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ABSTRACT
In network traffic monitoring, and more particularly in the
realm of threat intelligence, the problem of “attack attri-
bution” refers to the process of effectively attributing new
attack events to (un)-known phenomena, based on some ev-
idence or traces left on one or several monitoring platforms.
Real-world attack phenomena are often largely distributed
on the Internet, or can sometimes evolve quite rapidly. This
makes them inherently complex and thus difficult to analyze.
In general, an analyst must consider many different attack
features (or criteria) in order to decide about the plausi-
ble root cause of a given attack, or to attribute it to some
given phenomenon. In this paper, we introduce a global
analysis method to address this problem in a systematic
way. Our approach is based on a novel combination of a
knowledge discovery technique with a fuzzy inference sys-
tem, which somehow mimics the reasoning of an expert by
implementing a multi-criteria decision-making process built
on top of the previously extracted knowledge. By applying
this method on attack traces, we are able to identify large-
scale attack phenomena with a high degree of confidence.
In most cases, the observed phenomena can be attributed
to so-called zombie armies - or botnets, i.e. groups of com-
promised machines controlled remotely by a same entity.
By means of experiments with real-world attack traces, we
show how this method can effectively help us to perform a
behavioral analysis of those zombie armies from a long-term,
strategic viewpoint.

Keywords
Intelligence monitoring and analysis, attack attribution.

1. INTRODUCTION
In the field of threat intelligence,“attack attribution”refers

to the process of effectively attributing new attack events to
known or unknown phenomena by analyzing the traces they
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have left on sensors or monitoring platforms deployed on
the Internet. The objectives of such a process are twofold:
i) to get a better understanding of the root causes of the
observed attacks; and ii) to characterize emerging threats
from a global viewpoint by producing a precise analysis of
the modus operandi of the attackers on a longer time scale.

In this paper, we introduce a global threat analysis method
to address this problem in a systematic way. We present a
knowledge mining framework that enables us to identify and
characterize large-scale attack phenomena on the Internet,
based on network traces collected with very simple and easily
deployable sensors. Our approach relies on a novel combina-
tion of knowledge discovery (by means of maximum cliques)
and a multi-criteria decision-making algorithm that is based
on a fuzzy inference system (FIS). Interestingly, a FIS does
not need any training prior making inferences. Instead, it
takes advantage of the previously extracted knowledge to
make sound inferences, so as to attribute incoming attack
events to a given phenomenon.

A key aspect of the proposed method is the exploitation
of external characteristics of malicious sources, such as their
spatial distributions in terms of countries and IP subnets,
or the distribution of targeted sensors. We take advantage
of these statistical characteristics to group events that seem
a priori unrelated, whereas most current techniques used
for anomalous traffic correlation rely only on the intrinsic
properties of network flows (e.g., protocol characteristics,
IDS alerts or signatures, firewall logs, etc) [1, 31].

Our research builds also on prior work in malicious traf-
fic analysis, also referred to as Internet background radia-
tion [17, 4]. We acknowledge also the seminal work of Yeg-
neswaran et al. on “Internet situational awareness” [30], in
which they explore ways to integrate honeypot data into
daily network security monitoring. Their approach aims at
providing tactical information, for daily operations, whereas
our approach is more focused on strategic information re-
vealing the long-term behaviors of large-scale phenomena.
Furthermore, many of these large-scale phenomena are ap-
parently related to the ubiquitous problem of zombie armies
- or botnets, i.e. groups of compromised machines that are
remotely controlled and coordinated by a same entity. Still
today, zombie armies and botnets constitute, admittedly,
one of the main threats on the Internet, and they are used
for different kinds of illegal activities (e.g., bulk spam send-
ing, online fraud, denial of service attack, etc) [3, 18]. While
most previous studies related to botnets have focused on un-



derstanding their inner working [23, 6, 2], or on techniques
for detecting bots at the network-level [8, 9], we are instead
more interested in studying the global behaviors of those
armies from a strategic viewpoint, i.e.: how long do they
stay alive on the Internet, what is their average size, and
more importantly, how do they evolve over time with re-
spect to different criteria such as their origins, or the type
of activities (or scanning) they perform.

In Section 2, we present the first component of our method,
namely the extraction of cliques of attackers. This step aims
at discovering knowledge by identifying meaningful correla-
tions in a set of attack events. In Section 3, we present a
multi-criteria decision-making algorithm that is based on a
fuzzy inference system. The purpose of this second compo-
nent consists in combining intelligently the previously ex-
tracted knowledge, so as to build sequences of attack events
that can be very likely attributed to the same global phe-
nomena. Then, in Section 4, we present our experimental
results and the kind of findings we can obtain by applying
this analysis method to a set of attack events. Finally, we
conclude in Section 5 and we suggest some future directions.

2. KNOWLEDGE DISCOVERY IN ATTACK
TRACES

2.1 Introduction
We need first to introduce the notion of “attack event”.

Our dataset is made of network attack traces collected from
a distributed set of sensors (e.g., server honeypots), which
are deployed in the context of the Leurre.com Project [14,
22]. Since honeypots are systems deployed for the sole pur-
pose of being probed or compromised, any network connec-
tion that they establish with a remote IP can be considered
as malicious, or at least suspicious. We use a classical clus-
tering algorithm to perform a first low-level classification of
the traffic. Hence, each IP source observed on a sensor is
attributed to a so-called attack cluster [21] according to its
network characteristics, such as the number of IP addresses
targeted on the sensor, the number of packets and bytes sent
to each IP, the attack duration, the average inter-arrival time
between packets, the associated port sequence being probed,
and the packet payload (when available). Therefore, all IP
sources belonging to a given attack cluster have left very
similar network traces on a given sensor and consequently,
they can be considered as having the same attack profile.
This leads us then to the concept of attack event, which is
defined as follows:

An attack event refers to a subset of IP sources
having the same attack profile on a given sen-
sor, and whose coordinated activity has been ob-
served within a specific time window.

