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Abstract—In this paper, the fundamental performance tradeoff
of the delay-limited multiple-input multiple-output (MIMO) auto-
matic retransmission request (ARQ) channel is explored. In par-
ticular, we extend the diversity–multiplexing tradeoff investigated
by Zheng and Tse in standard delay-limited MIMO channels with
coherent detection to the ARQ scenario. We establish the three-di-
mensional tradeoff between reliability (i.e., diversity), throughput
(i.e., multiplexing gain), and delay (i.e., maximum number of re-
transmissions). This tradeoff quantifies the ARQ diversity gain ob-
tained by leveraging the retransmission delay to enhance the reli-
ability for a given multiplexing gain. Interestingly, ARQ diversity
appears even in long-term static channels where all the retrans-
missions take place in the same channel state. Furthermore, by re-
laxing the input power constraint allowing variable power levels
in different retransmissions, we show that power control can be
used to dramatically increase the diversity advantage. Our anal-
ysis reveals some important insights on the benefits of ARQ in slow-
fading MIMO channels. In particular, we show that 1) allowing for
a sufficiently large retransmission delay results in an almost flat
diversity–multiplexing tradeoff, and hence, renders operating at
high multiplexing gain more advantageous; 2) MIMO ARQ chan-
nels quickly approach the ergodic limit when power control is em-
ployed. Finally, we complement our information-theoretic anal-
ysis with an incremental redundancy lattice space–time (IR-LAST)
coding scheme which is shown, through a random coding argu-
ment, to achieve the optimal tradeoff(s). An integral component of
the optimal IR-LAST coding scheme is a list decoder, based on the
minimum mean-square error (MMSE) lattice decoding principle,
for joint error detection and correction. Throughout the paper, our
theoretical claims are validated by numerical results.

Index Terms—Automatic retransmission request (ARQ) pro-
tection, diversity–multiplexing tradeoff, incremental redundancy
coding, lattice coding, multiple-input multiple-output (MIMO)
channels, space–time coding.
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I. INTRODUCTION

THE seminal work of Telatar [1], Foschini and Gans [2],
Tarokh et al. [3], and Guey et al. [4] has spurred interest in

multiple-antenna wireless systems. Loosely speaking, two-di-
mensional signaling schemes that exploit the spatial domain to
improve both the reliability and throughput of wireless chan-
nels are nicknamed space–time codes after [3]. The literature
on space–time coding is huge (see, for example, [5] and ref-
erences therein). Several settings have been considered and, for
each setting, information-theoretic results and associated coding
schemes have been developed.

Arguably, the coherent delay-limited (or quasi-static) mul-
tiple-input multiple-output (MIMO) setting is the most studied
model. In this scenario, the channel is random but fixed during
the whole codeword duration and the channel state information
(CSI) is assumed to be perfectly known at the receiver and not
known at the transmitter. The transmitter, though, knows the
channel statistics. The best achievable error probability on this
channel is essentially given by the so-called information outage
probability, i.e., the probability that the mutual information as
a function of the channel realization is below the transmitted
coding rate [1].

Several classes of coherent space–time codes, targeting dif-
ferent optimization criteria, have been proposed. Zheng and Tse
developed a powerful tool that serves as a benchmark for com-
paring existing space–time coding schemes and guiding the de-
sign of new approaches [6]. This tool, referred to as the di-
versity–multiplexing tradeoff, is inspired by rigorous informa-
tion -theoretic definitions of the diversity and multiplexing gains
and establishes the necessary tradeoff between reliability and
throughput in outage-limited fading channels. In [7], the authors
have established the optimality of space–time lattice coding and
decoding in delay-limited MIMO channels with respect to the
delay–multiplexing tradeoff [7]. More recently, different vari-
ants of the algebraic space–time constellations presented in [8],
[9] were shown to achieve the optimal tradeoff under the more
complex maximum-likelihood decoding rule [10]–[13].

Zheng–Tse formulation applies to channels where the trans-
mitter does not have CSI and a codeword error results in the
loss of the corresponding information message. In this work,
we extend this formulation to automatic retransmission request
(ARQ) MIMO channels. In this case, the receiver feeds back
to the transmitter a one-bit success/failure indicator. In the suc-
cess case, the transmitter moves on to the next information mes-
sage in the transmission queue whereas in the failure case the
transmitter retransmits a (possibly different) encoded version of
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the same message. We refer to the successive transmissions of
coded versions of the same information message as “ARQ pro-
tocol rounds.” The ARQ protocol is allowed to use a given max-
imum number of rounds, denoted by . If after rounds no suc-
cessful decoding has occurred, an error is declared. In this case,
we assume that the message will be dropped from the transmis-
sion queue (i.e., delay-sensitive application). Therefore, we de-
fine the probability of error as the probability of no successful
decoding within protocol rounds.

We investigate and completely characterize the three-dimen-
sional diversity–multiplexing–delay tradeoff in MIMO ARQ
channels.1 This tradeoff establishes, rigorously, the fact that
the ARQ retransmission delay can be exploited as a potential
source for diversity. We investigate two extreme cases of
channel dynamics: long-term and short-term static channels. In
the long-term static case, the MIMO channel matrix is assumed
to be constant over all the ARQ rounds. This scenario applies to
very fast ARQ protocols and/or very slow fading environments,
such as wireless LANs [14]. In the short-term static case, the
MIMO channel matrix is constant over each transmission round
of the ARQ protocol but changes independently from round to
round. This scenario applies to slow ARQ protocols where the
time between the consecutive rounds is larger than the channel
coherence time, or to frequency-selective fading, where each
ARQ transmission takes place at a different frequency ac-
cording to some frequency hopping scheme.

It is worthwhile noticing that the performance improvement
of ARQ holds even under the more restrictive case of long-term
static channel, where no time diversity can be exploited. How-
ever, as shown in the sequel, the long-term static assumption
limits the ARQ diversity at low multiplexing gains. In fact, al-
lowing for larger values of the maximum ARQ delay translates
into flatter diversity–multiplexing tradeoff curves in this sce-
nario (i.e., in the limit one can achieve simultaneously
the maximum multiplexing gain and maximum diversity advan-
tage).

We then show that the limited ARQ diversity advantage at
low multiplexing gains, in long-term static channels, can be
significantly increased by combining ARQ retransmissions
with a properly constructed power control algorithm. This
algorithm does not require any additional feedback beyond the
standard one-bit ARQ feedback signal, and is inspired by the
power control diversity gain reported in [15]. Contrary to most
earlier works on MIMO channels with feedback, the proposed
power control ARQ scheme avoids the unrealistic assump-
tion of noncausal channel state information knowledge at the
transmitter. This feature is expected to translate into enhanced
robustness in practical implementations. We also observe that
the proposed ARQ algorithms with and without power control
are, loosely speaking, analogous to the Schalkwijk–Kailath and
Schalkwijk–Barron coding scheme for communication over
additive white Gaussian noise (AWGN) channels with feedback
[16], [17], respectively. Similar to our case, allowing for a large
peak-to-average power ratio in [16] dramatically improves the
achievable reliability with respect to the case of a strict peak

1Here, delay refers to the maximum number of transmission rounds L of the
ARQ protocol.

power constraint [17]. Furthermore, the common feature of all
such schemes is that the whole information message can be
decoded from the first block alone, if the channel is well-be-
haved, and retransmission are used as a “refinement,” in order
to tame atypical (outage) channel events. This boosts reliability
(or diversity, in our case), without sacrificing the coding rate.

