Then, the label Y = {single anomaly, col-
lective anomaly, change point, normal point} is assigned to
these groups based on observed characteristics. We observe
that the “single anomaly” group can be identified by low
magnitude and correlation scores, while its variance score is
high. The Figure 3 presents magnitude (y axis) and variance
score (x axis) of a clustering result from a synthetic dataset.
The blue curves are the boundaries of the groups which are
used to define the thresholds. As the figure shown, the “single
anomaly” group has low magnitude (very small INN size) and
high variance score (their removal significantly change the
SPa). In our experiment, we use the unsupervised Gaussian
Mixture clustering algorithm because it works nicely with
clusters that are not round shaped, but any other clustering
method can be plugged to our solution.

2Experiments in Section V distinguish with/without active learning cases.

Fig. 3: Unsupervised clustering output for a synthetic dataset.

When we can involve the user, we use CAL to get annota-
tions. We examine the most likely class of data points xi ∈ X
based upon the probability produced by the classification
algorithm. We decide whether to require its label yi ∈ Y =
{abnormal point, normal point, change point} from the user
based on the uncertainty of the classification result defined by:

U(x) = 1− P (x̂|x) (13)

where x is the data point and x̂ is the most likely classification.
The querying process of CAL is stopped if all confidence
weights are higher than the user defined confidence.

Example 3: If a data point xi can be classified across the
three labels (abnormal point, normal point, change point) with
confidences [0.1, 0.3, 0.6], it is considered a change point with
0.6 confidence weight and 0.4 uncertainty.

Algorithm 4 Score Evaluation

Input: Unlabeled data set X , probabilistic model Z,
initial training set V , threshold γ.
Output: [CW , ϕ]
1. [CW , ϕ] = Z(X,V)
2. While min(CW) ≤ γ do∥∥∥∥∥∥∥

xt ← Query(xt, ϕ,X)
Label yt for xt
Set V = V ∪ {(xt, yt)}
Update [CW , ϕ] = Z(X,V)

Return [CW , ϕ]

Algorithm 4 reports the CAL scheme for active learning in
the Score evaluation step. We denote confidence weight and
uncertainty with CW and ϕ, respectively.

Optimizations. We notice that the time spent in the score
calculation can be dramatically reduced by analyzing less
points in the INN computation for all candidate points. In
fact, if the dataset is large, the number of candidates points
can be large and for each point we may end up analyzing a

large number of neighbors. For this problem, we propose two
solutions. First, we show how the number of points involved
in the INN computation can be reduced with a binary search
method. Second, we add a new stopping condition in the INN
computation based on the maximum possible size of the INN.

First, recall that when computing the INN of data point x
denoted INN(x) in Algorithm 1, n is the INN size obtained by
starting at = 1 and increasing by one until n is not changed.
The complexity of such approach is O(n) with n being the
size of INN(x) in the worst case. This can be optimized by
using a binary search to find the INN set for both sides (left
and right side) of the data point x. The complete INN is then
the union of two sets. Thereby, the complexity is reduced
from O(n) to 2*O(Log n

2). Second, we use a parameter in
the binary search to set up the space of points of interest, i.e.,
the maximum searching position. In practice, if the size of an
abnormal pattern is higher than 5% of the size of the dataset,
it should not be considered an anomaly. Thus, this bound is
used as the maximum search range. To ensure that the binary
search output is minimal INN, we assume that the INN(x) is
not segmented.

Algorithm 5 Binary INN computation (right side)

Input: Data point xi, search range threshold t
Output: INNR(xi)
1. L = i;R = t− 1; INNR(xi) = [];
2. While L ≤ R do∥∥∥∥∥∥∥∥∥

m = floor((L+R)/2)
If xm ∈ NNm(xi) and xm ∈ RNNm(xi)

L = m+ 1
Else

R = m− 1
3. INNR(xi) = [xi, . . . , xm]
4. Return INNR(xi)

Given data point xi and searching range threshold t,
Algorithm 5 illustrates the Binary INN computation for the
right side of xi. The procedure for the left side is the same.

V. EVALUATION

In this section, we experimentally evaluate the quality and
efficiency of our proposal on both real and synthetic datasets.
The datasets have been standardized with the methods defined
in Section II. Our goal is to demonstrate:

• The superiority of CABD w.r.t. existing algorithms in both
detection quality (anomaly, change point detection) and
runtime over real and synthetic datasets;
• The effectiveness of INNs and active learning;
• The improvements in data repair for real sensor data when

CABD is used to identify quality issues.