Fig. 1 illustrates this notion by representing the time se-
ries (i.e., the number of sources per day) of three coordinated
attack events observed on two different sensors in the same
time interval, and targeting three different ports. The iden-
tification of those events can be easily automated by using
the method presented in [20]. By doing so, we are able to
extract interesting events from this spurious, nonproductive
traffic collected by our sensors (previously termed “Internet
background radiation” in [17]), and we can focus on the most
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Figure 1: Illustration of 3 attack events observed on 2

different sensors, and targeting 3 different ports.

important events that might originate from coordinated phe-
nomena. In the rest of this Section, we show how to take
advantage of different characteristics of such attack events
to discover knowledge by means of an unsupervised clique-
based clustering technique.

2.2 Defining Attack Characteristics
In most knowledge discovery applications, the first step

consists in selecting certain key characteristics from the dataset,
i.e., salient features that may (hopefully) provide meaningful
patterns [11]. We give here an overview of different attack
characteristics we have selected to perform the extraction
of knowledge from our set of attack events. In this specific
case, we consider these characteristics as useful to analyze
the root causes of global phenomena observed on our sensors.
However, we do not pretend that they are the only ones that
could be used in threat monitoring, and other characteristics
might certainly prove even more relevant in the future. For
this reason, the framework is built such that other attack
features could be easily included when necessary.

So, the two first characteristics retained are related to
the origins of the attackers, i.e. their spatial distributions.
First, the geographical location can be used to identify at-
tack activities having a specific distribution of originating
countries. Such information can be important to identify,
for instance, botnets that are located in a limited number of
countries. It is also a way to confirm the existence, or not, of
so-called safe harbors for cybercriminals or hackers. Some-
how related to the geographical location, the IP network
blocks provide also an interesting viewpoint on the attack
phenomena. Indeed, IP subnets can give a good indication
of the spatial “uncleanliness” of certain networks, i.e., the
tendency for compromised hosts (e.g., zombie machines) to
stay clustered within unclean networks [5]. So, for each at-
tack event, we can create a feature vector representing either
the distribution of originating countries, or of IP addresses
grouped by Class A-subnet (i.e., by /8 prefix).

The next attack characteristic deals with the targets of the
attackers, namely the distribution of sensors that have been
targeted by the sources. Botmasters may indeed send com-
mands at a given time to all zombies to instruct them to start



scanning (or attacking) one or several IP subnets, which of
course will create coordinated attack events on specific sen-
sors. Therefore, it seems important to look at relationships
that may exist between attack events and the sensors they
have been observed on. Since attack events are defined per
sensor, we decided to group all strongly correlated attack
events that occurred within the same time window of exis-
tence (as explained in [20]), and we then use each group of
attack events to create the feature vector representing the
proportion of sensors that have been targeted.

Besides the origins and the targets, the type of activity
performed by the attackers seems also relevant to us. In
fact, bot software is often crafted with a certain number of
available exploits targeting a reduced set of TCP or UDP
ports. In other words, we might think of each botnet having
its own attack capability, which means that a botmaster will
normally issue scan or attack commands only for vulnerabil-
ities that he might exploit to expand his botnet. So, it seems
to make sense to take advantage of this feature to look for
similarities between the sequences of ports that have been
targeted by the sources of the attack events. Let us remind
that, in our low-level classification of the network traffic [21],
each source is associated to the complete sequence of ports
that it has targeted on a given sensor for the whole dura-
tion of the attack session (e.g., less than 24 hours), which
allows us to compute and compare the distributions of port
sequences for the observed attack events.

Finally, we have also decided to compute, for each pair
of events, the ratio of common IP addresses. We are aware
of the fact that, as time passes, some zombie machines of a
given botnet might be cured while others may get infected
and join the botnet. Additionally, certain ISPs apply a quite
dynamic policy of IP address allocation to residential users,
which means that bot-infected machines can have different
IP addresses when we observe them at different moments.
Nevertheless, and according to our domain experience, it
is reasonable to expect that if two distinct attack events
have a high percentage of IP addresses in common, then
the probability that those two events are somehow related
to the same global phenomenon is increased (assuming that
the time difference between the two events is not too large).

2.3 Extracting Cliques of Attackers

2.3.1 Principles
In our global threat analysis method, we have developed

a knowledge discovery component that involves an unsu-
pervised graph-theoretic correlation process. The idea con-
sists in discovering all groups of highly similar attack events
(through their corresponding feature vectors) in a reliable
and consistent manner, and for each attack characteristic
that can bring an interesting viewpoint on the root causes.

In a clustering task, we typically consider the following
steps [11]: i) feature selection and/or extraction; ii) defini-
tion of a similarity measure between pairs of patterns; iii)
grouping similar patterns; iv) data abstraction (if needed),
to provide a compact representation of each cluster; and v)
the assessment of the clusters quality and coherence.