The achievability of our information-theoretic results relied
on using random Gaussian codebooks coupled with incomplete
decoders. This motivates our next step where we construct an
incremental redundancy lattice space–time (IR-LAST) coding
scheme that achieves the optimal tradeoff. An important ingre-
dient in this construction is a list lattice decoding algorithm
optimized for joint error correction and detection. Finally, we
validate our theoretical claims with numerical examples based
on explicit code constructions, demonstrating significant perfor-
mance gains in certain representative scenarios.

Recently, there has been a growing interest in MIMO ARQ
schemes (e.g., [18]–[22]). Those works have been largely moti-
vated by heuristic arguments. The theoretical foundation devel-
oped here should serve as a benchmark for evaluating previously
proposed schemes and inspiring more innovative approaches.

Throughout the paper, we use the following notation. The su-
perscript denotes complex quantities, denotes transpose, and

denotes Hermitian transpose. The notation in-
dicates that is a circular symmetric complex Gaussian random
vector with mean and covariance matrix . For real Gaussian
random vector we use the notation . The acronym
i.i.d. means “independent and identically distributed.” We use

to denote exponential equality, i.e., means that
, and are used similarly. For a bounded

Jordan-measurable region , denotes the volume
of . denotes the identity matrix, and denotes the
Kronecker product. The complement of a set is denoted by

. The positive part of a real variable is denoted by .
The rest of the paper is organized as follows. In Section II,

we define the MIMO ARQ channel model and its perfor-
mance measures in terms of diversity gain, multiplexing gain,
and delay. Section III establishes the fundamental diversity–
multiplexing–delay tradeoff of MIMO ARQ channels. In
Section IV, we present the IR-LAST coding scheme, that
achieves the optimal tradeoff, along with representative numer-
ical results that demonstrate the gains offered by it. Finally,
we offer some concluding remarks in Section V. In order to
enhance the flow of the paper, we collect all the proofs in the
Appendix.

II. BACKGROUND

A. Channel and ARQ Protocol Models

We consider a frequency-flat fading -transmit -receive
MIMO channel with no CSI at the transmitter and perfect CSI
at the receiver. The following ARQ protocol is considered. The
transmitter has an infinite buffer of information messages to
send.2 The information message to be transmitted is encoded
by a space–time encoder, and mapped into a sequence of ma-
trices, or blocks, . The trans-

2In this infinite backlog case, the stability of the protocol is irrelevant [23].
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mission of each block takes channel uses, by transmitting the
matrix columns in parallel over the transmit antennas, as in
standard space–time coding. At the th round of the current in-
formation message, is transmitted. The decoder is allowed
to process the received signal over all the received blocks,
in order to decode the message. If successful decoding is de-
tected, a positive acknowledgment signal (ACK) is sent back
to the transmitter whereas a negative acknowledgment (NACK)
signal is sent in case of detection of a decoding failure. The
ACK/NACK one-bit message is the only feedback allowed in
our model and the ARQ feedback channel is assumed to be
error-free and zero-delay. Upon reception of the ACK, the trans-
mitter sends the first block of the next message in the buffer
whereas the reception of the NACK triggers the transmission
of the next block of the current message, . The only ex-
ception to the above rule is when the maximum number of pro-
tocol rounds, , is reached. In this case, a NACK bit will be
interpreted as an error, the current message is removed from the
transmission buffer, and the transmission of the next message is
started anyway. Error in the system occur either when the de-
coder makes a decoding error at round and it fails to
detect it (undetected error event) or when the decoder makes a
decoding error at round .

We notice that the encoding rule that maps the information
message into the blocks is generally different for each block.
Hence, the protocol implements a form of incremental redun-
dancy [23]: the space–time codes defined by blocks
can be seen as progressively punctured version of the same
space–time code with block length .

Let us focus on the transmission of the current information
message. The complex baseband model of our channel is de-
fined by

(1)

where the index , counts the protocol rounds and
counts the channel uses in each block

are the columns of the th block

and

denote the channel noise and the corresponding received signal
block, respectively. The channel noise is assumed to be tempo-
rally and spatially white with i.i.d. entries . The
channel in the th round is characterized by the matrix

with the th element representing the fading
coefficient between the th transmit and the th receive antenna.
The fading coefficients are assumed to be i.i.d. and
remain fixed over each block, for .

As anticipated in the Introduction, we consider two distinct
scenarios of channel dynamics: 1) long-term static channels,
where the channel coefficients remain constant during all ARQ
rounds and change to new independent values with each new
packet (i.e., for all ); 2) short-term static
channels, where the channel remains constant during each round
and changes independently at each round.

The long-term static model aims at decoupling the ARQ gain
from the temporal (or frequency) interleaving gain. It represents
the worst case scenario in terms of the achievable diversity with
a maximum of ARQ rounds. Assuming the channel coherence
time to be a random variable (coinciding with the renewal event)
in this model allows for some elegance and simplicity in the
analysis. We also note that the long-term static channel model
is justified in practice by considering a time-division multiple
access (TDMA) network environment where the channel is al-
located to a given (reference) transmitter–receiver pair only spo-
radically, according to some policy at the MAC layer. When the
channel is allocated (i.e., the reference transmitter–receiver pair
becomes active) the transmission takes place using the MIMO
ARQ scheme at the physical layer. If the channel coherence time
is much larger than , but it is smaller than the idle time be-
tween two consecutive active times, our long-term static model
precisely describes the channel from the perspective of the ref-
erence transmitter–receiver pair.

Also, we consider two different input power constraints: 1)
short-term (or per-block) average power constraint; 2) long-
term average power constraint. In the first case, we enforce

(2)

for all , where expectation is with respect to the uni-
form probability measure over the codebook. This means that
the average transmitted power in each round of the ARQ pro-
tocol is the same, irrespective of the round index .

In the second case, we enforce

(3)

where we have introduced the absolute index of the trans-
mitted block,3 and now denotes the th transmitted block
since the beginning of transmission. Again, expectation is with
respect to the uniform probability measure over the codebook.
Clearly, in both cases, the parameter in (1) takes on the
meaning of average signal-to-noise ratio (SNR) per receiver
antenna.

In order to simplify the presentation in the sequel, we will
sometimes appeal to the following real channel model, equiva-
lent to (1). After transmission rounds, the total received signal
is given by

(4)

where we define

with , and

3Notice that ` is a relative index, denoting the `th block in the transmission
of the current message.
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with . The vector
represents the signal received over all transmitted blocks from

to .
The channel matrix has dimensions , and

is formed by taking the first rows of the matrix (5) at the
bottom of the page, which is composed by diagonal blocks.
Each block has also a block-diagonal form, with diagonal
blocks equal to the real expansion of the complex
channel matrix . In the case of long-term static channel, all
these blocks are equal since is constant with . Notice that
for , the matrix can be partitioned into two blocks. The
leftmost block is block-diagonal while the right-
most block is zero. This corresponds to
the fact that at round the blocks have not been
transmitted yet, and in our real model they appear as multiplied
by a zero channel matrix.