A. Metric of measurement

To evaluate the effectiveness, we use three metrics. Let S
denote anomaly and change points detected by the algorithm
and G denote the corresponding ground truth for the same
time series. The precision and recall are defined as: P =
(|S| ∩ G)/|S| and R = |S| ∩G/|G|, respectively. F-score or
F-measure, combining P and R, is defined as: F = 2 ∗ P∗R

P+G .

To assess the advantages of using interactive learning in
comparison to manually labeling all cases, we use a benefit
function calculated from the ratio of the number of human
actions (labeling) over the total number of anomaly and change
points [17]. Given the number of annotations TA and the total
number of anomaly and change points M , we define the benefit
function as:

BNF = 1− TA/M (14)

B. Datasets

Real datasets. We created a dataset in collaboration with
a company: IoT data3. Data has been collected every hour
from 2 ultrasonic sensors deployed on the top of tanks to
monitor liquid levels for a total of 3.1K measures. Errors
naturally occur over time. Since the company manages the tank
operations, such as filling or consuming, errors and change
points have been manually labeled as ground truth. The second
dataset is Yahoo! lab data4. It provides 50 time series with
annotated anomalies taken from real products traffic, relations
have from 1.5K to 20K records. Finally, we use the KPI
datasets5, which contain time-series about key performance
indicator (KPI) information from internet companies. Each
KPI dataset has around 100K records at 1-minute interval and
labeled anomalies. As the Yahoo and KPI datasets have no
change points, these datasets are used to measure the quality
of anomaly detection only.

Dec-12 Dec-22 Jan-01 Jan-11 Jan-21

500

1000

1500

Va
lu

e

Raw Data
Single Anomaly
Collective Anomaly
Change Point

Fig. 4: Example of synthetic dataset.

Synthetic dataset. This dataset aims to assess the effec-
tiveness of our algorithm in the presence of various anomaly
types (single and collective ones) and change points in different
proportions. We first generate the data points following real
data distributions. Then, we fit this data to a time series
obtained from the production environment to preserve the trend
and seasonality. Lastly, we randomly inject a mix of anomaly
types with varying lengths and magnitudes in 25 different
relations with 20K records each. These anomalies are stored
to evaluate the output of the algorithms. Figure 4 illustrates
a part of a synthetic dataset (namely ds-1) that includes both
single and collective anomalies, and a change point.

C. Results

Real datasets. We first evaluate the detection quality of
our proposal over the real datasets. Since Yahoo and KPI
did not record the change points, we only perform anomaly
detection on such datasets. In this and the following supervised
experiments, the default user confidence value is set at 0.8.

3Available at https://github.com/kimhungGCZ/anomaly dataset
4Available at http://labs.yahoo.com/Academic Relations
5Available at http://iops.ai/competition detail/?competition id=5&flag=1

Dataset %An %CP
W/O AL W/ AL

of
queriesAP

F-score
CP

F-score
AP

F-score
CP

F-score
Synthetic 12.5 9.5 32.1 34.2 67.9 83.6 38.7 (avg)

Yahoo 1.0 - 43.5 - 78.8 - 5.0 (avg)

KPI 1.8 - 55.6 - 70.3 - 5.3 (avg)

IoT 0.8 1.0 53.7 33.3 100.0 100.0 4.0

TABLE I: Qualitative evaluation of CABD for Anomaly Pre-
diction (AP) and Change Point Prediction (CP) on all datasets.

We report results for all datasets in Table I. For IoT, we note
that, without active learning, the detection recall on average
is 100%. This means all abnormal points are recognized and
is not surprising as in the unsupervised setting there is no
enforcement of a desired confidence. However, the F-scores
of anomaly and change point detection are only 53.7% and
33.3%, respectively. With active learning, the F-score reaches
100% after labeling only four candidate points. These results
prove that our proposal effectively detects both anomalies and
change points with limited labeling efforts.

For Yahoo, we present the results averaged over the 50
datasets in Table I (the online tech. report [24] contains
detailed results). Without active learning, the average detection
precision and recall are 47.4% and 60.4%, respectively. With
active learning, precision and recall increase to 87.1% and
77.4%, respectively. Moreover, the average numbers of queries
is 5, with an average benefit score (BNF) of 0.3, i.e., labeling
two candidate points leads on average to the classification of a
third. By manually analyzing the incorrect classifications, we
notice that false negatives usually occur at the boundaries of
abnormal data, especially at the end of a collective anomaly.
Experimental results with KPI datasets are similar to the Yahoo
and IoT scenarios. Without labels, the F-score of our algorithm
is 55.6%, but labeling 5 data points (on average) increases this
value to 70.3%.