In the previous Section, we have already described the at-
tack features that are of interest in this paper; so now we
need to measure the similarity between two such input vec-
tors (or distributions, in our case). Clearly, the choice of
a similarity metric is very important, as it has an impact

on the properties of the final clusters, such as their size,
quality, and consistency. To reliably compare the kind of
empirical distributions mentioned here above, we have cho-
sen to rely on strong statistical distances. As we do not
know the real underlying distribution from which the ob-
served samples were drawn, we use non-parametric statis-
tical tests, such as Pearson’s χ2, to determine whether two
one-dimensional probability distributions differ in a signifi-
cant way (with a significance level of 0.05). The resulting
p-value is then validated against the Jensen-Shannon diver-
gence (JSD) [15], which derives itself from the Kullback-
Leibler divergence [12]. Let p1 and p2 be for instance two
probability distributions over a discrete space X, then the
K-L divergence of p2 from p1 is defined as:

DKL(p1||p2) =
X

x

p1(x) log
p1(x)

p2(x)

which is also called the information divergence (or relative
entropy). DKL is commonly used in information theory to
measure the difference between two probability distributions
p1 and p2, but it is not considered as a true metric since it
is not symmetric, and does not satisfy the triangle inequal-
ity. For this reason, we can also define the Jensen-Shannon
divergence as:

JS(p1, p2) =
DKL(p1||p̄) +DKL(p2||p̄)

2

where p̄ = (p1 + p2)/2. In other words, the Jensen-Shannon
divergence is the average of the KL-divergences to the av-
erage distribution. The JSD has the following notable prop-
erties: it is always bounded and non-negative; JS(p1, p2) =
JS(p2, p1) (symmetric), and JS(p1, p2) = 0 when p1 = p2

(idempotent). To be a true metric, the JSD must also sat-
isfy the triangular inequality, which is not true for all cases
of (p1, p2). Nevertheless, it can be demonstrated that the
square root of the Jensen-Shannon divergence is a true met-
ric [7], which is what we need for our application.

Finally, we take advantage of those similarity measures to
group all attack events whose distributions look very simi-
lar. We simply use an unsupervised graph-based approach to
formulate the problem: the vertices of the graph represent
the patterns (or feature vectors) of all attack events, and
the edges express the similarity relationships between those
vertices, as calculated with the distance metrics described
here above. Then, the clustering is performed by extracting
so-called maximal cliques from the graph, where a maxi-
mal clique is defined as an induced sub-graph in which the
vertices are fully connected and it is not contained within
any other clique. To perform this unsupervised clustering,
we use the dominant sets approach of Pavan et al. [19],
which proved to be an effective method for finding maximal
weighted cliques. This means that the weight of every edge
(i.e., the relative similarity) is also taken into consideration
by the algorithm, as it seeks to discover maximal cliques
whose total weight is maximized. This generalization of the
MCP is also known as the maximum weight clique prob-
lem (MWCP). We refer the interested reader to [27, 26] for
a more detailed description of this clique-based clustering
technique applied to our honeynet traces.

2.3.2 Some Experimental Clique Results
Our data set comes from a 640-day attack trace obtained



with the Leurre.com honeynet in the time period from Septem-
ber 2006 to June 2008. This trace was collected by 36 plat-
forms located in 20 different countries and belonging to 18
different class A-subnets. We have selected only the most
prevalent types of activities observed on the sensors, i.e.
about 130 distinct attack profiles for which an activity in-
volving a sufficient number of IP sources had been observed
at least once on a given day during the whole period. This
data set comprises totally 1,195,254 distinct sources, which
have sent about 3,423,577 packets to the sensors. By using
the technique described in [20], we have extracted 351 at-
tack events that were somehow coordinated on at least two
different sensors. This reduced set of attack events still ac-
counts for 282,363 unique sources (23.6 % of the data set),
or 741,349 packets (21.5%).

For the set of attack characteristics considered above, we
applied our clique-based clustering on those attack events.
Table 1 on page 5 presents a high-level overview of the
cliques obtained for each attack dimension separately. As we
can see, a relatively high volume of sources could be classified
into cliques for each dimension. The last colon with the most
prevalent patterns gives an indication of which countries or
class A-subnets (e.g., originating or targeted IP subnets)
are most commonly observed in the cliques that lie in the
upper quartile with respect to the number of sources. Inter-
estingly, it seems that many coordinated attack events are
coming from a given IP subspace. Regarding the targeted
platforms, several cliques involve a single class A-subnet.
About the type of activities, we can observe some com-
monly targeted ports (e.g., Windows ports used for SMB
or RPC, or SQL and VNC ports), but also a large num-
ber of uncommon high TCP ports that are normally unused
on standard (and clean) machines (such as 6769T, 50286T,
9661T, . . . ). A non-negligeable volume of sources is also due
to UDP spammers targeting Windows Messenger popup ser-
vice (ports 1026 to 1028/UDP).

2.4 Consolidation of the Knowledge
In order to assess the consistency of the resulting cliques of

attack events, it can be useful to see them charted on a two-
dimensional map so as to i) verify the proximities among
clique members (intra-clique consistency), and ii) under-
stand potential relationships between different cliques that
are somehow related (i.e. inter-clique relationships). More-
over, the statistical distances used to compute those cliques
make them intrinsically coherent, which means also that cer-
tain cliques of events may be somehow related to each other,
although they were separated by the clique algorithm.