The design of a space–time code for the ARQ channel, there-
fore, reduces to the construction of a codebook
enjoying certain desirable properties.

B. Throughput, Transmitted Power, and Probability of Error

In this section, we use renewal theory (see [23] and references
therein) in order to characterize the average throughput, the av-
erage transmitted power, and the probability of error of the ARQ
scheme.

Consider the event that the transmission of the current infor-
mation message is stopped, either because the receiver feeds
back an ACK, or because the maximum number of rounds
is reached. In the long-term static channel case, we assume that
the fading changes independently at each occurrence of such
event (this assumption is automatically satisfied by the short-
term static channel case). Under the above assumption, it is
readily seen that stopping the current message transmission is a
renewal event [23]: at each occurrence of such event the system
resets and restarts anew.

Let be a random variable indicating the inter-renewal time,
i.e., the time (in slots) between two consecutive occurrences of
the renewal event, and let denote the event that an ACK is
fed back at round . For all , we have

(6)

At round , since even in the case of NACK the transmitters
moves on to the next message, we have

(7)

It turns out that it is more convenient to work with the probabil-
ities

(8)

where, by definition, we let . It is a simple matter to
verify the relation

(9)

which yields

(10)

for any .
Let denote the size of the information messages in bits and

let denote the number of bits removed from the transmis-
sion buffer at slot (absolute index). We have that if
the renewal event occurs at time , and otherwise. The
long-term average throughput of the ARQ protocol, expressed
in transmitted bits per channel use (PCU), is given by [23]

(11)

where the last line follows by noticing that is given by
(10) for . In the following, we let
denotes the rate of the first block in bits PCU.

The long-term power constraint in (3) applies to any feasible
power control rule including nonstationary and randomized al-
gorithms. In the sequel, however, we shall restrict ourselves to
the class of stationary power control policies, for which the
power spent at round is just a deterministic function of . Let

denote the average energy allocated to the th round of trans-
mission. Consequently, the limit in (3) takes on the form

(12)

where the numerator in the last line of (12) follows again from
(10) by letting for .

The ARQ system incurs an error if decoding fails but it is
not detected, so that an ACK is fed back, or if decoding fails

(5)
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at round . Let denote the event that the decoding outcome
is not correct with received blocks. For a given code, power
control, channel statistics, and decoding/error detection scheme,
the probability of error can be written as

(13)

where the terms in the last line have the following meaning:
is the probability of undetected decoding error with
received blocks, and is the probability of

decoding error with received blocks.

C. Diversity–Multiplexing Tradeoff

In this work, we extend Zheng–Tse formulation of the diver-
sity–multiplexing tradeoff [6] to the MIMO ARQ channel de-
fined above. Zheng and Tse considered a family of space–time
codes indexed by their operating SNR , such that the code

has rate bits PCU and error probability . For this
family, the multiplexing gain and the diversity gain are de-
fined by

and (14)

The optimal diversity–multiplexing tradeoff yields the max-
imum possible SNR exponent for every value of . In the
following, this optimal exponent is denoted by in order
to highlight the fact that transmission takes place over a single
block. The main result of [6] is summarized by the following
theorem.

Theorem 1: The optimal diversity gain of the coherent block-
fading MIMO channel with transmit, receive antennas,
and multiplexing gain , is given by , where

is the piecewise linear function joining the points
for . In particular,

is achieved by the random Gaussian i.i.d. code ensemble for all
block lengths .

In [7], the authors have shown that carefully constructed en-
sembles of LAST codes achieves for
under minimum mean-square error (MMSE) lattice decoding.
In the sequel, we will show that this class of codes can be used
as a building block for constructing optimal incremental redun-
dancy codes for the MIMO ARQ channel. More recently, the
existence of space–time constellations that achieve for

was established in [13].
In order to extend Zheng–Tse formulation of the diver-

sity–multiplexing tradeoff to the ARQ case, we consider a
family of ARQ protocols where the size of the information
messages depends on the operating SNR . These pro-
tocols are based on a family of space–time codes with

first-block rate and overall block length .
Then, we define the effective ARQ multiplexing gain as

(15)

where is given by (11), noticing that both and the prob-
abilities depend on . The effective ARQ diversity gain is
defined as

(16)

where is given by (13).
The optimal diversity–multiplexing tradeoff of MIMO ARQ

channels yields the maximum possible SNR exponent, denoted
by , for every value of . As a consistency check, it is
immediate to verify that these definitions reduce to the standard
Zheng–Tse formulation when (i.e., no ARQ).

III. THE FUNDAMENTAL TRADEOFF

In this section, we find an explicit characterization for the ex-
ponent of MIMO ARQ channels. In our study, we
differentiate between two scenarios. In the first, a short-term
power constraint is enforced and hence the same power level
is used in all transmissions. In this case, quantifies the
ARQ diversity gain as a function of the maximum transmission
delay and illustrates the suboptimality of previously proposed
schemes. In the second scenario, a long-term power constraint
is enforced, and hence, we allow for varying the power level in
every retransmission while keeping the overall average power
fixed. We construct an asymptotically optimal power control
policy which yields very significant diversity gains in long-term
static channels, especially at low multiplexing gains. It is worth
noting that the proposed power control algorithm does not re-
quire any additional feedback. The only information needed is
the ACK/NACK feedback bit and off-line estimates of the prob-
abilities for .

A. ARQ Diversity

We are now ready to state our result on the diversity–
multiplexing–delay tradeoff of MIMO ARQ channels with
short-term average power constraint.

Theorem 2: The optimal diversity gain of the coherent
block-fading MIMO ARQ channel with transmit, receive
antennas, maximum number of ARQ rounds , under the
short-term power constraint, is given as follows.

In the case of long-term static channels

(17)

In the case of short-term static channels,

(18)
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Furthermore, the optimal tradeoff is achieved by codes with fi-
nite block length subject to the conditions

for long-term static channels (19)

for short-term static channels (20)

Proof: (Sketch) The converse is shown through the judi-
cious application of Fano inequality. We present two approaches
for achieving the optimal tradeoff. We first establish the achiev-
ability of the exponents and in the limit
of asymptotically large block length ( ) by employing
the typical set decoder which has a built-in error detection ca-
pability. The achievability of the optimal tradeoff for finite is
then shown by using an incomplete bounded-distance decoder
that mimics the behavior of the typical set decoder. In particular,
we consider a decoder that accepts the message at round if
1) the channel is not in outage; 2) the corresponding codeword

is the unique codeword such that

for some (which will be determined in the sequel). On
the contrary, if either there is no such codeword or there are
more than one, then a NACK is fed back. Since the noise has
dimension and it is Gaussian i.i.d. with components

, the above condition is equivalent to saying that the
noise is typical and the channel is not in outage. The term will
be required to grow with the SNR in order to ensure that, despite
the finite block length, the probability that the noise is outside
the sphere of squared radius vanishes with an SNR
exponent at least equal to . The technical details of the
proof are reported in Appendix A