1% AP 5% AP 10% AP 15% AP 20% AP
0.7

0.8

0.9

1.0

Be
ne

fit

1% CP 2% CP 5% CP 10% CP 20% CP

Fig. 5: BNF with increasing anomaly and change points.

Synthetic datasets. Next, we evaluate CABD on synthetic
datasets with increasing percentages of anomaly and change
points (from 1% to 20% of the data size). We note in Table I
that CABD with active learning significantly improves the
anomaly and change point detection accuracy. The average
F-score increases from 32.1% to 67.9% and from 34.2% to
83.6% for anomaly and change point detection, respectively.
Remarkably, the active learning takes more benefits at low
anomaly percentage. For example: in dataset with 1% anomaly
such as ds-1, the F-score increases by about 80% (absolute
value) from 17.3% to 97.3% after active learning.

https://github.com/kimhungGCZ/anomaly_dataset
http://labs.yahoo.com/Academic_Relations
http://iops.ai/competition_detail/?competition_id=5&flag=1

50 60 70 80 90 100
% Confidence

0

50

100

F-
sc

or
e

50 60 70 80 90 100
% Confidence

0

50

100

F-
sc

or
e

50 60 70 80 90 100
% Confidence

0

20

40

60

Nu
m

be
r q

ue
ry

(a) (b) (c)
1% Anomaly 5% Anomaly 10% Anomaly 15% Anomaly 20% Anomaly

Fig. 6: Increasing the desired confidence: (a) Anomaly detection quality; (b) Change point detection quality; (c) # of queries.

The benefit score (BNF) is about 0.88 on average, which
means that labeling 12 candidate points leads to recognize
100 anomalies. Regardless of the changes in the percentage
of anomaly and change points, the query benefit score is
consistent from 0.8 to 0.96, as shown in Figure 5. This result
demonstrates that the INN score metrics are highly related to
detecting anomaly and change points.

To assess the impact of the user defined minimum con-
fidence, we report results when varying it for anomaly de-
tection and change point detection in Figures 6(a) and 6(b),
respectively. We use different synthetic datasets with different
values of anomaly percentages, from 1 to 20%. As expected,
higher requirements lead to better F-score results. We also
observe in Figure 6(c) that more anomalies in data series lead
to a bigger increase in the number of user queries when we
vary the required confidence. Plots in Figure 6 also show that
high percentage of anomalies and change points impact the
effectiveness of CABD. Increasing the anomaly percentage
from 1% to 20% decreases the F-score down to 27.4% and
31% for anomaly and change point detection, respectively.
We observe that if a single anomaly point is very close to
a change point, its INN is larger than when in isolation. Thus,
the metric score of such point is likely to lead to a change
point classification.

D. Comparison with baselines

We first compare our algorithm to both unsupervised and
supervised anomaly detection methods. We then compare our
solution to existing methods for change point detection and
against a combination of baseline methods for the two tasks.

Anomaly Unsupervised. We take several state-of-the-
art anomaly detection methods, including Numenta, Twitter-
AD [37], Luminol6, KNN-CAD, ContextOSE7, Multinomial
Relative Entropy [39], Bayesian Online detection [3]8.

A comparative analysis of detection quality on all datasets
in Figure 7 shows that the detection quality (F-score) for
most algorithms is fairly low when dealing with various
anomaly types. The average of F-measure values is under
20% even with the the best performing baseline (Luminol) for
KPI and Synthetic datasets. In contrast, CABD always shows
significantly better results on all cases. For example, the F-
scores of Luminol over Yahoo and IoT datasets are 41% and

6https://github.com/linkedin/luminol
7https://github.com/smirmik/CAD
8Source code and parameter settings from the Numenta Benchmark [22].

Numenta Bayes Entropy KNN
CAD

OSE Luminol Twitter CABD
W/O AL

Unsupervised Anomaly Detection Algorithms

0

20

40

60

80

100

F-
sc

or
e

IoT datasets
Yahoo datasets

Synthetic datasets
KPI datasets

Fig. 7: Comparing detection quality with unsupervised
anomaly detection algorithms over all datasets.

