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Abstract

The Fast Newton Transversal Filter (FNTF) algorithm starts from the Recursive Least-
Squares algorithm for adapting an FIR �lter of length N. The FNTF algorithm approximates
the Kalman gain by replacing the sample covariance matrix inverse by a banded matrix of
total bandwidth 2M+1 (AR(M) assumption for the input signal). In this algorithm, the
approximate Kalman gain can still be computed using an exact recursion that involves the
prediction parts of two Fast Transversal Filter (FTF) algorithms of order M. We introduce
the Subsampled Updating (SU) approach in which the FNTF �lter estimate and Kalman gain
are provided at a subsampled rate, say every L samples. Because of its low computational
complexity, the prediction part of the FNTF algorithm is kept. A Schur type algorithm is
used to compute various �lter outputs at the intermediate time instants, while some prod-
ucts of vectors with Toeplitz matrices are carried out with the FFT. This leads to the Fast
Subsampled-Updating FNTF (FSU FNTF) algorithm which has a relatively low computa-
tional complexity for large N while presenting good convergence and tracking performances.
This renders the FSU FNTF algorithm very interesting for applications such as acoustic echo
cancellation.
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1 Introduction

Hands-free communications have become popular these last years. In these new systems,
standard telephone is replaced by an audio system with microphone(s) and loudspeaker(s).
This allows hands-free operations that can be critical for safety reasons in applications such
as mobile telephone or leads to convenient and ergonomic communications in conferencing
applications such as audioconference and teleconference. Unfortunately, these new systems
su�er from a major drawback which is the acoustic echo phenomenon (see [4] for bibliography).
The acoustic echo is a disturbing signal which comes from the sound propagation between the
loudspeaker and the microphone of one audio terminal. In a communication situation as
shown in Fig.1, the speech signal which comes from the distant speaker is reinjected into
the microphone. This forms the acoustic echo which is fed back to the distant user. In the
case where the round trip delay is larger than 20-30 milliseconds, the acoustic echo becomes
perceivable for the distant speaker and hence disturbs the communication. Moreover, when
such an open acoustic system is installed on both ends of the telephone connection, then a
closed loop exists for the sounds which can lead to instability of the closed loop (Larsen e�ect).
A simple solution for acoustic echo control is the switching of gains or the insertion of losses
in the audio terminal but this kind of solutions does not yield to satisfactory performances.
Actual solutions are based on the real-time identi�cation of the acoustic impulse response.
Real-time processing is necessary since the acoustic channel is time-varying. The principle (see
Fig.2) is to synthetize an estimate byk of the real echo yk by using an adaptive �lterWk (which
modelize the acoustic path) whose input is the loudspeaker signal xk. The echo estimate is
substracted from the microphone signal which is the sum of the acoustic echo yk and the
output noise system nk. This substraction gives the �ltering error �k which is sent to the
far speaker and which controls the adaptation mechanism of Wk. In the situation of acoustic
echo cancellation, adaptive �ltering becomes a very di�cult task because of the hostility of
the acoustic environment. This is essentially due to three characteristics of the problem:

� The acoustic impulse response has a relatively long duration. This translates into thou-
sands of samples for sampling frequencies that lead to satisfactory quality audio. The
number of degrees of freedom is close to the number of samples of the acoustic impulse
response.

� The echo path can quickly varies in the case of movement of people or object in the
room. It varies also with ambient temperature, pressure and humidity.

� The input and disturbance signals in the system identi�cation are speech signals. They
are very correlated and nonstationary. Moreover, silent periods of the input signal
renders the problem ill-conditionned.

There are two major classes of adaptive algorithms. One is the Least-Mean-Square (LMS)
algorithm which is based on a stochastic-gradient method [14]. The LMS algorithm has a
computational complexity of 2N (N is the �lter order). This renders the LMS algorithm very
popular. Nevertheless, its performances becomes worst when the adaptive �lter is relatively
large or when the input signal is correlated as is the case in acoustic echo cancellation. The
other class of adaptive algorithm is the Recursive Least-Squares (RLS) algorithm which mini-
mizes a deterministic sum of squared errors [5]. RLS Algorithm shows a complexity of O(N2).
However, for Finite Impulse Response (FIR) �ltering, consecutive regression vectors are re-
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Figure 1: Acoustic echo phenomenon in hands-free communications.