It is worth noting that in our proof technique, error detec-
tion is accomplished via an incomplete decoder [24], and hence,
does not require additional redundancy. In most practical ARQ
schemes, errors are detected by using an outer coding layer de-
voted to error detection (typically, a cyclic redundancy check
(CRC)). Unfortunately, the following intuitive argument sug-
gests that the “classical CRC” approach requires growing
to infinity in order to operate at the optimal tradeoff. Consider
a MIMO ARQ scheme based on the following error detection
rule: the transmitter and the receiver pre-agree on a check func-
tion

that maps information messages into auxiliary check mes-
sages . The composite message is transmitted
using the MIMO ARQ scheme. At each round , the
receiver decodes . If , the message is accepted
and the transmission of the current message is stopped (ACK is
fed back). If , an error is declared and the next round
is requested (NACK is fed back). It is not difficult to see that the
probability of undetected error at any round must vanish
with SNR at least with exponent . Otherwise, the un-
detected error probability dominates the system performance.
We assume that, if , then is uniformly distributed

over all possible messages .4 Hence, errors are not revealed
with probability . The probability of undetected error at
round is given by

(21)

where denotes the SNR exponent of the probability of making
an error with received blocks. Assuming, without loss of gen-
erality, that , from the bound
on error probability (13) we obtain that

(22)

This implies that must grow with SNR as

The first-block rate of the CRC-based scheme, denoted by , is
given by

If is a constant independent of SNR, then is strictly less
than . This prevents the CRC scheme from achieving the op-
timal tradeoff. However, if grows without bounds at any speed
as , then asymptotically optimal performance can be
achieved by the CRC scheme.

Theorem 2 establishes the interesting fact that retransmis-
sion delay can be exploited to significantly improve diversity,
especially at high multiplexing gain. The basic idea is that the
multiplexing gain is determined by the rate assuming only one
round whereas the diversity gain is determined by the rate of
the composite code received at the end of the maximum number
of rounds. This can be explained by the fact that most packets
are decoded successfully in the first round and ARQ retrans-
missions are used to correct the rare error events, and hence,
pushing the probability of error down with an asymptotically
vanishing price in the transmission rate. This consideration is
valid under the condition that errors in rounds are de-
tected with high probability. As shown in Appendix A, this con-
dition is always verified for sufficiently large , for every given
operating SNR .

Interestingly, the ARQ diversity gain appears even in long-
term static channels. In fact, as shown in Fig. 1, the tradeoff
curve become flatter as increases. This implies that one can
approach the full diversity point, i.e., , for any mul-
tiplexing gain by using a sufficiently
large . It is important to notice here that, in long-term static
channels, larger values of do not imply any increase of the
temporal diversity (i.e., each codeword is still transmitted over
a single realization of the channel matrix). It is also evident that,
in long-term static channels, the diversity improvement due to
ARQ disappears as the multiplexing gain tends to zero. In fact,
we have , irrespectively of .
On the other hand, in short-term static channels ARQ provides

4This assumption is typically used in the design of error detection CRC
schemes. It can be justified theoretically by letting the function � be constructed
by a random binning assignment of the codewords onto 2 bins, and averaging
over the ensemble of random binning assignments. However, this argument
does not apply if the function � and the code are designed jointly, as done in
[25] in a different context.
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Fig. 1. The diversity–multiplexing tradeoff with different values of the maximum number of ARQ rounds “L.”

also temporal diversity, as seen in the fact that
. This temporal diversity gain appears at both low

and high multiplexing gains.
Next, we use Theorem 2 to quantify the loss incurred by

some low-complexity suboptimal schemes. The first scheme we
consider is the packet combining (PC) approach. In this ap-
proach, the same encoding rule is used in every retransmis-
sion and the received packets are combined (through maximum
ratio combing) before decoding. The tradeoff achieved by this
scheme is characterized in the following corollary.

Corollary 3: The packet combining (PC) diversity gain for
long-term static and short-term static channels with transmit,

receive antennas, maximum number of ARQ rounds , and
effective multiplexing gain , are given by

(23)

(24)

Proof: The proof is straightforward, and hence, is omitted
for brevity.

The suboptimality of the PC approach is manifested in the
fact that it fails to exploit the ARQ diversity gain in long-term
static channels. In these channels, the PC approach offers only
a -decibel SNR increase, and hence, is limited by the
same tradeoff of the channel without ARQ. In short-term chan-
nels, the PC approach only exploits the temporal diversity.

Another suboptimal scheme, targeting long-term static chan-
nels, was proposed in [18]. This scheme sends carefully chosen

space–time constellations such that after transmissions they
form a square orthogonal constellation. The achievable diver-
sity with this scheme, in long term static channels,5 is upper-
bounded in the following corollary.

Corollary 4: The diversity gain of the orthogonal ARQ
scheme for long-term static channels with transmit,
receive antennas, maximum number of ARQ rounds ,
and effective multiplexing gain , is given
by

(25)

where is the rate of the orthogonal constellation.6

Proof: (Sketch) Let be the rate used in
the first transmission. Without ARQ, orthogonal transmission
transforms the MIMO channel into a single-
input multiple-output (SIMO) channel with a maximum value
of multiplexing gain equal to . The tradeoff for this scheme
is [6]

(26)

One can then follow in the footsteps of Appendix A to see that
the tradeoff for the long-term static channel with rounds of

5We restrict the analysis to long-term static channels since the main property
of the constellation, orthogonality, is destroyed in short-term static channels

6The rate r is expressed in modulation symbols per channel use. For ex-
ample, r = 1 for the Alamouti constellation.
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Fig. 2. The diversity–multiplexing tradeoff of several ARQ schemes.

ARQ transmissions is obtained by replacing in (26) with
, i.e.,

(27)

The result follows by noting that .

Fig. 2 compares the diversity gain of the PC and orthogonal
ARQ schemes with that of the optimal tradeoff where it is ap-
parent that the suboptimality of these approaches is more sig-
nificant at high multiplexing gains.

B. Power Control Diversity

As shown in the previous subsection, in long-term static chan-
nels under the short-term power constraint the ARQ diversity
advantage over conventional coherent space–time coding van-
ishes at low multiplexing gain. Here, we consider the long-term
power constraint and construct an asymptotically optimal power
control algorithm that yields very significant diversity advan-
tage in long-term static channels especially at low multiplexing
gains. A distinguishing feature of the proposed algorithm is
that it avoids the noncausal feedback assumptions adopted in
many earlier works. The proposed power control algorithm is
enabled by the observation that the probability of transmitting
the round, , decays polynomially with SNR. Therefore,
the energy allocated to the th block, , can be made propor-
tional to , allowing for a significant increase in trans-
mitted power without violating the long-term power constraint.
The larger power level in round will result in a smaller ,

and hence, even larger . Through this recursive procedure,
the probability of error is minimized. Clearly, this power allo-
cation policy only requires the knowledge of the probabilities

’s, which can be estimated off-line.
The following theorem establishes the diversity–

multiplexing–delay tradeoff of MIMO ARQ channels with
long-term average power constraint (since this subsection treats
only the long-term static channels, we drop the subscript “ ”
in the following for brevity).