45.8%, respectively, whereas the ones of (unsupervised) CABD
are 43.5% and 55.6%. The average F-measure score for CABD
in the unsupervised setting is 45.3%.

F-Bag HBOS IF MCD SPOT DSPOT DONUT SR-
CNN*

CABD
W/ AL

Supervised Anomaly Detection Algorithms

0

20

40

60

80

100

F-
sc

or
e

IoT Datasets
Yahoo Datasets
Synthetic Datasets
KPI Datasets

Fig. 8: Comparing detection quality with supervised anomaly
detection algorithms over all datasets.

Anomaly Supervised. We compare detection quality be-
tween CABD and supervised outlier detection algorithms. We
trained with annotated datasets Feature Bagging (F-Bag) [23],
Histogram-based Outlier Score (HBOS) [15], Isolation Forest
(IF) [27], Minimum Covariance Determinant (MCD) [16]9,
SPOT and DSPOT [33], and DONUT [40]; results for SR-
CNN are reported from the original paper as code is not
available [32].

Figure 8 presents the results on all datasets. CABD always
shows significantly better performance comparing with others

9Source code obtained from https://github.com/yzhao062/pyod

https://github.com/linkedin/luminol
https://github.com/smirmik/CAD
https://github.com/yzhao062/pyod

with one exception. For example, on Yahoo datasets, the
average F-score of CABD after active learning is 78.8% while
the best baseline achieves 40% (HBOS). Similarly, F-scores
on synthetic datasets are 67.9% and 40.7% for CABD and
the best of the supervised algorithms (IF), respectively. In
one dataset (KPI), the detection performance of our method
is comparable to the one reported in the SR-CNN paper [32]
(70.3% vs 73.2%).

Change Point Detection. In the next study, we compare
detection quality between CABD and three change point
detection algorithms: Pruned Exact Linear Time (PELT) [19],
Bottom-up [12], and Binary segmentation [13]. These algo-
rithms are implemented by using the ruptures library [36].
The performance of these algorithms depends on a parameter,
namely “penalty value”, considered as a detection threshold.
In our comparison, the best penalty value is found by a bruce-
force search from 0 to 100.

PELT Bottom-up Binary Segment CABD
W/O AL

CABD
With AL

Change Point Detection Algorithms

0

20

40

60

80

100

F-
sc

or
e

Synthetic datasets IoT datasets

Fig. 9: Comparing change point detection quality over IoT and
Synthetic datasets.

Figure 9 shows the results on the IoT and synthetic datasets
(change points in Yahoo datasets are not marked). Without
active learning, the detection performance of CABD roughly
equals its competitors, while CABD with active learning does
better. For example, given the best “penalty value” acquired
by brute-force search, the F-scores of PELT, Bottom-up,
and binary segmentation algorithms on synthetic datasets are
47.1%, 48.9%, and 26.4%, respectively. This means that our
competitors could correctly detect half the number of change
points with perfect input parameters. The score of CABD with
active learning is nearly double (about 83.6%) by exposing to
the user only 2% of the dataset on average (about 39 data
instances). Note that CABD is designed for both anomaly and
change point detection purposes. Thus, the user-annotated data
instances might be abnormal or change points. A similar result
is also found in IoT datasets.

After separately evaluating anomaly and change point
detection methods, we combine one anomaly (HBOS) and one
change point detection method (PELT) to compare their com-
bination with our proposal. As shown in Figure 10, CABD’s
detection quality (F-score) is superior w.r.t. the combination
of HBOS and PELT on IoT datasets. However, the score of
CABD without active learning is slightly lower on synthetic
datasets. In more detail, the average F-score of combining
HBOS and PELT on synthetic datasets is 42.5%, while CABD
without active learning is 33.1%. Labeling 2% datasets (about

Synthetic Datasets IoT Datasets
Anomaly and Change Point Detection Algorithms

0

20

40

60

80

100

120

140

F-
sc

or
e

PELT+HBOS
CABD W/O AL

CABD With AL

Fig. 10: Comparing detection quality between CABD and a
combined baseline (PELT + HBOS) over Synthetic and IoT
datasets.

39 data points) on average using active learning, the CABD’s
F-score increases to 75.8%.

2k 4k 8k 10k 12k 15k 20k
Data size

1

10

50
100
200
400

Se
co

nd
s

Numenta
KNN-CAD
Donut

CABD
Unoptimized CABD

Twitter
Luminol

Fig. 11: Runtime of anomaly detection algorithms over differ-
ent data sizes for Yahoo datasets.