lated through a shift operation. This allows for the derivation of fast RLS algorithms with a
complexity of O(N). The most popular between them is the Fast Transversal Filter (FTF)
algorithm because of its lowest computational complexity which is equal to 7N [1]. However,
these fast versions su�ers from round-o� error accumulation that leads to instability. Recently,
a stabilized version of the FTF algorithm was derived which shows a computational complex-
ity of 8N [10]. RLS algorithm is much more e�cient than LMS algorithm since its superiority
in convergence and tracking [3] but its complexity (even in the Fast versions) disqualify it
from being used in an acoustic echo cancellation system.
In this report, we present a new fast algorithm for RLS adaptive �ltering that constitutes a
good solution to the acoustic echo cancellation problem. The Fast Subsampled-Updating Fast
Newton Transversal Filter (FSU FNTF) algorithm is derived from the Fast Newton Transver-
sal Filter (FNTF) algorithm. The FNTF algorithm departs from the FTF algorithm and
uses the approximation that when dealing with Auto-Regressive (AR) signals, the prediction
part of the FTF algorithm can be limited to prediction �lters and Kalman gain of length M ,
the order of the AR model [8],[9]. In fact, in the FNTF algorithm the inverse of the sample
covariance matrix is approximated by a banded matrix of total bandwidth 2M + 1. This al-
lows the reduction of the complexity to O(2N). The FNTF algorithm has been implemented
successfully in a radio-mobile hands-free system [9]. It exhibited performances that are near
to those of the RLS algorithm. However, when one deals with longer �lters than those used
in the mobile-radio context (N > 256), the FNTF algorithm and even the LMS algorithm can
not be implemented because of todays technological limitations.
In [11],[12], we have pursued an alternative way to reduce the complexity of RLS adaptive �l-
tering algorithms. The approach consists of subsampling the �lter adaptation, i.e. the LS �lter
estimate is no longer provided every sample but every L � 1 samples (subsampling factor L).
This strategy has led us to derive new RLS algorithms that are the FSU RLS and FSU SFTF
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Figure 2: The identi�cation scheme of an unknown plant.

algorithms which present a reduced complexity when dealing with long FIR �lters. Here, we
apply the subsampled-updating strategy (SUS) to the FNTF algorithm. In this approach, we
keep the prediction part of the FNTF algorithm and compute the FNTF Kalman gain and
the �lter estimate from quantities that were available L instants before. It turns out that the
successive a priori �ltering errors can be computed e�ciently by using a Schur type algorithm
while some convolutions are done with the Fast Fourier Transform (FFT) technique. This
leads to a new algorithm with a reduced computational complexity, rendering it especially
suited for adapting very long �lters such as in the acoustic echo cancellation problem.
The rest of this report is organized as follows. In sections 2 and 3, we brie
y recall the RLS
and FNTF algorithms. In section 4, we introduce the Schur-FNTF algorithm that allows the
computation of the �ltering errors in a SUS. Section 5 deals with the fast computation of con-
volutions using the FFT in order to reduce the computational complexity of the Schur-FNTF
procedure and the update of the �lter estimate. This technique leads to the FSU FNTF
algorithm which is given in section 6. Finally, some conclusions are presented in section 7.
In order to formulate the problem and to �x notation, we shall �rst recall the RLS algorithm
and the FNTF algorithm. We shall mostly stick to the notation introduced in [1],[10],[2],
except that the ordering of the rows in data vectors will be reversed (to transform a Hankel
data matrix into a Toeplitz one) and some extra notation will be introduced.

2 The RLS Algorithm

An adaptive transversal �lterWN;k forms a linear combination of N consecutive input samples
fx(i�n); n = 0; : : : ; N�1g to approximate (the negative of) the desired-response signal d(i).
The resulting error signal is given by

�N (ijk) = d(i) +WN;kXN (i) = d(i) +
N�1X
n=0

W n+1
N;k x(i�n) ; (1)
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where XN (i) =
h
xH(i) xH(i�1) � � � xH(i�N+1)

iH
is the regression vector and superscript

H denotes Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N

transversal �lter coe�cientsWN;k =
h
W 1

N;k � � �W
N
N;k

i
are adapted so as to minimize recursively

the following LS criterion

�N (k) = min
WN

(
kX
i=1

�k�i kd(i) +WN XN (i)k
2

)
=

kX
i=1

�k�i k�N(ijk)k
2 ; (2)

where � 2 (0; 1] is the exponential forgetting factor and kvk2 = v vH.
Minimization of the LS criterion leads to the following minimizer

WN;k = �PH
N;kR

�1
N;k ; (3)

where

RN;k =
kX
i=1

�k�iXN (i)X
H
N (i) = �RN;k�1 +XN (k)XH

N (k)