Theorem 5: The optimal diversity gain of the coherent block-
fading MIMO ARQ channel with transmit, receive an-
tennas, maximum number of ARQ rounds , and effective mul-
tiplexing gain , under the long-term
power constraint, is given by , where is ob-
tained recursively as follows. Let . For , let

(28)

where is the set defined by

(29)
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Moreover, the exponent is achievable by finite block-
length codes if .

Proof: See Appendix B

The more stringent requirement on in the long-term static
case of Theorem 5, as compared with Theorem 2, can be ex-
plained as follows. In Theorem 2, we only require the prob-
ability of error after one round of transmission to decay with
the SNR (at any rate) to ensure that . In Theorem 5,
on the other hand, we need to maximize the rate of decay of
the first round probability of error in order to maximize the
power level in the second round. In Appendix B, we show that

is sufficient to achieve this goal.
For any , and any , the

function

(30)

is convex, decreasing, piecewise linear with bounded support
. Its maximum is attained at and is given by

It follows that the set defined by
is convex and bounded. Since the objective function in (28) is
linear and hence convex, each of the minimizations in (28) has
a well-defined unique solution that can be easily found by stan-
dard numerical optimization methods.

Unfortunately, at the moment we do not have a closed-form
characterization of the optimal tradeoff curve in Theorem 5. To
shed more light on the power control diversity gain, we derive
easily computable lower and upper bounds on the optimal di-
versity gain in the following lemma.

Lemma 6: Let denote the optimal diversity gain
under long-term power constraint given by Theorem 5. Then

(31)

where , , and are obtained recursively as fol-
lows. Let

(32)

Then, for let

(33)

(34)

and

(35)

Proof: See Appendix C.

The lower bounds established in Lemma 6 have nice intuitive
interpretations. The first lower bound, i.e., , corresponds
to the outage probability achieved by only the round with the
maximum power level. As a side result, this lower bound also
corresponds to the diversity–multiplexing tradeoff of the power
control algorithm proposed in [15] where the authors assume
one round of transmission and the availability of the feedback
information, needed for the power control algorithm, a priori
(in this setting, takes the meaning of the number of levels
in the power control algorithm). The second lower bound, i.e.,

, corresponds to averaging the power levels7 used in the
ARQ rounds and then deriving the tradeoff under the assump-
tion that this level is used in all the rounds. Fig. 3 depicts the
upper and lower bounds on the optimal diversity advantage with
power control. One can see in the figure the significant gain of-
fered through power control, compared to ARQ with constant
power, especially at low multiplexing gains. In fact, the remark-
ably large diversity gains observed for all multiplexing gains
even with relatively small values of indicates that very slow
fading channels quickly approach the ergodic limit when ARQ
and power control are used jointly. This phenomenon does not
appear when only power control is used without ARQ retrans-
missions, as in [15] for example, since in this case the diver-
sity advantage still approaches zero as the multiplexing gain ap-
proaches its maximum value of . Moreover, at least
in this scenario, it appears that the lower and upper bounds are
very tight for a wide range of multiplexing gains.

IV. IR-LAST CODING

Thus far, our information-theoretic analysis has relied on
using random Gaussian codes. In practice, the complexity
resulting from using such unstructured codebooks may be pro-
hibitive. Here, we replace the Gaussian codes with IR-LAST
codes, the bounded distance decoder with a fixed radius list
lattice decoder, and the maximum-likelihood (ML) decoder
used in the final round with a closest point lattice decoder. We
will show that this approach achieves the optimal tradeoff (with
and without power control) for .8 Furthermore,
the simulation results, presented at the end of the section, will
demonstrate the significant performance gains offered by this
approach in certain representative scenarios.

In [7], we introduced the class of nested LAST codes and
showed that it achieves the optimal diversity–multiplexing
tradeoff in coherent MIMO channels. Here, we extend this
paradigm to the MIMO ARQ scenario. For the sake of com-
pleteness, we review the basic definitions needed to describe the
IR-LAST coding scheme. For more background information,
the interested reader is referred to [7] and references therein. To
simplify presentation, we focus on the constant-power scenario.
When power control is allowed, the power allocation algorithm
is combined with the code construction straightforwardly.

An -dimensional lattice code is the finite
subset of the lattice translate inside the shaping region

, i.e., , where is a bounded measurable

7Here, we average the power computed on a logarithmic scale.
8In a similar way, one can establish the fact that the minimum length needed

for the long-term static channels with constant power is T � d e but
we omit this part here to avoid redundancy.
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Fig. 3. The diversity–multiplexing tradeoff with power control on a log-scale (the upper and lower bound in Lemma 6).

region of . We say that a space–time coding scheme is a
LAST code if its codebook is a lattice code. Next, we define
nested lattice codes (or Voronoi codes).

Definition 7: Let be a lattice in and be a sublattice
of . The nested lattice code defined by the partition is
given by

where is the fundamental Voronoi cell of . In other words,
is formed by the coset leaders of the cosets of in . We

also define the lattice quantization function

and the modulo-lattice function

We say that a LAST code is nested if the underlying lattice
code is nested. With nested codes, the information message is
effectively encoded into the cosets of in .

The proposed incremental redundancy scheme works as fol-
lows. Consider the nested LAST code defined by (the
coding lattice) and by its sublattice (the shaping lattice) in

. Assume that has a second-order moment
(so that uniformly distributed over satisfies

). Assuming an effective multiplexing gain , the rate of
the code is . The transmitter selects a codeword

, generates a dither signal with uniform distribution over
, and computes

(36)

The signal is then partitioned into vectors of size each.
Those vectors are transmitted, sequentially, in the different ARQ
rounds based on the ACK/NACK feedback. Upon completion of
the transmission, the receiver attempts to decode the mes-
sage using an incomplete list lattice decoder. In particular, the
received signal, i.e., , is multiplied by the forward filter ma-
trix of the minimum mean-square-error decision feedback
equalizer (MMSE-DFE ) corresponding to the truncated matrix

[26]. Moreover, we add the dither signal filtered by the upper
triangular feedback filter matrix of the MMSE-DFE (the def-
initions and some useful properties of the MMSE-DFE matrices

are given in [7]).
By construction, we have with

Then, we can write

(37)
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Fig. 4. The probability of error of incremental redundancy LAST codes.

By construction, is uniformly distributed over and is inde-
pendent of . One can also rewrite (37) as

(38)

where and

(39)

The desired signal is now translated by an unknown lattice
point . However, since and belong to the
same coset of in , this translation does not involve any
loss of information (recall that information is encoded in the
coset , rather than in the codeword itself). It follows
that in order to recover the information message, the decoder
has to identify the coset that contains .

The basic idea in this approach is to use a list lattice decoder
for joint error correction and detection. In this decoder, we first
check if the channel is in outage. In this case, an error is declared
and a NACK bit is sent back. If not, then we use a list lattice
decoder to find all the lattice points that satisfy

(40)

where is the generator matrix of the channel coding lattice
, and is chosen according to the proof of Theorem 8. Now,

if no points are found or more than one point is found, an error is
declared, and hence, a NACK bit is sent back. If only one point
is found to satisfy (40), then we proceed to the next step to find
the codeword as

(41)

Here, we observe that the matrix is always full rank even for
the under-determined scenario . This property is very crit-
ical for minimizing the complexity of the closest point search al-
gorithm [27]. The only exception to this rule is after the ARQ
round where we replace this joint error correction and detection
algorithm with the closest point lattice decoder described by

(42)

The following result establishes the optimality of this ap-
proach for .