Since most of the feature vectors we are dealing with have
a high number of variables (e.g., a geographical vector has
more than 200 country variables), obviously the structure of
such high-dimensional data set cannot be displayed directly
on a 2D map. Multidimensional scaling (MDS) is a set of
methods that can help to address this problem. MDS is
based on dimensionality reduction techniques, which aim at
converting a high-dimensional dataset into a two or three-
dimensional representation that can be displayed, for exam-
ple, in a scatter plot. The aim of dimensionality reduction is
to preserve as much of the significant structure of the high-
dimensional data as possible in the low-dimensional map.
As a consequence, MDS allows an analyst to visualize how
far observations are from each other for different kinds of
similarity measures, which in turn can deliver insights into
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Figure 2: Visualization of geographical cliques of attack-

ers. The coloring refers to the different cliques and the

red circles indicate their sizes on the low-D map. The

superposed text labels indicate only the two top attacking

countries for some of the data points.

the underlying structure of the high-dimensional dataset.
Because of the intrinsic non-linearity of real-world data

sets, we applied a recent MDS technique called t-SNE to
visualize each dimension of the data set, and to assess the
consistency of the cliques results. t-SNE [28] is a variation
of Stochastic Neighbour Embedding ; it produces significantly
better visualizations than other MDS techniques by reducing
the tendency to crowd points together in the centre of the
map. Moreover, this technique has proven to perform bet-
ter in retaining both the local and global structure of real,
high-dimensional datasets in a single map, in comparison to
other non-linear dimensionality reduction techniques such
as Sammon mapping, Isomaps or Laplacian Eigenmaps [10].
Stochastic Neighbor Embedding aims at minimizing a cost
function that is based on the sum of Kullback-Leibler diver-
gences over all datapoints using a gradient descent method.
t-SNE improves further this technique by using an initial
Student-t distribution, rather than a Gaussian, to compute
the similarity between two points in the low-dimensional
space (which tends to alleviate the problem of “crowding”
points in the center of the map, see [28] for a detailed ex-
planation).

Figure 2 shows the resulting two-dimensional plot ob-
tained by mapping the geographical vectors on a 2D map
using t-SNE. Each datapoint on this map represents the ge-
ographical distribution of a given attack event. The coloring
refers to the clique membership of each event, as obtained
previously by applying the clique-based clustering, and the
dotted circles indicate the clique sizes. We could easily verify
that two adjacent events on the map have highly similar ge-
ographical distributions (even from a statistical viewpoint),
while two distant events have clearly nothing in common
in terms of originating countries. Quite surprisingly, the
resulting mapping is far from being chaotic; it presents a
relatively sparse structure with clear datapoint groupings,
which means also that most of those attack events present
very tight relationships regarding their origins. Due to the



Attack Dimension Nr of Max.size Min.size Volume of Most prevalent patterns found in the cliques(1)

Cliques (nr events) (nr events) sources (%)
Geolocation 31 40 3 84.4 〈CN,CA,US,FR,TW〉, 〈IT,ES,FR,SE,DE,IL〉, 〈KR,US,BR,PL,CN,CA〉

〈US,JP,GB,DE,CA,FR,CN,KR〉, 〈US,FR,JP,CN,DE,ES,TW〉, 〈CA,CN〉
〈PL,DE,ES,HU,FR〉

IP Subnets (Class A) 25 51 3 91.2 〈87,82,151,83,84,81,85,213〉, 〈222,221,60,218,58,24,124,121,219,82,220〉
〈201,83,200,24,211,218,89,124,61,82,84〉, 〈24,60〉
〈83,84,85,80,88〉, 〈193,195,201,202,203,216,200,61,24,84,59〉

Targeted platforms 17 86 2 70.1 〈202〉, 〈88, 192〉, 〈195〉, 〈193〉, 〈194〉
〈129, 134, 139, 150〉, 〈24, 213〉

Port sequences 22 66 4 93.2 〈I〉, 〈1433T〉, 〈I-445T〉, 〈5900T〉, 〈1026U〉, 〈135T〉, 〈50286T〉
〈I-445T-139T-445T-139T-445T〉, 〈6769T〉, 〈1028U-1027U-1026U〉

Table 1: Some experimental clique results obtained from a honeynet dataset collected from Sep 06 until June 08.

(1) the given patterns represent the average distributions for the most prevalent cliques, i.e. the ones lying in the

upper quartile in terms of number of sources. For the IP subnets (resp. targeted platforms), the numbers refer to the

distributions of originating (resp. targeted) class A-subnets.
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Figure 3: Same visualization of the geographical cliques

of attackers as Fig 2, but here the superposed text labels

indicate the port sequences targeted by the attackers.

strict statistical distances used to calculate cliques, this kind
of correlation can hardly be obtained by chance only.

Similar “semantic mapping” can naturally be obtained for
the other dimensions (e.g., subnets, platforms, etc), so as to
help assessing the quality of other cliques of attackers. To
conclude this Section, Figure 3 shows the same geographi-
cal mapping on which the port sequences of several attack
events have been superposed on top of the datapoints. This
can help to visualize unobvious relationships among differ-
ent types of activities and their origins, and it leads also
to the natural intuition that an intelligent algorithm could
potentially leverage the results of this knowledge discovery
process, by combining efficiently different sets of cliques.