PN;k =
kX
i=1

�k�iXN (i)d
H(i) = �PN;k�1 +XN (k)dH(k) ;

(4)

are the sample second order statistics. Substituting the time recursions for RN;k and PN;k
from (4) into (3) and using the matrix inversion lemma [6, page 656] for R�1N;k, we obtain the
RLS algorithm:

eCN;k = �XH
N (k)�

�1R�1N;k�1 (5)


�1N (k) = 1 � eCN;kXN (k) (6)

R�1N;k = ��1R�1N;k�1 � eCH
N;k
N (k)

eCN;k (7)

�pN(k) = �N(kjk�1) = d(k) +WN;k�1XN (k) (8)

�N(k) = �N(kjk) = �pN(k) 
N (k) (9)

WN;k = WN;k�1 + �N(k) eCN;k ; (10)

where �pN(k) and �N(k) are the a priori and a posteriori error signals. They are related by the
likelihood variable 
N (k) as in (9). The overnormalized Kalman gain eCN;k is related to the
unnormalized Kalman gain CN;k:

CN;k = �XH
N (k)R

�1
N;k = 
N (k) eCN;k (11)


N (k) = 1 + CN;kXN (k) ; (12)

and the term overnormalized stems from the relation eCN;k = 
�1N (k)CN;k. Equations (8)-
(10) constitute the joint-process or �ltering part of the RLS algorithm. Its computational
complexity is 2N+1. The role of the prediction part (5)-(7) is to produce the Kalman gaineCN;k and the likelihood variable 
N (k) for the joint-process part. In the conventional RLS
algorithm, this is done via the Riccati equation (7) which requires O(N2) computations. Fast
RLS algorithms exploit a certain shift invariance structure in XN (k) to avoid the Riccati
equation in the prediction part and reduce its computational complexity to O(N). Fast
versions of the RLS algorithm have been derived by using the displacement structure of the
covariance matrix and leads to algorithms such as the FTF which computational complexity
is 7N . We now recall the FNTF algorithm, from which our new algorithm will be derived.
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3 The FNTF Algorithm

In the FTF algorithm, the Kalman gain and the likelihood variable are computed in the
prediction part of the algorith. The update of the sample inverse covariance is replaced by the
update of its generators [7] which are the optimal forward and backward prediction �lters and
the Kalman gain of order N (plus the update of other scalar quantities). The FNTF algorithm
is an approximation to the FTF algorithm. It uses the fact that for Auto-Regressive signals of
orderM , the inverse covariance matrix is a banded matrix of bandwith 2M+1, This fact allows
to use prediction �lters of order M in the FTF scheme and Kalman gain and the likelihood
variable of order N are computed by using the property that for AR(M) processes, forward and
backward prediction �lters of order N are obtained from those of orderM by �lling with zeros.
This is interesting when the input signal is speech as is the case for acoustic echo cancellation
applications. The key ingredient of the FNTF algorithm is the extrapolatation of the Kalman
gain eCN;M;k and the likelihood variable 
N;M(k) of order N from quantities computed in the
prediction part of order M . The �rst version of the FNTF algorithm [8] su�ers from the need
for a signi�cant data storage. In [9], this problem was overcome by using two prediction part
FTF algorithms that run in parallel. The input signal of one prediction part being a delayed
version of the input signal of the other part with a delay of N�M samples.
In what follows, we will consider this last version which uses two FTF prediction parts of
order M running in parallel. The FNTF algorithm can be described in the following way
which emphasizes its rotational structure:

ePk = �p(k) Pk�1ePkd = �p(kd) Pkd�1 ; kd = k �N +M

2664
h eCN;M;k 0

i
[WN;k 0 ]

3775 = �(k)

2666666666664

[ Pk�1 0N�M ]

[ 0N�M Pkd�1 ]h
0 eCN;M;k�1

i
[WN;k�1 0 ]

3777777777775
n = k; kd :

epM(n) = AM;n�1XM+1(n)

eM(n) = epM(n)
M (n�1)


�sM+1(n) = 
�1M (n�1) � eC0
M+1;ne

p
M(n)


�sM (n) = 
�sM+1(n) +
eCM
M+1;nr

pf
M (n)

rpsM(n) = ���M (n�1) eCMH
M+1;n

rpfM (n) = BM;n�1XM+1(n)