Theorem 8: Consider a long-term static MIMO ARQ
channel with transmit, receive antennas, a maximum
number of ARQ rounds , an effective multiplexing gain

, and . Then, the pro-
posed IR-LAST coding scheme achieves the optimal diversity
advantage in Theorem 2 under the short-term average
power constraint. Under the long-term power constraint, the
IR-LAST coding scheme achieves the optimal diversity ad-
vantage in Theorem 5 when coupled with the power
control policy

(43)

Fig. 4 compares the performance of the proposed IR-LAST
coding scheme with the outage probability and the performance
of the LAST coding scheme for the standard coherent channel in
a long-term static channel. We have , ,
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Fig. 5. The probability of error of incremental redundancy LAST codes with the asymptotically optimal power control algorithm.

and 8 bits per channel use. The LAST code is obtained
as an Loeliger construction (please refer to [7] for a
detailed description). In the coherent case, we report the perfor-
mance with and 8 bits per channel use. We also
report the effective rate of the ARQ scheme, denoted by , at
the eight sampling points indicated on the curve. The IR-LAST
coding scheme is shown to achieve probability of error very
close to the coherent LAST code with . On the other
hand, the effective rate of the IR-LAST coding scheme is shown
to approach as the SNR grows. Overall, this results in a
performance gain, compared to coherent systems with the same
average rate, that increases with the SNR as predicted by the
theory. Fig. 5 demonstrates the gain offered by the proposed
power control policy. In this figure, we augment the IR-LAST
coding scheme used in Fig. 4 with the power control strategy of
Theorem 8. The power control diversity gain manifests itself in
the steeper slope of the probability of error curve. Here, we re-
mark that the proposed power control policy is only guaranteed
to attain the optimal asymptotic slope of the probability of error
curve. Therefore, there is still room for further optimization of
the power control strategy to minimize the probability of error
at small-to-moderate SNR.

V. CONCLUSION

In this paper, we investigated the fundamental tradeoff of
MIMO ARQ channels. We have shown that the ARQ retrans-
mission delay can be leveraged for significant gains in the diver-
sity advantage. By characterizing the three-dimensional diver-

sity–multiplexing–delay tradeoff, we have quantified this ARQ
diversity gain. Our results show that, with the short-term power
constraint, the ARQ diversity gain is significant only at high
multiplexing gains. This limitation is overcome by combining
the retransmission strategy with a carefully constructed power
control policy, that allocates the power in the th round to be
inversely proportional to the probability of having to transmit
rounds. In this way, very high power levels can be used to “cor-
rect” the very rare error events which determine the high-SNR
behavior of error probability. We showed that the diversity gain
achieved by ARQ with power control is dramatically large at all
multiplexing gains, so that the performance approaches rapidly
the ergodic (no-outage) behavior, according to which the multi-
plexing gain can be achieved with arbitrarily large
reliability. Finally, we presented an IR-LAST explicit coding
scheme which achieves the optimal tradeoff curve (with and
without power control). In this scheme, the list lattice decoder
emerged as a powerful tool for joint error correction and detec-
tion.

Overall, our work established a theoretical foundation for
evaluating previously proposed MIMO ARQ schemes and,
hopefully, inspiring more innovative approaches. For example,
our approach for achieving the optimal diversity–multiplexing–
delay tradeoff highlights the importance of incremental re-
dundancy schemes coupled with list decoders for joint error
correction and detection. The optimality of the proposed list
decoder, however, is only limited to the high-SNR regime.
An interesting venue for future work is, therefore, to design
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more sophisticated decoders inspired by the elegant framework
of [24].

APPENDIX I
PROOF OF THEOREM 2

We start by considering the long-term static channel. Let
denote the mutual information per channel use

over consecutive slots for a given channel matrix realization
, where is the vectorized input codeword and is the

corresponding -slot channel output as defined in (4).
In order to derive the upper bound on we consider

a system that accumulates mutual information over consecutive
slots and compares it with a threshold . If mutual
information is larger than the threshold or if a maximum number

of slots is reached, the system resets and both the slot index
and the mutual information count are restarted anew. Under the
assumption that changes in an i.i.d. fashion each time the
system resets, the event of resetting is a renewal event and the
results developed in Section II-B apply directly, by redefining
the event as the mutual information level-crossing event

We define the information outage event with received blocks
as , with the associated outage probability

where, by definition, .
Outage probability is minimized, for every given SNR , by
choosing i.i.d. in time and such that
for some covariance matrix such that . It is
straightforward to show that the outage probability minimized
with respect to the input covariance matrices sat-
isfies the bounds [6]

(44)

obtained by choosing (lower bound) and
(upper bound) for all . It follows that the optimal outage prob-
ability and the outage probability achieved by i.i.d. Gaussian
inputs have the same exponential order with
respect to and thus, for the sake of establishing the high-SNR
behavior, it suffices to consider defined for such white
Gaussian input distribution.

We denote by the SNR exponent of the th round
outage probability, namely,

(45)

It follows immediately from the results in [6] that

(46)

where is the piecewise linear function defined in The-
orem 1.

Now, consider any given MIMO ARQ system operating at
SNR , with given block-length , codebook , first-block rate

, and some decoding rule such that,
for all , , and the
decoded message at round is given by . Message
corresponds to “error detection”: if a NACK is sent
back to the transmitter. Notice that takes as arguments both

and , since we assume that the channel matrix is known to
the receiver. However, we omit the second argument for notation
simplicity and since it is clear from the context.

We wish to show that defined in (46) is an upper
bound to the SNR exponent of any such sequence of MIMO
ARQ systems. Letting denote the transmitted information
message, uniformly distributed over , and re-
calling the general expression of the error probability (13),
we can write the conditional error probability of the scheme

for given as (47) at the bottom of the page. By
definition, the error probability in (47) is lower-bounded by
the probability of error of the optimal ML decoder that
operates on the whole received signal vector knowing
the channel matrix . Hence, Fano inequality yields [6]

(48)

Following the same steps as those in the proof of Theorem 2
in [6], it is a simple matter to show that, for any MIMO ARQ
system

(49)

(47)
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Noticing that, for any MIMO ARQ system, and is
nonincreasing and by using (46), we eventually obtain the upper
bound as desired.

The achievability of the exponent upper bound for asymptot-
ically large is shown as follows. For each value of , con-
sider a sequence of MIMO ARQ systems with first-block rate

, codebook with randomly generated code-
words with i.i.d. components , and
increasing block length . Let be the typical-set decoder de-
fined by the following decision rule:

1. if and the codeword
corresponding to is the unique codeword in jointly
typical with the output over slots to .

2. in any other case.