Runtime. We compare the runtime of the algorithms on
data series with up to 20K points. Evaluations are performed
on a machine with Intel i5-6200U CPU@2.3GHz, 2 Cores,
8GB of RAM and Windows 10. Labeling time from the en-
user in active learning is not included. We use a KD-tree [30]
to enhance search performance.

Figure 11 reports that the runtime of CABD with op-
timization strategies is roughly equal to the fastest method
(Luminol). Also, the optimized CABD is up to 3.5 times
faster than its unoptimized version. With 2K points, Numenta,
KNN-CAD and Twitter-AD take 24.9, 11.6, and 1.2 seconds,
respectively, while CABD without optimization takes 0.21
seconds and its optimized version 0.16 seconds. For 20K data
points, Numenta, KNN-CAD, Twitter-AD and unoptimized
CABD take 356.0, 113.0, 11.4 and 7.2 seconds, respectively,
while optimized CABD takes 2.5 seconds. Deep learning
models for anomaly detection are also slow, with Donut with
5 layers taking 34 seconds for 2K points and 435 seconds for

20k. Similar results are also found in the other datasets. The
optimization strategies are more effective with larger datasets
because of the larger number of candidates that our algorithm
analyzes to compute INNs.

In summary, CABD performs better both in detection
quality and running time than state-of-the-art algorithms.

E. Effectiveness of Active learning

Summarizing the evaluation results from Table I, the detec-
tion quality of CABD with active learning always outperforms
the one without it. This stems from the fact that active learning
leads the probabilistic classification model to be more accurate.

Round
Y! 1 Y! 23 Y! 42 iot 1 iot 2

acc conf acc conf acc conf acc conf acc conf

1 0.1 0.5 0.0 0.5 0.0 0.7 0.8 0.7 0.9 0.7

2 0.1 0.4 0.6 0.5 0.1 0.5 1.0 0.6 1.0 0.7

3 0.6 0.4 0.5 0.5 0.2 0.5 1.0 0.7 1.0 0.7

4 0.6 0.4 0.7 0.7 0.6 0.5 1.0 0.8 1.0 1.0

5 1.0 0.6 0.8 0.6 0.4 0.4

6 1.0 0.6 0.8 0.5 1.0 0.6

7 1.0 0.8 1.0 0.7 1.0 0.4

8 1.0 0.8 1.0 0.9

TABLE II: Accuracy and confidence for active learning with
increasing number of user annotations (user required confi-
dence = 0.8).

Table II reports the accuracy (acc) and the confidence of
the model (conf) with an increasing number of interactions
(rounds) with the user for five datasets. Accuracy here mea-
sures the number of correct predictions (true positive and true
negative) divided by the union of the model predictions (S)
and of the ground truth (G).

We note that the model can identify correctly all points
(reach 100% accuracy score) after a small number of queries.
For example, after 4 queries, the model reaches 100% accuracy
for Y ! 1 Yahoo datasets. In some rounds, the model effec-
tive accuracy decreases after labeling a candidate point. This
happens in cases where the abnormal point is very close to
a change point. In this case, the metric scores for this point
are similar to change point behaviour, i.e., high magnitude
score and correlation score together with low variance score.
In these corner cases, CABD is mislead and incorrectly detects
the anomaly as a change point until in a following step the
model is updated and fixes the issue.

F. Effectiveness of INN and associated scores

To demonstrate the efficacy of INN in comparison with
KNN, we study INN and KNN impact in our approach. The
best k parameter is determined by brute-force searching in the
range from 0 to data size.

Figure 12 demonstrates that CABD using INN (CABD-
INN) achieves better performance in comparison with its
variant using KNN (CABD-KNN) both with and without

without
AL

with
AL

without
AL

with
AL

without
AL

with
AL

0

20

40

60

80

100

F-
sc

or
e

Yahoo
Anomaly Detection

Synthetic data
Anomaly Detection

Synthetic data
Change Point Detection

KNN INN

Fig. 12: INN and KNN with and w/out active learning.

active learning (AL). In the Yahoo dataset, the F-scores of
CABD-KNN are 31% and 48.32% for before and after AL,
respectively. Replacing KNN by INN, the F-score signifi-
cantly increases to 43.5% for the unsupervised cases and to
78.8% with user involvement. Differences are even bigger with
synthetic datasets. In change point detection, the F-score of
CABD-INN is 34.2% before AL and 83.6% after AL, while
for CABD-KNN these values are only about 4.4% and 6.5%,
respectively. These results confirm the superiority of INN over
KNN, even when k is manually determined.

without
AL

with
AL

without
AL

with
AL

0

20

40

60

80

100

F-
sc

or
e

KPI Anomaly Detection Yahoo Anomaly Detection

ALL
MAG

VAR
COR

Fig. 13: The influence of INN-based Magnitude (MAG), corre-
lation (COR) and variance (VAR) scores in anomaly detection
performance (F-score) over KPI and Yahoo datasets.