��1M (n) = ��1��1M (n�1)� eC0H
M+1;n 


s
M+1(n)

eC0
M+1;n (13)

j = 1; 2 : r
p(j)
M (n) = Kjr

pf
M (n) + (1 �Kj)r

ps
M (n)

r
(j)
M (n) = r

p(j)
M (n)
sM (n)

�M (n) = ��M (n�1) + r
(2)
M (n) r

p(2)H

M (n)


M (n) = �M�M (n)��1M (n)
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eSM+1;n = epM(n)�
�1��1M (n�1)AM;n�1eUM+1;n = rpfM (n)��1��1M (n�1)BM;n�1


N;M(k) = 
N;M(k�1) + eS0
M+1;ke

p
M(k)�

eUM
M+1;kd

rpfM (kd)

�N(k) = 
N;M(k)�
p
N (k) ;

where

ePk =
26666664

h eCM;k 0
i

AM;k

BM;k

37777775 ; Pk =

26666664

h
0 eCM;k

i
AM;k

BM;k

37777775 ; (14)

�p(k) = �p
2(k) �

p
1(k) =

26666664
1 0 0

0 1 0

r1M (k) 0 1

37777775

26666664
1 a � eCM

M+1;k

eM(k) 1 0

0 0 1

37777775
a = �epM(k)�

�1��1M (k) ; (15)

�(k) = �2(k)�1(k) =

264 1 0

�N (k) 1

375
264 0 � eC0

M+1;k 0 0 0 b 1 0

0 0 0 0 0 0 0 1

375
b = rpfM (kd)�

�1��1M (kd�1) : (16)

AM;k and BM;k are the forward and backward prediction �lters, epM (k) and eM(k) are the
a priori and a posteriori forward prediction errors, rpM(k) and rM(k) are the a priori and a

posteriori backward predition errors, eCM+1;k =
h eC0

M+1;k � � �
eCM
M+1;k

i
and �M(k) and �M(k)

are the forward and backward prediction error variances. K1 = 1:5 and K2 = 2:5 are the
optimal feedback gains that ensure the stability of the dynamics of the accumulated round-o�
errors in the prediction part [10].
The prediction part of the FNTF has a computational complexity of 12M and the joint-
process takes 2N operations. In order to reduce the amount of computations, we use the
SUS. This idea comes from the fact that when one deals with relatively long adaptive �lters,
it is not necessary to update the �lter at each new input sample because there is not a
signi�cant change in the �lter coe�cients after one update. The SUS does not necessarily
involve approximations and the key ingredient is that even the adaptive �lter is not updated
all the time, it can be possible to compute e�ciently the �ltering errors that should be given if
the �lter estimate was updated at the sampling signal rate. The SUS leads to SU algorithms
that are equivalent to the original algorithms, except for the fact that some quantities like the
�lter estimate are not provided at all the time instants. Moreover, fast convolution techniques
can help to reduce the complexity of the SU algorithms and will give FSU algorithms. In the
FNTF algorithm, the prediction part is not computationally demanding. Hence, the SUS is
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applied to the �ltering part of the FNTF. The prediction part remains unchanged. Henceforth,
the objective is to compute at time k the extrapolated Kalman gain eCN;M;k of order N and
the �lter WN;k from their values at time k � L. First, a Schur procedure can be used to
compute the di�erent �lter outputs appearing in the FNTF algorithm, and in particular, the
L successive a priori �ltering errors without updating the �lter estimate at these instants.

4 The Schur-FNTF algorithm

Let us introduce the negative of the �lter output

bd p
N (k) = d (k)� �pN (k) ; bdN (k) = d (k)� �N (k) ; (17)

the reversed complex-conjugate regressor vector

xN;k = [ xk�N+1 xk�N+2 � � � xk ]
H

; (18)

and the L� (N+1) Toeplitz input data matrix

XN+1;L;k =

2664
XH
N+1(k�L+1)

...
XH
N+1(k)

3775 = [ xL;k xL;k�1 � � �xL;k�N ] : (19)

Now, consider the following set of �ltering operations

FL (k)
4
=

2666666666664

gHL (k)

gHL (kd)

�HN;L;k

� bd p H
N;L;k

3777777777775
4
=

2666666666664

[ Pk�L 0N�M ]

[ 0N�M Pkd�L ]

h
0 eCN;M;k�L

i
[ WN;k�L 0 ]

3777777777775
XH
N+1;L;k ; gHL (k)

4
=

26666666664

�HM;L;k

ep HM;L;k

rpf H
M;L;k

37777777775
: (20)