3. MULTI-CRITERIA DECISION-MAKING

3.1 Requirements and Motivation
The decision-support component of our method shall take

advantage of the knowledge obtained via the extraction of
cliques, and of the global semantic mappings obtained through
dimensionality reduction. The final objective consists in

re-constructing sequences of attack events that can be at-
tributed with a high confidence to the same root phenomenon
in function of multiple criteria. In other words, we want
to build an inference engine that takes as input the ex-
tracted knowledge to classify incoming attack events into
either “known phenomena”, or otherwise to identify a new
phenomenon when needed (e.g., when we observe the first
attack event of a new zombie army). There exists certainly
many different classification algorithms that are able to map
multiple input features to multiple output classes, even for
complex, non-linear mappings, such as Support Vector Ma-
chines, Artificial Neural Networks, etc. However, we are con-
fronted to specific constraints that do not allow us to use this
type of supervised machine learning techniques. First, we
have a priori zero-knowledge of the expected output, which
means that we can not provide training samples showing the
characteristics of the output we are looking for. Secondly,
we want to include some domain knowledge to specify which
type of combinations we expect to be promising in the root
cause identification. Third, the inference system must be
flexible enough to allow additional criteria to be used in
the future, so as to further improve the inference capabil-
ities. Finally, we favor the “white-box” approach having a
transparent reasoning process, which allows an expert to un-
derstand the reasons (i.e., the combinations of criteria) for
which the system has grouped a given set of events into the
same root phenomenon.

Although large-scale phenomena on the Internet are com-
plex and dynamic, our intuition is that two consecutive at-
tack events should be linked to the same root phenomenon
if and only if they share at least two different attack char-
acteristics. That is, we want to build a decision-making
process that will attribute two attack events to the same
phenomenon when the events features are “close enough” for
any combination of at least two attack dimensions out of the
complete set of criteria: {origins, targets, activity, commonIP }.
So, we hypothesize that real-world phenomena may perfectly
evolve over time, which means that two consecutive attack
events of the same zombie army must not necessarily have
all their attributes in common. For example, the bots com-
position of a zombie army may evolve over time because
of the cleaning of infected machines and the recruitment of
new bots. From our observation viewpoint, this will trans-
late into a certain shift in the IP subnet distribution of the
zombie machines for subsequent attack events of this army
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Figure 4: Main components of a Fuzzy System.

(and thus, most probably different cliques w.r.t. the ori-
gins). Or, a zombie army may be instructed to scan several
consecutive IP subnets in a rather short interval of time,
which will lead to the observation of different events hav-
ing highly similar distributions of originating countries and
subnets, but those events will target completely different
sensors, and may eventually use different exploits (hence,
targeting different port sequences).

On the other hand, we consider that only one correlated
attack dimension is not sufficient to link two attack events
to the same root cause, since the result might then be due
to chance only (e.g., a large proportion of attacks originate
from some large or popular countries, certain Windows ports
are commonly targeted, etc). However, by combining intelli-
gently several attack viewpoints, we can reduce considerably
the probability that two attack events would be attributed
to the same root cause whereas they are in fact unrelated.

3.2 Fuzzy Inference Systems
We still need to formally define what is the “relatedness

degree” between two attack events, certainly when they do
not belong to a same clique but are somehow “close” to each
other. Intuitively, attack events characteristics in the real
world have unsharp boundaries, and the membership to a
given phenomenon can be a matter of degree. For this rea-
son, we have developed a decision-making process that is
based on a fuzzy inference system (FIS). The mathemat-
ical concepts behind fuzzy reasoning are quite simple and
intuitive; in fact, it aims at reproducing the reasoning of
a human expert with very simple mathematical functions.
Fuzzy inference is thus a convenient way to map an input
space to an output space with a flexible and extensible sys-
tem, and using the codification of common sense and expert
knowledge. The mapping then provides a basis from which
decisions can be made.

The main components of an inference system are sketched
in Fig. 4. To map the input space to the output space,
the primary mechanism is a list of if-then statements called
rules, which are evaluated in parallel, so the order of the
rules is unimportant. Instead of using crisp variables, all
inputs are fuzzified using membership functions in order to
determine the degree to which the input variables belong to
each of the appropriate fuzzy sets. If the antecedent of a
given rule has more than one part (i.e., multiple ’if’ state-
ments), a fuzzy logical operator is applied to obtain one
number that represents the result of the antecedent for that
rule. For example, the fuzzy OR operator simply selects the
maximum of the two values. The results of all rules are then
combined and distilled into a single, crisp value that can be
used to make a decision. This aggregation process can be
done in two different ways. Mamdani’s inference [16] expects
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Figure 5: Fuzzy rule evaluation.

the output membership functions to be also fuzzy sets. After
the aggregation process, there is a fuzzy set for each output
variable that needs defuzzification by computing for instance
the centröıd of the output function. Whereas in a Sugeno-
type inference system [25], the output membership functions
are either linear or constant. The general form of a rule in a
Sugeno fuzzy model is: if Input1 is x and Input2 is y then
Output is z = a.x+ b.y+ c. For a zero-order Sugeno model,
the output level z is a constant (a=b=0). The output level
zi of each rule is weighted by the firing strength wi of the
rule. The most common way to calculate the final output of
the system is the weighted average of all rule outputs:

Final output =

P
i wi.ziP

i wi

When it is possible to model a fuzzy system using Sugeno-
type inference, the defuzzification and aggregation process
is thus greatly simplified and much more efficient than with
Mamdani’s inferences, which is why we used a Sugeno-type
system to model each attack phenomenon.