To better understand the impact of the different scores that
exploits INNs, Figure 13 reports anomaly detection quality
results with INN scores used in isolation. The experiments
are performed over the Yahoo and KPI datasets. The results
show that the Magnitude score is the most influent factor
for the algorithm performance over KPI. The F-scores of the
classifier using only magnitude score as an input feature with
and without active learning are 27.1% and 36.4%, respectively,
in comparison to 55.6% and 70.3% of the execution with all
scores are combined. For the Yahoo datasets, the Variance
is the most effective score. The F-scores of CABD with
variance score only with and without active learning are 26.2%
and 25.1%, respectively. These results are significantly lower
than the ones of CABD with all scores in the metric, with
43.5% and 78.8%, respectively. These results demonstrate the
effectiveness of the proposed score metric, which is built from

ds-1 ds-2 ds-3 ds-4 ds-5 ds-6 ds-7 ds-8 ds-9 ds-10 ds-11 ds-12 ds-13 ds-14 ds-15 ds-16 ds-17 ds-18 ds-19 ds-20 ds-21 ds-22 ds-23 ds-24 ds-25
Datasets

0

50

100

150

200

250

300

RM
S

IMR IMR + CABD

Fig. 14: RMS error in the cleaning process with and w/out our CABD in the IMR data repair algorithm.

our INN concept.

G. Enhancing data repair

To minimize the impact of anomalies on data reliability, a
repairing process is usually triggered after detecting anomalies
and errors. We evaluate the integration of our proposal with
a recently proposed data-repairing algorithm, namely Iterative
Minimum Repairing (IMR) [34], [42]. We show that the quality
of the automatic data repairs of IMR is improved by using the
Active Learning mechanism of CABD in labeling anomalies.
The repairing quality is measured here by a Root Mean Square
(RMS) error, which evaluates the distance between ground truth
and repaired values. Lower RMS error values indicate better
results.

Figure 14 illustrates the experiment over our 25 synthetic
datasets with varying anomaly and change point percentages.
IMR with CABD for the labeling of the data shows signifi-
cantly better repairs than the original IMR (based on random
value selections) in all datasets. For example, in dataset ds-
1 and ds-2, CABD reduces RMS error 4 times from about
74.5 and 85.4 to 16.7 and 18.9, respectively. Moreover, for
2000 data points, the average number of labeled data points
for synthetic datasets is 38.72. This means that CABD labels
about 2% data points to achieve such results comparing with
20% in the original IMR proposal. These results prove the
utility of our algorithm in both improving the repairing quality
and in reducing the data labeling effort.

VI. RELATED WORK

Nearest neighbor techniques detect the abnormality by ex-
amining the distance or similarity between two data instances.
The distance can be calculated in different ways. For example,
Euclidean distance is used for continuous attributes [6], [35],
[20]. Nearest neighbor anomaly detection defines the anomaly
score of a data instance as its distance to its kth nearest neigh-
bor in a data set [29]. The basic technique has been improved
in various aspects. In Resolution Outlier Factor [11], points are
outliers depending on the resolution of the distance thresholds.
Conformalized density- and distance-based anomaly detection
(KNN-CAD) [7] measures the dissimilarity between observa-
tions by combining feature extraction method and conformal
paradigm. The density-based anomaly detection is based on

the idea that the abnormal points lie in a neighborhood with
low density, whereas the normal points lie in a dense area [8].
In Local Outlier Factor (LOF) [6], for a given data instance,
the anomaly score is the ratio of the average local densities of
its k-nearest neighbors over the local density itself. However,
LOF is not effective in detecting regions that are not clearly
separated. Several works have extended LOF, such as Cluster-
Based Local Outlier Factor [18], which calculates the anomaly
score from local distances to nearby clusters. Authors in [33]
proposed two algorithms, namely SPOT and DSPOT, to detect
outliers in streaming time series based on extreme value theory.