FL(k) is a 8 � L matrix whose rows are the output of the di�erent �lters appearing in the
FNTF algorithm. In particular the last row of FL(k) corresponds to the (multi-step ahead
predicted) adaptive �lter outputs

bd p
N;L;k = dL;k��

p
N;L;k =

2664
dH(k�L+1)

...
dH(k)

3775�
2664
�HN (k�L+1jk�L)

...
�HN(kjk�L)

3775 =
2664
bd H
N (k�L+1jk�L)

...bd H
N (kjk�L)

3775 : (21)

The �rst column of FL (k) is

FL(k) uL;1 =
h
pT (k) pT (kd) 1�
�1N (k�L) � bd p

N (k�L+1)
iT

pT (k) =
h
1�
�1M (k�L) epM (k�L+1) rpfM (k�L+1)

i
: (22)
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where uL;n is the L � 1 vector with 1 in the nth position and 0 elsewhere.
The updating scheme of the FNTF algorithm can be written as

26666666666664

h ePk 0N�M i
h
0N�M ePkd ih eCN;M;k 0

i
[WN;k 0 ]

37777777777775
= �k

2666666666664

[ Pk�1 0N�M ]

[ 0N�M Pkd�1 ]h
0 eCN;M;k�1

i
[WN;k�1 0 ]

3777777777775
; (23)

where �k is a 8 � 8 matrix given by

�k =

26666664
I3 0 0

0 I3 0

0 0 �2(k)

37777775

26666664
�p
2(k) 0 0

0 �p
2(kd) 0

0 0 I2

37777775

26666664
�p
1(k) 0 0

0 �p
1(kd) 0

�1(k) I2

37777775 : (24)

Hence, if we rotate both expressions for FL(k) in (20) with �k�L+1, we obtain �k�L+1FL(k)
which equals

26666666666664

h ePk�L+1 0N�M
i

h
0N�M ePkd�L+1

i
h eCN;M;k�L+1 0

i
[ WN;k�L+1 0 ]

37777777777775
XH
N+1;L;k =

2666666666666664

qL(k)

qL(kd)

�HN;L�1;k �

� bdN (k�L+1) � bd p H
N;L�1;k

3777777777777775
(25)

qL(k) =

2666666666666664

�HM;L�1;k �

eM(k�L+1) ep HM;L�1;k

rfM (k�L+1) rpf H
M;L�1;k

3777777777777775
: (26)

We can see from the above that the transformation of FL(k) by the application of the matrix
�k�L+1 provides quantities (in boxes) that are the di�erent rows of FL�1(k). This can be
written more compactly as

S (�k�L+1 FL(k)) = FL�1(k) ; (27)
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where the operator S(M) stands for: shift the �rst, the fourth and the seventh rows of the
matrix M one position to the right and drop the �rst column of the matrix thus obtained.
Now this process can be repeated until we get F0(k) which is a matrix with no dimensions.
So the same rotations that apply to the �lters at times k�l; l = L�1; : : : ; 0, also apply to the
set of �ltering error vectors Fl(k) over the same time span. Furthermore, at each application
instance, the di�erent parameters of the next transformation matrix can be calculated from
the �rst column of Fl(k). In particular, the successive a priori error �ltering can be computed
over the block data without updating the �lter estimate. Now, since it is possible to compute
the parameters of the successive matrices �k, it su�ces to accumulate the successive �k and
apply the resulting matrix to the �lters in order to update them. In fact, it turns out that the
accumulated matrix is a polynomial matrix. This is due to the shift operation in the update
of the Kalman gain. Hence, the updating of the �lters are done via convolutions. This is
the Schur-FNTF algorithm, which contrasts with the Levinson-style FNTF algorithm in (13).
This technique has already been applied to the FTF algorithm leading to what we have called
the Schur-FTF algorithm [12]. This procedure was the key ingredient for the derivation of the
FSU SFTF algorithm that presents a reduced computational complexity when adapting long
FIR �lters. In the present case where the complexity of the prediction part is small (12 M),
the Schur-FNTF procedure will only be used for the computation of the successive a priori
error �ltering. Thus, the two prediction part FTF algorithms of order M are kept in order to
compute the parameters of the successive matrices �k. This avoids the accumulation of the
successive rotation matrices and the update of the FNTF �lters by mean of convolutions. A
remarkable property of the Schur-FNTF procedure is the removal of the long-term round-o�
error instability due to the recursive computation of the likelihood variable 
N;M(k). The
recursions are interrupted since the likelihood variable is computed at each new block of data
via an inner product (22). This fact has a big importance for the real time implementation
of the algorithm.
Taking into account that �k in its factorized form (24) has 11 non-trivial elements, the Schur-
FNTF procedure as given by (27) takes only 5:5L multiplications per sample. Inner products
that represent �ltering operations are needed for the initialization (computation of FL(k) in
(20)). At this point, the Schur-FNTF procedure is computational demanding because the
products in (20) requires O(N2) multiplications per L incoming samples. We now consider
the FFT technique to reduce the amount of operations.