Concretely, we use the knowledge obtained from the ex-
traction of cliques to build the fuzzy rules that describe the
behavior of each phenomenon. The characteristics of new
incoming attack events are then used as input to the fuzzy
systems that model the phenomena identified so far. In
each of those fuzzy systems, the features of the most re-
cent attack event shall define the current parameters of the
membership function used to evaluate the following simple
rules: if xi is close AND if yi is close then zi is related,
∀i ∈ {geo, subnets, targets, portsequence}. Fig 5 gives a
graphical representation of how such a rule is evaluated for
the subnets of origins of two given attack events. Since this
characteristic is represented by a 2D mapping, we can see the
result of evaluating the relative position of the events accord-
ing to both dimensions (x, y). Each membership function is
maximal within the cliques, then it decreases smoothly to
take into account the fuzziness of real-world phenomena. In
this case, the antecedents of the rule hold respectively 0.16
and 1.0, which results in an output of 0.16 (since a logical
AND in fuzzy logic corresponds to the MIN operator).

So, the membership functions referred to as “is close”
in the fuzzy rules are defined by the characteristics of the
cliques to which the attack events belong. The calculation
of the rule output zi ∈ [0, 1] is just the intersection between
the two curves, which quantifies the inter-relationship be-
tween the cliques (and hence, between the attack events).
Similarly, we can evaluate the fuzzy rules for the other di-
mensions considered in the inference system. For the last
dimension, i.e. the common IP’s, we use a static member-
ship function whose input is the common IP ratio calculated
between the two events. Fig 6 represents this static member-
ship function, where we can see the output ZIP increasing
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Figure 6: Common IP Membership function.

smoothly as the ratio of common IP addresses increases from
0 to 10%, where ZIP is then maximal. This curve is actu-
ally drawn from our knowledge, or domain experience, in
monitoring malicious traffic.

Note that, initially, the inference engine has no knowl-
edge, so the first incoming attack event will create the first
phenomenon. Then, each time a new event could not be
attributed to an existing phenomenon, the inference engine
will create a new fuzzy system to model this new emerging
phenomenon. The inference engine is thus self-adaptive by
design.

3.3 Multi-criteria Decision-making
Having formally defined how to evaluate the output of

each rule, for each phenomenon, a last problem remains re-
garding the weighted average that is used as aggregation
function in a classical Sugeno inference system. In fact, it
does not allow us to express that certain combinations of
criteria (or rule outputs) must be somehow prioritized, as
previously described in the requirements. We need thus to
introduce another type of multi-criteria aggregation func-
tion that allows to model more complex requirements such
as “most of”, or “at least two” criteria to be satisfied in the
overall decision function. Yager has introduced in [29] a spe-
cial type of operator called Ordered Weighted Aggregation
(OWA), which allows to include some relationships between
multiple criteria in the aggregation process. An OWA opera-
tor provides an aggregation function for criteria whose result
lies between the classical “and”and“or”operators, which are
in fact the two extreme cases. Assume Z1, Z2, . . . , Zn are n
criteria of concern in our multi-criteria problem. For each
criteria, Zi(x) ∈ [0, 1] indicates the degree to which x satis-
fies that criteria, which corresponds in our case to the rules
output of a given fuzzy system. Then, we define a mapping
function F : In → I where I = [0, 1] as an OWA operator
of dimension n, if associated with F is a weighting vector
W = (W1,W2, . . . ,Wn) such that

1. Wi ∈ [0, 1]

2.
P

i Wi = 1

and where

F (z1, z2, . . . , zn) = W1.z
′
1 +W2.z

′
2 + . . .+Wn.z

′
n

with z′
i being the ith largest element in the collection z1, ..., zn.

That is, Z′ is an ordered vector composed of the elements
of Z put in descending order, which means that the weights
Wi are associated with a particular ordered position rather
than a particular element. Yager [29] has carefully studied
the mathematical foundations of OWA operators, and he
demonstrated that such operators have the desired proper-
ties such as monotonicity, generalized commutativity, asso-
ciativity and idempotence. To define the weights Wi to be
used, Yager suggests two possible approaches: either to use
some learning mechanism with sample data and a regression
model, or to give some semantics or meaning to the Wi’s by
asking a decision-maker to provide directly those values. We
selected the latter approach by defining the weighting vector
as W = (0.1, 0.35, 0.35, 0.1, 0.1), which translates our intu-
ition about the dynamic behaviors of large-scale phenomena.
It can be interpreted as: “at least three criteria must be sat-
isfied, but the first criteria is of less importance compared
to the 2nd and 3rd ones”. These values were carefully cho-
sen in order to avoid the grouping of unrelated events when,
for example, two events are coming from popular countries
and targeting common (Windows) ports in the same inter-
val of time, but those events are in reality not related to
the same phenomenon. In this worst-case scenario, we can
imagine that the ordered vector of criteria (obtained from
the evaluation of the fuzzy rules) could be something sim-
ilar to Z = (0.3, 0.1, 0, 1, 0). That is, we have a high cor-
relation for the targeted port sequences (z4 = 1), and we
have then some weak correlation (due to chance) for the
geographical origins (z1 = 0.3) and also for the subnets
of origins (z2 = 0.1). By applying our weighting vector
W to Z′ = (1, 0.3, 0.1, 0, 0), we get as final decision value
F = 1 ∗ 0.1 + 0.3 ∗ 0.35 + 0.1 ∗ 0.35 = 0.24. By considering
other scenarios, we can verify that the values of the weight-
ing vector W work as expected, i.e. it minimizes the final
output value in these cases. Moreover, these considerations
enable us also to fix our decision threshold to an empirical
value of about 0.25. That is, when the final output value
F lies under this threshold, we will reject the attribution of
the attack event under scrutiny to the current phenomenon
whose fuzzy system is being evaluated. Finally, when sev-
eral fuzzy systems provide an output value lying above the
threshold, we will obviously chose the highest one to at-
tribute the event; however, this case was rarely observed in
our experiments. There exists certainly other alternatives
for choosing the Wi’s, but according to our experimental re-
sults, this choice proved to be very effective in identifying
sequences of attack events having the same root cause.