Leveraging the benefit of expert intervention, The Active
Anomaly Discovery method aims to reduce the number of
faults [10]. It calculates anomaly scores by an ensemble of
anomaly detection algorithms [31]. It then associates each
score with a weight, which is optimized by labeling the top
anomaly score. A similar approach has also been presented
for the detection of rare events in network security [38]. The
major limitation of these two works is that the inference of the
anomaly score threshold and the weight is estimated from a
fixed value. Also, the method to minimize expert intervention
is not discussed. To mitigate the human effort in labeling
data, Microsoft has proposed an anomaly detection algorithm,
SR-CNN, that uses Spectral Residual (SR) and Convolutional
Neural Network (CNN) to self-generate training data [32]. In a
similar attempt, authors in [40] use Variational Auto-Encoder
to generate “clean” datasets to support training.

We also position our work w.r.t. data repairing approaches.
The SCREEN algorithm [34] proposes a solution for stream
data to identify and repair the anomalous “jump” values in
a given sequence (windows data) w.r.t the speed constraint
while minimizing the repair distance. However, the SCREEN
can show high performance in repairing single anomaly but
hardly handle a collective anomaly. In addition, the repairing
results strongly reply on the correctness of some assumptions.
Being aware such limitations, a latter algorithm named Iterative
Minimum Repairing (IMR) [42] is proposed. The general idea
is that combining between labeling some dirty observations
and iterative repairing from high to low confidence repairs
could enhance the performance. The final goal of CABD,
SCREEN, and IMR are to preserve the notable information in
time series data. We have shown how to combine our anomaly
detection procedure with IMR to improve its repair quality.

Other methods have studied the problem of interactive
error detection [17], [21], [41], [2]. While active learning has
been explored for outlier detection [1], our method is the first
specifically designed for time series with a focus on anomalies
and events. Also, a configuration-free error detection system
has recently been proposed to use active learning to steer
an ensemble of error detection algorithms [28]. It would be
interesting to plug the time series specific algorithms in our
proposal in their ensemble framework.

VII. CONCLUSION

In this paper, we proposed a new unsupervised algorithm
for anomaly and change point detection. The proposed method
combines the novel concept of invert nearest neighbor and
active learning. Unlike most of previous outlier detection ap-
proaches, our algorithm not only effectively detects both single
and collective anomalies but also preserves and highlights
change points. Moreover, we solve the challenge regarding the
sensitiveness of parameters in existing methods by applying
active learning to discover their right values. Experimental
results clearly indicate that the effectiveness of the proposed
method for real IoT use-cases.

We plan to study how our techniques apply on multi-
dimensional times series. Also, to further prove the effective-
ness of invert nearest neighbor and active learning, we plan to
apply them not only for anomaly detection but also for data
repairing and clustering.

REFERENCES

[1] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active
learning. In SIGKDD, pages 504–509, 2006.

[2] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani,
P. Papotti, M. Stonebraker, and N. Tang. Detecting data errors: Where
are we and what needs to be done? PVLDB, 9(12):993–1004, 2016.

[3] R. P. Adams and D. J. MacKay. Bayesian online changepoint detection.
arXiv:0710.3742, 2007.

[4] S. Aminikhanghahi and D. Cook. A survey of methods for time series
change point detection. Knowledge and inf. sys., 51(2):339–367, 2017.

[5] B. Andrews. Classification of limiting shapes for isotropic curve flows.
Journal of the American mathematical society, 16(2):443–459, 2003.

[6] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying
density-based local outliers. SIGMOD Rec., 29(2):93–104, May 2000.

[7] E. Burnaev and V. Ishimtsev. Conformalized density-and distance-based
anomaly detection in time-series data. arXiv:1608.04585, 2016.

[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
CSUR, 41(3):15, 2009.

[9] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active
learning. Machine learning, 15(2):201–221, 1994.

[10] S. Das, W. Wong, T. Dietterich, A. Fern, and A. Emmott. Incorporating
expert feedback into active anomaly discovery. In ICDM, 2016.

[11] H. Fan, O. Zaı̈ane, A. Foss, and J. Wu. A nonparametric outlier
detection for effectively discovering top-n outliers from engineering
data. Advances in Knowledge Discovery and Data Mining, 2006.

[12] P. Fryzlewicz. Unbalanced haar technique for nonparametric func-
tion estimation. Journal of the American Statistical Association,
102(480):1318–1327, 2007.

[13] P. Fryzlewicz et al. Wild binary segmentation for multiple change-point
detection. The Annals of Statistics, 42(6):2243–2281, 2014.