5 Fast computation using the FFT

It is possible to reduce the computational complexity of the Schur-FNTF procedure by in-
troducing FFT techniques as explained in [13]. In what follows, we shall often assume for
simplicity that L is a power of two and that NL = (N+1)=L is an integer. To get FL(k) in
(20), we need to compute products of the form �N+1;k X

H
N+1;L;k where �N+1;k is a row vector

of N+1 elements.
Consider a partitioning of �N+1;k in NL subvectors of length L:

�N+1;k =
h
�1N+1;k � � � �NL

N+1;k

i
; (28)

and a partitioning of XN+1;L;k in NL submatrices of order L� L:

XN+1;L;k = [ XL;L;k XL;L;k�L � � �XL;L;k�N+L�1 ] ; (29)
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then

�N+1;k X
H
N+1;L;k =

NLX
j=1

�jN+1;kX
H
L;L;k�(j�1)L : (30)

In other words, we have essentially NL times the product of a a vector of length L with a
L� L Toeplitz matrix. Such a product can be e�ciently computed in basically two di�erent
ways [13]. One way is to use fast convolution algorithms , which are interesting for moderate
values of L. Another way is to use the overlap-save method. We can embed the L�L Toeplitz
matrix XL;L;k into a 2L� 2L circulant matrix, viz.

X
H

L;L;k =

264 � XH
L;L;k

XH
L;L;k �

375 = C
�
xH2L;k

�
(31)

where C(cH) is a right shift circulant matrix with cH as �rst row. Then we get for the vector-
matrix product

�jN+1;kX
H
L;L;k�(j�1)L =

h
01�L �

j
N+1;k

i
C
�
xH2L;k�(j�1)L

� " IL
0L�L

#
: (32)

Now consider the Discrete Fourier Transform (DFT) Vj
N+1;k of �

j
N+1;k

Vj
N+1;k = �jN+1;k FL ; (33)

FL is the L� L DFT matrix whose generic element is (FL)p;q = e�i2�
(p�1)(q�1)

L , i2 = �1.

The inverse of FL is 1
L
FH
L . It de�nes the inverse DFT transformation (IDFT)

�jN+1;k = Vj
N+1;k

1

L
FH
L : (34)

The product of a row vector v with a circulant matrix C(cH) where v and c are of length m
can be computed e�ciently as follows. Using the property that a circulant matrix can be
diagonalized via a similarity transformation with a DFT matrix, we get

v C(cH) = v Fm diag
�
cHFm

� 1
m
FH
m =

h
(vFm) diag

�
cHFm

� i 1

m
FH
m ; (35)

where diag(w) is a diagonal matrix with the elements of the vector w as diagonal elements. So
the computation of the vector in (32) requires the padding of v with L zeros, the DFT of the
resulting vector, the DFT of x2L;k�(j�1)L, the product of the two DFTs, and the (scaled) IDFT
of this product. When the FFT is used to perform the DFTs, this leads to a computationally
more e�cient procedure than the straightforward matrix-vector product which would require
L2 multiplications. Note that at time k, only the FFT of x2L;k needs to be computed; the
FFTs of x2L;k�jL; j = 1; : : : ;M�1 have been computed at previous time instants. The above

procedure will only be used for the product of
h
0 eCN;M;k�L

i
andWN;k�L with the data matrix.

since the other vectors are of length M which is relatively small. This reduces the (2N +6M)
computations per sample that are needed for the initialization of the schur-FNTF procedure
to

2N

"
FFT(2L)

L2
+

2

L

#
+
3FFT(2L)

L
+ 6M (36)

computations per sample (FFT(L) signi�es the computational complexity associated with a

FFT of length L) or basically O
�
N log2(L)

L

�
operations.
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6 The FSU FNTF algorithm

The issue now is the computation of the �lter estimate and the Kalman gain at time k from
their value L instants before. One �nds straightforwardly for the estimate �lter