We use the upper bound to the MIMO ARQ error probability
given by (13) where, for the typical-set decoder defined above,
the decoding error event is expressed in terms of as

(50)

and the event of sending an ACK at round is given by

(51)

Then, we have

(52)

Following in the footsteps of [23, Appendix A], it is immediate
to show that for each , , and sufficiently large , there
exists a code such that

(53)

and

(54)

Without repeating here the details of [23, Appendix A], we shall
just illustrate qualitatively the above result: inequality (53) fol-
lows from the fact that the event of undetected decoding error
is contained in the event that the input and the output of the
channel are not jointly typical, whose probability is vanishing
for large ; (54) follows from the existence of codes with ar-
bitrarily small error probability for all fading matrices in the
nonoutage set.

It follows that, for sufficiently large

and by taking expectation of both sides with respect to we
obtain

(55)

On the other hand, for such a family of MIMO ARQ schemes
we have that, for all , for all , and

for sufficiently large

(56)

where follows form the fact that, for large enough, the
probability that there are more than one codeword jointly typical
with the output can be made as small as desired for all

, therefore, the event is essentially given
by the information outage event. Therefore, .
Using (46), we obtain

which results in . This, together with (55), proves that
is achievable for sufficiently large block length .

The proof for the short-term static channels follows the same
lines with the exception that the mutual information with i.i.d.
Gaussian inputs takes on the expression

so that (45) is replaced by

(57)

This concludes the proof for achievability with .
For finite , we first assume long-term static channels. As
before, the result for short-term static channels follows easily
and the difference between (19) and (20) will be explained
toward the end of the proof. The proof is composed of two
steps. First, we consider an ensemble of Gaussian i.i.d. random
codes with block length and analyze their error probability
and their throughput in the ensemble average sense. Second,
we have to show via a simple expurgation argument that there
are codes in the ensemble that perform at least as well as the
ensemble average and thus achieve the same error probability
and throughput.

Let denote a random code generated with i.i.d.
components, block length , and rate . We define the
following bounded distance decoder : at each round

1. if and the codeword
(corresponding to ) is the unique codeword in such
that , where will be
specified later;

2. in any other case;
3. at round , the decoder outputs the index of the minimum

distance codeword, i.e., .
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For the above ensemble, we wish to analyze the probability of
error and the throughput. For the probability of error we bound
each term in (13). Since the decoder at round is the standard
ML decoder, using the results of [6] we obtain immediately

(58)

under the condition that . In order to bound
the undetected error probability , let
be the region of received signal vectors such that is the
unique codeword in for which .
Then, we have

(59)

where the inequality follows by noticing that the union of all
is included in the complement of the sphere centered in

(corresponding to the transmitted message ) of squared radius
. We notice that is central Chi-squared with

degrees of freedom. We can use the Chernoff bound to
upper-bound the tail of the Chi-squared distribution, and find

(60)

For some , we let and obtain

(61)

Eventually, the ensemble average error probability is given by

(62)
In order to have the desired exponent , we need to en-
sure that . By choosing a large enough , we
can easily see that this is achieved under the condition on
given by (19).

In order to achieve , we still need to
show that , i.e., that the probabilities are for
large . Fix . We partition the channel output space
(formed by all possible received vectors and channel matrices

) into the following regions: is the usual outage event,
is the region of channel outputs not included in any of the

spheres of squared radius and centered around the
codewords, and is the region of channel outputs included in
more than one of such spheres. Moreover, we partition into

and , where the former is the region of the sphere

centered in (the transmitted codeword, corresponding to )
included in other spheres, and the latter is its complement in

. Then, we have

(63)

The high-SNR behavior of the first two terms in the last line
is given by and by , respectively. We shall
focus on the third term. More explicitly, this can be written
as (64) at the bottom of the page. We shall upper-bound the
above probability as follows. We condition with respect to a
given channel matrix with eigenvalues , for

. We use the union bound over all possible
codewords pairs , and we average over the code ensemble
the pairwise error probability. Eventually, we average the result
with respect to . Fix the channel eigenvalues and
define

(65)

Using the fact that , we can write

(66)

where follows by letting , , and
and by noticing that, for any random vectors

, , and , it holds

since the event is empty.
Then, follows from the fact that, for the random coding

(64)
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ensemble, is an i.i.d. Gaussian real vector
with . Therefore, using the sin-
gular value decomposition , where

and with orthonormal
columns, we have that

where the ’s are i.i.d. central Chi-squared random variables
degrees of freedom. Finally, the last line follows from the

fact that, for such Chi-squared random variables,
for small and for large (see [6,

p. 1082] for a very similar development).
The last line of (66) yields an upper bound on the pairwise

error probability averaged over the coding ensemble and con-
ditioned with respect to the channel matrix. Summing over all
distinct message pairs and averaging over the channels in the
nonoutage set we obtain (see [6] for a very similar expression)

(67)
We make use the following result from [6]:

Lemma 9: Let be defined by (65), let
denote the joint density of , which can be computed from

the Wishart density of the ordered eigenvalues .
For any set , and any function for which
the integrals below exists

(68)

Applying the lemma, we obtain that

where we get the equation at the bottom of the page, and where
the set is the limit of of , given by

(69)

Following [6], for any we find that for all
and . Moreover, if then

, which is the maximum possible SNR exponent
for codes with multiplexing gain and block length .

By collecting all results and recalling (63), we have that

This implies that and, therefore, that is
achievable by finite-length codes subject to the condition (19),
provided that we can show that there exists a single codebook
that achieves at the same time the above exponents for ,
for all , as well as the exponent of error
probability . In other words, we have to show that not
only all these exponents can be achieved by averaging over
the code ensemble, but that there exist codes that achieve them
simultaneously.

The expurgation argument is stated by the following lemma
in slightly more general terms. The application to our case is
then immediate and the proof of Theorem 2 is concluded.

Lemma 10: Consider a sequence of random coding
ensembles , indexed by SNR. For each value of , let

be a finite set of events in the joint probability
space of the code ensemble and of the channel parameters
(noise, channel matrix). Let

channel

denote the average probability of the event , where expecta-
tion is with respect to both the channel parameters and to the
code ensemble. Assume that, for all there exist
positive constants such that

(70)

Then, the probability of the subset of codes such that

channel for all

goes to as , thus showing that there exist codes that
perform at least as good as the ensemble average for all criteria

.
Proof: For random in the ensemble of codes, the prob-

abilities

channel

are random variables whose mean value is equal to . For
any , by using Markov inequality we can write

(71)
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We have

Hence, the probability of the complement event is lower-
bounded by

for sufficiently large. This shows that the probability of
the set of codes that achieve simultaneously probabilities

is as large as desired. Since is
arbitrary, for this set of codes, the SNR exponent of
is not smaller than of the ensemble average. To see this, just
choose .

Using Lemma 10, the proof for the long-term static channels
is concluded. For short-term static channels, the only difference
is that, as shown in [6], we need in order to
ensure that

(72)

APPENDIX II
PROOF OF THEOREM 5

We restrict ourselves to stationary power control policies, i.e.,
such that the total energy allocated to the th transmitted
block is a time-invariant deterministic function of the relative
slot index . We start by noticing that for any fixed -tuple

, the upper bound on the achievable diversity gain
based on Fano inequality and the achievability part for large

in the proof of Theorem 2 hold. Moreover, the achievability
result with finite length in Theorem 2 also extend to this scenario
after the small modification of requiring .
This straightforward extension will be outlined at the end of the
proof. Therefore, we can focus on studying the SNR exponent
of the mutual information level-crossing system as described at
the beginning of Appendix I, suitably modified in order to take
into account the power control policy.