4. BEHAVIORAL ANALYSIS OF GLOBAL
PHENOMENA

4.1 Main Characteristics
In this Section, we provide some experimental results ob-

tained by applying our multi-criteria inference method to
the same set of attack events we already introduced in Sec-
tion 2.3 (clique analysis). As already mentioned, these ex-
perimental results only aim at validating the applicability
and usefulness of the method proposed. They do not pre-



tend to offer a complete view of all possible phenomena ob-
servable on the Internet. At the contrary, they show that,
even with a limited number of data sources, it is possible
to observe and reason about a couple of interesting phe-
nomena. Furthermore, these anecdotal, yet representative,
examples show that our method helps in characterizing their
root cause, i.e., in addressing the attack attribution issue.

So, over the whole collection period (640 days), we found
about 32 global phenomena. In total, 348 attack events
(99% of our data set) could be attributed to a given large-
scale phenomenon. An in-depth analysis has revealed that
most of those phenomena (apart from the noisy network
worm W32.Rahack.H [24], also known as W32/Allaple) are
quite likely related to zombie armies, i.e., groups of compro-
mised machines belonging to the same botnet(s). We con-
jecture this for the following main reasons: i) the apparent
coordination of the sources, both in time (i.e., coordinated
events on several sensors) and in the distribution of tasks
(e.g., scanners versus attackers); ii) the short durations of
the attack events, typically a few days only, whereas “clas-
sical” worms tend to spread over longer, continuous periods
of time; iii) the absence of known classical network worm
spreading on many of the observed port sequences; and iv)
the source growing rate, which has a sort of exponential
shape for worms and is somehow different for botnets [13].

To illustrate the results, Table 2 on page 10 presents an
overview of some global phenomena found in our dataset.
Thanks to our method, we are able to characterize precisely
the behaviors of the identified phenomena or zombie armies.
Hence, we found that the largest army had in total 57 at-
tack events comprising 69,884 sources, and could survive for
about 112 days. The longest lifetime of a zombie army ob-
served so far was still 586 days. Fig. 7 shows the cumulative
distributions (CDF) of the lifetime and size of the identi-
fied armies. Those figures reveal some interesting aspects
of their global behaviors: according to our observations, at
least 20% of the zombie armies had in total more than ten
thousand observable1 sources during their lifetime, and the
same proportion of armies could survive on the Internet for
at least 250 days. On average, zombie armies have a total
size of about 8,500 observed sources, a mean number of 658
sources per event, and their mean survival time is 98 days.

Regarding the origins, we observe some very persistent
groups of IP subnets and countries of origin across many
different armies. On Fig. 8, we can see the CDF of the
sources involved in the zombie armies of Table 2, where the
x-axis represents the first byte of the IPv4 address space.
It appears clearly that malicious sources involved in those
phenomena are highly unevenly distributed and form a rel-
atively small number of tight clusters, which account for a
significant number of sources and are thus responsible for
a large deal of the observed malicious activities. This is
consistent with other prior work on monitoring global ma-
licious activities, in particular with previous studies related
to measurements of Internet background radiation [4, 17,
31]. However, we are now able to show that there are still
some notable differences in the spatial distributions of those
zombie armies with respect to the average distribution over

1It is important to note that the sizes of the zombie armies
given here only reflect the number of sources we could ob-
serve on our sensors; the actual sizes of those armies are
most probably much larger, even though some churn effects
(DHCP, NAT) could also affect these numbers.
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Figure 8: Empirical CDF of sources in IPv4 address

space for the 9 zombie armies illustrated in Table 2.

all sources (represented with the blue dashed line). In other
words, certain armies of compromised machines can have
very different spatial distributions, even though there is a
large overlap between “zombie-friendly” IP subnets. More-
over, because of the dynamics of this kind of phenomena, we
can even observe very different spatial distributions within
a same army at different moments of its lifetime. This is a
strong advantage of our analysis method that is more precise
and enables us to distinguish individual phenomena, instead
of global trends, and to follow their dynamic behavior over
time.

Another interesting observation on Fig. 8 is related to
the subnet CDF of ZA1 (uniformly distributed in the IPv4
space, which means randomly chosen source addresses) and
ZA20 (a constant distribution coming exclusively from the
subnet 24.0.0.0/8). A very likely explanation is that those
zombie armies have used spoofed addresses to send UDP
spam messages to the Windows Messenger service. So, this
indicates that IP spoofing is still possible under the current
state of filtering policies implemented by certain ISP’s on
the Internet.