[WN;k 0 ] = [ WN;k�L 0 ] + �HN;L;k
h eCN;M;k 0

i
; (37)

where

�HN;L;k = [ �N(k�L+1) � � � �N(k) ] (38)

eCN;M;k =

2664
eCN;M;k�L+1

...eCN;M;k

3775 : (39)

�HN;L;k is the vector of L successive a posteriori (one step ahead) output errors. It is obtained

from �p HN;L;k which is computed e�ciently with the Schur-FNTF algorithm and the FFT as

shown in previous sections. eCN;M;k is the L�N Kalman gain matrix where the rows are the
L successive FNTF Kalman gains. In order to compute this matrix, we come back to the
FNTF Kalman gain updateh eCN;M;k 0

i
=

h
0 eCN;M;k�1

i
�
h eSM+1;k 0N�M

i
+
h
0N�M eUM+1;kd

i
; (40)

de�nitions of eSM+1;k and eUM+1;kd are given in (13). From the above equation, it is easy to see
that each row of the Kalman gain matrix can be expressed as follows

for i = 1; : : : ; Lh eCN;M;k�L+i 0
i

=
h
0i eC0:N�i

N;M;k�L

i
�

i�1X
l=0

h eSM+1;kl 0N�M
i
Z l +

i�1X
l=0

h
0N�M eUM+1;kl

i
Z l

kl = k�L+i�l ; (41)

where

Z =

266666664

0 1 0 � � � 0
0 0 1 � � � 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 � � � 0

377777775
(42)

is the (N+1) � (N+1) right shift matrix.
By replacing (41) into (39) for every row, we obtain the expression of the Kalman gain matrixeCN;M;k in term of the Kalman gain vector eCN;M;k�L

h eCN;M;k 0
i

=
hh
0 eCN;M;k�L

i
Z i
i
i=1:L

�

"
i�1X
l=0

h eSM+1;kl 0N�M
i
Z l

#
i=1:L

+

"
i�1X
l=0

h
0N�M eUM+1;kl

i
Z l

#
i=1:L

= T
�h

0 eCN;M;k�L

i�
� eSN+1;L;k + eUN+1;L;k ; (43)
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the notation [ai]i=1:L stands for the matrix in which the ith row is ai. The �rst term of the

right hand side of (43) is a L� (N + 1) Toeplitz matrix whose �rst row is
h
0 eCN;M;k�L

i
and

the two others are L� (N + 1) sparse matrices and have the following structures

eSN+1;L;k =

2664
� � � � � 0 � � � � � � 0
...

...
. . . . . .

...
� � � � � � � � � 0 � � � 0

3775

eUN+1;L;k =

2664
0 � � � � � � � � � 0 � � � � �
...

...
...

...
0 � � � � � � � � � 0 � � � � �

3775 ; (44)

the � standing for nonzero elements. First rows of eSN+1;L;k and eUN+1;L;k have M+1 nonzero
elements. The matrices in (44) are e�ciently computed by applying the following recursions
to their rows� eSN+1;L;k

�
1

=
h eSM+1;k�L+1 0N�M

i
;
� eUN+1;L;k

�
1
=
h
0N�M eUM+1;k�L+1

i
;

for i = 2; : : : ; L

� eSN+1;L;k

�
i

= Z
� eSN+1;L;k

�
i�1

+
h eSM+1;k�L+i 0N�M

i
� eUN+1;L;k

�
i

= Z
� eUN+1;L;k

�
i�1

+
h
0N�M eUM+1;k�L+i

i
: (45)

The recursions in (45) need 2(L�1)M additions per L samples. On the other hand, eCN;M;k is
updated by using the last row of (43)h eCN;M;k 0

i
=
h
0L eC0:N�L

N;M;k�L

i
�
� eSN+1;L;k

�
L
+
� eUN+1;L;k

�
L

; (46)� eSN+1;L;k

�
L
has its �rst M+L elements that are nonzero while the nonzero elements of� eUN+1;L;k

�
L
are in the last M positions. Henceforth, the update of the Kalman gain vec-

tor (46) needs 2M additions per L samples (we consider the case where nonzero elements of� eSN+1;L;k

�
L
and

� eUN+1;L;k

�
L
are in disjoint portions. This happens when L+2M < N+1).