For each power control policy , let

(73)

be the mutual information corresponding to i.i.d. white Gaussian
inputs and define as the mutual information level-crossing
event

As before, we define the information outage event with
received blocks as , with the associated outage
probability where, by definition,

. We define also the set of feasible power control
policies as

(74)

where we have used the fact that, for the event defined above

and we used the long-term average transmit power formula (12).
Again, we denote by the SNR exponent of the th

round outage probability

(75)

Then, implies that

where we used the fact that the average inter-renewal time, given
by , cannot be larger than the maximum inter-
renewal time . Letting , this yields

(76)

The condition (76) is clearly also sufficient for feasibility, in the
sense that if (76) holds then weights independent of
exist such that is a feasible
policy.

An asymptotically optimal feasible policy must achieve (76)
with equality for all and maximize in sequence the outage
exponents , for . This fact can be shown by
contradiction: suppose that is optimal and there exists

such that for some we have

Then, a feasible policy with for all and

can be found. Outage probability is a strictly decreasing func-
tion of the transmitted powers. Hence, .
Going on with this argument, we can show that

, thus contradicting the assumption that is asymptoti-
cally optimal.

Sequential maximization of the exponents yields the
following recursive algorithm. We let and
denote the not identically zero eigenvalues of by
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. We let be defined by (65)
and we notice that, for all

(77)
For , we have and therefore

. By using (77) for , we can write the outage event as

(78)
which, for asymptotically large , yields

(79)
Writing and using Lemma 9 we
obtain .

Then, let . By using (77) for , we can write
the outage event as

(80)

which, for asymptotically large , yields

(81)

From Lemma 9 we obtain

(82)

Next, we let and proceed similarly for
. The resulting sequence of optimal expo-

nents is upper-bounded by the sequence defined
in Theorem 5. The upper bound comes from the fact that the
sequence is given by the same recursion that generates the
sequence by replacing with . It follows that
the optimal exponent of is upper-bounded by .

As anticipated at the beginning of this section, since the con-
verse argument based on Fano inequality holds for any power
control policy, it follows that . Moreover, since
the achievability argument for holds for any power con-
trol policy, it follows that (achieved by Gaussian
codes in the limit of large ).

The final step is to prove the achievability of for
. The result hinges on the Gaussian i.i.d. code

ensemble and on the use of the bounded distance decoder de-
fined in the proof of Theorem 2. Notice that here the probabili-
ties must vanish with exponent such that we can al-
locate power to the th block while still sat-
isfying the long-term average power constraint. Omitting steps
analogous to the proof of Theorem 2 for the sake of concise-
ness, we find that the proof only requires showing the existence
of codes such that

(83)

when for . This holds provided that
we show the existence of codes that achieve

(84)

for all , where is as defined in Theorem 2 proof and
is the outage event after ARQ rounds. Replicating the

arguments that lead to (66) and (67), we obtain that, with power
control

where are i.i.d. central Chi-squared random variables with
degrees of freedom.

By using the above upper bound on the pairwise error prob-
ability in the union bound, and averaging over the channel re-
alizations in the no-outage set, we find that (84) holds if the
condition at the bottom of the page holds, which is quaranteed
for [6]. Finally, our expurgation lemma
(i.e., Lemma 10) yields the existence of codes that achieve the
power-control exponent for finite .
This concludes the proof.
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APPENDIX III
PROOF OF LEMMA 6

In general, in order to obtain a lower bound on it is suf-
ficient to enlarge the feasible set of one or more of the opti-
mization problems given in Theorem 5. Notice that the con-
straint functions defined in (30) are piecewise linear, de-
creasing, and convex. By taking any one of the straight lines
whose upper convex envelope forms , we obtain a linear
constraint which is strictly looser than the original convex con-
straint, thus leading to a lower bound.

In particular, the two lower bounds are obtained by taking,
for each , the linear constraints

(85)

and

(86)

respectively. These correspond to the straight lines for
and for in the expression of , respectively.

By considering the sequence of linear optimization problems
given by the constraints (85) we obtain explicitly

(87)

(88)

(89)

subject to

(90)

Through the change of variables , and by
noticing that is the solution to the linear program

(91)

subject to the constraint

(92)

we obtain

as stated in the lemma. The second lower bound is established
in a similar manner by considering the constraint (86).

To prove the upper bound, we observe that attains its
maximum value at , and it is zero
for . Hence, the piecewise linear function

(93)

is strictly above for all . By replacing by (93), we
obtain the sequence of linear programs

(94)

(95)

(96)

subject to

(97)

which yields

as stated in the lemma.

APPENDIX IV
PROOF OF THEOREM 8

The proof is essentially the same with either the short-term
or long-term average power constraint. Therefore, we only
discuss the long-term static channel with the short-term power
constraint (i.e., Theorem 2) for conciseness. We start with the
Loeliger ensemble of - lattices defined in [28] (see also
[29], [30]). For the sake of completeness, we recall here its
definition. Let be a prime. The ensemble is generated via
Construction A, as the set of all lattices given by

(98)

where , is a scaling coefficient adjusted such that
the fundamental volume

denotes the field of - integers, and is a
vector with i.i.d. components. We use a pair of self-similar lat-
tices for nesting. In particular, we take the shaping lattice to be

, where is chosen such that in order to
satisfy the input power constraint. The coding lattice is obtained
as , where in order to satisfy the
transmission rate of the first round is . This
yields the fundamental volumes

(99)

(100)

In order to exclude bad shaping lattices, we expurgate the
ensemble by removing all lattices whose covering efficiency is
larger than . The new ensemble, i.e., , will be used
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throughout the proof. Now, we proceed in the same lines as
the proof of Theorem 2. The only differences resulting from
using an ensemble of lattice codes instead of the Gaussian
ensemble and the list MMSE-lattice decoder instead of the
bounded distance decoder is that we now need to upper-bound

and the ensemble average
. The fundamental challenge in

the first task is the non-Gaussianity of . In [7], however, we
showed that this non-Gaussianity does not change the exponen-
tial order of the Chernoff upper bound assuming Gaussian
(taking a form similar to (60)). Therefore, we have

which settles our first task. Toward the second goal, we first
observe that

and is the ensemble average of the
probability of error achieved by the ambiguity decoder proposed
by Loeliger [28]. In [7], we have shown that

where can be made arbitrarily small by increasing .
From elementary properties of MMSE-DFE equalization [7],
we know that

(101)

Using this result and following in the footsteps of [6] we ob-
tain

(102)

which implies

(103)

for . Then, we use the same arguments as in the
proof of Theorem 2 to see that and the ensemble average
of the probability of error achieves the optimal diversity advan-
tage . The final step follows from Lemma
10 which establishes the existence of a lattice in the ensemble

such that the corresponding nested LAST code achieves
simultaneously the condition in (103) for all . The proofs for

the short-term channel and the power-controlled ARQ scheme
follow exactly the same arguments and are omitted for the sake
of conciseness.
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