Finally, in terms of attack capability, we observe that about
50% of the armies could target at least two completely dif-
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Figure 9: Output of the fuzzy inference system (zi and

F (zi)) modeling the zombie army nr 12.

ferent ports (thus, probably two different exploits, at least),
and one army had even an attack capability greater than 10
(ZA4 in Table 2). At this stage, it is unclear why a zom-
bie army would target such a large number of unusual, high
TCP ports (12293T, 15264T, etc). A recurrent misconfigu-
ration or P2P phenomenon is thus not excluded; but even in
that case, it is very interesting to note that our method was
able to attribute all those different events to the same root
phenomenon, thanks to the combination of several statistical
metrics.

4.2 Some Detailed Examples
In this Section, we further detail two zombie armies to

illustrate some typical behaviors we could observe among
the identified phenomena, e.g.:

i) a move (or drift) in the origins of certain armies (both
geographical and IP blocks) during their lifetime;

ii) a large scan sweep by the same army targeting several
consecutive class A-subnets;

iii) within a same army, multiple changes in the port se-
quences (or exploits) used by zombies to scan or to
attack;

iv) a coordination between different armies.

Zombie army 12 (ZA12) is an interesting case in which we
can observe the behaviors ii) and iii). Fig. 9 represents the
output of the fuzzy system modeling this phenomenon. Each
bar graph represents the fuzzy output zi for a given attack
dimension, whereas the last plot shows the final aggregated
output from which the decision to group those events to-
gether was made (i.e., F (zi)). We can clearly see that the
targets and the activities of this army have evolved between
certain attack events (e.g., when the value of zi is low).
That is, this army has been scanning (at least) four con-
secutive class A-subnets during its lifetime (still 183 days),
while probing at the same time three different ports on these
subnetworks.

Then, the largest zombie army observed by the sensors
(ZA10) has showed the behaviors i) and iv). On Fig. 10,
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Figure 10: Time series of coordinated attack events for

zombie army ZA10 (i.e., nr of sources observed by day).

we can see that this army had four waves of activity during
which it was randomly scanning 5 different subnets (note
the almost perfect coordination among those attack events).
When inspecting the subnet distributions of those different
attack waves, we could clearly observe a drift in the origins
of those sources, quite likely as certain machines were in-
fected by (resp. cleaned from) the bot software. Finally, we
found another smaller army (ZA11) that is clearly related to
ZA10 (e.g., same temporal behavior, similar activity, same
targets); but in this case, a different group of zombie ma-
chines, resulting in very different subnet CDF’s on Fig. 8),
was used to attack only specific IP addresses on our sensors,
probably by taking advantage of the results given by the
army of scanners (ZA10).

5. CONCLUSIONS
We have introduced a general analysis method to address

the complex problem related to “attack attribution”. Our
approach is based on a novel combination of knowledge dis-
covery and a multi-criteria fuzzy decision-making process.
By applying this method, we have showed how apparently
unrelated attack events could be attributed to the same
global attack phenomenon, or to the same army of zombie
machines operating in a coordinated manner. To the best of
our knowledge, this is the first formal, systematic and rig-
orous method that enables us to identify and characterize
precisely the behaviors of those large-scale attack phenom-
ena. As future work, we envisage to extend our method to
other data sets, such as high-interaction (eventually client)
honeypot data, or malware data sets, and to include even
more relevant attack features so as to improve further the in-
ference capabilities of the system, and thus also our insights
into malicious behaviors observed on the Internet.
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Id Nr of Total size Lifetime Targeted sensors Attack capability Main origins
events (nr sources) (nr days) (Class A- subnets) (countries / subnets)

1 10 18,468 535 24.*,193.*,195.*,213.* 1026U US,JP,GB,DE,CA,FR,CN,KR,NL,IT
69,128,195,60,81,214,211,132,87,63

4 82 26,962 321 202.* 12293T,15264T,18462T,25083T,25618T,28238T,29188T, IT,ES,DE,FR,IL,SE,PL
32878T,33018T,38009T,4152T,46030T,4662T,50286T,. . . 87,82,83,84,151,85,81,88,80

5 13 9,644 131 195.* 135T,139T,1433T,2968T,5900T CN,US,PL,IN,KR,JP,FR,MX,CA
218,61,222,83,195,221,202,24,219

6 15 51,598 >1 year > 7 subnets ICMP (W32.Rahack.H / Allaple) KR,US,BR,PL,CN,CA,FR,MX,TW
201,83,200,24,211,218,89,124

9 23 11,198 218 192.*,193.*,194.* 2967T,2968T,5900T US,CN,TW,FR,DE,CA,BR,IT,RU
193,200,24,71,70,213,216,66

10 57 69,884 112 128.*,129.*,134.*,139.*,150.* I-I445T CN,CA,US,FR,TW,IT,JP,DE
222,221,60,218,58,24,70,124

11 14 2,636 110 129.*,134.*,139.*,150.* I-445T-139T-445T-139T-445T US,FR,CA,TW,IT
82,71,24,70,68,88,87

12 14 27,442 183 192.*,193.*,194.*,195.* 1025T,1433T,2967T US,JP,CN,FR,TR,DE,KR,GB
218,125,88,222,24,60,220,85,82

20 10 30,435 337 24.*, 129.*, 195.* 1026U,1026U1028U1027U,1027U CA,CN
24,60

Table 2: Overview of some large-scale phenomena found in a honeynet dataset collected from Sep 06 until Jun 08.
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