By using the decompositon of the Kalman gain matrix in (43), we split the product in (37)
as follows

�HN;L;k
h eCN;M;k 0

i
= �HN;L;k T

�h
0 eCN;M;k�L

i�
� �HN;L;k

eSN+1;L;k + �HN;L;k
eUN+1;L;k : (47)

Since
� eSN+1;L;k

�
L
and

� eUN+1;L;k

�
L
are sparce matrices, second and third products in (47)

are straightforwardly done. These products take respectivelyML+0:5L(L�1) and ML mul-
tiplications per L samples. First matrix being Toeplitz, we can further reduce the NL2 mul-
tiplications per L samples which are needed for the computation of �HN;L;k T

�h
0 eCN;M;k�L

i�
by using the FFT technique.
Consider the following decomposition of T

�h
0 eCN;M;k�L

i�
in NL submatrices of orde L� L

T
�h

0 eCN;M;k�L

i�
=
h
T 1
L;L � � � T NL

L;L

i
; (48)
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and hence, the product becomes

�HN;L;k T
�h

0 eCN;M;k�L

i�
=
h
�HN;L;k T

1
L;L � � � �HN;L;k T

NL

L;L

i
; (49)

every subproduct in (49) is computed as follows:

�HN;L;k T
j
L;L =

h
0L �

H
N;L;k

i
T
j

L;L

"
IL
0L�L

#

=
h�h

0L �HN;L;k
i
F2L

�
diag(� j

H

F2L)
i 1

2L
FH
2L

"
IL
0L�L

#
; (50)

where � j
H

is the �rst row of the 2L�2L shift right matrix obtained by embedding T j
L;L in the

same manner as was done for the data Toeplitz matrix Xj
L;L;k in section 5. As it is shown in

(50), the product �HN;L;k T
�h

0 eCN;M;k�L

i�
is done by adding L zeros to �HN;L;k, computing the

corresponding DFT, computing the DFT of � j
H

(there is NL vectors like this), computing the
product of the two DFTs , applying the IDFT to the product and �nally taking the �rst L
elements of the result. This is done in

�
2N+1

L
+ 1

�
FFT (2L)

L
+2N+1

L
multiplications per sample.

The resulting FSU FNTF algorithm is summarized in Table I.

7 Conclusions

We have derived a new algorithm that is equivalent to the FNTF algorithm. The FSU FNTF
(and the FNTF) algorithm exhibit the same performances that are almost those of the RLS
algorithm, especially when the input signal is an AR process. The computational complexity of
the FSU FNTF algorithm isO(4N

L

FFT (2L)
L

+6N
L
+6L+16M) operations per sample. This can be

very interesting for long �lters. For example, when (N;L;M) = (4095; 256; 16); (8191; 256; 16)
and the FFT is done via the split radix (FFT (2m) = mlog2(2m) real multiplications for real
signals) the multiplicative complexity is respectively 0:63N and 0:40N , compared to 7N for
the FTF algorithm, the currently fastest RLS algorithm, and 2N for the FNTF algorithm.
The cost we pay is a processing delay which is of the order of L samples. Moreover, the FSU
FNTF algorithm removes the long-term round-o� error instability of the likelihood variable
that appears in the FNTF algorithm. The low computational complexity of the FSU FNTF
when dealing with long �lters and its performance capabilities render it very interesting for
applications such as acoustic echo cancellation.
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Table I : FSU FNTF Algorithm

# Computations Cost per L samples

1 Two Stabilized FTF prediction parts 12ML

2

266666666666664

gHL (k)

gHL (kd)

�
p H

N;L;k

� bd p H
N;L;k

377777777777775
=

266666666666664

[ Pk�L 0N�M ]

[ 0N�M Pkd�L ]h
0 eCN;M;k�L

i
[ WN;k�L 0 ]

377777777777775
XH
N+1;L;k (3 + 2N+1

L
)FFT (2L) + 4(N+1) + 6M

3 Schur-FNTF Algorithm :

Input: gL(k); gL(kd); �
p
N;L;k; �

bd p
N;L;k

Output: �k�L+i i = 1; � � � ; L ; �N;L;k 5:5L2

4
h eCN;M;k 0

i
= T

�h
0 eCN;M;k�L

i�
� eSN+1;L;k + eUN+1;L;k 2M(L�1)

5
h eCN;M;k 0

i
=

h
0L eC0:N�L

N;M;k�L

i
�

�eSN+1;L;k

�
L
+
�eUN+1;L;k

�
L

2M

6 [ WN;k 0 ] = [WN;k�L 0 ] + �HN;L;k

h eCN;M;k 0
i

(1 + 2N+1
L

)FFT (2L) + 2(N+1) + :5L2 + 2ML

Total cost per sample 4(1 + N+1
L

)FFT (2L)
L

+ 6N+1
L

+ 6L+ 16M
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