[14] S. I. Goldberg, A. Niemierko, and A. Turchin. Analysis of data errors
in clinical research databases. In AMIA, volume 2008, page 242, 2008.

[15] M. Goldstein and A. Dengel. Histogram-based outlier score (hbos): A
fast unsupervised anomaly detection algorithm. KI, pages 59–63, 2012.

[16] J. Hardin and D. M. Rocke. Outlier detection in the multiple cluster
setting using the minimum covariance determinant estimator. Compu-
tational Statistics & Data Analysis, 44(4):625–638, 2004.

[17] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, and N. Tang.
Interactive and deterministic data cleaning. In SIGMOD, pages 893–
907, 2016.

[18] Z. He, S. Deng, and X. Xu. Outlier detection integrating semantic
knowledge. In WAIM, pages 126–131, 2002.

[19] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of
changepoints with a linear computational cost. Journal of the American
Statistical Association, 107(500):1590–1598, 2012.

[20] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Loop: local outlier
probabilities. In CIKM, pages 1649–1652, 2009.

[21] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg.
Activeclean: Interactive data cleaning for statistical modeling. PVLDB,
9(12):948–959, 2016.

[22] A. Lavin and S. Ahmad. Evaluating real-time anomaly detection
algorithms–the numenta anomaly benchmark. In ICMLA, 2015.

[23] A. Lazarevic and V. Kumar. Feature bagging for outlier detection. In
KDD, pages 157–166, 2005.

[24] K.-H. Le and P. Papotti. An active learning method for robust error
detection in time series. Technical report, EURECOM, Data Science
Department, 2019. http://www.eurecom.fr/∼papotti/iotDetectTr.pdf.

[25] A. Liaw, M. Wiener, et al. Classification and regression by randomfor-
est. R news, 2(3):18–22, 2002.

[26] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: A novel
symbolic representation of time series. Data Min. Knowl. Discov.,
15(2):107–144, 2007.

[27] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In ICDM,
pages 413–422. IEEE, 2008.

[28] M. Mahdavi, Z. Abedjan, R. C. Fernandez, et al. Raha: A configuration-
free error detection system. In SIGMOD, 2019.

[29] K. G. Mehrotra, C. K. Mohan, and H. Huang. Anomaly Detection
Principles and Algorithms. Springer, 2017.

[30] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

[31] T. Pevnỳ. Loda: Lightweight on-line detector of anomalies. Machine
Learning, 102(2):275–304, 2016.

[32] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang. Time-series anomaly detection service at
microsoft. In KDD, pages 3009–3017, 2019.

[33] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet. Anomaly detection
in streams with extreme value theory. In SIGKDD, pages 1067–1075,
2017.

[34] S. Song, A. Zhang, J. Wang, and P. S. Yu. Screen: Stream data cleaning
under speed constraints. In SIGMOD, pages 827–841, 2015.

[35] J. Tang, Z. Chen, A. W.-c. Fu, and D. Cheung. A robust outlier detection
scheme for large data sets. In PAKDD, 2001.

[36] C. Truong, L. Oudre, and N. Vayatis. ruptures: change point detection
in python. arXiv preprint arXiv:1801.00826, 2018.

[37] O. Vallis, J. Hochenbaum, and A. Kejariwal. A novel technique for
long-term anomaly detection in the cloud. In HotCloud, 2014.

[38] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li.
Ai2: training a big data machine to defend. In BigDataSecurity, 2016.

[39] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan. Statistical techniques for online anomaly detection in data
centers. In Integrated Network Management, pages 385–392, 2011.

[40] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng, et al. Unsupervised anomaly detection via variational auto-
encoder for seasonal KPIs in web applications. In TheWebConf, pages
187–196, 2018.

[41] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas.
Guided data repair. PVLDB, 4(5):279–289, 2011.

[42] A. Zhang, S. Song, J. Wang, and P. Yu. Time series data cleaning: from
anomaly detection to anomaly repairing. PVLDB, 10(10):1046–1057,
2017.

http://www.eurecom.fr/~papotti/iotDetectTr.pdf

	Introduction
	Preliminaries
	Inverse Nearest Neighbor
	Detection using INNs and Active Learning
	Evaluation
	Metric of measurement
	Datasets
	Results
	Comparison with baselines
	Effectiveness of Active learning
	Effectiveness of INN and associated scores
	Enhancing data repair

	Related Work
	Conclusion
	References

